1
|
Peng J, Wei CI, Lee SH. Eeyarestatin I (ESI)-induced ERAD inhibition exhibits anti-cancer activity through multiple mechanisms in human colorectal cancer cells. Eur J Pharmacol 2025; 997:177623. [PMID: 40222444 DOI: 10.1016/j.ejphar.2025.177623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a cellular process for maintenance of protein homeostasis in the ER and aberration of ERAD regulation leads to abnormal function of ER. As an inhibitory compound to ERAD, Eeyarestatin I (ESI) exhibits anti-cancer activity. In this study, we elucidated the anti-cancer mechanisms of ESI-induced ERAD inhibition in human colorectal carcinoma cells. Cellular viability of three different types of human colorectal cancer cells decreased in a dose-dependent manner by treatment with ESI. Treatment of ESI to human colorectal cancer cells led to significant increase of ubiquitin accumulation, G2/M phase cell cycle arrest, apoptosis, ER stress and autophagy. In addition, ESI treatment reduced transcriptional activity of nuclear factor kappa B (NF-κB), and increased phosphorylation of c-Jun NH2-terminal kinase (JNK) and intracellular production of reactive oxygen species (ROS). Decrease of cell viability and ROS release were JNK-dependent and apoptosis was ROS-dependent. On the other hand, treatment of the cells with ESI downregulated the expression of translocon-associated protein (TRAP) subunits including TRAPα, β, γ and δ, which was JNK- and ROS-dependent. In summary, ESI-induced ERAD inhibition triggers ER stress, G2/M cell cycle arrest, ROS-dependent apoptosis, and autophagy in human colorectal cancer cells. We are the first to identify TRAPs as novel target ER membrane proteins that are downregulated by ERAD inhibition in human colorectal cancer cells.
Collapse
Affiliation(s)
- Jing Peng
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland College Park, College Park, MD, 20742, USA
| | - Cheng-I Wei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland College Park, College Park, MD, 20742, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland College Park, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Li M, Yuan H, Chen Y, Yao S, Guo Z, He W. Tuning SBDs as Endoplasmic Reticulum Self-Targeting Fluorophores and Its Application for Zn 2+ Tracking in ER Stress. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:322-331. [PMID: 40443554 PMCID: PMC12117392 DOI: 10.1021/cbmi.4c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 06/02/2025]
Abstract
The emerging endoplasmic recticulum (ER) crosstalk system demands a more reliable approach for ER-targeting fluorophores to explore ER-associated biochemical species and events. Providing the aromatic sulfonamides' affinity to ATP-sensitive potassium channel protein localized mainly on ER membrane, the sulfonamide fluorophore 4-amino-7-sulfamoylbenzoxadiazole (SBD) was modified to construct ER self-targeting fluorophores without any additional targeting group by alternating the N-substituent structure and numbers of its 4-amino and 7-sulfamoyl groups. The results revealed that a ClogP value over 3.0 endowed those SBDs the ER self-targetability effectively. This provides a strategy to devise an ER-targeting probe by simply modifying the 4-amino group of SBDs as a sensing moiety to make the probe CLogP over 3.0 despite the CLogP value of parent SBDs, and two ER-targeting Zn2+ probes ER-SBD-Zn1 and ER-SBD-Zn2 were obtained following this idea. Moreover, ER Zn2+ tracking with ER-SBD-Zn1 disclosed for the first time tunicamycin concentration-dependent ER Zn2+ fluctuation behavior during ER stress induction.
Collapse
Affiliation(s)
- Mingfeng Li
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
| | - Hao Yuan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary
Research Center, Nanjing University, Jiangsu, Nanjing210023, China
- Department
of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Jiangsu, Nanjing210008, China
| | - Shankun Yao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary
Research Center, Nanjing University, Jiangsu, Nanjing210023, China
| | - Weijiang He
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
| |
Collapse
|
3
|
Chu CM, Sabbineni B, Cen HH, Hu X, Sun WG, Brownrigg GP, Xia YH, Rogalski J, Johnson JD. Signal transduction pathways controlling Ins2 gene activity and beta cell state transitions. iScience 2025; 28:112015. [PMID: 40144638 PMCID: PMC11938086 DOI: 10.1016/j.isci.2025.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Pancreatic β cells exist in low and high insulin gene activity states that are dynamic on a scale of hours to days. Here, we used live 3D imaging, mass spectrometry proteomics, and targeted perturbations of β cell signaling to comprehensively investigate Ins2(GFP)HIGH and Ins2(GFP)LOW β cell states. We identified the two Ins2 gene activity states in intact isolated islets and showed that cells in the same state were more likely to be nearer to each other. We report the proteomes of pure β cells to a depth of 5555 proteins and show that β cells with high Ins2 gene activity had reduced β cell immaturity factors, as well as increased translation. We identified activators of cAMP signaling (GLP1, IBMX) as powerful drivers of Ins2(GFP)LOW to Ins2(GFP)HIGH transitions. Okadaic acid and cyclosporine A had the opposite effects. This study provides new insight into the proteomic profiles and regulation of β cell states.
Collapse
Affiliation(s)
- Chieh Min Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Bhavya Sabbineni
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - George P. Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Jason Rogalski
- Proteomics and Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Stephens DR, Fung HYJ, Han Y, Liang J, Chen Z, Ready J, Collins JJ. A genome-scale drug discovery pipeline uncovers new therapeutic targets and a unique p97 allosteric binding site in Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643303. [PMID: 40161785 PMCID: PMC11952559 DOI: 10.1101/2025.03.14.643303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Schistosomes are parasitic flatworms that infect more than 200 million people globally. However, there is a shortage of molecular tools that enable the discovery of potential drug targets within schistosomes. Thus, praziquantel has remained the frontline treatment for schistosomiasis despite known liabilities. Here, we have conducted a genome-wide study in S. mansoni using the human druggable genome as a bioinformatic template to identify essential genes within schistosomes bearing similarity to catalogued drug targets. Then, we assessed these candidate targets in silico using a set of unbiased criteria to determine which possess ideal characteristics for a ready-made drug discovery campaign. Following this prioritization, we pursued a parasite p97 ortholog as a bona-fide drug target for the development of therapeutics to treat schistosomiasis. From this effort, we identified a covalent inhibitor series that kills schistosomes through an on-target killing mechanism by disrupting the ubiquitin proteasome system. Fascinatingly, these inhibitors induce a conformational change in the conserved D2 domain P-loop of schistosome p97 upon modification of Cys519. This conformational change reveals an allosteric binding site adjacent to the D2 domain active site reminiscent of the 'DFG' flip in protein kinases. This allosteric binding site can potentially be utilized to generate new classes of species-selective p97 inhibitors. Furthermore, these studies provide a resource for the development of alternative therapeutics for schistosomiasis and a workflow to identify potential drug targets in similar systems with few available molecular tools.
Collapse
Affiliation(s)
- Dylon R Stephens
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ho Yee Joyce Fung
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - James J Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
5
|
Ding R, Edwards TC, Goswami P, Wilson DJ, Dreis CD, Ye Y, Geraghty RJ, Chen L. p97 Inhibitors Possessing Antiviral Activity Against SARS-CoV-2 and Low Cytotoxicity. Pharmaceuticals (Basel) 2025; 18:131. [PMID: 39861192 PMCID: PMC11768289 DOI: 10.3390/ph18010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background: p97 (also known as valosin-containing protein, VCP) is a member of the AAA+ ATPase family and is intimately associated with protein quality control and homeostasis regulation. Therefore, pharmaceutical inhibition of p97 has been actively pursued as an anticancer strategy. Recently, p97 has emerged as an important pro-viral host factor and p97 inhibitors are being evaluated as potential antiviral agents. Methods: We designed and synthesized novel p97 inhibitors based on the rearrangement of the central fused ring of our previously reported p97 inhibitors. These compounds were tested for inhibition of p97, cytotoxicity, and antiviral activity against SARS-CoV-2. Molecular docking was also performed on selected inhibitors to shed light on their binding modes. Results: Among these new p97 inhibitors, two compounds possess enhanced anti-p97 activity over their parent compounds. More significantly, these two inhibitors exhibit strong antiviral activity against SARS-CoV-2 at doses with no significant cytotoxicity. Molecular docking reveals no major change of the binding mode relative to that of their parent compounds, further supporting our design strategy. Conclusions: These compounds are structurally novel p97 inhibitors that display low toxicity and possess promising antiviral activity against SARS-CoV-2 and potentially other viruses. Further structural exploration is therefore justified and improved analogs will serve as useful tools for studying p97 as a promising host antiviral target.
