1
|
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence. Health Sci Rep 2024; 7:e70089. [PMID: 39319247 PMCID: PMC11420300 DOI: 10.1002/hsr2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Aim Human immunodeficiency virus (HIV) remains a significant global health challenge, with approximately 39 million people living with HIV worldwide as of 2022. Despite progress in antiretroviral therapy, achieving the UNAIDS "95-95-95" target to end the HIV epidemic by 2025 faces challenges, particularly in sub-Saharan Africa. The pursuit of an HIV vaccine is crucial, offering durable immunity and the potential to end the epidemic. Challenges in vaccine development include the lack of known immune correlates, suitable animal models, and HIV's high mutation rate. This study aims to explore the current state of HIV vaccine development, focusing on the challenges and innovative approaches being investigated. Methods In writing this review, we conducted a search of medical databases such as PubMed, ResearchGate, Web of Science, Google Scholar, and Scopus. The exploration of messenger ribonucleic acid vaccines, which have proven successful in the SARS-CoV-2 pandemic, presents a promising avenue for HIV vaccine development. Understanding HIV-1's ability to infiltrate various bodily compartments, establish reservoirs, and manipulate immune responses is critical. Robust cytotoxic T lymphocytes and broadly neutralizing antibodies are identified as key components, though their production faces challenges. Innovative approaches, including computational learning and advanced drug delivery systems, are being investigated to effectively activate the immune system. Results and Conclusions Discrepancies between animal models and human responses have hindered the progress of vaccine development. Despite these challenges, ongoing research is focused on overcoming these obstacles through advanced methodologies and technologies. Addressing the challenges in HIV vaccine development is paramount to realizing an effective HIV-1 vaccine and achieving the goal of ending the epidemic. The integration of innovative approaches and a deeper understanding of HIV-1's mechanisms are essential steps toward this transformative breakthrough.
Collapse
Affiliation(s)
- Godfred Yawson Scott
- Department of Medical DiagnosticsKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Dominic Worku
- Infectious Diseases DepartmentMorriston Hospital, Heol Maes EglwysMorristonUnited Kingdom
- Public Health WalesCardiffUnited Kingdom
| |
Collapse
|
2
|
Challenges of HIV therapeutic vaccines clinical trials design. Curr Opin HIV AIDS 2022; 17:345-351. [PMID: 36178769 DOI: 10.1097/coh.0000000000000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THE REVIEW To discuss main challenges of therapeutic vaccine clinical trials design, implementation and analyses in the HIV cure field. RECENT FINDINGS Therapeutic vaccines are progressively being postulated as T-cell stimulating agents to use in combination HIV cure strategies, with the addition of immunomodulators, latency reversing agents and/or broadly neutralizing antibodies. Although promising strategies are rapidly evolving in preclinical studies using nonhuman primate models, translation into human testing in randomized controlled clinical trials is more challenging and expensive to conduct. Adaptive designs, access to cohorts of early-treated individuals, consensus on how to safely conduct analytical treatment interruptions, use of alternative statistical methods, development of point-of-care/home-based testing technologies and ensuring early engagement of communities where research is being developed are some of the critical aspects to consider to facilitate clinical trial development in the HIV cure field. SUMMARY Design and development of HIV therapeutic vaccine clinical trials poses many challenges, from Phase 0/pilot studies to Phase I/II trials in which efficacy of the intervention is being tested and antiretroviral therapy cessation is needed, complexity of cure trials progressively increases. Understanding fundamental issues and careful planning of therapeutic vaccine clinical trials is crucial to minimize design flaws, reduce loss of follow-ups and missing data while ensuring participant's safety and guarantee valid and accurate analyses and thus, better contribute towards an HIV cure.
