1
|
Wang X, Niu X, Wang Y, Liu Y, Yang C, Chen X, Qi Z. C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury. Neural Regen Res 2025; 20:2231-2244. [PMID: 39104168 PMCID: PMC11759034 DOI: 10.4103/nrr.nrr-d-24-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 08/07/2024] Open
Abstract
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage. The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury. Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury, suggesting that this axis is a novel target and regulatory control point for treatment. This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis, along with the regenerative and repair mechanisms linking the axis to spinal cord injury. Additionally, we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs, along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs. Nevertheless, there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
Collapse
Affiliation(s)
- Xiangzi Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingkai Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yang Liu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Cheng Yang
- Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Remsik J, Tong X, Kunes RZ, Li MJ, Estrera R, Snyder J, Thomson C, Osman AM, Chabot K, Sener UT, Wilcox JA, Isakov D, Wang H, Bale TA, Chaligné R, Sun JC, Brown C, Pe'er D, Boire A. Interferon-γ orchestrates leptomeningeal anti-tumour response. Nature 2025:10.1038/s41586-025-09012-z. [PMID: 40369076 DOI: 10.1038/s41586-025-09012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
Metastasis to the cerebrospinal-fluid-filled leptomeninges, or leptomeningeal metastasis, represents a fatal complication of solid tumours1. Multimodal analyses of clinical specimens reveal substantial inflammatory infiltrate in leptomeningeal metastases with enrichment of IFNγ and resulting downstream signalling. Here, to investigate and overcome this futile anti-tumour response within the leptomeninges, we developed syngeneic lung cancer, breast cancer and melanoma leptomeningeal-metastasis mouse models. We show that transgenic host mice lacking IFNγ or its receptor fail to control the growth of leptomeningeal metastases growth. Leptomeningeal overexpression of Ifng through a targeted adeno-associated-virus-based system controls cancer cell growth independent of adaptive immunity. Using a suite of transgenic hosts, we demonstrate that leptomeningeal T cells generate IFNγ to actively recruit and activate peripheral myeloid cells, generating a diverse spectrum of dendritic cell subsets. Independent of antigen presentation, migratory CCR7+ dendritic cells orchestrate the influx, proliferation and cytotoxic action of natural killer cells to control cancer cell growth in the leptomeninges. This study identifies unique, leptomeninges-specific IFNγ signalling and suggests an immune-therapeutic approach against tumours within this space.
Collapse
Affiliation(s)
- Jan Remsik
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Xinran Tong
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- BCMB Allied Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Russell Z Kunes
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Min Jun Li
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Rachel Estrera
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenna Snyder
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Clark Thomson
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmed M Osman
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Kiana Chabot
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, NY, USA
| | - Ugur T Sener
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology & Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danielle Isakov
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Helen Wang
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chrysothemis Brown
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Boire
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
4
|
Chen Y, Zhou Y, Bai Y, Jia K, Zhang H, Chen Q, Song M, Dai Y, Shi J, Chen Z, Yan X, Shen Y. Macrophage-derived CTSS drives the age-dependent disruption of the blood-CSF barrier. Neuron 2025; 113:1082-1097.e8. [PMID: 40015275 DOI: 10.1016/j.neuron.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
The choroid plexus (CP) serves as the primary source of cerebrospinal fluid (CSF). The blood-CSF barrier, composed of tight junctions among the epithelial cells in the CP, safeguards CSF from unrestricted exposure to bloodborne factors. This barrier is thus indispensable to brain homeostasis and is associated with age-related neural disorders. Nevertheless, its aging is poorly understood. Here, we report that cathepsin S (CTSS), a protease secreted from the CP macrophages, is upregulated in aged CP due to increased cell senescence. CTSS cleaves the essential tight junction component, claudin 1 (CLDN1), and, in turn, impairs the blood-CSF barrier. Notably, inhibiting CTSS or upregulating CLDN1 in aged CP rejuvenates the blood-CSF barrier and brain functions. Our findings uncover a vital interplay between immune and barrier cells that accelerates CP and brain aging, identify CTSS as a potential target to improve brain homeostasis in aged animals, and underscore the critical role of circulating proteinases in aging.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqing Bai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwen Jia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingxia Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mengjiao Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumin Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiantao Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumin Yan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Hill BM, Holloway RK, Forbes LH, Davies CL, Monteiro JK, Brown CM, Rose J, Fudge N, Plant PJ, Mahmood A, Brand-Arzamendi K, Kent SA, Molina-Gonzalez I, Gyoneva S, Ransohoff RM, Wipke B, Priller J, Schneider R, Moore CS, Miron VE. Monocyte-secreted Wnt reduces the efficiency of central nervous system remyelination. PLoS Biol 2025; 23:e3003073. [PMID: 40233100 PMCID: PMC12052099 DOI: 10.1371/journal.pbio.3003073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/05/2025] [Accepted: 02/18/2025] [Indexed: 04/17/2025] Open
Abstract
The regeneration of myelin in the central nervous system (CNS) reinstates nerve health and function, yet its decreased efficiency with aging and progression of neurodegenerative disease contributes to axonal loss and/or degeneration. Although CNS myeloid cells have been implicated in regulating the efficiency of remyelination, the distinct contribution of blood monocytes versus that of resident microglia is unclear. Here, we reveal that monocytes have non-redundant functions compared to microglia in regulating remyelination. Using a transgenic mouse in which classical monocytes have reduced egress from bone marrow (Ccr2-/-), we demonstrate that monocytes drive the timely onset of oligodendrocyte differentiation and myelin protein expression, yet impede myelin production. Ribonucleic acid sequencing revealed a Wnt signature in wild-type mouse lesion monocytes, which was confirmed in monocytes from multiple sclerosis white matter lesions and blood. Genetic or pharmacological inhibition of Wnt release by monocytes increased remyelination. Our findings reveal monocytes to be critical regulators of remyelination and identify monocytic Wnt signaling as a promising therapeutic target to inhibit for increased efficiency of CNS regeneration.
Collapse
Affiliation(s)
- Bianca M. Hill
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
- BARLO Multiple Sclerosis Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca K. Holloway
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
- BARLO Multiple Sclerosis Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Lindsey H. Forbes
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Claire L. Davies
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jonathan K. Monteiro
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
- BARLO Multiple Sclerosis Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Christina M. Brown
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jamie Rose
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Neva Fudge
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Pamela J. Plant
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Ayisha Mahmood
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Koroboshka Brand-Arzamendi
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
- BARLO Multiple Sclerosis Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Sarah A. Kent
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Irene Molina-Gonzalez
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Stefka Gyoneva
- Previously at Biogen Ltd, Cambridge, Massachusetts, United States of America
| | - Richard M. Ransohoff
- Previously at Biogen Ltd, Cambridge, Massachusetts, United States of America
- Third Rock Ventures, Boston, Massachusetts, United States of America
| | - Brian Wipke
- Previously at Biogen Ltd, Cambridge, Massachusetts, United States of America
- Manifold Bio, Boston, Massachusetts, United States of America
| | - Josef Priller
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Clinical Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin and DZNE, Berlin, Germany
| | - Raphael Schneider
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
- BARLO Multiple Sclerosis Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Craig S. Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Veronique E. Miron
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
- BARLO Multiple Sclerosis Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
6
|
Wang Y, Dowling SD, Rodriguez V, Maciuch J, Mayer M, Therron T, Shaw TN, Gurra MG, Shah CL, Makinde HKM, Ginhoux F, Voehringer D, Harrington CA, Lawrence T, Grainger JR, Cuda CM, Winter DR, Perlman HR. Comprehensive analysis of myeloid reporter mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639159. [PMID: 40060446 PMCID: PMC11888320 DOI: 10.1101/2025.02.24.639159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Macrophages are a pivotal cell type within the synovial lining and sub-lining of the joint, playing a crucial role in maintaining homeostasis of synovium. Although fate-mapping techniques have been employed to differentiate synovial macrophages from other synovial myeloid cells, no comprehensive study has yet been conducted within the mouse synovial macrophage compartment. In this study, we present, for the first time, lineage tracing results from 18 myeloid-specific fate-mapping models in mouse peripheral blood (PB) and synovial tissue. The identification of synovial macrophages and monocyte-lineage cells through flow cytometry was further validated using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) datasets. These findings provide a valuable methodological tool for researchers to select appropriate models for studying the function of synovial myeloid cells and serve as a reference for investigations in other tissue types.