Collapse
Affiliation(s)
- Rui Ding
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Tiffany C. Edwards
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Prithwish Goswami
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Daniel J. Wilson
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Christine D. Dreis
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| |
Collapse
|
6
|
Darmadi D, Saleh RO, Oghenemaro EF, Shakir MN, Hjazi A, Hassan ZF, Zwamel AH, Matlyuba S, Deorari M, Oudah SK. Role of SEL1L in the progression of solid tumors, with a special focus on its recent therapeutic potential. Cell Biol Int 2025; 49:16-32. [PMID: 39364680 DOI: 10.1002/cbin.12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Since suppressor/enhancer of Lin-12-like (SEL1L) was cloned in 1997, various pieces of evidence from lower species suggest it plays a significant role in protein degradation via the ubiquitin-proteasome system. The relevance of SEL1L in many aspects of malignant transformation and tumorigenic events has been the subject of research, which has shown compelling in vitro and in vivo findings relating its altered expression to changes in tumor aggressiveness. The Endoplasmic Reticulum (ER) in tumor cells is crucial for preserving cellular proteostasis by inducing the unfolded protein response (UPR), a stress response. A crucial component of the UPR is ER-associated degradation (ERAD), which guards against ER stress-induced apoptosis and the removal of unfolded or misfolded proteins by the ubiquitin-proteasome system. As a protein stabilizer of HMG-CoA reductase degradation protein 1 (HRD1), one of the main components of ERAD, SEL1L plays an important role in ER homeostasis. Notably, the expression levels of these two proteins fluctuate independently in various cancer types, yet changes in their expression affect the levels of other associated proteins during cancer pathogenesis. Recent studies have also outlined the function of SEL1L in cancer medication resistance. This review explores the value of targeting SEL1L as a novel treatment approach for cancer, focusing on the molecular processes of SEL1L and its involvement in cancer etiology.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Sanoeva Matlyuba
- Department of Neurology, Vice rektor of Bukhara State Medical Institute, Bukhara, Uzbekistan
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Shamam Kareem Oudah
- College of Pharmacy/National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
7
|
Sorout N, Helms V. Toward Understanding the Mechanism of Client-Selective Small Molecule Inhibitors of the Sec61 Translocon. J Mol Recognit 2025; 38:e3108. [PMID: 39394908 DOI: 10.1002/jmr.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
The Sec61 translocon mediates the translocation of numerous, newly synthesized precursor proteins into the lumen of the endoplasmic reticulum or their integration into its membrane. Recently, structural biology revealed conformations of idle or substrate-engaged Sec61, and likewise its interactions with the accessory membrane proteins Sec62, Sec63, and TRAP, respectively. Several natural and synthetic small molecules have been shown to block Sec61-mediated protein translocation. Since this is a key step in protein biogenesis, broad inhibition is generally cytotoxic, which may be problematic for a putative drug target. Interestingly, several compounds exhibit client-selective modes of action, such that only translocation of certain precursor proteins was affected. Here, we discuss recent advances of structural biology, molecular modelling, and molecular screening that aim to use Sec61 as feasible drug target.
Collapse
Affiliation(s)
- Nidhi Sorout
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| |
Collapse
|
8
|
Stolz BJ, Abouelkhair AA, Seleem MN. Screening novel antiviral compounds to treat Clostridioides difficile infections. PLoS One 2024; 19:e0309624. [PMID: 39671442 PMCID: PMC11642915 DOI: 10.1371/journal.pone.0309624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024] Open
Abstract
Clostridioides difficile is a major cause of nosocomial infections, often associated with individuals who have gut dysbiosis from previous antibiotic therapies. C. difficile infections (CDI) have a high recurrence rate and impose significant financial and mortality burdens on the healthcare system. Therefore, novel anti-C. difficile drugs are urgently needed to treat and reduce the severity and recurrence of infection. In this study, we screened a library of 618 antiviral drugs to identify a potential candidate for repurposing as novel anti-C. difficile therapeutics. Following our preliminary screening, we identified 9 novel compounds that inhibited C. difficile at a concentration of 16 μM or lower. Among these, 4 antiviral compounds demonstrated the most potent anti-C. difficile activity against a panel of 15 C. difficile isolates, with minimum inhibitory concentrations (MICs) comparable to the drug of choice, vancomycin. These include rottlerin (MIC50 = 0.25 μg/mL), α-mangostin (MIC50 = 1 μg/mL), dryocrassin ABBA (MIC50 = 1 μg/mL), and obefazimod (MIC50 = 4 μg/mL). All exhibited minimal to no activity against representative members of the human gut microbiota. Interestingly, α-mangostin, a natural xanthone derived from the mangosteen fruit, exhibited strong bactericidal action, clearing a high inoculum of C. difficile in less than an hour. All other drugs exhibited bacteriostatic activity. Given their characteristics, these compounds show great promise as novel treatments for CDI.
Collapse
Affiliation(s)
- Brice J. Stolz
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ahmed A. Abouelkhair
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
9
|
Bartak M, Krahel WD, Chodkowski M, Grel H, Walczak J, Pallepati A, Komorowski M, Cymerys J. ATPase Valosin-Containing Protein (VCP) Is Involved During the Replication and Egress of Sialodacryoadenitis Virus (SDAV) in Neurons. Int J Mol Sci 2024; 25:11633. [PMID: 39519185 PMCID: PMC11546310 DOI: 10.3390/ijms252111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Sialodacryoadenitis virus (SDAV) has been identified as the etiological agent responsible for the respiratory system and salivary gland infections in rats. The existing literature on SDAV infections is insufficient to address the topic adequately, particularly in relation to the central nervous system. In order to ascertain how SDAV gains access to neuronal cells and subsequently exits, our attention was focused on the small molecule valosin-containing protein (VCP), which is an ATPase. VCP is acknowledged for its function in the ubiquitin-mediated proteasomal degradation of proteins, including those of viral origin. To ascertain the potential influence of VCP on SDAV replication and egress, high-content screening was employed to determine the viral titer and protein content. Western blot analysis was employed to ascertain the relative expression of VCP. Real-time imaging of SDAV-infected cells and confocal imaging for qualitative morphological analysis were conducted. The Eeyarestatin I (EerI) inhibitor was employed to disrupt VCP involvement in the endoplasmic reticulum-associated protein degradation pathway (ERAD) in both pre- and post-incubation systems, with concentrations of 5 μM/mL and 25 μM/mL, respectively. We demonstrated for the first time that SDAV productively replicates in cultured primary neurons. VCP expression is markedly elevated during SDAV infection. The application of 5 μM/mL EerI in the post-treatment system yielded a statistically significant inhibition of the SDAV yield. It is likely that this modulates the efficacy of virion assembly by arresting viral proteins in the submembrane area.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Weronika D. Krahel
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Marcin Chodkowski
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, Kozielska 4 St., 01-063 Warsaw, Poland;
| | - Hubert Grel
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Jarosław Walczak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
| | - Adithya Pallepati
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
- Laboratory of Single-Molecule Biophysics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4 St., 02-109 Warsaw, Poland
| | - Michał Komorowski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| |
Collapse
|
10
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
11
|
Jing Z, Wu L, Pan Y, Zhang L, Zhang X, Shi D, Shi H, Chen J, Ji Z, Zhang J, Feng T, Tian J, Feng L. Rotavirus infection inhibits SLA-I expression on the cell surface by degrading β2 M via ERAD-proteasome pathway. Vet Microbiol 2024; 292:110036. [PMID: 38458048 DOI: 10.1016/j.vetmic.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. β2-microglobulin (β2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. β2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated β2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of β2 M occurred on the protein level. Mechanismly, RVA infection triggered β2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of β2 M, leading to the degradation of β2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of β2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades β2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.
Collapse
Affiliation(s)
- Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Ling Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Zhaoyang Ji
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China.
| |
Collapse
|
12
|
Mitsiades CS. Proteasome Inhibitors in Multiple Myeloma: Biological Insights on Mechanisms of Action or Resistance Informed by Functional Genomics. Hematol Oncol Clin North Am 2024; 38:321-336. [PMID: 38278626 DOI: 10.1016/j.hoc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
13
|
Lee DM, Kim IY, Lee HJ, Seo MJ, Cho MY, Lee HI, Yoon G, Ji JH, Park SS, Jeong SY, Choi EK, Choi YH, Yun CO, Yeo M, Kim E, Choi KS. Akt enhances the vulnerability of cancer cells to VCP/p97 inhibition-mediated paraptosis. Cell Death Dis 2024; 15:48. [PMID: 38218922 PMCID: PMC10787777 DOI: 10.1038/s41419-024-06434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Valosin-containing protein (VCP)/p97, an AAA+ ATPase critical for maintaining proteostasis, emerges as a promising target for cancer therapy. This study reveals that targeting VCP selectively eliminates breast cancer cells while sparing non-transformed cells by inducing paraptosis, a non-apoptotic cell death mechanism characterized by endoplasmic reticulum and mitochondria dilation. Intriguingly, oncogenic HRas sensitizes non-transformed cells to VCP inhibition-mediated paraptosis. The susceptibility of cancer cells to VCP inhibition is attributed to the non-attenuation and recovery of protein synthesis under proteotoxic stress. Mechanistically, mTORC2/Akt activation and eIF3d-dependent translation contribute to translational rebound and amplification of proteotoxic stress. Furthermore, the ATF4/DDIT4 axis augments VCP inhibition-mediated paraptosis by activating Akt. Given that hyperactive Akt counteracts chemotherapeutic-induced apoptosis, VCP inhibition presents a promising therapeutic avenue to exploit Akt-associated vulnerabilities in cancer cells by triggering paraptosis while safeguarding normal cells.
