1
|
Duan Q, Yuan M, Ma X, Zheng Y, Meng R, Shi W, Ni Y, Zhao C, Liu Y, Yu Z, Zhu J, Shi Y, Zhu X, Li L, Si S, Li Y, Li Y, Song D. Pyrylium derivatives as outer membrane permeabilizers against MDR gram-negative bacteria via multi-target mode of action. Eur J Med Chem 2025; 289:117387. [PMID: 39999691 DOI: 10.1016/j.ejmech.2025.117387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
The prevalence of MDR Gram-negative bacteria has posed a great impetus for the discovery of new therapeutic approaches. Here, we synthesized a series of pyrylium derivatives as antibiotic adjuvants based on IMB-0042, and evaluated their activities against Acinetobacter baumannii (A. baumannii) and Escherichia coli (E. coli). Compound 4a significantly synergized polymyxin B in combating A. baumannii and E. coli both in vitro and on the infected Galleria mellonella models. Furthermore, we identified 4a to be an effective perturbant of the Gram-negative outer membrane (OM) through the blockage on LptA/LptC interaction via targeting Met47 in LptA. And cationic pyrylium reduced the OM densification by electrostatic interaction with anion-rich lipopolysaccharide (LPS). Thus, pyrylium derivatives constitute a new class of multi-target OM permeabilizers, which can significantly potentiate antibiotics against MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Qionglu Duan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Min Yuan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xican Ma
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifan Zheng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Runze Meng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenjing Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yanan Ni
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yonghua Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhihui Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingyang Zhu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yulong Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xi Zhu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuyi Si
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yinghong Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Danqing Song
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
de Sousa Silveira Z, Macêdo NS, Menezes Dantas DD, Rodrigues Dos Santos Barbosa C, Muniz DF, Morais Oliveira-Tintino CDD, Relison Tintino S, Alencar GG, Marinho ES, Rocha MND, Marinho MM, Santos HSD, Coutinho HDM, Cunha FABD, Silva MVD. Evaluation of the antibacterial and inhibitory activity of the NorA and TetK efflux pumps of Staphylococcus aureus by p-coumaric acid. Microb Pathog 2025; 200:107318. [PMID: 39848298 DOI: 10.1016/j.micpath.2025.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/25/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
The NorA and TetK efflux pumps mediate resistance to fluoroquinolone and tetracycline antibiotics by actively extruding these compounds and reducing their intracellular concentrations. Consequently, intense research has focused on inhibiting these efflux mechanisms using antimicrobial agents derived from natural or synthetic sources. This study used Fourier transform infrared spectroscopy (ATR-FTIR) to analyze the various functional groups present in p-coumaric acid. We also investigated the antibacterial activity of p-coumaric acid on strains of Staphylococcus aureus carrying the NorA and TetK efflux pumps, as well as the compound's ability to increase the fluorescence of ethidium bromide (EtBr) and Sytox Green. In addition, the interactions of this compound with NorA were analyzed using molecular docking, and its pharmacokinetic properties were evaluated using ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) modeling. The results revealed that p-coumaric acid exhibited no direct antibacterial activity against the tested Staphylococcus aureus strains. However, significant reductions in the minimum inhibitory concentrations (MICs) of norfloxacin and EtBr, both used as NorA substrates, were observed when combined with p-coumaric acid. It was also observed that p-coumaric acid increased the fluorescence emission of EtBr and Sytox Green in strains 1199 and 1199B, suggesting the inhibition of the efflux mechanism and enhanced membrane permeabilization in S. aureus. The in silico analysis demonstrated that p-coumaric acid exhibits a favorable binding energy with NorA, comparable to that of chlorpromazine. These results position p-coumaric acid as a promising antibiotic adjuvant and efflux inhibitor in strains harboring NorA.
Collapse
Affiliation(s)
- Zildene de Sousa Silveira
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), 50670-901, Recife, PE, Brazil.
| | - Nair Silva Macêdo
- Postgraduate Program in Biological Chemistry (PPQB), Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil.
| | - Débora de Menezes Dantas
- Postgraduate Program in Biological Chemistry (PPQB), Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil.
| | | | - Débora Feitosa Muniz
- Postgraduate Program in Biological Chemistry (PPQB), Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil
| | | | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Cariri Regional University (URCA), Crato, CE, Brazil.
| | - Gabriel Gonçalves Alencar
- Laboratory of Microbiology and Molecular Biology (LMBM), Cariri Regional University (URCA), Crato, CE, Brazil.
| | - Emmanuel Silva Marinho
- State University of Ceará, Postgraduate Program in Natural Sciences, Natural Resources Bioprospecting and Monitoring Laboratory (LBMRN), Fortaleza, Ceará, Brazil.
| | - Matheus Nunes da Rocha
- State University of Ceará, Postgraduate Program in Natural Sciences, Natural Resources Bioprospecting and Monitoring Laboratory (LBMRN), Fortaleza, Ceará, Brazil.
| | - Marcia Machado Marinho
- State University of Ceará, Postgraduate Program in Natural Sciences, Natural Resources Bioprospecting and Monitoring Laboratory (LBMRN), Fortaleza, Ceará, Brazil.
| | - Hélcio Silva Dos Santos
- Northeast Biotechnology Network (RENORBIO-Nucleadora UECE), State University of Acaraú Valley (UVA), Sobral, CE, Brazil.
| | - Henrique Douglas Melo Coutinho
- Postgraduate Program in Biological Chemistry (PPQB), Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil.
| | | | - Márcia Vanusa da Silva
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), 50670-901, Recife, PE, Brazil.
| |
Collapse
|
3
|
Li Y, Wilhelm MJ, Wu T, Hu XH, Ruiz ON, Dai HL. Quantifying bacterial efflux within subcellular domains of Pseudomonas aeruginosa. Appl Environ Microbiol 2024; 90:e0144724. [PMID: 39475289 DOI: 10.1128/aem.01447-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
Molecular efflux is a mechanism through which bacteria actively expel undesirable substances. This is a crucial line of defense against toxic chemicals in harsh environments. Understanding how efflux works is critical for designing antimicrobial strategies. Though much is already known about efflux proteins, important details about the mechanisms of efflux (e.g., importance of specific subcellular domains and ejection rates) have yet to be experimentally quantified. Herein, we use the nonlinear optical technique, second harmonic light scattering, to simultaneously measure the efflux rates from the periplasm and cytosol of a Gram-negative bacterium. The influence of efflux on the uptake kinetics of a mild antimicrobial, malachite green (MG), by Pseudomonas aeruginosa was quantified. It is observed that efflux primarily occurs from the periplasm and is two orders of magnitude faster than from the cytosol. Efflux pumps activate to maintain MG concentrations in the periplasm below 1 µM, while efflux from the cytosol maintains MG concentration below 0.1 µM. Efflux pumps are shown to saturate when exogenous MG concentrations are greater than 25 µM, while the cytosol efflux function saturates at >15 µM. Finally, efflux pumps can simultaneously eject different compounds, as proven by experiments with both MG and hexane, a known effluxable compound.IMPORTANCEMolecular efflux pumps are a crucial defense mechanism that protects bacteria from an otherwise unchecked influx of toxic molecules present in the extracellular environment. The efflux functions constitute a significant hindrance to antimicrobial efficacy. While much is now known regarding the structure of these channels, knowledge of the influence of efflux in individual subcellular domains and the associated ejection rates is still lacking. Using the nonlinear optical technique, second-harmonic light scattering, we have measured the threshold concentrations for pump activation, saturation concentrations, and efflux rates from both the periplasm and cytosol in living Gram-negative bacteria. The quantified efflux data in the different subcellular compartments not only provide a clear mechanistic understanding but also are critical for developing antimicrobial strategies.
Collapse
Affiliation(s)
- Yujie Li
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Michael J Wilhelm
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Tong Wu
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Xiao-Hua Hu
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Oscar N Ruiz
- Biomaterials Branch, Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Hai-Lung Dai
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Klopper KB, Bester E, van Schalkwyk M, Wolfaardt GM. Mixed species biofilms act as planktonic cell factories despite isothiazolinone exposure under continuous-flow conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70010. [PMID: 39351641 PMCID: PMC11443163 DOI: 10.1111/1758-2229.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
The primary approach to managing biofouling in industrial water systems involves the large-scale use of biocides. It is well-established that biofilms are 'cell factories' that release planktonic cells even when challenged with antimicrobials. The effect of isothiazolinone on the metabolic activity and biomass of mixed Pseudomonas biofilms was monitored in real-time using the CEMS-BioSpec system. The exposure of biofilms to the minimum inhibitory concentration (1.25 mg L-1) of biocide did not impact planktonic cell production (log 7.5 CFU mL-1), while whole-biofilm metabolic activity and biomass accumulation increased. Only the maximum biocide concentration (80 mg L-1) resulted in a change in planktonic cell yields and temporal inhibition of biofilm activity and biomass, a factor that needs due consideration in view of dilution in industrial settings. Interfacing the real-time measurement of metabolic activity and biomass with dosing systems is especially relevant to optimizing the use of biocides in industrial water systems.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | - Elanna Bester
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | | | - Gideon M. Wolfaardt
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
5
|
Asim M, Ahmad Y, Khan M, Ahmad Z, Khalid A, Ahmad P, Khan A, Ahsan F, Kazi M, Zyoud SH. Investigation of the role of Cremophor RH 40 and Cremophor EL in the inhibition of efflux pump of Pseudomonas aeruginosa. Heliyon 2024; 10:e33749. [PMID: 39055824 PMCID: PMC11269872 DOI: 10.1016/j.heliyon.2024.e33749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Background There is increasing emphasis on restoring the efficacy of existing antibiotics instead of developing new ones. Objectives This study aimed to determine the role of Cremophor EL and Cremophor RH40 in the inhibition of efflux pumps in MDR Pseudomonas aeruginosa strains. Methods Efflux pump-active MDR strains of P. aeruginosa were identified and confirmed by flow cytometry. The identified efflux-active strains were further subjected to determination of the MIC of ciprofloxacin and the synergistic role of non-ionic surfactants (Cremophor EL and Cremophor RH40) along with ciprofloxacin. Results Out of 30 samples, 6 strains displayed high efflux pump activity. Both Cremophor EL and Cremophor RH40 showed efflux pump inhibitory roles. A 4-fold reduction in the MIC values of ciprofloxacin was observed when Cremophor EL was used along with ciprofloxacin, while a 6-fold reduction was observed when Cremophor RH40 was used along with ciprofloxacin. Both compounds showed synergistic effects with ciprofloxacin, ticarcillin and meropenem when used in a 24-well plate efflux pump inhibitory assay. Conclusion The inhibition of the efflux pump of MDR Pseudomonas aeruginosa by non-ionic surfactants, namely, Cremophor RH40 and Cremophor EL, provided the best strategy to restore the efficacy of ciprofloxacin.