Collapse
Affiliation(s)
- Yidan Wang
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Samuel D Dowling
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
- Northwestern University, Feinberg School of Medicine. Department of Pediatrics, Division of Rheumatology. Chicago, IL 60611, USA
| | - Vanessa Rodriguez
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Jessica Maciuch
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Meghan Mayer
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Tyler Therron
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Miranda G Gurra
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Caroline L Shah
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Hadijat-Kubura M Makinde
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR). 8A Biomedical Grove IMMUNOS Bldg, Level 3, SINGAPORE 138648
| | - David Voehringer
- University Hospital Erlangen, Department of Infection Biology and Friedrich-Alexander University Erlangen-Nuremberg (FAU). Wasserturmstrasse 3-5, 91054 Erlangen, Germany
| | - Cole A Harrington
- The Ohio State University Wexner Medical Center, Department of Neurology, The Neuroscience Research Institute, College of Medicine, Columbus, OH, USA
| | - Toby Lawrence
- King's College London, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, London, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Manchester, UK
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Deborah R Winter
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
- Center for Human Immunobiology (CHI), Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Harris R Perlman
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| |
Collapse
|
7
|
Grommisch D, Lund H, Eenjes E, Julien A, Göritz C, Harris RA, Sandberg R, Hagemann-Jensen M, Genander M. Regionalized cell and gene signatures govern esophageal epithelial homeostasis. Dev Cell 2025; 60:320-336.e9. [PMID: 39426382 DOI: 10.1016/j.devcel.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Regionalized disease prevalence is a common feature of the gastrointestinal tract. Herein, we employed regionally resolved Smart-seq3 single-cell sequencing, generating a comprehensive cell atlas of the adult mouse esophagus. Characterizing the esophageal axis, we identify non-uniform distribution of epithelial basal cells, fibroblasts, and immune cells. In addition, we demonstrate a position-dependent, but cell subpopulation-independent, transcriptional signature, collectively generating a regionalized esophageal landscape. Combining in vivo models with organoid co-cultures, we demonstrate that proximal and distal basal progenitor cell states are functionally distinct. We find that proximal fibroblasts are more permissive for organoid growth compared with distal fibroblasts and that the immune cell profile is regionalized in two dimensions, where proximal-distal and epithelial-stromal gradients impact epithelial maintenance. Finally, we predict and verify how WNT, BMP, insulin growth factor (IGF), and neuregulin (NRG) signaling are differentially engaged along the esophageal axis. We establish a cellular and transcriptional framework for understanding esophageal regionalization, providing a functional basis for epithelial disease susceptibility.
Collapse
Affiliation(s)
- David Grommisch
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Harald Lund
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Evelien Eenjes
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Solár P, Brázda V, Bareš M, Zamani A, EmamiAref P, Joukal A, Kubíčková L, Kročka E, Hašanová K, Joukal M. Inflammatory changes in the choroid plexus following subarachnoid hemorrhage: the role of innate immune receptors and inflammatory molecules. Front Cell Neurosci 2025; 18:1525415. [PMID: 39839349 PMCID: PMC11747387 DOI: 10.3389/fncel.2024.1525415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid. Subarachnoid hemorrhage due to aneurysm rupture is a devastating type of hemorrhagic stroke. Following subarachnoid hemorrhage, blood and the blood degradation products that disperse into the cerebrospinal fluid come in direct contact with choroid plexus epithelial cells. The aim of the current study was to elucidate the pathophysiological cascades responsible for the inflammatory reaction that is seen in the choroid plexus following subarachnoid hemorrhage. Methods Subarachnoid hemorrhage was induced in rats by injecting non-heparinized autologous blood to the cisterna magna. Increased intracranial pressure following subarachnoid hemorrhage was modeled by using artificial cerebrospinal fluid instead of blood. Subarachnoid hemorrhage and artificial cerebrospinal fluid animals were left to survive for 1, 3, 7 and 14 days. Immunohistochemical staining of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β, CCR2 and CX3CR1 was performed on the cryostat sections of choroid plexus tissue. The level of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β was detected by measuring immunofluorescence intensity in randomly selected epithelial cells. The number of CCR2 and CX3CR1 positive cells per choroid plexus area was manually counted. Immunohistochemical changes were confirmed by Western blot analyses. Results Immunohistochemical methods and Western blot showed increased levels of TLR9 and a slight increase in TLR4 and FRP2 following both subarachnoid hemorrhage as well as the application of artificial cerebrospinal fluid over time, although the individual periods were different. The levels of TNFα and IL-1β increased, while CCL2 level decreased slightly. Accumulation of macrophages positive for CCR2 and CX3CR1 was found in all periods after subarachnoid hemorrhage as well as after the application of artificial cerebrospinal fluid. Discussion Our results suggest that the inflammation develops in the choroid plexus and blood-cerebrospinal fluid barrier in response to blood components as well as acutely increased intracranial pressure following subarachnoid hemorrhage. These pro-inflammatory changes include accumulation in the choroid plexus of pro-inflammatory cytokines, innate immune receptors, and monocyte-derived macrophages.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Martin Bareš
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alemeh Zamani
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Parisa EmamiAref
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Kubíčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Erik Kročka
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Klaudia Hašanová
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
9
|
Garcia-Santillan AD, Bos PD. Characterization of Bone Marrow-Derived Immune Compartment in Murine Brain Metastases by Spectral Flow Cytometry. Methods Mol Biol 2025; 2930:1-16. [PMID: 40402443 DOI: 10.1007/978-1-0716-4558-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Metastatic brain cancer is the most common intracranial cancer among adults, often leading to poor survival outcomes. The incidence of brain metastases is on the rise, likely associated with advanced systemic therapeutics which improve patient survival, providing sufficient time for micrometastases to develop into fully established metastases. Therefore, brain metastasis remains an unmet clinical need. The brain metastatic tumor microenvironment is a complex ecosystem composed of numerous brain, stromal, and immune cells with unique adaptations that represent a formidable challenge for treatment. Importantly, brain metastases are enriched in immune cells, especially myeloid resident and recruited cells considered highly plastic. Thus, it is critical to assess the immune landscape and functional phenotypes longitudinally and across treatment conditions in brain metastasis in a non-biased, comprehensive manner. Here, we outline a protocol to assess immune cell populations in murine brain metastasis samples, using a 23-color panel for spectral flow cytometry.
Collapse
Affiliation(s)
| | - Paula D Bos
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
- Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
10
|
Scharpf BR, Ruetten H, Sandhu J, Wegner KA, Chandrashekar S, Fox O, Turco AE, Cole C, Arendt LM, Strand DW, Vezina CM. Prostatic Escherichia coli infection drives CCR2-dependent recruitment of fibrocytes and collagen production. Dis Model Mech 2025; 18:DMM052012. [PMID: 39748675 PMCID: PMC11789281 DOI: 10.1242/dmm.052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Prostate fibrosis contributes to lower urinary tract dysfunction (LUTD). To develop targeted treatments for prostate fibrosis, it is necessary to identify the cell types and molecular pathways required for collagen production. We used a genetic approach to label and track potential collagen-producing cell lineages in mouse prostate through a round of Escherichia coli UTI89-mediated prostate inflammation. E. coli increased collagen density and production in Gli1+, S100a4+, Lyz2+ and Cd2+ cell lineages, but not in Myh11+ or Srd5a2+ cell lineages, in the mouse prostate. Molecular phenotyping revealed GLI1+LYZ+S100A4+ cells (fibrocytes) in histologically inflamed human prostate. These fibrocytes colocalized with regions of increased collagen in men with LUTD. Fibrocyte recruitment and collagen synthesis was impaired in Ccr2 null mice but restored by allotransplantation of Rosa-GFP donor bone marrow-derived cells. These results suggest that bone marrow-derived fibrocytes are a mediator of prostatic collagen accumulation.
Collapse
Affiliation(s)
- Brandon R. Scharpf
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kyle A. Wegner
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sneha Chandrashekar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Olivia Fox
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anne E. Turco
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clara Cole
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa M. Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas W. Strand
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Tan Z, Hall P, Mack M, Snelgrove SL, Kitching AR, Hickey MJ. Both Classical and Non-Classical Monocytes Patrol Glomerular Capillaries and Promote Acute Glomerular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:89-101. [PMID: 39117108 DOI: 10.1016/j.ajpath.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Monocyte patrolling of the vasculature has been ascribed primarily to the non-classical monocyte subset. However, a recent study of the glomerular microvasculature provided evidence that both classical and non-classical monocytes undergo periods of intravascular retention and migration. Despite this, whether these subsets contribute differentially to acute glomerular inflammation is unknown. This study used glomerular multiphoton intravital microscopy to investigate the capacity of classical and non-classical monocytes to patrol the glomerular microvasculature and promote acute, neutrophil-dependent glomerular inflammation. In imaging experiments in monocyte reporter Cx3cr1gfp/+ mice, co-staining with anti-Ly6B or anti-Ly6C revealed that both non-classical monocytes [CX3 chemokine receptor 1-green fluorescent protein positive (CX3CR1-GFP+)] and classical monocytes (CX3CR1-GFP+ and Ly6B+ or Ly6C+) underwent prolonged (>10 minutes) retention and migration in the glomerular microvasculature. On induction of acute glomerulonephritis, these behaviors were increased in classical, but not non-classical, monocytes. Using non-classical monocyte-deficient Csf1rCreNr4a1fl/fl mice, or anti-CCR2 to deplete classical monocytes, the removal of either subset reduced neutrophil retention and activation in acutely inflamed glomeruli, while the depletion of both subsets, via anti-CCR2 treatment in Csf1rCreNr4a1fl/fl mice, led to further reductions in neutrophil activity. In contrast, in a model of CD4+ T cell-dependent glomerulonephritis, the depletion of either monocyte subset failed to alter neutrophil responses. These findings indicate that both classical and non-classical monocytes patrol the glomerular microvasculature and promote neutrophil responses in acutely inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Matthias Mack
- Department of Internal Medicine II-Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia; Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Ai S, Arutyunov A, Liu J, Hill JD, Jiang X, Klein RS. CCR2 restricts IFN-γ production by hippocampal CD8 TRM cells that impair learning and memory during recovery from WNV encephalitis. J Neuroinflammation 2024; 21:330. [PMID: 39725999 DOI: 10.1186/s12974-024-03309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Central nervous system (CNS) resident memory CD8 T cells (TRM) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairment. Here, we show that CCR2 signaling in CD8 TRM that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection. However, transcriptomic analyses of forebrain CCR2+ versus CCR2- CD8 TRM during WNV recovery reveal that CCR2 signaling significantly regulates hippocampal CD8 TRM phenotype and function via extrinsic and intrinsic effects, limiting expression of CD103, granzyme A and IFN-γ, respectively, and increasing the percentages of virus-specific CD8 T cells. Consistent with this, WNV-recovered Cd8acreCcr2fl/fl mice exhibit decreased recognition memory. Overall, these data implicate CCR2 signaling in the regulation of CD8 TRM phenotype, including antiviral specificity and IFN-γ expression, highlighing a neuroprotective role for CCR2 in limiting CD8 T cell-mediated neuroinflammation and cognitive deficits, providing insights into potential therapeutic targets for CNS infections.