Collapse
Affiliation(s)
- Dong Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - In Young Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hong Jae Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Min Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Mi-Young Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hae In Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Seok Soon Park
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong-Yun Jeong
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Hyeon Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea.
| | - Kyeong Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
14
|
Ronayne CT, Jackson TD, Bennett CF, Perry EA, Kantorovic N, Puigserver P. Tetracyclines activate mitoribosome quality control and reduce ER stress to promote cell survival. EMBO Rep 2023; 24:e57228. [PMID: 37818824 PMCID: PMC10702820 DOI: 10.15252/embr.202357228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations is redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. One method to rescue this cell death vulnerability is the inhibition of mitochondrial translation using tetracyclines. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that tetracyclines inhibit the mitochondrial ribosome and promote survival through suppression of endoplasmic reticulum (ER) stress. Tetracyclines increase mitochondrial levels of the mitoribosome quality control factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) and promote its recruitment to the mitoribosome large subunit, where MALSU1 is necessary for tetracycline-induced survival and suppression of ER stress. Glucose starvation induces ER stress to activate the unfolded protein response and IRE1α-mediated cell death that is inhibited by tetracyclines. These studies establish a new interorganelle communication whereby inhibition of the mitoribosome signals to the ER to promote survival, implicating basic mechanisms of cell survival and treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Conor T Ronayne
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Thomas D Jackson
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Christopher F Bennett
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Elizabeth A Perry
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Noa Kantorovic
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Pere Puigserver
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
15
|
Shakya A, Liu P, Godek J, McKee NW, Dodson M, Anandhan A, Ooi A, Garcia JGN, Costa M, Chapman E, Zhang DD. The NRF2-p97-NRF2 negative feedback loop. Redox Biol 2023; 65:102839. [PMID: 37573837 PMCID: PMC10428046 DOI: 10.1016/j.redox.2023.102839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
p97 is a ubiquitin-targeted ATP-dependent segregase that regulates proteostasis, in addition to a variety of other cellular functions. Previously, we demonstrated that p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex, facilitating proteasomal destruction. In the current study, we identified p97 as an NRF2-target gene that contains a functional ARE, indicating the presence of an NRF2-p97-NRF2 negative feedback loop that maintains redox homeostasis. Using CRISPR/Cas9 genome editing, we generated endogenous p97 ARE-mutated BEAS-2B cell lines. These p97 ARE-mutated cell lines exhibit altered expression of p97 and NRF2, as well as a compromised response to NRF2 inducers. Importantly, we also found a positive correlation between NRF2 activation and p97 expression in human cancer patients. Finally, using chronic arsenic-transformed cell lines, we demonstrated a synergistic effect of NRF2 and p97 inhibition in killing cancer cells with high NRF2 and p97 expression. Our study suggests dual upregulation of NRF2 and p97 occurs in certain types of cancers, suggesting that inhibition of both NRF2 and p97 could be a promising treatment strategy for stratified cancer patients.
Collapse
Affiliation(s)
- Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jack Godek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nicholas W McKee
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Joe G N Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, FL, 33458, USA
| | - Max Costa
- Departments of Environmental Medicine, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10010, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
16
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
17
|
Zhao J, Veeranan-Karmegam R, Baker FC, Mysona BA, Bagchi P, Liu Y, Smith SB, Gonsalvez GB, Bollinger KE. Defining the ligand-dependent proximatome of the sigma 1 receptor. Front Cell Dev Biol 2023; 11:1045759. [PMID: 37351276 PMCID: PMC10284605 DOI: 10.3389/fcell.2023.1045759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Sigma 1 Receptor (S1R) is a therapeutic target for a wide spectrum of pathological conditions ranging from neurodegenerative diseases to cancer and COVID-19. S1R is ubiquitously expressed throughout the visceral organs, nervous, immune and cardiovascular systems. It is proposed to function as a ligand-dependent molecular chaperone that modulates multiple intracellular signaling pathways. The purpose of this study was to define the S1R proximatome under native conditions and upon binding to well-characterized ligands. This was accomplished by fusing the biotin ligase, Apex2, to the C terminus of S1R. Cells stably expressing S1R-Apex or a GFP-Apex control were used to map proximal proteins. Biotinylated proteins were labeled under native conditions and in a ligand dependent manner, then purified and identified using quantitative mass spectrometry. Under native conditions, S1R biotinylates over 200 novel proteins, many of which localize within the endomembrane system (endoplasmic reticulum, Golgi, secretory vesicles) and function within the secretory pathway. Under conditions of cellular exposure to either S1R agonist or antagonist, results show enrichment of proteins integral to secretion, extracellular matrix formation, and cholesterol biosynthesis. Notably, Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) displays increased binding to S1R under conditions of treatment with Haloperidol, a well-known S1R antagonist; whereas Low density lipoprotein receptor (LDLR) binds more efficiently to S1R upon treatment with (+)-Pentazocine ((+)-PTZ), a classical S1R agonist. Furthermore, we demonstrate that the ligand bound state of S1R correlates with specific changes to the cellular secretome. Our results are consistent with the postulated role of S1R as an intracellular chaperone and further suggest important and novel functionalities related to secretion and cholesterol metabolism.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
| | - Rajalakshmi Veeranan-Karmegam
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Frederick C. Baker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, United States
| | - Yutao Liu
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Graydon B. Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
18
|
Chen Z, Zhang SL. Endoplasmic Reticulum Stress: A Key Regulator of Cardiovascular Disease. DNA Cell Biol 2023. [PMID: 37140435 DOI: 10.1089/dna.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The problems associated with economic development and social progress have led to an increase in the occurrence of cardiovascular diseases (CVDs), which affect the health of an increasing number of people and are a leading cause of disease and population mortality worldwide. Endoplasmic reticulum stress (ERS), a hot topic of interest for scholars in recent years, has been confirmed in numerous studies to be an important pathogenetic basis for many metabolic diseases and play an important role in maintaining physiological processes. The endoplasmic reticulum (ER) is a major organelle that is involved in protein folding and modification synthesis, and ERS occurs when several physiological and pathological factors allow excessive amounts of unfolded/misfolded proteins to accumulate. ERS often leads to initiation of the unfolded protein response (UPR) in a bid to re-establish tissue homeostasis; however, UPR has been documented to induce vascular remodeling and cardiomyocyte damage under various pathological conditions, leading to or accelerating the development of CVDs such as hypertension, atherosclerosis, and heart failure. In this review, we summarize the latest knowledge gained concerning ERS in terms of cardiovascular system pathophysiology, and discuss the feasibility of targeting ERS as a novel therapeutic target for the treatment of CVDs. Investigation of ERS has immense potential as a new direction for future research involving lifestyle intervention, the use of existing drugs, and the development of novel drugs that target and inhibit ERS.
Collapse
Affiliation(s)
- Zhao Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Liang Zhang
- Section 4, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Valimehr S, Sethi A, Shukla M, Bhattacharyya S, Kazemi M, Rouiller I. Molecular Mechanisms Driving and Regulating the AAA+ ATPase VCP/p97, an Important Therapeutic Target for Treating Cancer, Neurological and Infectious Diseases. Biomolecules 2023; 13:biom13050737. [PMID: 37238606 DOI: 10.3390/biom13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
p97/VCP, a highly conserved type II ATPase associated with diverse cellular activities (AAA+ ATPase), is an important therapeutic target in the treatment of neurodegenerative diseases and cancer. p97 performs a variety of functions in the cell and facilitates virus replication. It is a mechanochemical enzyme that generates mechanical force from ATP-binding and hydrolysis to perform several functions, including unfolding of protein substrates. Several dozens of cofactors/adaptors interact with p97 and define the multifunctionality of p97. This review presents the current understanding of the molecular mechanism of p97 during the ATPase cycle and its regulation by cofactors and small-molecule inhibitors. We compare detailed structural information obtained in different nucleotide states in the presence and absence of substrates and inhibitors. We also review how pathogenic gain-of-function mutations modify the conformational changes of p97 during the ATPase cycle. Overall, the review highlights how the mechanistic knowledge of p97 helps in designing pathway-specific modulators and inhibitors.