Collapse
Affiliation(s)
- Muhammad Asim
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Yasin Ahmad
- Sarhad Institute of Allied Health Sciences, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Momin Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Zeeshan Ahmad
- Department of Microbiology, Hazara University Mansehra, Khyber Pakhtunkhwa, 21300, Pakistan
| | - Awais Khalid
- Department of Physics, Hazara University Mansehra, Khyber Pakhtunkhwa, 21300, Pakistan
| | - Pervaiz Ahmad
- Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Abdulhameed Khan
- Department of Biotechnology, University of AJK, Muzaffarabad, Pakistan
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA, 95757, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, POBOX- 2457, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Samer H. Zyoud
- Department of Mathematics and Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| |
Collapse
|
6
|
Klenotic PA, Yu EW. Structural analysis of resistance-nodulation cell division transporters. Microbiol Mol Biol Rev 2024; 88:e0019823. [PMID: 38551344 PMCID: PMC11332337 DOI: 10.1128/mmbr.00198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYInfectious bacteria have both intrinsic and acquired mechanisms to combat harmful biocides that enter the cell. Through adaptive pressures, many of these pathogens have become resistant to many, if not all, of the current antibiotics used today to treat these often deadly infections. One prominent mechanism is the upregulation of efflux systems, especially the resistance-nodulation-cell division class of exporters. These tripartite systems consist of an inner membrane transporter coupled with a periplasmic adaptor protein and an outer membrane channel to efficiently transport a diverse array of substrates from inside the cell to the extracellular space. Detailed mechanistic insight into how these inner membrane transporters recognize and shuttle their substrates can ultimately inform both new antibiotic and efflux pump inhibitor design. This review examines the structural basis of substrate recognition of these pumps and the molecular mechanisms underlying multidrug extrusion, which in turn mediate antimicrobial resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Orsini Delgado ML, Gamelas Magalhaes J, Morra R, Cultrone A. Muropeptides and muropeptide transporters impact on host immune response. Gut Microbes 2024; 16:2418412. [PMID: 39439228 PMCID: PMC11509177 DOI: 10.1080/19490976.2024.2418412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
In bacteria, the cell envelope is the key element surrounding and protecting the bacterial content from mechanical or osmotic damages. It allows the selective interchanges of solutes, ions, cellular debris, and drugs between the cellular compartments and the external environment, thanks to the presence of transmembrane proteins called transporters. The major component of the cell envelope is the peptidoglycan, consisting of long linear glycan strands cross-linked by short peptide stems. During cell growth or under stress conditions, peptidoglycan fragments, the muropeptides, are released by bacteria and recognized by the host Pattern Recognition Receptor, promoting the activation of their innate defense mechanisms. The review sums up the salient aspects of microbiota-host interaction with a focus on the NOD-dependent immune response to bacterial peptidoglycan and on the accountability of muropeptide transporters in the crosstalk with the host and in antibiotic resistance. Furthermore, it retraces the discoveries and applications of microorganisms-derived components such as vaccines or vaccine adjuvants.
Collapse
|
8
|
Ma X, Guo W, Zhu X, Li Z, Li Y, Guo Z, Wang Y, Pang J, Yuan M, Li Z, You X, Lu X, Liu Y, Song D. Synthesis of peptidomimetics as antibiotic adjuvants for combination with aztreonam to combat MDR Pseudomonas aeruginosa. Eur J Med Chem 2023; 260:115778. [PMID: 37672933 DOI: 10.1016/j.ejmech.2023.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Pseudomonas aeruginosa is one of the multipledrug-resistant (MDR) Gram-negative pathogens with few drugs available for treatment. Antibiotic adjuvant approach provides an alternative and complementary strategy. In this study, the stereo-structure-activity relationship of monobactams against MDR Gram-negative organisms was extended. Meanwhile, a series of novel peptidemimetic derivatives as antibiotic adjuvants was synthesized and evaluated for their synergistic effects with aztreonam (AZT) against P. aeruginosa, using dipeptide PAβN as the lead. Among the analogues, compound 22j showed a significant synergistic effect against MDR P. aeruginosa in vitro and in vivo, presumably through the mechanism of affecting the permeability of outer membrane. Thus, we identified 22j as a novel peptidemimetic lead compound to potentiate the activity of AZT against MDR P. aeruginosa, which is worthy of further development as antibiotic adjuvant candidates.
Collapse
Affiliation(s)
- Xican Ma
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wei Guo
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xi Zhu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhiwen Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhihao Guo
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yanxiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Min Yuan
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yishuang Liu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
Zheng M, Lupoli TJ. Counteracting antibiotic resistance enzymes and efflux pumps. Curr Opin Microbiol 2023; 75:102334. [PMID: 37329679 DOI: 10.1016/j.mib.2023.102334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pathogens are constantly evolving new resistance mechanisms against antibiotics; hence, strategies to potentiate existing antibiotics or combat mechanisms of resistance using adjuvants are always in demand. Recently, inhibitors have been identified that counteract enzymatic modification of the drugs isoniazid and rifampin, which have implications in the study of multi-drug-resistant mycobacteria. A wealth of structural studies on efflux pumps from diverse bacteria has also fueled the design of new small-molecule and peptide-based agents to prevent the active transport of antibiotics. We envision that these findings will inspire microbiologists to apply existing adjuvants to clinically relevant resistant strains, or to use described platforms to discover novel antibiotic adjuvant scaffolds.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
10
|
Russo CM, Howey KG, O'Reilly MC. Scalable and Chromatography-Free Synthesis of Efflux Pump Inhibitor Phenylalanine Arginine β-Naphthylamide for Its Validation in Wild-Type Bacterial Strains. ChemMedChem 2023; 18:e202300128. [PMID: 37126222 PMCID: PMC10524873 DOI: 10.1002/cmdc.202300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
Phenylalanine arginine β-naphthylamine, or PAβN, is a C-terminus capped dipeptide discovered in 1999 as an RND-type efflux pump inhibitor (EPI). Since then, PAβN has become a standard tool compound in EPI research and development. Despite this, PAβN lacks a detailed or efficient synthesis, and standard parameters for its use in wild-type bacterial strains are inconsistent or non-existent. Therefore, a scalable and chromatography-free synthesis of PAβN was developed using streamlined traditional solution-phase peptide coupling chemistry. With this procedure, gram scale quantities of PAβN were synthesized alongside analogues and stereoisomers to build a focused library to evaluate simple structure activity relationships. While most analogues were less active than the broadly utilized L,L-PAβN itself, we identified that its enantiomer, D,D-PAβN, also provided 8- to 16-fold potentiation of the antibiotic levofloxacin at 40 to 50 μg/mL concentrations of EPI in various wild-type Pseudomonas aeruginosa strains. Additionally, D,D-PAβN was shown to be significantly more hydrolytically stable than L,L-PAβN, indicating that it may be a useful, and now readily synthesized, tool compound facilitating future EPI research.