Collapse
Affiliation(s)
- Shenjian Ai
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Artem Arutyunov
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy D Hill
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
13
|
Bala N, McGurk A, Carter EM, Sidhu I, Niak S, Leddon SA, Fowell DJ. Th1 cells are critical tissue organizers of myeloid-rich perivascular activation niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625073. [PMID: 39651309 PMCID: PMC11623525 DOI: 10.1101/2024.11.24.625073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Aggregating immune cells within perivascular niches (PVN) can regulate tissue immunity in infection, autoimmunity and cancer. How cells are assembled at PVNs and the activation signals imparted within remain unclear. Here, we integrate dynamic time-resolved in vivo imaging with a novel spatially-resolved platform for microanatomical interrogation of transcriptome, immune phenotype and inflammatory mediators in skin PVNs. We uncover a complex positive-feedback loop within CXCL10 + PVNs that regulates myeloid and Th1 cell positioning for exchange of critical signals for Th1 activation. Th1 cells spend ∼24h in the PVN, receiving initial peripheral activation signals, before redeploying to the inflamed dermal parenchyma. Niche-enriched, CCR2-dependent myeloid cells were critical for Th1 IFNγ-production. In turn, PVN instructional signals enabled Th1s to orchestrate PVN assembly by CXCR2-dependent intra-tissue myeloid cell aggregation. The results reveal a critical tissue organizing role for Th1s, gained rapidly on tissue entry, that could be exploited to boost regional immunity. HIGHLIGHTS Perivascular niche (PVN): myeloid hubs in inflamed mouse and healthy human skinTh1 cells enter, get activated, and leave the PVN within first 24h of tissue entryAntigen-specific signals in the PVN promote the tissue organizing functions of Th1sTh1 cells assemble the PVN via CXCR2-dependent myeloid cell aggregation.
Collapse
|
14
|
Zhou Y, Xu T, Zhou Y, Han W, Wu Z, Yang C, Chen X. A review focuses on a neglected and controversial component of SCI: myelin debris. Front Immunol 2024; 15:1436031. [PMID: 39650659 PMCID: PMC11621000 DOI: 10.3389/fimmu.2024.1436031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024] Open
Abstract
Myelin sheath, as the multilayer dense structure enclosing axons in humans and other higher organisms, may rupture due to various injury factors after spinal cord injury, thus producing myelin debris. The myelin debris contains a variety of myelin-associated inhibitors (MAIs) and lipid, all inhibiting the repair after spinal cord injury. Through summary and analysis, the present authors found that the inhibition of myelin debris can be mainly divided into two categories: firstly, the direct inhibition mediated by MAIs; secondly, the indirect inhibition mediated by lipid such as cholesterol. It is worth noting that phagocytes are required in the latter indirect inhibition, such as professional phagocytes (macrophages et al.) and non-professional phagocytes (astrocytes et al.). Moreover, complement and the immune system also participate in the phagocytosis of myelin debris, working together with phagocytes to aggravate spinal cord injury. In conclusion, this paper focuses on the direct and indirect effects of myelin debris on spinal cord injury, aiming to provide new inspiration and reflection for the basic research of spinal cord injury and the conception of related treatment.
Collapse
Affiliation(s)
- Yuchen Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tao Xu
- Medical School of Nantong University, Nantong, China
- Department of Orthopedics, Yancheng Dafeng People's Hospital, Yancheng, China
| | - Yiyan Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Wei Han
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Zhengchao Wu
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Changwei Yang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
15
|
Amason ME, Beatty CJ, Harvest CK, Saban DR, Miao EA. Chemokine expression profile of an innate granuloma. eLife 2024; 13:RP96425. [PMID: 39541153 PMCID: PMC11563579 DOI: 10.7554/elife.96425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2-/- mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.
Collapse
Affiliation(s)
- Megan E Amason
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Cole J Beatty
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Carissa K Harvest
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Daniel R Saban
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
16
|
Blasdel N, Bhattacharya S, Donaldson PC, Reh TA, Todd L. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia. J Neurosci 2024; 44:e0938242024. [PMID: 39353729 PMCID: PMC11561870 DOI: 10.1523/jneurosci.0938-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Endogenous reprogramming of glia into neurogenic progenitors holds great promise for neuron restoration therapies. Using lessons from regenerative species, we have developed strategies to stimulate mammalian Müller glia to regenerate neurons in vivo in the adult retina. We have demonstrated that the transcription factor Ascl1 can stimulate Müller glia neurogenesis. However, Ascl1 is only able to reprogram a subset of Müller glia into neurons. We have reported that neuroinflammation from microglia inhibits neurogenesis from Müller glia. Here we found that the peripheral immune response is a barrier to CNS regeneration. We show that monocytes from the peripheral immune system infiltrate the injured retina and negatively influence neurogenesis from Müller glia. Using CCR2 knock-out mice of both sexes, we found that preventing monocyte infiltration improves the neurogenic and proliferative capacity of Müller glia stimulated by Ascl1. Using scRNA-seq analysis, we identified a signaling axis wherein Osteopontin, a cytokine highly expressed by infiltrating immune cells is sufficient to suppress mammalian neurogenesis. This work implicates the response of the peripheral immune system as a barrier to regenerative strategies of the retina.
Collapse
Affiliation(s)
- Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
17
|
Chen H, Koul D, Zhang Y, Ghobadi SN, Zhu Y, Hou Q, Chang E, Habte FG, Paulmurugan R, Khan S, Zheng Y, Graeber MB, Herschmann I, Lee KS, Wintermark M. Pulsed focused ultrasound alters the proteomic profile of the tumor microenvironment in a syngeneic mouse model of glioblastoma. J Neurooncol 2024; 170:347-361. [PMID: 39180641 DOI: 10.1007/s11060-024-04801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Glioblastoma (GBM), a lethal primary adult malignancy, is difficult to treat because of the restrictive nature of the blood-brain barrier (BBB), blood-tumor barrier (BTB), and the immunosuppressive tumor microenvironment (TME). Since pulsed focused ultrasound (pFUS) is currently used to improve therapeutic deliveries across these barriers, this study aims to characterize the impact of pFUS on the TME proteomics upon opening the BBB and BTB. METHODS We utilized MRI-guided, pFUS with ultrasound contrast microbubbles (termed 'pFUS' herein) to selectively and transiently open the BBB and BTB investigating proteomic modifications in the TME. Utilizing an orthotopically-allografted mouse GL26 GBM model (Ccr2RFP/wt - Cx3cr1GFP/wt), pFUS's effect on glioma proteomics was evaluated using a Luminex 48-plex assay. RESULTS pFUS treated tumors exhibited increases in pro-inflammatory cytokines, chemokines, and trophic factors (CCTFs). Proteomic changes in tumors tend to peak at 24 h after single pFUS session (1x), with levels then plateauing or declining over the subsequent 24 h. Tumors receiving three pFUS sessions (3x) showed elevated CCTFs levels peaking as early as 6 h after the third session. CONCLUSIONS pFUS together with microbubbles induces a sterile inflammatory response in the TME of a mouse GBM tumor. Moreover, this proinflammatory shift can be sustained and perhaps primed for more rapid responses upon multiple sessions of pFUS. These findings raise the intriguing potential that pFUS-induced BBB and BTB opening may not only be effective in facilitating the therapeutic agent delivery, but also be harnessed to modify the TME to assist immunotherapies in overcoming immune evasion in GBM.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA
| | - Dimpy Koul
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA
| | - Yanrong Zhang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Sara Natasha Ghobadi
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Yayu Zhu
- Salpointe Catholic High School, Tucson, AZ, USA
| | - Qingyi Hou
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Frezghi G Habte
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Manuel B Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- University of Sydney Association of Professors (USAP), University of Sydney, Camperdown, NSW, 2006, Australia
| | - Iris Herschmann
- The Human Immune Monitoring Center (HIMC), Stanford University, Stanford, CA, USA
| | - Kevin S Lee
- Departments of Neuroscience and Neurosurgery, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, 409 Lane Road, MR4 Building, PO Box 801392, Charlottesville, VA, 22903, USA.