Collapse
Affiliation(s)
- Sepideh Valimehr
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Ian Holmes Imaging Centre, Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Manjari Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Mohsen Kazemi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
20
|
Ronayne CT, Bennett CF, Perry EA, Kantorovich N, Puigserver P. Tetracycline-dependent inhibition of mitoribosome protein elongation in mitochondrial disease mutant cells suppresses IRE1α to promote cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531795. [PMID: 36945631 PMCID: PMC10028993 DOI: 10.1101/2023.03.09.531795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations are redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. Depending on the type of mitochondrial mutation, certain mechanisms can efficiently rescue cell death vulnerability. One method is the inhibition of mitochondrial translation elongation using tetracyclines, potent suppressors of cell death in mitochondrial disease mutant cells. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that in mitochondrial mutant disease cells, tetracycline-mediated inhibition of mitoribosome elongation promotes survival through suppression of the ER stress IRE1α protein. Tetracyclines increased levels of the splitting factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) at the mitochondria with recruitment to the mitochondrial ribosome (mitoribosome) large subunit. MALSU1, but not other quality control factors, was required for tetracycline-induced cell survival in mitochondrial disease mutant cells during glucose starvation. In these cells, nutrient stress induced cell death through IRE1α activation associated with a strong protein loading in the ER lumen. Notably, tetracyclines rescued cell death through suppression of IRE1α oligomerization and activity. Consistent with MALSU1 requirement, MALSU1 deficient mitochondrial mutant cells were sensitive to glucose-deprivation and exhibited increased ER stress and activation of IRE1α that was not reversed by tetracyclines. These studies show that inhibition of mitoribosome elongation signals to the ER to promote survival, establishing a new interorganelle communication between the mitoribosome and ER with implications in basic mechanisms of cell survival and treatment of mitochondrial diseases.
Collapse
|
21
|
Wang K, Chen L, Dai X, Ye Z, Zhou C, Zhang CJ, Feng Z. Synthesis and structure-activity relationships of N - (3 - (1H-imidazol-2-yl) phenyl) - 3-phenylpropionamide derivatives as a novel class of covalent inhibitors of p97/VCP ATPase. Eur J Med Chem 2023; 248:115094. [PMID: 36634454 DOI: 10.1016/j.ejmech.2023.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Noncovalent inhibitors of p97 have entered clinical studies. Compared with noncovalent inhibitors, covalent inhibitors have unique advantages in maintaining inhibitory effect and improving the resistance of the target. We previously employed the activity-based protein profiling to definitely identify p97 as the protein target of FL-18 that has a unique scaffold of benpropargylamide coupled with an imidazole. In this study, we report a thorough structure-activity-relationship study involving the new scaffold. A total of three rounds of optimization led to the discovery of the most potent covalent inhibitor of p97 to date. A chemical proteomics study indicated that the newly-synthesized compounds still targeted the C522 residue of p97 and retained selectivity among the complicated whole proteome. This study provides a suite of new covalent inhibitors of p97 to assist in its biological study and drug discovery.
Collapse
Affiliation(s)
- Ke Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China
| | - Lianguo Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xinyan Dai
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China
| | - Zi Ye
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, PR China
| | - Chuan Zhou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China
| | - Chong-Jing Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, PR China.
| | - Zhiqiang Feng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, PR China.
| |
Collapse
|
22
|
Schäfer AB, Steenhuis M, Jim KK, Neef J, O’Keefe S, Whitehead RC, Swanton E, Wang B, Halbedel S, High S, van Dijl JM, Luirink J, Wenzel M. Dual Action of Eeyarestatin 24 on Sec-Dependent Protein Secretion and Bacterial DNA. ACS Infect Dis 2023; 9:253-269. [PMID: 36637435 PMCID: PMC9926488 DOI: 10.1021/acsinfecdis.2c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Eeyarestatin 24 (ES24) is a promising new antibiotic with broad-spectrum activity. It shares structural similarity with nitrofurantoin (NFT), yet appears to have a distinct and novel mechanism: ES24 was found to inhibit SecYEG-mediated protein transport and membrane insertion in Gram-negative bacteria. However, possible additional targets have not yet been explored. Moreover, its activity was notably better against Gram-positive bacteria, for which its mechanism of action had not yet been investigated. We have used transcriptomic stress response profiling, phenotypic assays, and protein secretion analyses to investigate the mode of action of ES24 in comparison with NFT using the Gram-positive model bacterium Bacillus subtilis and have compared our findings to Gram-negative Escherichia coli. Here, we show the inhibition of Sec-dependent protein secretion in B. subtilis and additionally provide evidence for DNA damage, probably caused by the generation of reactive derivatives of ES24. Interestingly, ES24 caused a gradual dissipation of the membrane potential, which led to delocalization of cytokinetic proteins and subsequent cell elongation in E. coli. However, none of those effects were observed in B. subtilis, thereby suggesting that ES24 displays distinct mechanistic differences with respect to Gram-positive and Gram-negative bacteria. Despite its structural similarity to NFT, ES24 profoundly differed in our phenotypic analysis, which implies that it does not share the NFT mechanism of generalized macromolecule and structural damage. Importantly, ES24 outperformed NFT in vivo in a zebrafish embryo pneumococcal infection model. Our results suggest that ES24 not only inhibits the Sec translocon, but also targets bacterial DNA and, in Gram-negative bacteria, the cell membrane.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Maurice Steenhuis
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers - Location Vrije Universiteit
Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Amsterdam
University Medical Centers, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Sarah O’Keefe
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Roger C. Whitehead
- School
of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Eileithyia Swanton
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Biwen Wang
- Bacterial
Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sven Halbedel
- FG11
Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
- Institute
for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephen High
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Joen Luirink
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
23
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
24
|
Sasset L, Chowdhury KH, Manzo OL, Rubinelli L, Konrad C, Maschek JA, Manfredi G, Holland WL, Di Lorenzo A. Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL. EMBO Rep 2023; 24:e54689. [PMID: 36408842 PMCID: PMC9827560 DOI: 10.15252/embr.202254689] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - Kamrul H Chowdhury
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Onorina L Manzo
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Department of PharmacyUniversity of Naples “Federico II”NaplesItaly
| | - Luisa Rubinelli
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - Csaba Konrad
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - J Alan Maschek
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - William L Holland
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
25
|
Fragment screening using biolayer interferometry reveals ligands targeting the SHP-motif binding site of the AAA+ ATPase p97. Commun Chem 2022; 5:169. [PMID: 36697690 PMCID: PMC9814400 DOI: 10.1038/s42004-022-00782-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Biosensor techniques have become increasingly important for fragment-based drug discovery during the last years. The AAA+ ATPase p97 is an essential protein with key roles in protein homeostasis and a possible target for cancer chemotherapy. Currently available p97 inhibitors address its ATPase activity and globally impair p97-mediated processes. In contrast, inhibition of cofactor binding to the N-domain by a protein-protein-interaction inhibitor would enable the selective targeting of specific p97 functions. Here, we describe a biolayer interferometry-based fragment screen targeting the N-domain of p97 and demonstrate that a region known as SHP-motif binding site can be targeted with small molecules. Guided by molecular dynamics simulations, the binding sites of selected screening hits were postulated and experimentally validated using protein- and ligand-based NMR techniques, as well as X-ray crystallography, ultimately resulting in the first structure of a small molecule in complex with the N-domain of p97. The identified fragments provide insights into how this region could be targeted and present first chemical starting points for the development of a protein-protein interaction inhibitor preventing the binding of selected cofactors to p97.
Collapse
|
26
|
Rodrigo I, Ballesta C, Nunes EB, Pérez P, García-Arriaza J, Arias A. Eeyarestatin I, an inhibitor of the valosin-containing protein, exhibits potent virucidal activity against the flaviviruses. Antiviral Res 2022; 207:105416. [PMID: 36113629 DOI: 10.1016/j.antiviral.2022.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
Cellular responses to stress generally lead to the activation of the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Several lines of study support that ERAD may be playing a proviral role during flaviviral infection. A key host factor in ERAD is the valosin-containing protein (VCP), an ATPase which ushers ubiquitin-tagged proteins to degradation by the proteasome. VCP exhibits different proviral activities, such as engaging in the biogenesis of viral replication organelles and facilitating flavivirus genome uncoating after the viral particle entry. To investigate the possible antiviral value of drugs targeting VCP, we tested two inhibitors: eeyarestatin I (EEY) and xanthohumol (XAN). Both compounds were highly effective in suppressing Zika virus (ZIKV) and Usutu virus (USUV) replication during infection in cell culture. Further analysis revealed an unexpected virucidal activity for EEY, but not for XAN. Preincubation of ZIKV or USUV with EEY before inoculation to cells resulted in significant decreases in infectivity in a dose- and time-dependent manner. Viral genomes in samples previously treated with EEY were more sensitive to propidium monoazide, an intercalating agent, with 10- to 100-fold decreases observed in viral RNA levels, supporting that EEY affects viral particle integrity. Altogether, these results support that EEY is a strong virucide against two unrelated flaviviruses, encouraging further studies to investigate its potential use as a broad-acting drug or the development of improved derivatives in the treatment of flaviviral infection.
Collapse
Affiliation(s)
- Imanol Rodrigo
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain
| | - Carlos Ballesta
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain
| | - Eliane Blanco Nunes
- Departamento de Vigilância em Zoonoses, Secretaria Municipal de Saúde Goiânia, Rodovia Go-020 km 08, Val Das Pombas, 75250-000, Goiânia, Goias State, Brazil
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologla (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologla (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Armando Arias
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, Albacete, Spain.
| |
Collapse
|
27
|
Pohl M, Martin-Sancho L, Ratnayake R, White KM, Riva L, Chen QY, Lieber G, Busnadiego I, Yin X, Lin S, Pu Y, Pache L, Rosales R, Déjosez M, Qin Y, De Jesus PD, Beall A, Yoh S, Hale BG, Zwaka TP, Matsunaga N, García-Sastre A, Stertz S, Chanda SK, Luesch H. Sec61 Inhibitor Apratoxin S4 Potently Inhibits SARS-CoV-2 and Exhibits Broad-Spectrum Antiviral Activity. ACS Infect Dis 2022; 8:1265-1279. [PMID: 35766385 PMCID: PMC9260726 DOI: 10.1021/acsinfecdis.2c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.