Collapse
Affiliation(s)
| | - Kelsey G Howey
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | |
Collapse
|
11
|
Kumawat M, Nabi B, Daswani M, Viquar I, Pal N, Sharma P, Tiwari S, Sarma DK, Shubham S, Kumar M. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microb Pathog 2023:106182. [PMID: 37263448 DOI: 10.1016/j.micpath.2023.106182] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Efflux proteins are transporter molecules that actively pump out a variety of substrates, including antibiotics, from cells to the environment. They are found in both Gram-positive and Gram-negative bacteria and eukaryotic cells. Based on their protein sequence homology, energy source, and overall structure, efflux proteins can be divided into seven groups. Multidrug efflux pumps are transmembrane proteins produced by microbes to enhance their survival in harsh environments and contribute to antibiotic resistance. These pumps are present in all bacterial genomes studied, indicating their ancestral origins. Many bacterial genes encoding efflux pumps are involved in transport, a significant contributor to antibiotic resistance in microbes. Efflux pumps are widely implicated in the extrusion of clinically relevant antibiotics from cells to the extracellular environment and, as such, represent a significant challenge to antimicrobial therapy. This review aims to provide an overview of the structures and mechanisms of action, substrate profiles, regulation, and possible inhibition of clinically relevant efflux pumps. Additionally, recent advances in research and the pharmacological exploitation of efflux pump inhibitors as a promising intervention for combating drug resistance will be discussed.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India
| | - Muskan Daswani
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Iqra Viquar
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Namrata Pal
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Poonam Sharma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Shikha Tiwari
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Swasti Shubham
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Manoj Kumar
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India.
| |
Collapse
|
12
|
Al-Marzooq F, Ghazawi A, Daoud L, Tariq S. Boosting the Antibacterial Activity of Azithromycin on Multidrug-Resistant Escherichia coli by Efflux Pump Inhibition Coupled with Outer Membrane Permeabilization Induced by Phenylalanine-Arginine β-Naphthylamide. Int J Mol Sci 2023; 24:ijms24108662. [PMID: 37240007 DOI: 10.3390/ijms24108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The global spread of multidrug-resistant (MDR) bacteria increases the demand for the discovery of new antibiotics and adjuvants. Phenylalanine-arginine β-naphthylamide (PAβN) is an inhibitor of efflux pumps in Gram-negative bacteria, such as the AcrAB-TolC complex in Escherichia coli. We aimed to explore the synergistic effect and mechanism of action of PAβN combined with azithromycin (AZT) on a group of MDR E. coli strains. Antibiotic susceptibility was tested for 56 strains, which were screened for macrolide resistance genes. Then, 29 strains were tested for synergy using the checkerboard assay. PAβN significantly enhanced AZT activity in a dose-dependent manner in strains expressing the mphA gene and encoding macrolide phosphotransferase, but not in strains carrying the ermB gene and encoding macrolide methylase. Early bacterial killing (6 h) was observed in a colistin-resistant strain with the mcr-1 gene, leading to lipid remodeling, which caused outer membrane (OM) permeability defects. Clear OM damage was revealed by transmission electron microscopy in bacteria exposed to high doses of PAβN. Increased OM permeability was also proven by fluorometric assays, confirming the action of PAβN on OM. PAβN maintained its activity as an efflux pump inhibitor at low doses without permeabilizing OM. A non-significant increase in acrA, acrB, and tolC expression in response to prolonged exposure to PAβN was noted in cells treated with PAβN alone or with AZT, as a reflection of bacterial attempts to counteract pump inhibition. Thus, PAβN was found to be effective in potentiating the antibacterial activity of AZT on E. coli through dose-dependent action. This warrants further investigations of its effect combined with other antibiotics on multiple Gram-negative bacterial species. Synergetic combinations will help in the battle against MDR pathogens, adding new tools to the arsenal of existing medications.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Lana Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
13
|
Fang X, Allison KR. Resuscitation dynamics reveal persister partitioning after antibiotic treatment. Mol Syst Biol 2023; 19:e11320. [PMID: 36866643 PMCID: PMC10090945 DOI: 10.15252/msb.202211320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Bacteria can survive antibiotics by forming dormant, drug-tolerant persisters. Persisters can resuscitate from dormancy after treatment and prolong infections. Resuscitation is thought to occur stochastically, but its transient, single-cell nature makes it difficult to investigate. We tracked the resuscitation of individual persisters by microscopy after ampicillin treatment and, by characterizing their dynamics, discovered that Escherichia coli and Salmonella enterica persisters resuscitate exponentially rather than stochastically. We demonstrated that the key parameters controlling resuscitation map to the ampicillin concentration during treatment and efflux during resuscitation. Consistently, we observed many persister progeny have structural defects and transcriptional responses indicative of cellular damage, for both β-lactam and quinolone antibiotics. During resuscitation, damaged persisters partition unevenly, generating both healthy daughter cells and defective ones. This persister partitioning phenomenon was observed in S. enterica, Klebsiella pneumoniae, Pseudomonas aeruginosa, and an E. coli urinary tract infection (UTI) isolate. It was also observed in the standard persister assay and after in situ treatment of a clinical UTI sample. This study reveals novel properties of resuscitation and indicates that persister partitioning may be a survival strategy in bacteria that lack genetic resistance.
Collapse
Affiliation(s)
- Xin Fang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.,Department of Medicine/Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Kyle R Allison
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.,Department of Medicine/Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Membrane-Binding Biomolecules Influence the Rate of Vesicle Exchange between Bacteria. Appl Environ Microbiol 2022; 88:e0134622. [PMID: 36342184 PMCID: PMC9746307 DOI: 10.1128/aem.01346-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The exchange of bacterial extracellular vesicles facilitates molecular exchange between cells, including the horizontal transfer of genetic material. Given the implications of such transfer events on cell physiology and adaptation, some bacterial cells have likely evolved mechanisms to regulate vesicle exchange. Past work has identified mechanisms that influence the formation of extracellular vesicles, including the production of small molecules that modulate membrane structure; however, whether these mechanisms also modulate vesicle uptake and have an overall impact on the rate of vesicle exchange is unknown. Here, we show that membrane-binding molecules produced by microbes influence both the formation and uptake of extracellular vesicles and have the overall impact of increasing the vesicle exchange rate within a bacterial coculture. In effect, production of compounds that increase vesicle exchange rates encourage gene exchange between neighboring cells. The ability of several membrane-binding compounds to increase vesicle exchange was demonstrated. Three of these compounds, nisin, colistin, and polymyxin B, are antimicrobial peptides added at sub-inhibitory concentrations. These results suggest that a potential function of exogenous compounds that bind to membranes may be the regulation of vesicle exchange between cells. IMPORTANCE The exchange of bacterial extracellular vesicles is one route of gene transfer between bacteria, although it was unclear if bacteria developed strategies to modulate the rate of gene transfer within vesicles. In eukaryotes, there are many examples of specialized molecules that have evolved to facilitate the production, loading, and uptake of vesicles. Recent work with bacteria has shown that some small molecules influence membrane curvature and induce vesicle formation. Here, we show that similar compounds facilitate vesicle uptake, thereby increasing the overall rate of vesicle exchange within bacterial populations. The addition of membrane-binding compounds, several of them antibiotics at subinhibitory concentrations, to a bacterial coculture increased the rate of horizontal gene transfer via vesicle exchange.
Collapse
|
15
|
Evaluation of efflux pump inhibitors of MexAB- or MexXY-OprM in Pseudomonas aeruginosa using nucleic acid dyes. J Infect Chemother 2022; 28:595-601. [DOI: 10.1016/j.jiac.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 01/22/2023]
|
16
|
Casalone E, Vignolini T, Braconi L, Gardini L, Capitanio M, Pavone FS, Giovannelli L, Dei S, Teodori E. Characterization of substituted piperazines able to reverse MDR in Escherichia coli strains overexpressing resistance-nodulation-cell division (RND) efflux pumps. J Antimicrob Chemother 2021; 77:413-424. [PMID: 34747445 DOI: 10.1093/jac/dkab388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND MDR in bacteria is threatening to public health. Overexpression of efflux pumps is an important cause of MDR. The co-administration of antimicrobial drugs and efflux pump inhibitors (EPIs) is a promising approach to address the problem of MDR. OBJECTIVES To identify new putative EPIs and to characterize their mechanisms of action. METHODS The effects of four selected piperazine derivatives on resistance-nodulation-cell division (RND) pumps was evaluated in Escherichia coli strains overexpressing or not expressing RND pumps by assays aimed at evaluating antibiotic potentiation, membrane functionality, ethidium bromide accumulation and AcrB expression. The cytotoxicity of selected piperazines towards primary cultures of human dermal fibroblasts was also investigated. RESULTS Four molecules enhanced levofloxacin activity against strains overexpressing RND efflux pumps (AcrAB-TolC and AcrEF-TolC), but not against RND pump-deficient strains. They had little effects on membrane potential. Molecule 4 decreased, whereas the other three increased, membrane permeability compared with untreated control cells. The four molecules showed differences in the specificity of interaction with RND efflux pumps, by inactivating the transport of one or more antibiotics, and in the levels of ethidium bromide accumulation and of acrB expression inhibition. CONCLUSIONS Piperazine derivatives are good candidates as inhibitors of RND efflux pumps. They decreased the activity of RND pumps by mixed mechanisms of action. Small structural differences among the molecules can be critical in defining their behaviour.