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Garcia MJ, Morales MS, Yang TS, Holden J, Bossardet OL, Palmer SA, Jhala M, Priest S, Namburu N, Beatty N, D'Empaire Salomon SE, Vancel J, Wareham LK, Padovani-Claudio DA. Adverse effects of CXCR2 deficiency in mice reared under non-gnotobiotic conditions. Sci Rep 2024; 14:26159. [PMID: 39478033 PMCID: PMC11525579 DOI: 10.1038/s41598-024-75532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
The family of pro-inflammatory and pro-angiogenic chemokines including Interleukin-8 (IL-8, aka CXCL8) and its homologues (CXCL1,2,3,5,6, and 7) exhibit promiscuous binding and activation of several G-protein-coupled receptors (i.e., CXCR2, CXCR1, and the atypical chemokine receptor (ACKR1)). A high proportion of their biological activity is attributed to CXCR2 activation, thus many CXCR2 inhibitors are in clinical trials for several chronic diseases. However, CXCR2 inhibition is often only investigated acutely in these trials or in Cxcr2-/- mice grown in gnotobiotic conditions. Since humans do not live in germ-free environments, our first goal is to highlight novel retinal and systemic observations in Cxcr2-/- mice grown in non-gnotobiotic conditions that suggest potential harmful consequences of long-term CXCR2 deficiency or blockade. Beyond confirmation of circulating blood/immune cell-related phenotypes, we report novel findings in Cxcr2-/- mice including: (1) delayed dye transit to the retinal vasculature, (2) alterations in the density and distribution of retinal vessels, astrocytes and microglia, (3) decreased electroretinogram a- and b-wave amplitudes, (4) reduced visual acuity, and (5) increased polymorphonuclear cell accumulation in vascular lumina abutting venular walls in the retina and in vital non-ocular tissues (lung and liver). Furthermore, PheWAS of CXCR2 CXCR1, and ACKR1 gene variants using data from UK Biobank participants suggest clinical associations with both retinal and vascular disease phenotypes. We conclude that chronic CXCR2 deficiency in mice contributes to functional damage to the retina and that the long-term safety of CXCR1/2 inhibitors designed for chronic use in humans should be explored before clinical adoption to safeguard sight and overall vascular health.
Collapse
Affiliation(s)
- Maximilian J Garcia
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Monica S Morales
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Tzushan S Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Olivia L Bossardet
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Samuel A Palmer
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Marvarakumari Jhala
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Stephen Priest
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Neeraj Namburu
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Nolan Beatty
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Sariah E D'Empaire Salomon
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Jordan Vancel
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
19
|
Xiong J, Zhou X, Su L, Jiang L, Ming Z, Pang C, Fuller C, Xu K, Chi H, Zheng X. The two-sided battlefield of tumour-associated macrophages in glioblastoma: unravelling their therapeutic potential. Discov Oncol 2024; 15:590. [PMID: 39453528 PMCID: PMC11511804 DOI: 10.1007/s12672-024-01464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Gliomas are the most common primary malignant tumours of the central nervous system (CNS), which are highly aggressive, with increasing morbidity and mortality rates year after year, posing a serious threat to the quality and expected survival time of patients. The treatment of gliomas is a major challenge in the field of neuro-oncology, especially high-grade gliomas such as glioblastomas (GBMs). Despite considerable progress in recent years in the study of the molecular and cellular mechanisms of GBMs, their prognosis remains bleak. Tumour-associated macrophages (TAMs) account for up to 50% of GBMs, and they are a highly heterogeneous cell population whose role cannot be ignored. Here, we focus on reviewing the contribution of classically activated M1-phenotype TAMs and alternatively activated M2-phenotype TAMs to GBMs, and exploring the research progress in reprogramming M1 TAMs into M2 TAMs.
Collapse
Affiliation(s)
- Jingwen Xiong
- Department of Sports Rehabilitation, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xuancheng Zhou
- Clinical Medical College, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lanqian Su
- Clinical Medical College, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Clinical Medical College, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ziwei Ming
- Department of Sports Rehabilitation, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Can Pang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Claire Fuller
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21224, USA
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| | - Hao Chi
- Clinical Medical College, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Xiaomei Zheng
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
20
|
Nath S, Martínez Santamaría JC, Chu YH, Choi JS, Conforti P, Lin JD, Sankowski R, Amann L, Galanis C, Wu K, Deshpande SS, Vlachos A, Prinz M, Lee JK, Schachtrup C. Interaction between subventricular zone microglia and neural stem cells impacts the neurogenic response in a mouse model of cortical ischemic stroke. Nat Commun 2024; 15:9095. [PMID: 39448558 PMCID: PMC11502905 DOI: 10.1038/s41467-024-53217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
After a stroke, the neurogenic response from the subventricular zone (SVZ) to repair the brain is limited. Microglia, as an integral part of the distinctive SVZ microenvironment, control neural stem / precursor cell (NSPC) behavior. Here, we show that discrete stroke-associated SVZ microglial clusters negatively impact the innate neurogenic response, and we propose a repository of relevant microglia-NSPC ligand-receptor pairs. After photothrombosis, a mouse model of ischemic stroke, the altered SVZ niche environment leads to immediate activation of microglia in the niche and an abnormal neurogenic response, with cell-cycle arrest of neural stem cells and neuroblast cell death. Pharmacological restoration of the niche environment increases the SVZ-derived neurogenic repair and microglial depletion increases the formation and survival of newborn neuroblasts in the SVZ. Therefore, we propose that altered cross-communication between microglial subclusters and NSPCs regulates the extent of the innate neurogenic repair response in the SVZ after stroke.
Collapse
Affiliation(s)
- Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jose C Martínez Santamaría
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - James S Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Pasquale Conforti
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jia-Di Lin
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Amann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kexin Wu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sachin S Deshpande
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Xin L, Madarasz A, Ivan DC, Weber F, Aleandri S, Luciani P, Locatelli G, Proulx ST. Impairment of spinal CSF flow precedes immune cell infiltration in an active EAE model. J Neuroinflammation 2024; 21:272. [PMID: 39444001 PMCID: PMC11520187 DOI: 10.1186/s12974-024-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Accumulation of immune cells and proteins in the subarachnoid space (SAS) is found during multiple sclerosis and in the animal model experimental autoimmune encephalomyelitis (EAE). Whether the flow of cerebrospinal fluid (CSF) along the SAS of the spinal cord is impacted is yet unknown. Combining intravital near-infrared (NIR) imaging with histopathological analyses, we observed a significantly impaired bulk flow of CSF tracers within the SAS of the spinal cord prior to EAE onset, which persisted until peak stage and was only partially recovered during chronic disease. The impairment of spinal CSF flow coincided with the appearance of fibrin aggregates in the SAS, however, it preceded immune cell infiltration and breakdown of the glia limitans superficialis. Conversely, cranial CSF efflux to cervical lymph nodes was not altered during the disease course. Our study highlights an early and persistent impairment of spinal CSF flow and suggests it as a sensitive imaging biomarker for pathological changes within the leptomeninges.
Collapse
Affiliation(s)
- Li Xin
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Florian Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
22
|
Liu X, Ren Z, Tan C, Núñez-Santana FL, Kelly ME, Yan Y, Sun H, Abdala-Valencia H, Yang W, Wu Q, Toyoda T, Milisav M, Casalino-Matsuda SM, Lecuona E, Cerier EJ, Heung LJ, Abazeed ME, Perlman H, Gao R, Chandel NS, Budinger GS, Bharat A. Inducible CCR2+ nonclassical monocytes mediate the regression of cancer metastasis. J Clin Invest 2024; 134:e179527. [PMID: 39545417 PMCID: PMC11563681 DOI: 10.1172/jci179527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
A major limitation of immunotherapy is the development of resistance resulting from cancer-mediated inhibition of host lymphocytes. Cancer cells release CCL2 to recruit classical monocytes expressing its receptor CCR2 for the promotion of metastasis and resistance to immunosurveillance. In the circulation, some CCR2-expressing classical monocytes lose CCR2 and differentiate into intravascular nonclassical monocytes that have anticancer properties but are unable to access extravascular tumor sites. We found that in mice and humans, an ontogenetically distinct subset of naturally underrepresented CCR2-expressing nonclassical monocytes was expanded during inflammatory states such as organ transplant and COVID-19 infection. These cells could be induced during health by treatment of classical monocytes with small-molecule activators of NOD2. The presence of CCR2 enabled these inducible nonclassical monocytes to infiltrate both intra- and extravascular metastatic sites of melanoma, lung, breast, and colon cancer in murine models, and they reversed the increased susceptibility of Nod2-/- mutant mice to cancer metastasis. Within the tumor colonies, CCR2+ nonclassical monocytes secreted CCL6 to recruit NK cells that mediated tumor regression, independent of T and B lymphocytes. Hence, pharmacological induction of CCR2+ nonclassical monocytes might be useful for immunotherapy-resistant cancers.