Collapse
Affiliation(s)
- Marie
O. Pohl
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Laura Martin-Sancho
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Ranjala Ratnayake
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center
for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Kris M. White
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
- Global Health
and Emerging Pathogens Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Laura Riva
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Qi-Yin Chen
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center
for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Gauthier Lieber
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Idoia Busnadiego
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Xin Yin
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Samuel Lin
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Yuan Pu
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lars Pache
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Romel Rosales
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
- Global Health
and Emerging Pathogens Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marion Déjosez
- Huffington
Center for Cell-based Research in Parkinson’s Disease, Black
Family Stem Cell Institute, Department of Cell, Developmental and
Regenerative Biology, Icahn School of Medicine
at Mount Sinai, New York, New York 10502, United States
| | - Yiren Qin
- Huffington
Center for Cell-based Research in Parkinson’s Disease, Black
Family Stem Cell Institute, Department of Cell, Developmental and
Regenerative Biology, Icahn School of Medicine
at Mount Sinai, New York, New York 10502, United States
| | - Paul D. De Jesus
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Anne Beall
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Sunnie Yoh
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Benjamin G. Hale
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas P. Zwaka
- Huffington
Center for Cell-based Research in Parkinson’s Disease, Black
Family Stem Cell Institute, Department of Cell, Developmental and
Regenerative Biology, Icahn School of Medicine
at Mount Sinai, New York, New York 10502, United States
| | - Naoko Matsunaga
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Adolfo García-Sastre
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
- Global Health
and Emerging Pathogens Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- The
Tisch Cancer Institute, Icahn School of
Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Silke Stertz
- Institute
of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Sumit K. Chanda
- Immunity
and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center
for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
28
|
Karamali N, Ebrahimnezhad S, Khaleghi Moghadam R, Daneshfar N, Rezaiemanesh A. HRD1 in human malignant neoplasms: Molecular mechanisms and novel therapeutic strategy for cancer. Life Sci 2022; 301:120620. [PMID: 35533759 DOI: 10.1016/j.lfs.2022.120620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
In tumor cells, the endoplasmic reticulum (ER) plays an essential role in maintaining cellular proteostasis by stimulating unfolded protein response (UPR) underlying stress conditions. ER-associated degradation (ERAD) is a critical pathway of the UPR to protect cells from ER stress-induced apoptosis and the elimination of unfolded or misfolded proteins by the ubiquitin-proteasome system (UPS). 3-Hydroxy-3-methylglutaryl reductase degradation (HRD1) as an E3 ubiquitin ligase plays an essential role in the ubiquitination and dislocation of misfolded protein in ERAD. In addition, HRD1 can target other normal folded proteins. In various types of cancer, the expression of HRD1 is dysregulated, and it targets different molecules to develop cancer hallmarks or suppress the progression of the disease. Recent investigations have defined the role of HRD1 in drug resistance in types of cancer. This review focuses on the molecular mechanisms of HRD1 and its roles in cancer pathogenesis and discusses the worthiness of targeting HRD1 as a novel therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Samaneh Ebrahimnezhad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Niloofar Daneshfar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
29
|
Kobakhidze G, Sethi A, Valimehr S, Ralph SA, Rouiller I. The AAA+ ATPase p97 as a novel parasite and tuberculosis drug target. Trends Parasitol 2022; 38:572-590. [DOI: 10.1016/j.pt.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
30
|
Flavivirus recruits the valosin-containing protein-NPL4 complex to induce stress granule disassembly for efficient viral genome replication. J Biol Chem 2022; 298:101597. [PMID: 35063505 PMCID: PMC8857493 DOI: 10.1016/j.jbc.2022.101597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are human pathogens that can cause severe diseases, such as dengue fever and Japanese encephalitis, which can lead to death. Valosin-containing protein (VCP)/p97, a cellular ATPase associated with diverse cellular activities (AAA-ATPase), is reported to have multiple roles in flavivirus replication. Nevertheless, the importance of each role still has not been addressed. In this study, the functions of 17 VCP mutants that are reportedly unable to interact with the VCP cofactors were validated using the short-interfering RNA rescue experiments. Our findings of this study suggested that VCP exerts its functions in replication of the Japanese encephalitis virus by interacting with the VCP cofactor nuclear protein localization 4 (NPL4). We show that the depletion of NPL4 impaired the early stage of viral genome replication. In addition, we demonstrate that the direct interaction between NPL4 and viral nonstructural protein (NS4B) is critical for the translocation of NS4B to the sites of viral replication. Finally, we found that Japanese encephalitis virus and dengue virus promoted stress granule formation only in VCP inhibitor-treated cells and the expression of NS4B or VCP attenuated stress granule formation mediated by protein kinase R, which is generally known to be activated by type I interferon and viral genome RNA. These results suggest that the NS4B-mediated recruitment of VCP to the virus replication site inhibits cellular stress responses and consequently facilitates viral protein synthesis in the flavivirus-infected cells.
Collapse
|
31
|
Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington's Disease. Int J Mol Sci 2022; 23:780. [PMID: 35054963 PMCID: PMC8775980 DOI: 10.3390/ijms23020780] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulation of misfolded proteins is a common phenomenon of several neurodegenerative diseases. The misfolding of proteins due to abnormal polyglutamine (PolyQ) expansions are linked to the development of PolyQ diseases including Huntington's disease (HD). Though the genetic basis of PolyQ repeats in HD remains prominent, the primary molecular basis mediated by PolyQ toxicity remains elusive. Accumulation of misfolded proteins in the ER or disruption of ER homeostasis causes ER stress and activates an evolutionarily conserved pathway called Unfolded protein response (UPR). Protein homeostasis disruption at organelle level involving UPR or ER stress response pathways are found to be linked to HD. Due to dynamic intricate connections between ER and mitochondria, proteins at ER-mitochondria contact sites (mitochondria associated ER membranes or MAMs) play a significant role in HD development. The current review aims at highlighting the most updated information about different UPR pathways and their involvement in HD disease progression. Moreover, the role of MAMs in HD progression has also been discussed. In the end, the review has focused on the therapeutic interventions responsible for ameliorating diseased states via modulating either ER stress response proteins or modulating the expression of ER-mitochondrial contact proteins.
Collapse
Affiliation(s)
- Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad 500078, Telangana, India; (P.K.); (V.K.); (A.S.); (A.T.); (V.C.)
| | | | | | | | | | | |
Collapse
|
32
|
Chandrasekaran AP, Kaushal K, Park CH, Kim KS, Ramakrishna S. USP32 confers cancer cell resistance to YM155 via promoting ER-associated degradation of solute carrier protein SLC35F2. Theranostics 2021; 11:9752-9771. [PMID: 34815782 PMCID: PMC8581437 DOI: 10.7150/thno.63806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The most commonly preferred chemotherapeutic agents to treat cancers are small-molecule drugs. However, the differential sensitivity of various cancer cells to small molecules and untargeted delivery narrow the range of potential therapeutic applications. The mechanisms responsible for drug resistance in a variety of cancer cells are also largely unknown. Several deubiquitinating enzymes (DUBs) are the main determinants of drug resistance in cancer cells. Methods: We used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs) and systematically screened for DUBs resistant to the clinically evaluated anticancer compound YM155. A series of in vitro and in vivo experiments were conducted to reveal the relationship between USP32 and SLC35F2 on YM155-mediated DNA damage in cancer cells. Results: CRISPR-based dual-screening method identified USP32 as a novel DUB that governs resistance for uptake of YM155 by destabilizing protein levels of SLC35F2, a solute-carrier protein essential for the uptake of YM155. The expression of USP32 and SLC35F2 was negatively correlated across a panel of tested cancer cell lines. YM155-resistant cancer cells in particular exhibited elevated expression of USP32 and low expression of SLC35F2. Conclusion: Collectively, our DUB-screening strategy revealed a resistance mechanism governed by USP32 associated with YM155 resistance in breast cancers, one that presents an attractive molecular target for anti-cancer therapies. Targeted genome knockout verified that USP32 is the main determinant of SLC35F2 protein stability in vitro and in vivo, suggesting a novel way to treat tumors resistant to small-molecule drugs.