Collapse
|
3
|
Files JK, Sterrett S, Henostroza S, Fucile C, Maroney K, Fram T, Mallal S, Kalams S, Carlson J, Rosenberg A, Erdmann N, Bansal A, Goepfert PA. HLA-II-Associated HIV-1 Adaptation Decreases CD4 + T-Cell Responses in HIV-1 Vaccine Recipients. J Virol 2022; 96:e0119122. [PMID: 36000845 PMCID: PMC9472760 DOI: 10.1128/jvi.01191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Epitopes with evidence of HLA-II-associated adaptation induce poorly immunogenic CD4+ T-cell responses in HIV-positive (HIV+) individuals. Many such escaped CD4+ T-cell epitopes are encoded by HIV-1 vaccines being evaluated in clinical trials. Here, we assessed whether this viral adaptation adversely impacts CD4+ T-cell responses following HIV-1 vaccination, thereby representing escaped epitopes. When evaluated in separate peptide pools, vaccine-encoded adapted epitopes (AE) induced CD4+ T-cell responses less frequently than nonadapted epitopes (NAE). We also demonstrated that in a polyvalent vaccine, where both forms of the same epitope were encoded, AE were less immunogenic. NAE-specific CD4+ T cells had increased, albeit low, levels of interferon gamma (IFN-γ) cytokine production. Single-cell transcriptomic analyses showed that NAE-specific CD4+ T cells expressed interferon-related genes, while AE-specific CD4+ T cells resembled a Th2 phenotype. Importantly, the magnitude of NAE-specific CD4+ T-cell responses, but not that of AE-specific responses, was found to positively correlate with Env-specific antibodies in a vaccine efficacy trial. Together, these findings show that HLA-II-associated viral adaptation reduces CD4+ T-cell responses in HIV-1 vaccine recipients and suggest that vaccines encoding a significant number of AE may not provide optimal B-cell help for HIV-specific antibody production. IMPORTANCE Despite decades of research, an effective HIV-1 vaccine remains elusive. Vaccine strategies leading to the generation of broadly neutralizing antibodies are likely needed to provide the best opportunity of generating a protective immune response against HIV-1. Numerous studies have demonstrated that T-cell help is necessary for effective antibody generation. However, immunogen sequences from recent HIV-1 vaccine efficacy trials include CD4+ T-cell epitopes that have evidence of immune escape. Our study shows that these epitopes, termed adapted epitopes, elicit lower frequencies of CD4+ T-cell responses in recipients from multiple HIV-1 vaccine trials. Additionally, the counterparts to these epitopes, termed nonadapted epitopes, elicited CD4+ T-cell responses that correlated with Env-specific antibodies in one efficacy trial. These results suggest that vaccine-encoded adapted epitopes dampen CD4+ T-cell responses, potentially impacting both HIV-specific antibody production and efficacious vaccine efforts.
Collapse
Affiliation(s)
- Jacob K. Files
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah Sterrett
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sebastian Henostroza
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Fucile
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin Maroney
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tim Fram
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Simon Mallal
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Spyros Kalams
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Alexander Rosenberg
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul A. Goepfert
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Lin LY, Carapito R, Su B, Moog C. Fc receptors and the diversity of antibody responses to HIV infection and vaccination. Genes Immun 2022; 23:149-156. [PMID: 35688931 PMCID: PMC9388370 DOI: 10.1038/s41435-022-00175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
The development of an effective vaccine against HIV is desperately needed. The successive failures of HIV vaccine efficacy trials in recent decades have shown the difficulty of inducing an appropriate protective immune response to fight HIV. Different correlates of antibody parameters associated with a decreased risk of HIV-1 acquisition have been identified. However, these parameters are difficult to reproduce and improve, possibly because they have an intricate and combined action. Here, we describe the numerous antibody (Ab) functions associated with HIV-1 protection and report the interrelated parameters regulating their complex functions. Indeed, besides neutralizing and Fc-mediated activity, additional factors such as Ab type, concentration and kinetics of induction, and Fc-receptor expression and binding capacity also influence the protective effect conferred by Abs. As these parameters were described to be associated with ethnicity, age and sex, these additional factors must be considered for the development of an effective immune response. Therefore, future vaccine designs need to consider these multifaceted Ab functions together with the demographic attributes of the patient populations.