Collapse
Affiliation(s)
- Enrico Casalone
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- LENS-European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmaceutical and Nutraceutical Sciences, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Gardini
- LENS-European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Capitanio
- LENS-European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco S Pavone
- LENS-European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Silvia Dei
- Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmaceutical and Nutraceutical Sciences, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmaceutical and Nutraceutical Sciences, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Dawan J, Ahn J. Assessment of cooperative antibiotic resistance of Salmonella Typhimurium within heterogeneous population. Microb Pathog 2021; 157:104973. [PMID: 34029657 DOI: 10.1016/j.micpath.2021.104973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate the cooperative resistance in the mixed culture of antibiotic-sensitive and antibiotic-resistant Salmonella Typhimurium. Strains of S. Typhimurium ATCC 19585 (STS) and clinically isolated antibiotic-resistant S. Typhimurium CCARM 8009 (STR) grown in single and mixture with 1 × MIC ceftriaxone (CEF) were used to determine the viability, β-lactamase activity, and gene expression. The MIC50 values of STR to CEF was increased by more than 5-fold with increasing inoculum densities from 102 to 107 CFU/mL. STS was resistant to 1 × MIC CEF in the mixed culture of STS and STR, showing the more than 108 CFU/mL after 20 h of incubation at 37 °C. The highest β-lactamase activity was 18 μmol/min/mL in the mixed culture, corresponding to the highest relative expression of β-lactamase-related genes (blaTEM). These results shed new light on the cooperative resistance of antibiotic-sensitive bacteria within a heterogeneous population including β-lactamase-producing bacteria.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
18
|
Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 2021; 121:5378-5416. [PMID: 33211490 PMCID: PMC8119314 DOI: 10.1021/acs.chemrev.0c00621] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug resistant (MDR) bacteria are a global threat with many common infections becoming increasingly difficult to eliminate. While significant effort has gone into the development of potent biocides, the effectiveness of many first-line antibiotics has been diminished due to adaptive resistance mechanisms. Bacterial membrane proteins belonging to the resistance-nodulation-cell division (RND) superfamily play significant roles in mediating bacterial resistance to antimicrobials. They participate in multidrug efflux and cell wall biogenesis to transform bacterial pathogens into "superbugs" that are resistant even to last resort antibiotics. In this review, we summarize the RND superfamily of efflux transporters with a primary focus on the assembly and function of the inner membrane pumps. These pumps are critical for extrusion of antibiotics from the cell as well as the transport of lipid moieties to the outer membrane to establish membrane rigidity and stability. We analyze recently solved structures of bacterial inner membrane efflux pumps as to how they bind and transport their substrates. Our cumulative data indicate that these RND membrane proteins are able to utilize different oligomerization states to achieve particular activities, including forming MDR pumps and cell wall remodeling machineries, to ensure bacterial survival. This mechanistic insight, combined with simulated docking techniques, allows for the design and optimization of new efflux pump inhibitors to more effectively treat infections that today are difficult or impossible to cure.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
19
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
20
|
Troudi A, Douafer H, Bolla JM, Klibi N, Brunel JM. Antibiotic Adjuvants to Rescue Pseudomonas aeruginosa from Tetracycline Antibiotics Resistance. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2211352518999200629164624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
An attractive antibiotic-adjuvant strategy consisting of the design and
synthesis of polyaminoisoprenyl molecules able to restore the antibiotic activity of tetracycline antibiotics
against resistant Pseudomonas aeruginosa bacterial strains has been developed.
Methods:
These chemo-sensitizers are readily prepared from geraniol and farnesol in an efficient
two steps synthesis with good to moderate yields varying from 38 to 64% and leading to a significant
decrease in antibiotic resistance.
Results:
Thus, the influence of the nature of the tetracycline antibiotic used as well as the structure
of the polyaminoisoprenyl derivatives involved in the outcome of the antibiotic-adjuvant combination
against P. aeruginosa resistance to tetracyclines were investigated.
Conclusion:
Additionally, our data suggested that their mechanism of action is closely associated
with the increase of the outer-membrane permeability.
Collapse
Affiliation(s)
- Azza Troudi
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | | | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jean M. Brunel
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| |
Collapse
|
21
|
Mullis AS, Peroutka-Bigus N, Phadke KS, Bellaire BH, Narasimhan B. Nanomedicines to counter microbial barriers and antimicrobial resistance. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Pan X, Cen Y, Kuang M, Li B, Qin R, Zhou H. Artesunate interrupts the self-transcriptional activation of MarA to inhibit RND family pumps of Escherichia coli. Int J Med Microbiol 2020; 310:151465. [PMID: 33238228 DOI: 10.1016/j.ijmm.2020.151465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/14/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022] Open
Abstract
Resistance-Nodulation-Division (RND) family pumps are responsible for producing multidrug resistance in Escherichia coli; however, there has been little study of targeted inhibitors of RNDs. In the present study, we investigated the inhibition of RND pumps by artesunate (AS) in E. coli, and further investigated the mechanism with respect to MarA, a regulator of RNDs. Although AS had no direct antibacterial effect, it showed a synergistic effect in combination with β-lactams against E. coli ATCC35218 in vitro and in vivo, suggesting it possesses antibacterial enhancement activity. Notably, AS, alone or in combination with β-lactams, downregulated the mRNA expression levels of marA, soxS, and rob, known as the marA-soxS-rob regulon, which then decreased the expression levels of RNDs, thereby increased ampicillin accumulation within ATCC35218. Using gene-deletion strains, we found that the antibacterial sensitization effect of AS persisted in wildtype bacteria, but was completely lost in the strain lacking marA, and decreased in the strain lacking soxS or rob, suggesting marA plays a crucial role in the sensitization of AS. Critically, we showed that AS inhibited the binding of MarA to the promoter of marA itself, not acrB, resulting in decreased mRNA expression of both acrB and marA. Mechanistically, we found AS directly bound to the central cavity of MarA through the R59 and K62 residues, and thus altered the charge distribution of MarA to interrupt the recognition between MarA and its promoter. We concluded that AS interrupts the self-transcriptional activation of MarA, thereby inhibits MarA-dependent mRNA expression of marA, acrAB, and tolC, and also certain other RNDs and regulatory genes related to MarA. Therefore, AS is a novel inhibitor of RND pumps that acts on the regulator MarA.
Collapse
Affiliation(s)
- Xichun Pan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yanyan Cen
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Mei Kuang
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Bin Li
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Rongxin Qin
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China.
| |
Collapse
|
23
|
Lieutaud A, Pieri C, Bolla JM, Brunel JM. New Polyaminoisoprenyl Antibiotics Enhancers against Two Multidrug-Resistant Gram-Negative Bacteria from Enterobacter and Salmonella Species. J Med Chem 2020; 63:10496-10508. [PMID: 32840108 DOI: 10.1021/acs.jmedchem.0c01335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series consisting of new polyaminoisoprenyl derivatives were prepared in moderate to good chemical yields varying from 32 to 64% according to two synthetic pathways: (1) using a titanium-reductive amination reaction affording a 50/50 mixture of cis and trans isomers and (2) a direct nucleophilic substitution leading to a stereoselective synthesis of the compounds of interest. These compounds were then successfully evaluated for their in vitro antibiotic enhancer properties against resistant Gram-negative bacteria of four antibiotics belonging to four different families. The mechanism of action against Enterobacter aerogenes of one of the most efficient of these chemosensitizing agents was precisely evaluated by using fluorescent dyes to measure outer-membrane permeability and to determine membrane depolarization. The weak cytotoxicity encountered led us to perform an in vivo experiment dealing with the treatment of mice infected with Salmonella typhimurium and affording preliminary promising results in terms of tolerance and efficiency of the polyaminoisoprenyl derivative 5r/doxycycline combination.
Collapse
Affiliation(s)
| | - Cyril Pieri
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | | | | |
Collapse
|
24
|
Casalone E, Vignolini T, Braconi L, Gardini L, Capitanio M, Pavone FS, Dei S, Teodori E. 1-benzyl-1,4-diazepane reduces the efflux of resistance-nodulation-cell division pumps in Escherichia coli. Future Microbiol 2020; 15:987-999. [PMID: 32840130 DOI: 10.2217/fmb-2019-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the action mechanism of 1-benzyl-1,4-diazepane (1-BD) as efflux pump inhibitor (EPI) in Escherichia coli mutants: ΔacrAB or overexpressing AcrAB and AcrEF efflux pumps. Materials & methods: Effect of 1-BD on: antibiotic potentiation, by microdilution method; membrane functionality, by fluorimetric assays; ethidium bromide accumulation, by fluorometric real-time efflux assay; AcrB expression, by quantitative photoactivated localization microscopy. Results: 1-BD decreases the minimal inhibitory concentration of levofloxacin and other antibiotics and increase ethidium bromide accumulation in E. coli overexpressing efflux pumps but not in the ΔacrAB strain. 1-BD increases membranes permeability, without sensibly affecting inner membrane polarity and decreases acrAB transcription. Conclusion: 1-BD acts as an EPI in E. coli with a mixed mechanism, different from that of major reference EPIs.
Collapse
Affiliation(s)
- Enrico Casalone
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| | - Lucia Gardini
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,Department of Physics & Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco S Pavone
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy.,Department of Physics & Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Green AT, Moniruzzaman M, Cooper CJ, Walker JK, Smith JC, Parks JM, Zgurskaya HI. Discovery of multidrug efflux pump inhibitors with a novel chemical scaffold. Biochim Biophys Acta Gen Subj 2020; 1864:129546. [PMID: 32032658 DOI: 10.1016/j.bbagen.2020.129546] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Multidrug efflux is a major contributor to antibiotic resistance in Gram-negative bacterial pathogens. Inhibition of multidrug efflux pumps is a promising approach for reviving the efficacy of existing antibiotics. Previously, inhibitors targeting both the efflux transporter AcrB and the membrane fusion protein AcrA in the Escherichia coli AcrAB-TolC efflux pump were identified. Here we use existing physicochemical property guidelines to generate a filtered library of compounds for computational docking. We then experimentally test the top candidate coumpounds using in vitro binding assays and in vivo potentiation assays in bacterial strains with controllable permeability barriers. We thus identify a new class of inhibitors of E. coli AcrAB-TolC. Six molecules with a shared scaffold were found to potentiate the antimicrobial activity of erythromycin and novobiocin in hyperporinated E. coli cells. Importantly, these six molecules were also active in wild-type strains of both Acinetobacter baumannii and Klebsiella pneumoniae, potentiating the activity of erythromycin and novobiocin up to 8-fold.