Collapse
|
33
|
Inhibitors of the Sec61 Complex and Novel High Throughput Screening Strategies to Target the Protein Translocation Pathway. Int J Mol Sci 2021; 22:ijms222112007. [PMID: 34769437 PMCID: PMC8585047 DOI: 10.3390/ijms222112007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proteins targeted to the secretory pathway start their intracellular journey by being transported across biological membranes such as the endoplasmic reticulum (ER). A central component in this protein translocation process across the ER is the Sec61 translocon complex, which is only intracellularly expressed and does not have any enzymatic activity. In addition, Sec61 translocon complexes are difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its function has thus been notoriously difficult. However, such translocation inhibitors may not only be valuable tools for cell biology, but may also represent novel anticancer drugs, given that cancer cells heavily depend on efficient protein translocation into the ER to support their fast growth. In this review, different inhibitors of protein translocation will be discussed, and their specific mode of action will be compared. In addition, recently published screening strategies for small molecule inhibitors targeting the whole SRP-Sec61 targeting/translocation pathway will be summarized. Of note, slightly modified assays may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex, in order to identify novel antibiotic drugs.
Collapse
|
34
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
35
|
Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms221810177. [PMID: 34576340 PMCID: PMC8469696 DOI: 10.3390/ijms221810177] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.
Collapse
|
36
|
Wang B, Zhu Y, Yu C, Zhang C, Tang Q, Huang H, Zhao Z. Hepatitis C virus induces oxidation and degradation of apolipoprotein B to enhance lipid accumulation and promote viral production. PLoS Pathog 2021; 17:e1009889. [PMID: 34492079 PMCID: PMC8448335 DOI: 10.1371/journal.ppat.1009889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/17/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection induces the degradation and decreases the secretion of apolipoprotein B (ApoB). Impaired production and secretion of ApoB-containing lipoprotein is associated with an increase in hepatic steatosis. Therefore, HCV infection-induced degradation of ApoB may contribute to hepatic steatosis and decreased lipoprotein secretion, but the mechanism of HCV infection-induced ApoB degradation has not been completely elucidated. In this study, we found that the ApoB level in HCV-infected cells was regulated by proteasome-associated degradation but not autophagic degradation. ApoB was degraded by the 20S proteasome in a ubiquitin-independent manner. HCV induced the oxidation of ApoB via oxidative stress, and oxidized ApoB was recognized by the PSMA5 and PSMA6 subunits of the 20S proteasome for degradation. Further study showed that ApoB was degraded at endoplasmic reticulum (ER)-associated lipid droplets (LDs) and that the retrotranslocation and degradation of ApoB required Derlin-1 but not gp78 or p97. Moreover, we found that knockdown of ApoB before infection increased the cellular lipid content and enhanced HCV assembly. Overexpression of ApoB-50 inhibited lipid accumulation and repressed viral assembly in HCV-infected cells. Our study reveals a novel mechanism of ApoB degradation and lipid accumulation during HCV infection and might suggest new therapeutic strategies for hepatic steatosis. Hepatitis C virus (HCV) infection induces the degradation of apolipoprotein B (ApoB), which is the primary apolipoprotein in low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Impaired production and secretion of ApoB-containing lipoprotein is associated with an increase in hepatic steatosis. Thus, ApoB degradation might contribute to HCV infection-induced fatty liver. Here, we found that ApoB was not degraded through endoplasmic reticulum-associated degradation (ERAD) or autophagy, as reported previously. Instead, HCV infection induced ApoB oxidation through oxidative stress, and oxidatively damaged ApoB could be recognized and directly degraded by the 20S proteasome. We also found that ApoB was retrotranslocated from the endoplasmic reticulum (ER) to lipid droplets (LDs) for degradation. Through overexpression of ApoB-50, which can mediate the assembly and secretion of LDL and VLDL, we confirmed that ApoB degradation contributed to hepatocellular lipid accumulation induced by HCV infection. Additionally, expression of ApoB-50 impaired HCV production due to the observed decrease in lipid accumulation. In this study, we identified new mechanisms of ApoB degradation and HCV-induced lipid accumulation, and our findings might facilitate the development of novel therapeutic strategies for HCV infection-induced fatty liver.
Collapse
Affiliation(s)
- Bei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congci Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chongyang Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Tang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - He Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| | - Zhendong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Endoplasmic Reticulum-Associated Degradation Controls Virus Protein Homeostasis, Which Is Required for Flavivirus Propagation. J Virol 2021; 95:e0223420. [PMID: 33980593 DOI: 10.1128/jvi.02234-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many positive-stranded RNA viruses encode polyproteins from which viral proteins are generated by processing the polyproteins. This system produces an equal amount of each viral protein, though the required amounts for each protein are not the same. In this study, we found the extra membrane-anchored nonstructural (NS) proteins of Japanese encephalitis virus and dengue virus are rapidly and selectively degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway. Our gene targeting study revealed that ERAD involving Derlin2 and SEL1L, but not Derlin1, is required for the viral genome replication. Derlin2 is predominantly localized in the convoluted membrane (CM) of the viral replication organelle, and viral NS proteins are degraded in the CM. Hence, these results suggest that viral protein homeostasis is regulated by Derlin2-mediated ERAD in the CM, and this process is critical for the propagation of these viruses. IMPORTANCE The results of this study reveal the cellular ERAD system controls the amount of each viral protein in virus-infected cells and that this "viral protein homeostasis" is critical for viral propagation. Furthermore, we clarified that the "convoluted membrane (CM)," which was previously considered a structure with unknown function, serves as a kind of waste dump where viral protein degradation occurs. We also found that the Derlin2/SEL1L/HRD1-specific pathway is involved in this process, whereas the Derlin1-mediated pathway is not. This novel ERAD-mediated fine-tuning system for the stoichiometries of polyprotein-derived viral proteins may represent a common feature among polyprotein-encoding viruses.
Collapse
|
38
|
Bouchard D, Wang W, Yang WC, He S, Garcia A, Matunis MJ. SUMO paralogue-specific functions revealed through systematic analysis of human knockout cell lines and gene expression data. Mol Biol Cell 2021; 32:1849-1866. [PMID: 34232706 PMCID: PMC8684707 DOI: 10.1091/mbc.e21-01-0031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogues with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogues and also the best studied. To what extent SUMO1, SUMO2, and the other paralogues impart unique and nonredundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogues during development and studies in cell culture have relied largely on transient paralogue overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralogue gene expression levels in normal human tissues and found unique patterns of SUMO1–3 expression across 30 tissue types, suggesting paralogue-specific functions in adult human tissues. To systematically identify and characterize unique and nonredundant functions of the SUMO paralogues in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, promyelocytic leukemia (PML) nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal nonredundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.
Collapse
Affiliation(s)
- Danielle Bouchard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Wei-Chih Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Shuying He
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Anthony Garcia
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
39
|
p97/VCP is highly expressed in the stem-like cells of breast cancer and controls cancer stemness partly through the unfolded protein response. Cell Death Dis 2021; 12:286. [PMID: 33731668 PMCID: PMC7969628 DOI: 10.1038/s41419-021-03555-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
p97/VCP, an evolutionarily concerned ATPase, partakes in multiple cellular proteostatic processes, including the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Elevated expression of p97 is common in many cancers and is often associated with poor survival. Here we report that the levels of p97 positively correlated with the histological grade, tumor size, and lymph node metastasis in breast cancers. We further examined p97 expression in the stem-like cancer cells or cancer stem cells (CSCs), a cell population that purportedly underscores cancer initiation, therapeutic resistance, and recurrence. We found that p97 was consistently at a higher level in the CD44+/CD24-, ALDH+, or PKH26+ CSC populations than the respective non-CSC populations in human breast cancer tissues and cancer cell lines and p97 expression also positively correlated with that of SOX2, another CSC marker. To assess the role of p97 in breast cancers, cancer proliferation, mammosphere, and orthotopic growth were analyzed. Similarly as p97 depletion, two pharmacological inhibitors, which targets the ER-associated p97 or globally inhibits p97's ATPase activity, markedly reduced cancer growth and the CSC population. Importantly, depletion or inhibition of p97 greatly suppressed the proliferation of the ALDH+ CSCs and the CSC-enriched mammospheres, while exhibiting much less or insignificant inhibitory effects on the non-CSC cancer cells. Comparable phenotypes produced by blocking ERAD suggest that ER proteostasis is essential for the CSC integrity. Loss of p97 gravely activated the unfolded protein response (UPR) and modulated the expression of multiple stemness and pluripotency regulators, including C/EBPδ, c-MYC, SOX2, and SKP2, which collectively contributed to the demise of CSCs. In summary, p97 controls the breast CSC integrity through multiple targets, many of which directly affect cancer stemness and are induced by UPR activation. Our findings highlight the importance of p97 and ER proteostasis in CSC biology and anticancer therapy.