Collapse
Affiliation(s)
- Xianpeng Liu
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | | | - Can Tan
- Division of Cardiology, Department of Medicine, and
| | - Félix L. Núñez-Santana
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Megan E. Kelly
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Yuanqing Yan
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Haiying Sun
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Hiam Abdala-Valencia
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Wenbin Yang
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Qiang Wu
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Takahide Toyoda
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Marija Milisav
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - S. Marina Casalino-Matsuda
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia Lecuona
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Emily Jeong Cerier
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
| | - Lena J. Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | - Ruli Gao
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Navdeep S. Chandel
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ankit Bharat
- Division of Thoracic Surgery/Canning Thoracic Institute, Feinberg School of Medicine, Northwestern University/Northwestern Medicine, Chicago, Illinois, USA
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
23
|
Maduka CV, Schmitter-Sánchez AD, Makela AV, Ural E, Stivers KB, Pope H, Kuhnert MM, Habeeb OM, Tundo A, Alhaj M, Kiselev A, Chen S, Donneys A, Winton WP, Stauff J, Scott PJH, Olive AJ, Hankenson KD, Narayan R, Park S, Elisseeff JH, Contag CH. Immunometabolic cues recompose and reprogram the microenvironment around implanted biomaterials. Nat Biomed Eng 2024; 8:1308-1321. [PMID: 39367264 DOI: 10.1038/s41551-024-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Circulating monocytes infiltrate and coordinate immune responses in tissues surrounding implanted biomaterials and in other inflamed tissues. Here we show that immunometabolic cues in the biomaterial microenvironment govern the trafficking of immune cells, including neutrophils and monocytes, in a manner dependent on the chemokine receptor 2 (CCR2) and the C-X3-C motif chemokine receptor 1 (CX3CR1). This affects the composition and activation states of macrophage and dendritic cell populations, ultimately orchestrating the relative composition of pro-inflammatory, transitory and anti-inflammatory CCR2+, CX3CR1+ and CCR2+ CX3CR1+ immune cell populations. In amorphous polylactide implants, modifying immunometabolism by glycolytic inhibition drives a pro-regenerative microenvironment principally by myeloid cells. In crystalline polylactide implants, together with arginase-1-expressing myeloid cells, T helper 2 cells and γδ+ T cells producing interleukin-4 substantially contribute to shaping the metabolically reprogrammed pro-regenerative microenvironment. Our findings inform the premise that local metabolic states regulate inflammatory processes in the biomaterial microenvironment.
Collapse
Affiliation(s)
- Chima V Maduka
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| | - Axel D Schmitter-Sánchez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Ashley V Makela
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Evran Ural
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Katlin B Stivers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hunter Pope
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Maxwell M Kuhnert
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Oluwatosin M Habeeb
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anthony Tundo
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Mohammed Alhaj
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Shoue Chen
- School of Packaging, Michigan State University, East Lansing, MI, USA
| | - Alexis Donneys
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wade P Winton
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Olive
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ramani Narayan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
24
|
Ai S, Arutyunov A, Liu J, Hill JD, Jiang X, Klein RS. CCR2 limits inflammatory functions of CD8 TRM cells that impair recognition memory during recovery from WNV encephalitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613307. [PMID: 39345540 PMCID: PMC11429802 DOI: 10.1101/2024.09.17.613307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Central nervous system (CNS) resident memory CD8 T cells (T RM ) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairments. Here, we show that CCR2 signalling in CD8 T RM that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection. However, transcriptomic analyses of forebrain CCR2 + versus CCR2 - CD8 T RM during WNV recovery reveal that CCR2 signalling significantly regulates hippocampal CD8 T RM phenotype and function via extrinsic and intrinsic effects, decreasing the expression of CD103 and granzyme A and IFN-γ, respectively. Consistent with this, WNV-recovered Cd8a cre Ccr2 fl/fl mice exhibit decreased recognition memory. Our findings highlight a neuroprotective role for CCR2 in limiting CD8 T cell-mediated neuroinflammation and cognitive deficits, providing insights into potential therapeutic targets for CNS infections.
Collapse
|
25
|
Madarasz A, Xin L, Proulx ST. Clearance of erythrocytes from the subarachnoid space through cribriform plate lymphatics in female mice. EBioMedicine 2024; 107:105295. [PMID: 39178745 PMCID: PMC11388277 DOI: 10.1016/j.ebiom.2024.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Atraumatic subarachnoid haemorrhage (SAH) is associated with high morbidity and mortality. Proposed mechanisms for red blood cell (RBC) clearance from the subarachnoid space (SAS) are erythrolysis, erythrophagocytosis or through efflux along cerebrospinal fluid (CSF) drainage routes. We aimed to elucidate the mechanisms of RBC clearance from the SAS to identify targetable efflux pathways. METHODS Autologous fluorescently-labelled RBCs along with PEGylated 40 kDa near-infrared tracer (P40D800) were infused via the cisterna magna (i.c.m.) in female reporter mice for lymphatics or for resident phagocytes. Drainage pathways for RBCs to extracranial lymphatics were evaluated by in vivo and in situ near-infrared imaging and by immunofluorescent staining on decalcified cranial tissue or dural whole-mounts. FINDINGS RBCs drained to the deep cervical lymph nodes 15 min post i.c.m. infusion, showing similar dynamics as P40D800 tracer. Postmortem in situ imaging and histology showed perineural accumulations of RBCs around the optic and olfactory nerves. Numerous RBCs cleared through the lymphatics of the cribriform plate, whilst histology showed no relevant fast RBC clearance through dorsal dural lymphatics or by tissue-resident macrophage-mediated phagocytosis. INTERPRETATION This study provides evidence for rapid RBC drainage through the cribriform plate lymphatic vessels, whilst neither fast RBC clearance through dorsal dural lymphatics nor through spinal CSF efflux or phagocytosis was observed. Similar dynamics of P40D800 and RBCs imply open pathways for clearance that do not impose a barrier for RBCs. This finding suggests further evaluation of the cribriform plate lymphatic function and potential pharmacological targeting in models of SAH. FUNDING Swiss National Science Foundation (310030_189226), SwissHeart (FF191155).
Collapse
Affiliation(s)
- Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Li Xin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
26
|
Gupta A, Schiel V, Bhattacharya R, Eftekharian K, Xia A, Santa Maria PL. Chemokine Receptor CCR2 Is Protective toward Outer Hair Cells in Chronic Suppurative Otitis Media. Immunohorizons 2024; 8:688-694. [PMID: 39264736 PMCID: PMC11447675 DOI: 10.4049/immunohorizons.2400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Chronic suppurative otitis media (CSOM) is a neglected disease that afflicts 330 million people worldwide and is the most common cause of permanent hearing loss among children in the developing world. Previously, we discovered that outer hair cell (OHC) loss occurred in the basal turn of the cochlea and that macrophages are the major immune cells associated with OHC loss in CSOM. Macrophage-associated cytokines are upregulated. Specifically, CCL-2, an important member of the MCP family, is elevated over time following middle ear infection. CCR2 is a common receptor of the MCP family and the unique receptor of CCL2. CCR2 knockout mice (CCR2-/-) have been used extensively in studies of monocyte activation in neurodegenerative diseases. In the present study, we investigated the effect of CCR2 deletion on the cochlear immune response and OHC survival in CSOM. The OHC survival rate was 84 ± 12.5% in the basal turn of CCR2+/+ CSOM cochleae, compared with was 63 ± 19.9% in the basal turn of CCR2-/- CSOM cochleae (p ≤ 0.05). Macrophage numbers were significantly reduced in CCR2-/- CSOM cochleae compared with CCR2+/+ CSOM cochleae (p ≤ 0.001). In addition, CCL7 was upregulated, whereas IL-33 was downregulated, in CCR2-/- CSOM cochleae. Finally, the permeability of the blood-labyrinth barrier in the stria vascularis remained unchanged in CCR2-/- CSOM compared with CCR2+/+ CSOM. Taken together, the data suggest that CCR2 plays a protective role through cochlear macrophages in the CSOM cochlea.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Chemokine CCL2/metabolism
- Chemokine CCL2/genetics
- Chronic Disease
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/immunology
- Disease Models, Animal
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Otitis Media, Suppurative/immunology
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
Collapse
Affiliation(s)
- Ankur Gupta
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Viktoria Schiel
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Ritwija Bhattacharya
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Kourosh Eftekharian
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Anping Xia
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Peter L. Santa Maria
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| |
Collapse
|
27
|
Merino JJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Fernández-García R, Cabaña-Muñoz ME. Decreased Systemic Monocyte Colony Protein-1 (MCP-1) Levels and Reduced sCD14 Levels in Curcumin-Treated Patients with Moderate Anxiety: A Pilot Study. Antioxidants (Basel) 2024; 13:1052. [PMID: 39334711 PMCID: PMC11429384 DOI: 10.3390/antiox13091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Psychosocial stress may alter cortisol and/or affect the normal functioning of the immune system. Curcuminoids can promote beneficial effects in neuropsychiatric diseases. We evaluated whether curcumin supplementation for 15 consecutive days (1800 mg/day) would decrease systemic MCP-1, sCD14, and TNF alpha levels in patients with moderate anxiety (n = 81). A total number of 81 subjects were enrolled in this study, divided into the following groups according to their Hamilton scores: a control group including patients without anxiety who were not taking curcumin (Cont, n = 22) and an anxiety group including patients with moderate anxiety (Anx, n = 22). The curcumin-treated patients experienced moderate anxiety, and they take curcumin for 15 consecutive days (Anx-Cur (after), n = 15, 1800 mg/day). An evaluation of 128 patients was conducted, which allowed for their assignment to the study groups according to their scores on Hamilton scale II. The cortisol levels were quantified in salivary samples through ELISA (ng/mL), and malonaldehyde (MDA) levels were measured in plasma via the TBARS assay as an index of lipoperoxidation. Several systemic proinflammatory cytokines (pg/mL: MCP-1, TNF alpha, IL-1 beta) and mediators were quantified through ELISA (pg/mL), including systemic sCD14 levels as a marker of monocyte activation. A two-way bifactorial ANOVA was conducted to evaluate the contributions of the anxiety factor (Anx) and/or curcumin factor (Cur) in all the tested markers, including interactions between both factors. High systemic MCP-1 and elevated sCD14 levels were observed in patients with moderate anxiety, which were reduced with curcumin supplementation. In addition, curcumin prevented cortisol overexpression and decreased MDA levels as an antioxidant response in these patients. Collectively, curcumin presented anti-chemotactic effects by reducing systemic MCP-1 levels in anxiety. Curcumin decreased systemic MCP-1 as well as sCD14 levels in patients with moderate anxiety.