Collapse
Affiliation(s)
- Adam T Green
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Connor J Cooper
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis, MO, 63104, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
26
|
Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharm Anal 2019; 10:277-290. [PMID: 32923005 PMCID: PMC7474127 DOI: 10.1016/j.jpha.2019.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
The upsurge of multiple drug resistance (MDR) bacteria substantially diminishes the effectiveness of antibiotic arsenal and therefore intensifies the rate of therapeutic failure. The major factor in MDR is efflux pump-mediated resistance. A unique pump can make bacteria withstand a wide range of structurally diverse compounds. Therefore, their inhibition is a promising route to eliminate resistance phenomenon in bacteria. Phytochemicals are excellent alternatives as resistance-modifying agents. They can directly kill bacteria or interact with the crucial events of pathogenicity, thereby decreasing the ability of bacteria to develop resistance. Numerous botanicals display noteworthy efflux pumps inhibitory activities. Edible plants are of growing interest. Likewise, some plant families would be excellent sources of efflux pump inhibitors (EPIs) including Apocynaceae, Berberidaceae, Convolvulaceae, Cucurbitaceae, Fabaceae, Lamiaceae, and Zingiberaceae. Easily applicable methods for screening plant-derived EPIs include checkerboard synergy test, berberine uptake assay and ethidium bromide test. In silico high-throughput virtual detection can be evaluated as a criterion of excluding compounds with efflux substrate-like characteristics, thereby improving the selection process and extending the identification of EPIs. To ascertain the efflux activity inhibition, real-time PCR and quantitative mass spectrometry can be applied. This review emphasizes on efflux pumps and their roles in transmitting bacterial resistance and an update plant-derived EPIs and strategies for identification. Active efflux as the main resistance strategy in bacteria. Phytochemicals as promising alternatives against efflux pumps-mediated MDR. Herbals-based efflux pump inhibitors screening, the methods.
Collapse
|
27
|
Assessment of antibiotic resistance in bacteriophage-insensitive Klebsiella pneumoniae. Microb Pathog 2019; 135:103625. [PMID: 31325570 DOI: 10.1016/j.micpath.2019.103625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/26/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022]
Abstract
This study was design to evaluate the physiological properties of bacteriophage-insensitive Klebsiella pneumoniae (BIKP) mutants in association with the antibiotic cross-resistance, β-lactamase activity, and gene expression. Klebsiella pneumoniae ATCC 23357(KPWT), ciprofloxacin-induced antibiotic-resistant K. pneumoniae ATCC 23357 (KPCIP), and clinically isolated antibiotic-resistant K. pneumoniae 10263 (KPCLI) were used to isolate BIKP mutants against KPB1, PBKP02, PBKP21, PBKP29, PBKP33, and PBKP35. PBKP35-induced mutants, including bacteriophage-insensitive K. pneumoniae ATCC 23357 (BIKPWT), ciprofloxacin-induced K. pneumoniae ATCC 23357 (BIKPCIP), and clinically isolated antibiotic-resistant K. pneumoniae CCARM 10263 (BIKPCLI). BIKPWT, BIKPCIP, and BIKPCLI were resistant to Klebsiella bacteriophages, KPB1, PBKP02, PBKP21, PBKP29, and PBKP33. The antibiotic cross-resistance to cefotaxime, cephalothin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, levofloxacin, and nalidixic acid was observed in BIKPWT. The relative expression levels of vagC was increased by more than 8-folds in BIKPWT, corresponding to the increased β-lactamase activity. The aac(6')-Ib-cr was overexpressed in BIKP mutants, responsible for aminoglycoside and quinolone resistance. The phage-resistant mutants decreased the antibiotic susceptibilities in association with β-lactamase activity and antibiotic resistance-related gene expression. The results pointed out the cross-resistance of BIKP mutants to antibiotics, which might be considered when applying for the therapeutic use of bacteriophage.
Collapse
|
28
|
Lamut A, Peterlin Mašič L, Kikelj D, Tomašič T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev 2019; 39:2460-2504. [PMID: 31004360 DOI: 10.1002/med.21591] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022]
Abstract
Bacterial infections are an increasingly serious issue worldwide. The inability of existing therapies to treat multidrug-resistant pathogens has been recognized as an important challenge of the 21st century. Efflux pumps are important in both intrinsic and acquired bacterial resistance and identification of small molecule efflux pump inhibitors (EPIs), capable of restoring the effectiveness of available antibiotics, is an active research field. In the last two decades, much effort has been made to identify novel EPIs. However, none of them has so far been approved for therapeutic use. In this article, we explore different structural families of currently known EPIs for multidrug resistance efflux systems in the most extensively studied pathogens (NorA in Staphylococcus aureus, AcrAB-TolC in Escherichia coli, and MexAB-OprM in Pseudomonas aeruginosa). Both synthetic and natural compounds are described, with structure-activity relationship studies and optimization processes presented systematically for each family individually. In vitro activities against selected test strains are presented in a unifying manner for all the EPIs described, together with the most important toxicity, pharmacokinetic and in vivo efficacy data. A critical evaluation of lead-likeness characteristics and the potential for clinical development of the most promising inhibitors of the three efflux systems is described. This overview of EPIs is a good starting point for the identification of novel effective antibacterial drugs.
Collapse
Affiliation(s)
- Andraž Lamut
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Danijel Kikelj
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Proof of an Outer Membrane Target of the Efflux Inhibitor Phe-Arg-β-Naphthylamide from Random Mutagenesis. Molecules 2019; 24:molecules24030470. [PMID: 30699887 PMCID: PMC6384556 DOI: 10.3390/molecules24030470] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Phe-Arg-β-naphthylamide (PAβN) has been characterized as an efflux pump inhibitor (EPI) acting on the major multidrug resistance efflux transporters of Gram-negative bacteria, such as AcrB in Eschericha coli. In the present study, in vitro random mutagenesis was used to evolve resistance to the sensitizing activity of PAβN with the aim of elucidating its mechanism of action. A strain was obtained that was phenotypically similar to a previously reported mutant from a serial selection approach that had no efflux-associated mutations. We could confirm that acrB mutations in the new mutant were unrelated to PAβN resistance. The next-generation sequencing of the two mutants revealed loss-of-function mutations in lpxM. An engineered lpxM knockout strain showed up to 16-fold decreased PAβN activity with large lipophilic drugs, while its efflux capacity, as well as the efficacy of other EPIs, remained unchanged. LpxM is responsible for the last acylation step in lipopolysaccharide (LPS) synthesis, and lpxM deficiency has been shown to result in penta-acylated instead of hexa-acylated lipid A. Modeling the two lipid A types revealed steric conformational changes due to underacylation. The findings provide evidence of a target site of PAβN in the LPS layer, and prove membrane activity contributing to its drug-sensitizing potency.
Collapse
|
30
|
Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules 2019; 24:molecules24020249. [PMID: 30641878 PMCID: PMC6359160 DOI: 10.3390/molecules24020249] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 01/11/2023] Open
Abstract
Polymyxins (polymyxin B (PMB) and polymyxin E (colistin)) are cyclic lipodecapeptide antibiotics, highly basic due to five free amino groups, and rapidly bactericidal against Gram-negative bacteria, such as the majority of Enterobacteriaceae as well as Acinetobacter baumannii and Pseudomonas aeruginosa. Their clinical use was abandoned in the 1960s because of nephrotoxicity and because better-tolerated drugs belonging to other antibiotic classes were introduced. Now, due to the global dissemination of extremely-drug resistant Gram-negative bacterial strains, polymyxins have resurged as the last-line drugs against those strains. Novel derivatives that are less toxic and/or more effective at tolerable doses are currently under preclinical development and their properties have recently been described in several extensive reviews. Other derivatives lack any direct bactericidal activity but damage the outermost permeability barrier, the outer membrane, of the target bacteria and make it more permeable to many other antibiotics. This review describes the properties of three thus far best-characterized “permeabilizer” derivatives, i.e., the classic permeabilizer polymyxin B nonapeptide (PMBN), NAB7061, and SPR741/NAB741, a compound that recently successfully passed the clinical phase 1. Also, a few other permeabilizer compounds are brought up.
Collapse
|
31
|
Benhamou RI, Jaber QZ, Herzog IM, Roichman Y, Fridman M. Fluorescent Tracking of the Endoplasmic Reticulum in Live Pathogenic Fungal Cells. ACS Chem Biol 2018; 13:3325-3332. [PMID: 30427174 DOI: 10.1021/acschembio.8b00782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In fungal cells, the endoplasmic reticulum (ER) harbors several of the enzymes involved in the biosynthesis of ergosterol, an essential membrane component, making this organelle the site of action of antifungal azole drugs, used as a first-line treatment for fungal infections. This highlights the need for specific fluorescent labeling of this organelle in cells of pathogenic fungi. Here we report on the development and evaluation of a collection of fluorescent ER trackers in a panel of Candida, considered the most frequently encountered pathogen in fungal infections. These trackers enabled imaging of the ER in live fungal cells. Organelle specificity was associated with the expression of the target enzyme of antifungal azoles that resides in the ER; specific ER labeling was not observed in mutant cells lacking this enzyme. Labeling of live Candida cells with a combination of a mitotracker and one of the novel fungal ER trackers revealed sites of contact between the ER and mitochondria. These fungal ER trackers therefore offer unique molecular tools for the study of the ER and its interactions with other organelles in live cells of pathogenic fungi.