Collapse
|
40
|
Du R, Sullivan DK, Azizian NG, Liu Y, Li Y. Inhibition of ERAD synergizes with FTS to eradicate pancreatic cancer cells. BMC Cancer 2021; 21:237. [PMID: 33676427 PMCID: PMC7937230 DOI: 10.1186/s12885-021-07967-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancers, is driven by oncogenic KRAS mutations. Farnesyl thiosalicylic acid (FTS), also known as salirasib, is a RAS inhibitor that selectively dislodges active RAS proteins from cell membrane, inhibiting downstream signaling. FTS has demonstrated limited therapeutic efficacy in PDAC patients despite being well tolerated. Methods To improve the efficacy of FTS in PDAC, we performed a genome-wide CRISPR synthetic lethality screen to identify genetic targets that synergize with FTS treatment. Among the top candidates, multiple genes in the endoplasmic reticulum-associated protein degradation (ERAD) pathway were identified. The role of ERAD inhibition in enhancing the therapeutic efficacy of FTS was further investigated in pancreatic cancer cells using pharmaceutical and genetic approaches. Results In murine and human PDAC cells, FTS induced unfolded protein response (UPR), which was further augmented upon treatment with a chemical inhibitor of ERAD, Eeyarestatin I (EerI). Combined treatment with FTS and EerI significantly upregulated the expression of UPR marker genes and induced apoptosis in pancreatic cancer cells. Furthermore, CRISPR-based genetic ablation of the key ERAD components, HRD1 and SEL1L, sensitized PDAC cells to FTS treatment. Conclusion Our study reveals a critical role for ERAD in therapeutic response of FTS and points to the modulation of UPR as a novel approach to improve the efficacy of FTS in PDAC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07967-6.
Collapse
Affiliation(s)
- Rong Du
- Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Delaney K Sullivan
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Nancy G Azizian
- Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Yuanhui Liu
- Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Yulin Li
- Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
41
|
Wu JX, He KY, Zhang ZZ, Qu YL, Su XB, Shi Y, Wang N, Wang L, Han ZG. LZP is required for hepatic triacylglycerol transportation through maintaining apolipoprotein B stability. PLoS Genet 2021; 17:e1009357. [PMID: 33591966 PMCID: PMC7909667 DOI: 10.1371/journal.pgen.1009357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The conserved zona pellucida (ZP) domain is found in hundreds of extracellular proteins that are expressed in various organs and play a variety of roles as structural components, receptors and tumor suppressors. A liver-specific zona pellucida domain-containing protein (LZP), also named OIT3, has been shown to be mainly expressed in human and mouse hepatocytes; however, the physiological function of LZP in the liver remains unclear. Here, we show that Lzp deletion inhibited very low-density lipoprotein (VLDL) secretion, leading to hepatic TG accumulation and lower serum TG levels in mice. The apolipoprotein B (apoB) levels were significantly decreased in the liver, serum, and VLDL particles of LZP-deficient mice. In the presence of LZP, which is localized to the endoplasmic reticulum (ER) and Golgi apparatus, the ER-associated degradation (ERAD) of apoB was attenuated; in contrast, in the absence of LZP, apoB was ubiquitinated by AMFR, a known E3 ubiquitin ligase specific for apoB, and was subsequently degraded, leading to lower hepatic apoB levels and inhibited VLDL secretion. Interestingly, hepatic LZP levels were elevated in mice challenged with a high-fat diet and humans with simple hepatic steatosis, suggesting that LZP contributes to the physiological regulation of hepatic TG homeostasis. In general, our data establish an essential role for LZP in hepatic TG transportation and VLDL secretion by preventing the AMFR-mediated ubiquitination and degradation of apoB and therefore provide insight into the molecular function of LZP in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiao-Xiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Kun-Yan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuang-Zhuang Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Lan Qu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xian-Bin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
42
|
Wang Y, Soto-Acosta R, Ding R, Chen L, Geraghty RJ. Anti-HCMV activity by an irreversible p97 inhibitor LC-1310. Med Chem Res 2021; 30:440-448. [PMID: 33456290 PMCID: PMC7794631 DOI: 10.1007/s00044-020-02679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
The AAA+ (ATPase associated with various cellular activities) protein p97, also called valosin-containing protein, is a hexameric ring ATPase and uses ATP hydrolysis to unfold or extract proteins from biological complexes. Many cellular processes are affected by p97 including ER-associated degradation, DNA damage response, cell signaling (NF-κB), cell cycle progression, autophagy, and others. Not surprisingly, with its role in many fundamental cellular processes, p97 function is important for the replication of many viruses. We tested irreversible p97-targeting compounds for their ability to inhibit the replication of multiple viruses compared to the known p97 inhibitors NMS-873 and CB-5083. Our results indicate that overall cellular toxicity for p97 compounds provides a challenge for antivirals targeting p97. However, we identified one compound with sub-micromolar activity against human cytomegalovirus and improved cell viability to provide evidence for the potential of irreversible p97 inhibitors as antivirals. ![]()
Collapse
Affiliation(s)
- Yan Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
- Present Address: Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Ruben Soto-Acosta
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rui Ding
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
43
|
Zhang G, Li S, Wang F, Jones AC, Goldberg AFG, Lin B, Virgil S, Stoltz BM, Deshaies RJ, Chou TF. A covalent p97/VCP ATPase inhibitor can overcome resistance to CB-5083 and NMS-873 in colorectal cancer cells. Eur J Med Chem 2021; 213:113148. [PMID: 33476933 DOI: 10.1016/j.ejmech.2020.113148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
Small-molecule inhibitors of p97 are useful tools to study p97 function. Human p97 is an important AAA ATPase due to its diverse cellular functions and implication in mediating the turnover of proteins involved in tumorigenesis and virus infections. Multiple p97 inhibitors identified from previous high-throughput screening studies are thiol-reactive compounds targeting Cys522 in the D2 ATP-binding domain. Thus, these findings suggest a potential strategy to develop covalent p97 inhibitors. We first used purified p97 to assay several known covalent kinase inhibitors to determine if they can inhibit ATPase activity. We evaluated their selectivity using our dual reporter cells that can distinguish p97 dependent and independent degradation. We selected a β-nitrostyrene scaffold to further study the structure-activity relationship. In addition, we used p97 structures to design and synthesize analogues of pyrazolo[3,4-d]pyrimidine (PP). We incorporated electrophiles into a PP-like compound 17 (4-amino-1-tert-butyl-3-phenyl pyrazolo[3,4-d]pyrimidine) to generate eight compounds. A selective compound 18 (N-(1-(tert-butyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)acrylamide, PPA) exhibited excellent selectivity in an in vitro ATPase activity assay: IC50 of 0.6 μM, 300 μM, and 100 μM for wild type p97, yeast Cdc48, and N-ethylmaleimide sensitive factor (NSF), respectively. To further examine the importance of Cys522 on the active site pocket during PPA inhibition, C522A and C522T mutants of p97 were purified and shown to increase IC50 values by 100-fold, whereas replacement of Thr532 of yeast Cdc48 with Cysteine decreased the IC50 by 10-fold. The molecular modeling suggested the hydrogen bonds and hydrophobic interactions in addition to the covalent bonding at Cys522 between WT-p97 and PPA. Furthermore, tandem mass spectrometry confirmed formation of a covalent bond between Cys522 and PPA. An anti-proliferation assay indicated that the proliferation of HCT116, HeLa, and RPMI8226 was inhibited by PPA with IC50 of 2.7 μM, 6.1 μM, and 3.4 μM, respectively. In addition, PPA is able to inhibit proliferation of two HCT116 cell lines that are resistant to CB-5083 and NMS-873, respectively. Proteomic analysis of PPA-treated HCT116 revealed Gene Ontology enrichment of known p97 functional pathways such as the protein ubiquitination and the ER to Golgi transport vesicle membrane. In conclusion, we have identified and characterized PPA as a selective covalent p97 inhibitor, which will allow future exploration to improve the potency of p97 inhibitors with different mechanisms of action.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Amanda C Jones
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Alexander F G Goldberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Benjamin Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Scott Virgil
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States; Howard Hughes Medical Institute, Chevy Chase, MD, 20815, United States.
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
44
|
Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ 2020; 28:1773-1789. [PMID: 33328570 DOI: 10.1038/s41418-020-00700-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Upregulation of programmed death ligand 1 (PD-L1) helps tumor cells escape from immune surveillance, and therapeutic antibodies targeting PD-1/PD-L1 have shown better patient outcomes only in several types of malignancies. Recent studies suggest that the clinical efficacy of anti-PD-1/PD-L1 treatments is associated with PD-L1 levels; however, the underlying mechanism of high PD-L1 protein levels in cancers is not well defined. Here, we report that the deubiquitinase OTUB1 positively regulates PD-L1 stability and mediates cancer immune responses through the PD-1/PD-L1 axis. Mechanistically, we demonstrate that OTUB1 interacts with and removes K48-linked ubiquitin chains from the PD-L1 intracellular domain in a manner dependent on its deubiquitinase activity to hinder the degradation of PD-L1 through the ERAD pathway. Functionally, depletion of OTUB1 markedly decreases PD-L1 abundance, reduces PD-1 protein binding to the tumor cell surface, and causes increased tumor cell sensitivity to human peripheral blood mononuclear cells (PBMCs)-mediated cytotoxicity. Meanwhile, OTUB1 ablation-induced PD-L1 destabilization facilitates more CD8+ T cells infiltration and increases the level of IFN-γ in serum to enhance antitumor immunity in mice, and the tumor growth suppression by OTUB1 silencing could be reversed by PD-L1 overexpression. Furthermore, we observe a significant correlation between PD-L1 abundance and OTUB1 expression in human breast carcinoma. Our study reveals OTUB1 as a deubiquitinating enzyme that influences cancer immunosuppression via regulation of PD-L1 stability and may be a potential therapeutic target for cancer immunotherapy.