Collapse
Affiliation(s)
- José Joaquín Merino
- Facultad de Farmacia, Departamento de Farmacología, Farmacognosia y Botánica, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | | | - Rubén Fernández-García
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain;
| | - María Eugenia Cabaña-Muñoz
- Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (J.M.P.-C.); (J.M.P.-I.); (M.E.C.-M.)
| |
Collapse
|
28
|
Ysasi AB, Engler AE, Bawa PS, Wang F, Conrad RD, Yeung AK, Rock JR, Beane-Ebel J, Mazzilli SA, Franklin RA, Mizgerd JP, Murphy GJ. A specialized population of monocyte-derived tracheal macrophages promote airway epithelial regeneration through a CCR2-dependent mechanism. iScience 2024; 27:110169. [PMID: 38993668 PMCID: PMC11238131 DOI: 10.1016/j.isci.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Macrophages are critical for maintenance and repair of mucosal tissues. While functionally distinct subtypes of macrophage are known to have important roles in injury response and repair in the lungs, little is known about macrophages in the proximal conducting airways. Single-cell RNA sequencing and flow cytometry demonstrated murine tracheal macrophages are largely monocyte-derived and are phenotypically distinct from lung macrophages at homeostasis. Following sterile airway injury, monocyte-derived macrophages are recruited to the trachea and activate a pro-regenerative phenotype associated with wound healing. Animals lacking the chemokine receptor CCR2 have reduced numbers of circulating monocytes and tracheal macrophages, deficient pro-regenerative macrophage activation and defective epithelial repair. Together, these studies indicate that recruitment and activation of monocyte-derived tracheal macrophages is CCR2-dependent and is required for normal airway epithelial regeneration.
Collapse
Affiliation(s)
- Alexandra B. Ysasi
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anna E. Engler
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Singh Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Regan D. Conrad
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anthony K. Yeung
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jason R. Rock
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jennifer Beane-Ebel
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Sarah A. Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ruth A. Franklin
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA 02115, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph P. Mizgerd
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - George J. Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
29
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
30
|
von Roemeling CA, Patel JA, Carpenter SL, Yegorov O, Yang C, Bhatia A, Doonan BP, Russell R, Trivedi VS, Klippel K, Ryu DH, Grippin A, Futch HS, Ran Y, Hoang-Minh LB, Weidert FL, Golde TE, Mitchell DA. Adeno-associated virus delivered CXCL9 sensitizes glioblastoma to anti-PD-1 immune checkpoint blockade. Nat Commun 2024; 15:5871. [PMID: 38997283 PMCID: PMC11245621 DOI: 10.1038/s41467-024-49989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
There are numerous mechanisms by which glioblastoma cells evade immunological detection, underscoring the need for strategic combinatorial treatments to achieve appreciable therapeutic effects. However, developing combination therapies is difficult due to dose-limiting toxicities, blood-brain-barrier, and suppressive tumor microenvironment. Glioblastoma is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment and activation. Herein, we develop a recombinant adeno-associated virus (AAV) gene therapy that enables focal and stable reconstitution of the tumor microenvironment with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for lymphocytes. By manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by cytotoxic lymphocytes, sensitizing glioblastoma to anti-PD-1 immune checkpoint blockade in female preclinical tumor models. These effects are accompanied by immunologic signatures evocative of an inflamed tumor microenvironment. These findings support AAV gene therapy as an adjuvant for reconditioning glioblastoma immunogenicity given its safety profile, tropism, modularity, and off-the-shelf capability.
Collapse
Affiliation(s)
- Christina A von Roemeling
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| | - Jeet A Patel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Savannah L Carpenter
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Oleg Yegorov
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Alisha Bhatia
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Bently P Doonan
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
- Department of Medicine, Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Rylynn Russell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Vrunda S Trivedi
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Kelena Klippel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Daniel H Ryu
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Grippin
- Department of Radiation Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Hunter S Futch
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Ran
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Lan B Hoang-Minh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Frances L Weidert
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Xu N, Alfieri CM, Yu Y, Guo M, Yutzey KE. Wnt Signaling Inhibition Prevents Postnatal Inflammation and Disease Progression in Mouse Congenital Myxomatous Valve Disease. Arterioscler Thromb Vasc Biol 2024; 44:1540-1554. [PMID: 38660802 PMCID: PMC11209782 DOI: 10.1161/atvbaha.123.320388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Myxomatous valve disease (MVD) is the most common cause of mitral regurgitation, leading to impaired cardiac function and heart failure. MVD in a mouse model of Marfan syndrome includes valve leaflet thickening and progressive valve degeneration. However, the underlying mechanisms by which the disease progresses remain undefined. METHODS Mice with Fibrillin 1 gene variant Fbn1C1039G/+ recapitulate histopathologic features of Marfan syndrome, and Wnt (Wingless-related integration site) signaling activity was detected in TCF/Lef-lacZ (T-cell factor/lymphoid enhancer factor-β-galactosidase) reporter mice. Single-cell RNA sequencing was performed from mitral valves of wild-type and Fbn1C1039G/+ mice at 1 month of age. Inhibition of Wnt signaling was achieved by conditional induction of the secreted Wnt inhibitor Dkk1 (Dickkopf-1) expression in periostin-expressing valve interstitial cells of Periostin-Cre; tetO-Dkk1; R26rtTA; TCF/Lef-lacZ; Fbn1C1039G/+ mice. Dietary doxycycline was administered for 1 month beginning with MVD initiation (1-month-old) or MVD progression (2-month-old). Histological evaluation and immunofluorescence for ECM (extracellular matrix) and immune cells were performed. RESULTS Wnt signaling is activated early in mitral valve disease progression, before immune cell infiltration in Fbn1C1039G/+ mice. Single-cell transcriptomics revealed similar mitral valve cell heterogeneity between wild-type and Fbn1C1039G/+ mice at 1 month of age. Wnt pathway genes were predominantly expressed in valve interstitial cells and valve endothelial cells of Fbn1C1039G/+ mice. Inhibition of Wnt signaling in Fbn1C1039G/+ mice at 1 month of age prevented the initiation of MVD as indicated by improved ECM remodeling and reduced valve leaflet thickness with decreased infiltrating macrophages. However, later, Wnt inhibition starting at 2 months did not prevent the progression of MVD. CONCLUSIONS Wnt signaling is involved in the initiation of mitral valve abnormalities and inflammation but is not responsible for later-stage valve disease progression once it has been initiated. Thus, Wnt signaling contributes to MVD progression in a time-dependent manner and provides a promising therapeutic target for the early treatment of congenital MVD in Marfan syndrome.
Collapse
Affiliation(s)
- Na Xu
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Christina M. Alfieri
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
| | - Yang Yu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
32
|
Amason ME, Beatty CJ, Harvest CK, Saban DR, Miao EA. Chemokine expression profile of an innate granuloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577927. [PMID: 38352492 PMCID: PMC10862903 DOI: 10.1101/2024.01.30.577927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2 -/- mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| | - Cole J. Beatty
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| | - Daniel R. Saban
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| |
Collapse
|
33
|
Ma L, Zhu X, Tang C, Pan P, Yadav A, Liang R, Press K, Nelson J, Su H. CNS resident macrophages enhance dysfunctional angiogenesis and circulating monocytes infiltration in brain arteriovenous malformation. J Cereb Blood Flow Metab 2024; 44:925-937. [PMID: 38415628 PMCID: PMC11318399 DOI: 10.1177/0271678x241236008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Myeloid immune cells are abundant in both ruptured and unruptured brain arteriovenous malformations (bAVMs). The role of central nervous system (CNS) resident and circulating monocyte-derived macrophages in bAVM pathogenesis has not been fully understood. We hypothesize that CNS resident macrophages enhance bAVM development and hemorrhage. RNA sequencing using cultured endothelial cells (ECs) and mouse bAVM samples revealed that downregulation of two bAVM causative genes, activin-like kinase 1 (ALK1) or endoglin, increased inflammation and innate immune signaling. To understand the role of CNS resident macrophages in bAVM development and hemorrhage, we administrated a colony-stimulating factor 1 receptor inhibitor to bAVM mice with brain focal Alk1 deletion. Transient depletion of CNS resident macrophages at an early stage of bAVM development mitigated the phenotype severity of bAVM, including a prolonged inhibition of angiogenesis, dysplastic vasculature formation, and infiltration of CNS resident and circulating monocyte-derived macrophages during bAVM development. Transient depletion of CNS resident macrophages increased EC tight junction protein expression, reduced the number of dysplasia vessels and severe hemorrhage in established bAVMs. Thus, EC AVM causative gene mutation can activate CNS resident macrophages promoting bAVM progression. CNS resident macrophage could be a therapeutic target to mitigate the development and severity of bAVMs.
Collapse
Affiliation(s)
- Li Ma
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Xiaonan Zhu
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Chaoliang Tang
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Peipei Pan
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Alka Yadav
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Rich Liang
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Kelly Press
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Jeffrey Nelson
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| |
Collapse
|
34
|
Berve K, Michel J, Tietz S, Blatti C, Ivan D, Enzmann G, Lyck R, Deutsch U, Locatelli G, Engelhardt B. Junctional adhesion molecule-A deficient mice are protected from severe experimental autoimmune encephalomyelitis. Eur J Immunol 2024; 54:e2350761. [PMID: 38566526 DOI: 10.1002/eji.202350761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE.