Collapse
Affiliation(s)
- Raphael I. Benhamou
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Qais Z. Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ido M. Herzog
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Roichman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
32
|
Reens AL, Crooks AL, Su CC, Nagy TA, Reens DL, Podoll JD, Edwards ME, Yu EW, Detweiler CS. A cell-based infection assay identifies efflux pump modulators that reduce bacterial intracellular load. PLoS Pathog 2018; 14:e1007115. [PMID: 29879224 PMCID: PMC6007937 DOI: 10.1371/journal.ppat.1007115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial efflux pumps transport small molecules from the cytoplasm or periplasm outside the cell. Efflux pump activity is typically increased in multi-drug resistant (MDR) pathogens; chemicals that inhibit efflux pumps may have potential for antibiotic development. Using an in-cell screen, we identified three efflux pump modulators (EPMs) from a drug diversity library. The screening platform uses macrophages infected with the human Gram-negative pathogen Salmonella enterica (Salmonella) to identify small molecules that prevent bacterial replication or survival within the host environment. A secondary screen for hit compounds that increase the accumulation of an efflux pump substrate, Hoechst 33342, identified three small molecules with activity comparable to the known efflux pump inhibitor PAβN (Phe-Arg β-naphthylamide). The three putative EPMs demonstrated significant antibacterial activity against Salmonella within primary and cell culture macrophages and within a human epithelial cell line. Unlike traditional antibiotics, the three compounds did not inhibit bacterial growth in standard microbiological media. The three compounds prevented energy-dependent efflux pump activity in Salmonella and bound the AcrB subunit of the AcrAB-TolC efflux system with KDs in the micromolar range. Moreover, the EPMs display antibacterial synergy with antimicrobial peptides, a class of host innate immune defense molecules present in body fluids and cells. The EPMs also had synergistic activity with antibiotics exported by AcrAB-TolC in broth and in macrophages and inhibited efflux pump activity in MDR Gram-negative ESKAPE clinical isolates. Thus, an in-cell screening approach identified EPMs that synergize with innate immunity to kill bacteria and have potential for development as adjuvants to antibiotics.
Collapse
Affiliation(s)
- Abigail L. Reens
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Amy L. Crooks
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve, Cleveland OH, United States of America
| | - Toni A. Nagy
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - David L. Reens
- Department of Physics, University of Colorado Boulder, Boulder, CO, United States of America
- JILA, National Institutes of Standards and Technology and University of Colorado Boulder, Boulder, CO, United States of America
| | - Jessica D. Podoll
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Madeline E. Edwards
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve, Cleveland OH, United States of America
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
33
|
Zwama M, Yamaguchi A. Molecular mechanisms of AcrB-mediated multidrug export. Res Microbiol 2018; 169:372-383. [PMID: 29807096 DOI: 10.1016/j.resmic.2018.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/07/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
The over-expression of multidrug efflux pumps belonging to the Resistance-Nodulation-Division (RND) superfamily is one of the main causes of multidrug-resistance (MDR) in Gram-negative pathogenic bacteria. AcrB is the most thoroughly studied RND transporter and has functioned as a model for our understanding of efflux-mediated MDR. This multidrug-exporter can recognize and transport a wide range of structurally unrelated compounds (including antibiotics, dyes, bile salts and detergents), while it shows a strict inhibitor specificity. Here we discuss our current knowledge of AcrB, and include recent advances, regarding its structure, mechanism of drug transport, substrate recognition, different intramolecular entry pathways and the drug export driven by remote conformational coupling.
Collapse
Affiliation(s)
- Martijn Zwama
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan; Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akihito Yamaguchi
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
34
|
Lôme V, Brunel JM, Pagès JM, Bolla JM. Multiparametric Profiling for Identification of Chemosensitizers against Gram-Negative Bacteria. Front Microbiol 2018; 9:204. [PMID: 29556218 PMCID: PMC5845390 DOI: 10.3389/fmicb.2018.00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/29/2018] [Indexed: 01/22/2023] Open
Abstract
Antibiotic resistance is now a worldwide therapeutic problem. Since the beginning of anti-infectious treatment bacteria have rapidly shown an incredible ability to develop and transfer resistance mechanisms. In the last decades, the design variation of pioneer bioactive molecules has strongly improved their activity and the pharmaceutical companies partly won the race against the clock. Since the 1980s, the new classes of antibiotics that emerged were mainly directed to Gram-positive bacteria. Thus, we are now facing to multidrug-resistant Gram-negative bacteria, with no therapeutic options to deal with them. These bacteria are mainly resistant because of their double membrane that conjointly impairs antibiotic accumulation and extrudes these molecules when entered. The main challenge is to allow antibiotics to cross the impermeable envelope and reach their targets. One promising solution would be to associate, in a combination therapy, a usual antibiotic with a non-antibiotic chemosensitizer. Nevertheless, for effective drug discovery, there is a prominent lack of tools required to understand the rules of permeation and accumulation into Gram-negative bacteria. By the use of a multidrug-resistant enterobacteria, we introduce a high-content screening procedure for chemosensitizers discovery by quantitative assessment of drug accumulation, alteration of barriers, and deduction of their activity profile. We assembled and analyzed a control chemicals library to perform the proof of concept. The analysis was based on real-time monitoring of the efflux alteration and measure of the influx increase in the presence of studied compounds in an automatized bio-assay. Then, synergistic activity of compounds with an antibiotic was studied and kinetic data reduction was performed which led to the calculation of a score for each barrier to be altered.
Collapse
Affiliation(s)
- Vincent Lôme
- UMR MD1, Aix-Marseille University, IRBA, TMCD2, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Jean-Michel Brunel
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli Calmettes, Aix-Marseille Université, UM 105, Inserm, U1068, Faculté de Pharmacie, Marseille, France
| | - Jean-Marie Pagès
- UMR MD1, Aix-Marseille University, IRBA, TMCD2, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Jean-Michel Bolla
- UMR MD1, Aix-Marseille University, IRBA, TMCD2, Facultés de Médecine et de Pharmacie, Marseille, France
| |
Collapse
|
35
|
Uddin MJ, Ahn J. Characterization of β-lactamase- and efflux pump-mediated multiple antibiotic resistance in Salmonella Typhimurium. Food Sci Biotechnol 2018; 27:921-928. [PMID: 30263820 DOI: 10.1007/s10068-018-0317-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022] Open
Abstract
This study aimed to assess the β-lactamase- and efflux pump-mediated antibiotic resistance in Salmonella Typhimurium (WT-ST), ciprofloxacin-induced antibiotic-resistant S. Typhimurium (CI-ST), and clinically-acquired antibiotic-resistant S. Typhimurium (CA-ST). The β-lactamase activities were significantly increased up to 63 μmol/min/mL in CA-ST and 24 μmol/min/mL in CI-ST when compared to WT-ST (13 μmol/min/mL). The highest efflux pump activity was observed in CI-ST and CA-ST, showing more than 45%. The antibiotic susceptibilities of WT-ST, CI-ST, and CA-ST were increased in the presence of β-lactamase and efflux pump inhibitors. CA-ST showed the highest activity in AcrD, MdtABC, EmrAB, MdtK, and MacAB efflux pumps. The repressed ompF were responsible for the decreased susceptibility of CA-ST to ampicillin (MIC > 512 μg/mL). This study would provide useful information for better understating of the development of multidrug resistance in association with β-lactamase and efflux pump activities and designing new antibiotic chemotherapy in combination with inhibitors.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
36
|
Haynes MK, Garcia M, Peters R, Waller A, Tedesco P, Ursu O, Bologa CG, Santos RG, Pinilla C, Wu TH, Lovchik JA, Oprea TI, Sklar LA, Tegos GP. High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems. Methods Mol Biol 2018; 1700:293-318. [PMID: 29177837 DOI: 10.1007/978-1-4939-7454-2_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The resistance nodulation cell division (RND) family of proteins are inner membrane transporters that associate with periplasmic adaptor proteins and outer membrane porins to affect substrate transport from the cytosol and periplasm in Gram-negative bacteria. Various structurally diverse compounds are substrates of RND transporters. Along with their notable role in antibiotic resistance, these transporters are essential for niche colonization, quorum sensing, and virulence as well as for the removal of fatty acids and bile salts. As such, RNDs are an attractive target for antimicrobial development. However, while enhancing the utility of antibiotics with an RND inhibitor is an appealing concept, only a small core of chemotypes has been identified as efflux pump inhibitors (EPIs). Thus, our key objective is the development and validation of an efflux profiling and discovery strategy for RND model systems. Here we describe a flow cytometric dye accumulation assay that uses fluorescein diacetate (FDA) to interrogate the model Gram-negative pathogens Escherichia coli, Franscisella tularensis, and Burkholderia pseudomallei. Fluorochrome retention is increased in the presence of known efflux inhibitors and in RND deletion strains. The assay can be used in a high-throughput format to evaluate efflux of dye-substrate candidates and to screen chemical libraries for novel EPIs. Triaged compounds that inhibit efflux in pathogenic strains are tested for growth inhibition and antibiotic potentiation using microdilution culture plates in a select agent Biosafety Level-3 (BSL3) environment. This combined approach demonstrates the utility of flow cytometric analysis for efflux activity and provides a useful platform in which to characterize efflux in pathogenic Gram-negative bacteria. Screening small molecule libraries for novel EPI candidates offers the potential for the discovery of new classes of antibacterial compounds.