Collapse
|
45
|
Liu Y, Tan Z, Yang Y. Negative feedback and modern anti-cancer strategies targeting the ER stress response. FEBS Lett 2020; 594:4247-4265. [PMID: 33206409 DOI: 10.1002/1873-3468.14000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress is a cell state in which misfolded or unfolded proteins are aberrantly accumulated in the ER. ER stress induces an evolutionarily conserved adaptive response, named the ER stress response, that deploys a self-regulated machinery to maintain cellular proteostasis. However, compared to its well-established canonical activation mechanism, the negative feedback mechanisms regulating the ER stress response remain unclear and no accepted methods or markers have been established. Several studies have documented that both endogenous and exogenous insults can induce ER stress in cancer. Based on this evidence, small molecule inhibitors targeting ER stress response have been designed to kill cancer cells, with some of them showing excellent curative effects. Here, we review recent advances in our understanding of negative feedback of the ER stress response and compare the markers used to date. We also summarize therapeutic inhibitors targeting ER stress response and highlight the promises and challenges ahead.
Collapse
Affiliation(s)
- Yaofu Liu
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhenzhi Tan
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| |
Collapse
|
46
|
Sicari D, Chatziioannou A, Koutsandreas T, Sitia R, Chevet E. Role of the early secretory pathway in SARS-CoV-2 infection. J Cell Biol 2020; 219:e202006005. [PMID: 32725137 PMCID: PMC7480111 DOI: 10.1083/jcb.202006005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Similar to other RNA viruses, SARS-CoV-2 must (1) enter a target/host cell, (2) reprogram it to ensure its replication, (3) exit the host cell, and (4) repeat this cycle for exponential growth. During the exit step, the virus hijacks the sophisticated machineries that host cells employ to correctly fold, assemble, and transport proteins along the exocytic pathway. Therefore, secretory pathway-mediated assemblage and excretion of infective particles represent appealing targets to reduce the efficacy of virus biogenesis, if not to block it completely. Here, we analyze and discuss the contribution of the molecular machines operating in the early secretory pathway in the biogenesis of SARS-CoV-2 and their relevance for potential antiviral targeting. The fact that these molecular machines are conserved throughout evolution, together with the redundancy and tissue specificity of their components, provides opportunities in the search for unique proteins essential for SARS-CoV-2 biology that could also be targeted with therapeutic objectives. Finally, we provide an overview of recent evidence implicating proteins of the early secretory pathway as potential antiviral targets with effective therapeutic applications.
Collapse
Affiliation(s)
- Daria Sicari
- Inserm U1242, Université de Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Aristotelis Chatziioannou
- e-NIOS Applications PC, Kallithea-Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodoros Koutsandreas
- e-NIOS Applications PC, Kallithea-Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Eric Chevet
- Inserm U1242, Université de Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
47
|
Steenhuis M, Koningstein GM, Oswald J, Pick T, O'Keefe S, Koch HG, Cavalié A, Whitehead RC, Swanton E, High S, Luirink J. Eeyarestatin 24 impairs SecYEG-dependent protein trafficking and inhibits growth of clinically relevant pathogens. Mol Microbiol 2020; 115:28-40. [PMID: 32798330 PMCID: PMC8273874 DOI: 10.1111/mmi.14589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Eeyarestatin 1 (ES1) is an inhibitor of endoplasmic reticulum (ER) associated protein degradation, Sec61‐dependent Ca2+ homeostasis and protein translocation into the ER. Recently, evidence was presented showing that a smaller analog of ES1, ES24, targets the Sec61‐translocon, and captures it in an open conformation that is translocation‐incompetent. We now show that ES24 impairs protein secretion and membrane protein insertion in Escherichia coli via the homologous SecYEG‐translocon. Transcriptomic analysis suggested that ES24 has a complex mode of action, probably involving multiple targets. Interestingly, ES24 shows antibacterial activity toward clinically relevant strains. Furthermore, the antibacterial activity of ES24 is equivalent to or better than that of nitrofurantoin, a known antibiotic that, although structurally similar to ES24, does not interfere with SecYEG‐dependent protein trafficking. Like nitrofurantoin, we find that ES24 requires activation by the NfsA and NfsB nitroreductases, suggesting that the formation of highly reactive nitroso intermediates is essential for target inactivation in vivo.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, the Netherlands
| | - Gregory M Koningstein
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, the Netherlands
| | - Julia Oswald
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tillman Pick
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Sarah O'Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Roger C Whitehead
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Eileithyia Swanton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Kinetically distinct processing pathways diversify the CD8 + T cell response to a single viral epitope. Proc Natl Acad Sci U S A 2020; 117:19399-19407. [PMID: 32719124 DOI: 10.1073/pnas.2004372117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The source proteins from which CD8+ T cell-activating peptides are derived remain enigmatic. Glycoproteins are particularly challenging in this regard owing to several potential trafficking routes within the cell. By engineering a glycoprotein-derived epitope to contain an N-linked glycosylation site, we determined that optimal CD8+ T cell expansion and function were induced by the peptides that are rapidly produced from the exceedingly minor fraction of protein mislocalized to the cytosol. In contrast, peptides derived from the much larger fraction that undergoes translocation and quality control are produced with delayed kinetics and induce suboptimal CD8+ T cell responses. This dual system of peptide generation enhances CD8+ T cell participation in diversifying both antigenicity and the kinetics of peptide display.
Collapse
|
49
|
Pradeep Yeola A, Akbar I, Baillargeon J, Mercy Ignatius Arokia Doss P, Paavilainen VO, Rangachari M. Protein translocation and retro-translocation across the endoplasmic reticulum are crucial to inflammatory effector CD4 + T cell function. Cytokine 2020; 129:154944. [PMID: 32146280 DOI: 10.1016/j.cyto.2019.154944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 10/24/2022]
Abstract
Effector CD4+ T cells can be classified by the cytokines they secrete, with T helper 1 (Th1) cells generating interferon (IFN)γ and Th17 cells secreting interleukin (IL)-17. Both Th1 and Th17 cells are strongly implicated in the initiation and chronicity of autoimmune diseases such as multiple sclerosis. The endoplasmic reticulum (ER) has been implicated as a potentially crucial site in regulating CD4+ T cell function. Secretory and transmembrane proteins are shuttled into the ER via the Sec61 translocon, where they undergo appropriate folding; misfolded proteins are retro-translocated from the ER in a p97-dependent manner. Here, we provide evidence that both processes are crucial to the secretion of inflammatory cytokines from effector CD4+ T cells. The pan-ER inhibitor eeeyarestatin-1 (ESI), which interferes with both Sec61 translocation and p97 retro-translocation, inhibited secretion of interferon (IFN)γ, interleukin (IL)-2 and tumor necrosis factor (TNF)α from Th1 cells in a dose-dependent manner. Selective inhibition of Sec61 by Apratoxin A (ApraA) revealed that ER translocation is crucial for Th1 cytokine secretion, while inhibition of p97 by NMS-873 also inhibited Th1 function, albeit to a lesser degree. By contrast, none of ESI, ApraA or NMS-873 could significantly reduce IL-17 secretion from Th17 cells. ApraA, but not NMS-873, reduced phosphorylation of Stat1 in Th1 cells, indicating the involvement of ER translocation in Th1 differentiation pathways. ApraA had modest effects on activation of the Th17 transcription factor Stat3, while NMS-873 had no effect. Interestingly, NMS-873 was able to reduce disease severity in CD4+ T cell-driven experimental autoimmune encephalomyelitis (EAE). Together, our data indicate that CD4+ T cell function, and Th1 cell function in particular, is dependent on protein translocation and dislocation across the ER.
Collapse
Affiliation(s)
- Asmita Pradeep Yeola
- axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
| | | | | | - Manu Rangachari
- axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
50
|
Sui X, Pan M, Li YM. Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism. Curr Med Chem 2020; 27:298-316. [PMID: 31584361 DOI: 10.2174/0929867326666191004162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
p97, also known as valosin-containing protein or CDC48, is a member of the AAA+ protein family that is highly conserved in eukaryotes. It binds to various cofactors in the body to perform its protein-unfolding function and participates in DNA repair, degradation of subcellular membrane proteins, and protein quality control pathways, among other processes. Its malfunction can lead to many diseases, such as inclusion body myopathy, associated with Paget's disease of bone and/or frontotemporal dementia, amyotrophic lateral sclerosis disease, and others. In recent years, many small-molecule inhibitors have been deployed against p97, including bis (diethyldithiocarbamate)- copper and CB-5083, which entered the first phase of clinical tests but failed. One bottleneck in the design of p97 drugs is that its molecular mechanism remains unclear. This paper summarizes recent studies on the molecular mechanisms of p97, which may lead to insight into how the next generation of small molecules targeting p97 can be designed.
Collapse
Affiliation(s)
- Xin Sui
- Department of Chemistry, Tsinghua University, Beijing 100086, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|