Collapse
Affiliation(s)
- Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Julia Michel
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Silvia Tietz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Daniela Ivan
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
35
|
Cortado H, Kercsmar M, Li B, Vasquez-Martinez G, Gupta S, Ching C, Ballash G, Cotzomi-Ortega I, Sanchez-Zamora YI, Boix E, Zepeda-Orozco D, Jackson AR, Spencer JD, Ruiz-Rosado JDD, Becknell B. Murine Ribonuclease 6 Limits Bacterial Dissemination during Experimental Urinary Tract Infection. J Innate Immun 2024; 16:283-294. [PMID: 38744252 PMCID: PMC11250601 DOI: 10.1159/000539177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION The ribonuclease (RNase) A superfamily encodes cationic antimicrobial proteins with potent microbicidal activity toward uropathogenic bacteria. Ribonuclease 6 (RNase6) is an evolutionarily conserved, leukocyte-derived antimicrobial peptide with potent microbicidal activity toward uropathogenic Escherichia coli (UPEC), the most common cause of bacterial urinary tract infections (UTIs). In this study, we generated Rnase6-deficient mice to investigate the hypothesis that endogenous RNase 6 limits host susceptibility to UTI. METHODS We generated a Rnase6EGFP knock-in allele to identify cellular sources of Rnase6 and determine the consequences of homozygous Rnase6 deletion on antimicrobial activity and UTI susceptibility. RESULTS We identified monocytes and macrophages as the primary cellular sources of Rnase6 in bladders and kidneys of Rnase6EGFP/+ mice. Rnase6 deficiency (i.e., Rnase6EGFP/EGFP) resulted in increased upper urinary tract UPEC burden during experimental UTI, compared to Rnase6+/+ controls. UPEC displayed increased intracellular survival in Rnase6-deficient macrophages. CONCLUSION Our findings establish that RNase6 prevents pyelonephritis by promoting intracellular UPEC killing in monocytes and macrophages and reinforce the overarching contributions of endogenous antimicrobial RNase A proteins to host UTI defense.
Collapse
Affiliation(s)
- Hanna Cortado
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Macie Kercsmar
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Birong Li
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Gabriela Vasquez-Martinez
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Sudipti Gupta
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Christina Ching
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Department of Urology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gregory Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Israel Cotzomi-Ortega
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Yuriko I. Sanchez-Zamora
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ashley R. Jackson
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - John David Spencer
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Juan de Dios Ruiz-Rosado
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Brian Becknell
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
36
|
Sommer K, Garibagaoglu H, Paap EM, Wiendl M, Müller TM, Atreya I, Krönke G, Neurath MF, Zundler S. Discrepant Phenotyping of Monocytes Based on CX3CR1 and CCR2 Using Fluorescent Reporters and Antibodies. Cells 2024; 13:819. [PMID: 38786041 PMCID: PMC11119841 DOI: 10.3390/cells13100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice.
Collapse
Affiliation(s)
- Katrin Sommer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Hilal Garibagaoglu
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Eva-Maria Paap
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Tanja M. Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Gerhard Krönke
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Medical Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
37
|
Jiang Q, Duan J, Van Kaer L, Yang G. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Aging Dis 2024; 15:1329-1343. [PMID: 37307825 PMCID: PMC11081146 DOI: 10.14336/ad.2023.0323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/14/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous cell population that consists of mostly immature myeloid cells, are immunoregulatory cells mainly characterized by their suppressive functions. Emerging findings have revealed the involvement of MDSCs in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). MS is an autoimmune and degenerative disease of the central nervous system characterized by demyelination, axon loss, and inflammation. Studies have reported accumulation of MDSCs in inflamed tissues and lymphoid organs of MS patients and EAE mice, and these cells display dual functions in EAE. However, the contribution of MDSCs to MS/EAE pathogenesis remains unclear. This review aims to summarize our current understanding of MDSC subsets and their possible roles in MS/EAE pathogenesis. We also discuss the potential utility and associated obstacles in employing MDSCs as biomarkers and cell-based therapies for MS.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Dieckmann BW, Paguaga ME, McCollum GW, Penn JS, Uddin MDI. Role of NLRP3 Inflammasomes in Monocyte and Microglial Recruitments in Choroidal Neovascularization. Immunohorizons 2024; 8:363-370. [PMID: 38775688 PMCID: PMC11150128 DOI: 10.4049/immunohorizons.2400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1β protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1β mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1β.
Collapse
Affiliation(s)
- Blake W. Dieckmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Marcell E. Paguaga
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Gary W. McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - John S. Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - MD Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN
| |
Collapse
|
39
|
Winkler CW, Evans AB, Carmody AB, Lack JB, Woods TA, Peterson KE. C-C motif chemokine receptor 2 and 7 synergistically control inflammatory monocyte recruitment but the infecting virus dictates monocyte function in the brain. Commun Biol 2024; 7:494. [PMID: 38658802 PMCID: PMC11043336 DOI: 10.1038/s42003-024-06178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/virology
- Mice, Knockout
- Brain/virology
- Brain/metabolism
- Brain/immunology
- Herpesvirus 1, Human/physiology
- La Crosse virus/genetics
- La Crosse virus/physiology
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Encephalitis, California/virology
- Encephalitis, California/genetics
- Encephalitis, California/metabolism
- Encephalitis, California/immunology
- Mice, Inbred C57BL
- Inflammation/metabolism
- Inflammation/virology
- Female
- Male
Collapse
Affiliation(s)
- Clayton W Winkler
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Alyssa B Evans
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyson A Woods
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Karin E Peterson
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
40
|
Dean T, Mendiola AS, Yan Z, Meza-Acevedo R, Cabriga B, Akassoglou K, Ryu JK. Fibrin promotes oxidative stress and neuronal loss in traumatic brain injury via innate immune activation. J Neuroinflammation 2024; 21:94. [PMID: 38622640 PMCID: PMC11017541 DOI: 10.1186/s12974-024-03092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes significant blood-brain barrier (BBB) breakdown, resulting in the extravasation of blood proteins into the brain. The impact of blood proteins, especially fibrinogen, on inflammation and neurodegeneration post-TBI is not fully understood, highlighting a critical gap in our comprehension of TBI pathology and its connection to innate immune activation. METHODS We combined vascular casting with 3D imaging of solvent-cleared organs (uDISCO) to study the spatial distribution of the blood coagulation protein fibrinogen in large, intact brain volumes and assessed the temporal regulation of the fibrin(ogen) deposition by immunohistochemistry in a murine model of TBI. Fibrin(ogen) deposition and innate immune cell markers were co-localized by immunohistochemistry in mouse and human brains after TBI. We assessed the role of fibrinogen in TBI using unbiased transcriptomics, flow cytometry and immunohistochemistry for innate immune and neuronal markers in Fggγ390-396A knock-in mice, which express a mutant fibrinogen that retains normal clotting function, but lacks the γ390-396 binding motif to CD11b/CD18 integrin receptor. RESULTS We show that cerebral fibrinogen deposits were associated with activated innate immune cells in both human and murine TBI. Genetic elimination of fibrin-CD11b interaction reduced peripheral monocyte recruitment and the activation of inflammatory and reactive oxygen species (ROS) gene pathways in microglia and macrophages after TBI. Blockade of the fibrin-CD11b interaction was also protective from oxidative stress damage and cortical loss after TBI. CONCLUSIONS These data suggest that fibrinogen is a regulator of innate immune activation and neurodegeneration in TBI. Abrogating post-injury neuroinflammation by selective blockade of fibrin's inflammatory functions may have implications for long-term neurologic recovery following brain trauma.
Collapse
Affiliation(s)
- Terry Dean
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Andrew S Mendiola
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Zhaoqi Yan
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
| | - Rosa Meza-Acevedo
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
| | - Belinda Cabriga
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jae Kyu Ryu
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA.
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Chelko SP, Penna VR, Engel M, Shiel EA, Centner AM, Farra W, Cannon EN, Landim-Vieira M, Schaible N, Lavine K, Saffitz JE. NFĸB signaling drives myocardial injury via CCR2+ macrophages in a preclinical model of arrhythmogenic cardiomyopathy. J Clin Invest 2024; 134:e172014. [PMID: 38564300 PMCID: PMC11093597 DOI: 10.1172/jci172014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Nuclear factor κ-B (NFκB) is activated in iPSC-cardiac myocytes from patients with arrhythmogenic cardiomyopathy (ACM) under basal conditions, and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single-cell RNA-Seq to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA-Seq and cellular indexing of transcriptomes and epitomes (CITE-Seq) studies revealed marked proinflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts, and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM.