Collapse
Affiliation(s)
- Mark K Haynes
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Matthew Garcia
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ryan Peters
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
- Department of Chemical Sciences and School of Biotechnological Sciences, University of Naples, Naples, Italy
| | - Oleg Ursu
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Cristian G Bologa
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Radleigh G Santos
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL, USA
| | | | - Terry H Wu
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Julie A Lovchik
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Tudor I Oprea
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Larry A Sklar
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - George P Tegos
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Mowla R, Wang Y, Ma S, Venter H. Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:878-886. [PMID: 28890187 DOI: 10.1016/j.bbamem.2017.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/19/2017] [Accepted: 08/31/2017] [Indexed: 11/24/2022]
Abstract
Multidrug efflux protein complexes such as AcrAB-TolC from Escherichia coli are paramount in multidrug resistance in Gram-negative bacteria and are also implicated in other processes such as virulence and biofilm formation. Hence efflux pump inhibition, as a means to reverse antimicrobial resistance in clinically relevant pathogens, has gained increased momentum over the past two decades. Significant advances in the structural and functional analysis of AcrB have informed the selection of efflux pump inhibitors (EPIs). However, an accurate method to determine the kinetics of efflux pump inhibition was lacking. In this study we standardised and optimised surface plasmon resonance (SPR) to probe the binding kinetics of substrates and inhibitors to AcrB. The SPR method was also combined with a fluorescence drug binding method by which affinity of two fluorescent AcrB substrates were determined using the same conditions and controls as for SPR. Comparison of the results from the fluorescent assay to those of the SPR assay showed excellent correlation and provided validation for the methods and conditions used for SPR. The kinetic parameters of substrate (doxorubicin, novobiocin and minocycline) binding to AcrB were subsequently determined. Lastly, the kinetics of inhibition of AcrB were probed for two established inhibitors (phenylalanine arginyl β-naphthylamide and 1-1-naphthylmethyl-piperazine) and three novel EPIs: 4-isobutoxy-2-naphthamide (A2), 4-isopentyloxy-2-naphthamide (A3) and 4-benzyloxy-2-naphthamide (A9) have also been probed. The kinetic data obtained could be correlated with inhibitor efficacy and mechanism of action. This study is the first step in the quantitative analysis of the kinetics of inhibition of the clinically important RND-class of multidrug efflux pumps and will allow the design of improved and more potent inhibitors of drug efflux pumps. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5000, Australia
| | - Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5000, Australia.
| |
Collapse
|
38
|
Comparison of antibiotic resistance phenotypes in laboratory strains and clinical isolates of Staphylococcus aureus, Salmonella Typhimurium, and Klebsiella pneumoniae. Food Sci Biotechnol 2017; 26:1773-1779. [PMID: 30263717 DOI: 10.1007/s10068-017-0191-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022] Open
Abstract
This study was designed to evaluate the antibiotic resistance phenotypes in wild-type Staphylococcus aureus (WT-SA), oxacillin-induced S. aureus (OI-SA), clinically-acquired antibiotic-resistant S. aureus (CA-SA), wild-type Salmonella Typhimurium (WT-ST), ciprofloxacin-induced S. Typhimurium (CI-ST), clinically-acquired antibiotic-resistant S. Typhimurium (CA-ST), wild-type Klebsiella pneumoniae (WT-KP), ciprofloxacin-induced K. pneumoniae (CI-KP), and clinically-acquired antibiotic-resistant K. pneumoniae (CA-KP). The resistance of WT-SA, WT-ST, and WT-KP to ampicillin, ceftazidime, and cephalotin, penicillin was increased after induction by oxacillin OI-SA, ciprofloxacin CI-ST, and ciprofloxacin CI-KP, respectively. The highest β-lactamase activities were 12 and 36 μmol/min/ml, respectively, for CA-ST and CA-KP. The EtBr residues remained high in S. Typhimurium (>80%) and K. pneumoniae (>90%) when treated with CCCP. The distinct FT-IR spectra were observed in protein region (1700-1500 cm-1) and carbohydrate region (1200-900 cm-1). This study would provide useful information for better understating of specific resistance mechanisms in association with β-lactamase and efflux pump activities.
Collapse
|
39
|
González-Bello C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg Med Chem Lett 2017; 27:4221-4228. [PMID: 28827113 DOI: 10.1016/j.bmcl.2017.08.027] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
Resistance to available antibiotics in pathogenic bacteria is currently a global challenge since the number of strains that are resistant to multiple types of antibiotics has increased dramatically each year and has spread worldwide. To unlock this problem, the use of an 'antibiotic adjuvant' in combination with an antibiotic is now being exploited. This approach enables us to prolong the lifespan of these life-saving drugs. This digests review provides an overview of the main types of antibiotic adjuvants, the basis of their operation and the remaining issues to be tackled in this field. Particular emphasis is placed on those compounds that are already in clinical development, namely β-lactamase inhibitors.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
40
|
Loss of Methyltransferase Function and Increased Efflux Activity Leads to Doxycycline Resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 2017; 61:AAC.00268-17. [PMID: 28348161 DOI: 10.1128/aac.00268-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/18/2017] [Indexed: 01/15/2023] Open
Abstract
The soil-dwelling bacterium Burkholderia pseudomallei is the causative agent of the potentially fatal disease melioidosis. The lack of a vaccine toward B. pseudomallei means that melioidosis treatment relies on prolonged antibiotic therapy, which can last up to 6 months in duration or longer. Due to intrinsic resistance, few antibiotics are effective against B. pseudomallei The lengthy treatment regimen required increases the likelihood of resistance development, with subsequent potentially fatal relapse. Doxycycline (DOX) has historically played an important role in the eradication phase of melioidosis treatment. Both primary and acquired DOX resistances have been documented in B. pseudomallei; however, the molecular mechanisms underpinning DOX resistance have remained elusive. Here, we identify and functionally characterize the molecular mechanisms conferring acquired DOX resistance in an isogenic B. pseudomallei pair. Two synergistic mechanisms were identified. The first mutation occurred in a putative S-adenosyl-l-methionine-dependent methyltransferase (encoded by BPSL3085), which we propose leads to altered ribosomal methylation, thereby decreasing DOX binding efficiency. The second mutation altered the function of the efflux pump repressor gene, amrR, resulting in increased expression of the resistance-nodulation-division efflux pump, AmrAB-OprA. Our findings highlight the diverse mechanisms by which B. pseudomallei can become resistant to antibiotics used in melioidosis therapy and the need for resistance monitoring during treatment regimens, especially in patients with prolonged or recrudesced positive cultures for B. pseudomallei.
Collapse
|
41
|
Kim J, Ahn J. Characterization of Clinically Isolated Antibiotic-Resistant Salmonella Typhimurium Exposed to Subinhibitory Concentrations of Ceftriaxone and Ciprofloxacin. Microb Drug Resist 2017; 23:949-957. [PMID: 28486078 DOI: 10.1089/mdr.2016.0319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study was designed mainly to assess the phenotypic properties of clinically isolated Salmonella Typhimurium exposed to ceftriaxone and ciprofloxacin. The antibiotic susceptibility, β-lactamase activity, efflux activity, bacterial motility, biofilm-forming ability, and gene expression were determined in S. Typhimurium ATCC 19585 and S. Typhimurium CCARM 8009 when exposed to subinhibitory concentrations of ceftriaxone and ciprofloxacin. S. Typhimurium CCARM 8009 was highly resistant to ampicillin, kanamycin, penicillin G, and streptomycin, showing minimum inhibitory concentration values of more than 512 μg/ml, while S. Typhimurium ATCC 19585 showed resistance to erythromycin alone (64 μg/ml). The highest β-lactamase activity was observed in S. Typhimurium CCARM 8009 when exposed to ceftriaxone (8.2 μmol/min/ml), while the least β-lactamase activity was observed in S. Typhimurium ATCC 19585. Compared to S. Typhimurium CCARM 8009, the ethidium bromide (EtBr) accumulation was considerably increased in S. Typhimurium ATCC 19585 when treated with efflux pump inhibitors. S. Typhimurium ATCC 19585 and S. Typhimurium CCARM 8009 were highly susceptible to ciprofloxacin, erythromycin, levofloxacin, and sparfloxacin in the presence of phenylalanine-arginine-β-naphthylamide. The swimming motility of S. Typhimurium ATCC 19585 exposed to ceftriaxone was significantly reduced to 54% when compared to S. Typhimurium CCARM 8009 (93%). The numbers of attached S. Typhimurium CCARM 8009 cells were significantly increased by more than 1 log cfu/ml when exposed to ceftriaxone and ciprofloxacin. The relative gene expression was stable in S. Typhimurium CCARM 8009 in the presence of ceftriaxone and ciprofloxacin compared to the absence of antibiotics. These results suggest that the antibiotic susceptibility of S. Typhimurium having different antibiotic resistance profiles varied depending on the presence of ceftriaxone and ciprofloxacin.
Collapse
Affiliation(s)
- Jeongjin Kim
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Republic of Korea
| |
Collapse
|
42
|
Spengler G, Kincses A, Gajdács M, Amaral L. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules 2017; 22:molecules22030468. [PMID: 28294992 PMCID: PMC6155429 DOI: 10.3390/molecules22030468] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/05/2023] Open
Abstract
Multidrug resistance (MDR) has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI) includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.