Collapse
Affiliation(s)
- Stephen P. Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay R. Penna
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Morgan Engel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Emily A. Shiel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Ann M. Centner
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Waleed Farra
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Elisa N. Cannon
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Niccole Schaible
- Departments of Pathology and Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kory Lavine
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jeffrey E. Saffitz
- Departments of Pathology and Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Hirose K, Li SZ, Gill R, Hartsock J. Pneumococcal Meningitis Induces Hearing Loss and Cochlear Ossification Modulated by Chemokine Receptors CX3CR1 and CCR2. J Assoc Res Otolaryngol 2024; 25:179-199. [PMID: 38472515 PMCID: PMC11018586 DOI: 10.1007/s10162-024-00935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE Pneumococcal meningitis is a major cause of hearing loss and permanent neurological impairment despite widely available antimicrobial therapies to control infection. Methods to improve hearing outcomes for those who survive bacterial meningitis remains elusive. We used a mouse model of pneumococcal meningitis to evaluate the impact of mononuclear phagocytes on hearing outcomes and cochlear ossification by altering the expression of CX3CR1 and CCR2 in these infected mice. METHODS We induced pneumococcal meningitis in approximately 500 C57Bl6 adult mice using live Streptococcus pneumoniae (serotype 3, 1 × 105 colony forming units (cfu) in 10 µl) injected directly into the cisterna magna of anesthetized mice and treated these mice with ceftriaxone daily until recovered. We evaluated hearing thresholds over time, characterized the cochlear inflammatory response, and quantified the amount of new bone formation during meningitis recovery. We used microcomputed tomography (microCT) scans to quantify cochlear volume loss caused by neo-ossification. We also performed perilymph sampling in live mice to assess the integrity of the blood-perilymph barrier during various time intervals after meningitis. We then evaluated the effect of CX3CR1 or CCR2 deletion in meningitis symptoms, hearing loss, macrophage/monocyte recruitment, neo-ossification, and blood labyrinth barrier function. RESULTS Sixty percent of mice with pneumococcal meningitis developed hearing loss. Cochlear fibrosis could be detected within 4 days of infection, and neo-ossification by 14 days. Loss of spiral ganglion neurons was common, and inner ear anatomy was distorted by scarring caused by new soft tissue and bone deposited within the scalae. The blood-perilymph barrier was disrupted at 3 days post infection (DPI) and was restored by seven DPI. Both CCR2 and CX3CR1 monocytes and macrophages were present in the cochlea in large numbers after infection. Neither chemokine receptor was necessary for the induction of hearing loss, cochlear fibrosis, ossification, or disruption of the blood-perilymph barrier. CCR2 knockout (KO) mice suffered the most severe hearing loss. CX3CR1 KO mice demonstrated an intermediate phenotype with greater susceptibility to hearing loss compared to control mice. Elimination of CX3CR1 mononuclear phagocytes during the first 2 weeks after meningitis in CX3CR1-DTR transgenic mice did not protect mice from any of the systemic or hearing sequelae of pneumococcal meningitis. CONCLUSIONS Pneumococcal meningitis can have devastating effects on cochlear structure and function, although not all mice experienced hearing loss or cochlear damage. Meningitis can result in rapid progression of hearing loss with fibrosis starting at four DPI and ossification within 2 weeks of infection detectable by light microscopy. The inflammatory response to bacterial meningitis is robust and can affect all three scalae. Our results suggest that CCR2 may assist in controlling infection and maintaining cochlear patency, as CCR2 knockout mice experienced more severe disease, more rapid hearing loss, and more advanced cochlear ossification after pneumococcal meningitis. CX3CR1 also may play an important role in the maintenance of cochlear patency.
Collapse
Affiliation(s)
- Keiko Hirose
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA.
| | - Song Zhe Li
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
| | - Ruth Gill
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
- Department of Obstetric and Gynecology, Washington University, St. Louis, MO, USA
| | - Jared Hartsock
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
- Turner Scientific, Jacksonville, IL, USA
| |
Collapse
|
43
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
44
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Rodriguez D, Church KA, Pietramale AN, Cardona SM, Vanegas D, Rorex C, Leary MC, Muzzio IA, Nash KR, Cardona AE. Fractalkine isoforms differentially regulate microglia-mediated inflammation and enhance visual function in the diabetic retina. J Neuroinflammation 2024; 21:42. [PMID: 38311721 PMCID: PMC10840196 DOI: 10.1186/s12974-023-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 02/06/2024] Open
Abstract
Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kaira A Church
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Alicia N Pietramale
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Sandra M Cardona
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Colin Rorex
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Micah C Leary
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Isabel A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
46
|
Shema C, Lu Y, Wang L, Zhang Y. Monocyte alteration in elderly hip fracture healing: monocyte promising role in bone regeneration. Immun Ageing 2024; 21:12. [PMID: 38308312 PMCID: PMC10837905 DOI: 10.1186/s12979-024-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Individual aged with various change in cell and cellular microenvironments and the skeletal system undergoes physiological changes that affect the process of bone fracture healing. These changes are accompanied by alterations in regulating critical genes involved in this healing process. Unfortunately, the elderly are particularly susceptible to hip bone fractures, which pose a significant burden associated with higher morbidity and mortality rates. A notable change in older adults is the increased expression of activation, adhesion, and migration markers in circulating monocytes. However, there is a decrease in the expression of co-inhibitory molecules. Recently, research evidence has shown that the migration of specific monocyte subsets to the site of hip fracture plays a crucial role in bone resorption and remodeling, especially concerning age-related factors. In this review, we summarize the current knowledge about uniqueness characteristics of monocytes, and their potential regulation and moderation to enhance the healing process of hip fractures. This breakthrough could significantly contribute to the comprehension of aging process at a fundamental aging mechanism through this initiative would represent a crucial stride for diagnosing and treating age related hip fracture.
Collapse
Affiliation(s)
- Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yining Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
| | - Yingze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
47
|
Zhang Q, Sun W, Wang Q, Zheng X, Zhang R, Zhang N. A High MCT-Based Ketogenic Diet Suppresses Th1 and Th17 Responses to Ameliorate Experimental Autoimmune Encephalomyelitis in Mice by Inhibiting GSDMD and JAK2-STAT3/4 Pathways. Mol Nutr Food Res 2024; 68:e2300602. [PMID: 38054637 DOI: 10.1002/mnfr.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Inflammation and pyroptosis play important roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated the therapeutic potential of ketogenic diet (KD) in EAE. METHODS AND RESULTS The administration of KD reduces demyelination and microglial activation in the spinal cord of EAE mice. Meanwhile, KD decreases the levels of Th1 and Th17 associated cytokines/transcription factors production (T-bet, IFN-γ, RORγt, and IL-17) and increases those of Th2 and Treg cytokines/transcription factors (GATA3, IL-4, Foxp3, and IL-10) in the spinal cord and spleen. Corresponding, KD reduces the expression of chemokines in EAE, which those chemokines associate with T-cell infiltration into central nervous system (CNS). In addition, KD inhibits the GSDMD activation in microglia, oligodendrocyte, CD31+ cells, CCR2+ cells, and T cells in the spinal cord. Moreover, KD significantly decreases the ratios of p-JAK2/JAK2, p-STAT3/STAT3, and p-STAT4/STAT4, as well as GSDMD in EAE mice. CONCLUSIONS this study demonstrates that KD reduces the activation and differentiation of T cells in the spinal cord and spleen and prevents T cell infiltration into CNS of EAE via modulating the GSDMD and STAT3/4 pathways, suggesting that KD is a potentially effective strategy in the treatment of MS.
Collapse
Affiliation(s)
- Qianye Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| |
Collapse
|
48
|
Rodriguez D, Church KA, Smith CT, Vanegas D, Cardona SM, Muzzio IA, Nash KR, Cardona AE. Therapeutic Delivery of Soluble Fractalkine Ameliorates Vascular Dysfunction in the Diabetic Retina. Int J Mol Sci 2024; 25:1727. [PMID: 38339005 PMCID: PMC10855319 DOI: 10.3390/ijms25031727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Kaira A. Church
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Chelsea T. Smith
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Sandra M. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Isabel A. Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA;
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
| | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| |
Collapse
|
49
|
Uderhardt S, Neag G, Germain RN. Dynamic Multiplex Tissue Imaging in Inflammation Research. ANNUAL REVIEW OF PATHOLOGY 2024; 19:43-67. [PMID: 37722698 DOI: 10.1146/annurev-pathmechdis-070323-124158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Inflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georgiana Neag
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Center for Advanced Tissue Imaging (CAT-I), National Institute of Allergy and Infectious Diseases and National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
50
|
Cao M, Wang Z, Lan W, Xiang B, Liao W, Zhou J, Liu X, Wang Y, Zhang S, Lu S, Lang J, Zhao Y. The roles of tissue resident macrophages in health and cancer. Exp Hematol Oncol 2024; 13:3. [PMID: 38229178 PMCID: PMC10790434 DOI: 10.1186/s40164-023-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
As integral components of the immune microenvironment, tissue resident macrophages (TRMs) represent a self-renewing and long-lived cell population that plays crucial roles in maintaining homeostasis, promoting tissue remodeling after damage, defending against inflammation and even orchestrating cancer progression. However, the exact functions and roles of TRMs in cancer are not yet well understood. TRMs exhibit either pro-tumorigenic or anti-tumorigenic effects by engaging in phagocytosis and secreting diverse cytokines, chemokines, and growth factors to modulate the adaptive immune system. The life-span, turnover kinetics and monocyte replenishment of TRMs vary among different organs, adding to the complexity and controversial findings in TRMs studies. Considering the complexity of tissue associated macrophage origin, macrophages targeting strategy of each ontogeny should be carefully evaluated. Consequently, acquiring a comprehensive understanding of TRMs' origin, function, homeostasis, characteristics, and their roles in cancer for each specific organ holds significant research value. In this review, we aim to provide an outline of homeostasis and characteristics of resident macrophages in the lung, liver, brain, skin and intestinal, as well as their roles in modulating primary and metastatic cancer, which may inform and serve the future design of targeted therapies.
Collapse
Affiliation(s)
- Minmin Cao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wanying Lan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Guixi Community Health Center of the Chengdu High-Tech Zone, Chengdu, China
| | - Binghua Xiang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaomeng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shun Lu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Zhao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|