Collapse
Affiliation(s)
- Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Leonard Amaral
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
- Travel Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| |
Collapse
|
43
|
Allam A, Maigre L, Alves de Sousa R, Dumont E, Vergalli J, Pagès JM, Artaud I. New amphiphilic neamine conjugates bearing a metal binding motif active against MDR E. aerogenes Gram-negative bacteria. Eur J Med Chem 2017; 127:748-756. [DOI: 10.1016/j.ejmech.2016.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/29/2016] [Accepted: 10/23/2016] [Indexed: 01/22/2023]
|
44
|
Borselli D, Blanchet M, Bolla JM, Muth A, Skruber K, Phanstiel O, Brunel JM. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria. Chembiochem 2017; 18:276-283. [PMID: 28098416 PMCID: PMC5299527 DOI: 10.1002/cbic.201600532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram‐negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU‐N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer‐membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de‐energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance.
Collapse
Affiliation(s)
- Diane Borselli
- Aix-Marseille Université, IRBA, TMCD2 UMR-MD1, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Marine Blanchet
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli Calmettes, Aix-Marseille Université, UM 105, Inserm, U1068, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Jean-Michel Bolla
- Aix-Marseille Université, IRBA, TMCD2 UMR-MD1, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Aaron Muth
- Department of Medical Education, University of Central Florida, 12722 Research Parkway, Orlando, FL, 32826-3227, USA
| | - Kristen Skruber
- Department of Medical Education, University of Central Florida, 12722 Research Parkway, Orlando, FL, 32826-3227, USA
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida, 12722 Research Parkway, Orlando, FL, 32826-3227, USA
| | - Jean Michel Brunel
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli Calmettes, Aix-Marseille Université, UM 105, Inserm, U1068, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| |
Collapse
|
45
|
Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT, Wolloscheck D, Walker JK, Rybenkov VV, Baudry J, Smith JC, Zgurskaya HI. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump. ACS Infect Dis 2017; 3:89-98. [PMID: 27768847 DOI: 10.1021/acsinfecdis.6b00167] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for the development of effective EPIs, especially in light of constantly emerging resistance. Here, we describe EPIs that interact with periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump, change its structure in vivo, inhibit efflux of fluorescent probes, and potentiate the activities of antibiotics in Escherichia coli and other Gram-negative bacteria. Our findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.
Collapse
Affiliation(s)
- Narges Abdali
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jerry M. Parks
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Keith M. Haynes
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Julie L. Chaney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Adam T. Green
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - John K. Walker
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jerome Baudry
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeremy C. Smith
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
46
|
Mahmood HY, Jamshidi S, Sutton JM, Rahman KM. Current Advances in Developing Inhibitors of Bacterial Multidrug Efflux Pumps. Curr Med Chem 2016; 23:1062-81. [PMID: 26947776 PMCID: PMC5425656 DOI: 10.2174/0929867323666160304150522] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 01/30/2023]
Abstract
Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria.
Collapse
Affiliation(s)
| | | | | | - Khondaker M Rahman
- Institute of Pharmaceutical Science, King's College London, Britannia House, London SE1 1DB, UK.
| |
Collapse
|
47
|
Kim J, Jo A, Chukeatirote E, Ahn J. Assessment of antibiotic resistance in Klebsiella pneumoniae exposed to sequential in vitro antibiotic treatments. Ann Clin Microbiol Antimicrob 2016; 15:60. [PMID: 27938381 PMCID: PMC5148824 DOI: 10.1186/s12941-016-0173-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/13/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bacteria treated with different classes of antibiotics exhibit changes in susceptibility to successive antibiotic treatments. This study was designed to evaluate the influence of sequential antibiotic treatments on the development of antibiotic resistance in Klebsiella pneumoniae associated with β-lactamase and efflux pump activities. METHODS The antibiotic susceptibility, β-lactamase activity, and efflux activity were determined in K. pneumoniae grown at 37 °C by adding initial (0 h) and second antibiotics (8 or 12 h). Treatments include control (CON; no first and second antibiotic addition), no initial antibiotic addition followed by 1 MIC ciprofloxacin addition (CON-CIP), no initial antibiotic addition followed by 1 MIC meropenem addition (CON-MER), initial 1/4 MIC ciprofloxacin addition followed by no antibiotic addition (1/4CIP-CON), initial 1/4 MIC ciprofloxacin addition followed by 1 MIC ciprofloxacin addition (1/4CIP-CIP), and initial 1/4 MIC ciprofloxacin addition followed by 1 MIC meropenem addition (1/4CIP-MER). RESULTS Compared to the CON, the initial addition of 1/4 MIC ciprofloxacin inhibited the growth of K. pneumoniae throughout the incubation period. The ciprofloxacin treatments (CON-CIP and 1/4CIP-CIP) showed significant reduction in the number of K. pneumoniae cells compared to meropenem (CON-MER and 1/4CIP-MER). The 1/4CIP-CIP achieved a further 1 log reduction of K. pneumoniae, when compared to the 1/4CIP-CON and 1/CIP-MER. The increase in sensitivity of K. pneumoniae to cefotaxime, kanamycin, levofloxacin, nalidixic acid was observed for CON-CIP. Noticeable cross-resistance pattern was observed at the 1/4CIP-CIP, showing the increased resistance of K. pneumoniae to chloramphenicol, ciprofloxacin, kanamycin, levofloxacin, nalidixic acid norfloxacin, sulphamethoxazole/trimethoprim, and tetracycline. The levels of β-lactamase activities were estimated to be 8.4 μmol/min/ml for CON, 7.7 μmol/min/ml for 1/4CIP-CON and as low as 2.9 μmol/min/ml for CON-CIP. Compared to the absence of phenylalanine-arginine-β-naphthylamide (PAβN), the fluorescence intensity of EtBr was increased in K. pneumoniae cells treated at the CON, CON-CIP, and CON-MER in the presence of PAβN. However, the efflux pump activity remained in K. pneumoniae cells treated at the 1/CIP, 1/CIP-CIP, and 1/CIP-MER in the presence of PAβN. CONCLUSION The results suggest that the pre-exposed antibiotic history, treatment order, and concentrations influenced the development of multiple antibiotic resistant associated with β-lactamase and efflux pump activities. This study highlights the importance of antibiotic treatment conditions, which would be taken into consideration when new antibiotic strategy is designed to prevent antibiotic resistance.
Collapse
Affiliation(s)
- Jeongjin Kim
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, South Korea
| | - Ara Jo
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, South Korea
| | | | - Juhee Ahn
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, South Korea. .,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, South Korea.
| |
Collapse
|
48
|
A High-Throughput Approach To Identify Compounds That Impair Envelope Integrity in Escherichia coli. Antimicrob Agents Chemother 2016; 60:5995-6002. [PMID: 27458225 DOI: 10.1128/aac.00537-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/17/2016] [Indexed: 12/24/2022] Open
Abstract
The envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measure Escherichia coli envelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds and E. coli gene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinct E. coli strains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R > 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.
Collapse
|
49
|
Jo A, Ahn J. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiol 2016; 16:170. [PMID: 27473500 PMCID: PMC4966875 DOI: 10.1186/s12866-016-0791-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence and spread of multidrug resistant methicillin-resistant Staphylococcus aureus (MDR-MRSA) has serious health consequences in the presence of sub-MIC antibiotics. Therefore, this study was designed to evaluate β-lactamase activity, efflux activity, biofilm formation, and gene expression pattern in Staphylococcus aureus KACC 10778, S. aureus ATCC 15564, and S. aureus CCARM 3080 exposed to sublethal concentrations of levofloxacin and oxacillin. RESULTS The decreased MICs were observed in S. aureus KACC and S. aureus ATCC when exposed to levofloxacin and oxacillin, while and S. aureus CCARM remained resistance to streptomycin (512 μg/mL) in the presence of levofloxacin and imipenem (>512 μg/mL) in the presence of oxacillin. The considerable increase in extracellular and membrane-bound β-lactamase activities was observed in S. aureus ATCC exposed to oxacillin (>26 μmol/min/mL). The antibiotic susceptibility of all strains exposed to EPIs (CCCP and PAβN) varied depending on the classes of antibiotics. The relative expression levels of adhesion-related genes (clfA, clfB, fnbA, fnnB, and icaD), efflux-related genes (norB, norC, and qacA/B), and enterotoxin gene (sec) were increased more than 5-fold in S. aureus CCARM. The eno and qacA/B genes were highly overexpressed by more than 12- and 9-folds, respectively, in S. aureus CCARM exposed to levofloxacin. The antibiotic susceptibility, lactamase activity, biofilm-forming ability, efflux activity, and gene expression pattern varied with the intrinsic antibiotic resistance of S. aureus KACC, S. aureus ATCC, and S. aureus CCARM exposed to levofloxacin and oxacillin. CONCLUSIONS This study would provide useful information for better understating of combination therapy related to antibiotic resistance mechanisms and open the door for designing effective antibiotic treatment protocols to prevent excessive use of antibiotics in clinical practice.
Collapse
Affiliation(s)
- Ara Jo
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea. .,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
50
|
Kim J, Jo A, Ding T, Lee HY, Ahn J. Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium. Arch Microbiol 2016; 198:521-9. [DOI: 10.1007/s00203-016-1210-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/21/2016] [Accepted: 03/08/2016] [Indexed: 12/30/2022]
|