Collapse
Affiliation(s)
- Li-Yun Lin
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Vaccine Research Institute (VRI), Créteil, France.
| |
Collapse
|
5
|
Li M, Yuan Y, Li P, Deng Z, Wen Z, Wang H, Feng F, Zou H, Chen L, Tang S, Sun C. Comparison of the Immunogenicity of HIV-1 CRF07_BC Gag Antigen With or Without a Seven Amino Acid Deletion in p6 Region. Front Immunol 2022; 13:850719. [PMID: 35450078 PMCID: PMC9017423 DOI: 10.3389/fimmu.2022.850719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
HIV-1 CRF07_BC-p6Δ7, a strain with a seven amino acid deletion in the p6 region of the Gag protein, is becoming the dominant strain of HIV transmission among men who have sex with men (MSM) in China. Previous studies demonstrated that HIV-1 patients infected by CRF07_BC-p6Δ7 strain had lower viral load and slower disease progression than those patients infected with CRF07_BC wild-type strain. However, the underlying mechanism for this observation is not fully clarified yet. In this study, we constructed the recombinant DNA plasmid and adenovirus type 2 (Ad2) vector-based constructs to express the HIV-1 CRF07_BC Gag antigen with or without p6Δ7 mutation and then investigated their immunogenicity in mice. Our results showed that HIV-1 CRF07_BC Gag antigen with p6Δ7 mutation induced a comparable level of Gag-specific antibodies but stronger CD4+ and CD8+ T-cell immune responses than that of CRF07_BC Gag (07_BC-wt). Furthermore, we identified a series of T-cell epitopes, which induced strong T-cell immune response and cross-immunity with CRF01_AE Gag. These findings implied that the p6Gag protein with a seven amino acid deletion might enhance the Gag immunogenicity in particular cellular immunity, which provides valuable information to clarify the pathogenic mechanism of HIV-1 CRF07_BC-p6Δ7 and to develop precise vaccine strategies against HIV-1 infection.
Collapse
Affiliation(s)
- Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Zhaomin Deng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Huachun Zou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
6
|
Affiliation(s)
- Paul Munson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Nkone P, Loubser S, Quinn TC, Redd AD, Ismail A, Tiemessen CT, Mayaphi SH. Deep sequencing of the HIV-1 polymerase gene for characterisation of cytotoxic T-lymphocyte epitopes during early and chronic disease stages. Virol J 2022; 19:56. [PMID: 35346259 PMCID: PMC8959563 DOI: 10.1186/s12985-022-01772-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/07/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Despite multiple attempts, there is still no effective HIV-1 vaccine available. The HIV-1 polymerase (pol) gene is highly conserved and encodes cytotoxic T-lymphocyte (CTL) epitopes. The aim of the study was to characterise HIV-1 Pol CTL epitopes in mostly sample pairs obtained during early and chronic stages of infection. METHODS Illumina deep sequencing was performed for all samples while Sanger sequencing was only performed on baseline samples. Codons under immune selection pressure were assessed by computing nonsynonymous to synonymous mutation ratios using MEGA. Minority CTL epitope variants occurring at [Formula: see text] 5% were detected using low-frequency variant tool in CLC Genomics. Los Alamos HIV database was used for mapping mutations to known HIV-1 CTL epitopes. RESULTS Fifty-two participants were enrolled in the study. Their median age was 28 years (interquartile range: 24-32 years) and majority of participants (92.3%) were female. Illumina minority variant analysis identified a significantly higher number of CTL epitopes (n = 65) compared to epitopes (n = 8) identified through Sanger sequencing. Most of the identified epitopes mapped to reverse transcriptase (RT) and integrase (IN) regardless of sequencing method. There was a significantly higher proportion of minority variant epitopes in RT (n = 39, 60.0%) compared to IN (n = 17, 26.2%) and PR (n = 9, 13.8%), p = 0.002 and < 0.0001, respectively. However, no significant difference was observed between the proportion of minority variant epitopes in IN versus PR, p = 0.06. Some epitopes were detected in either early or chronic HIV-1 infection whereas others were detected in both stages. Different distribution patterns of minority variant epitopes were observed in sample pairs; with some increasing or decreasing over time, while others remained constant. Some of the identified epitopes have not been previously reported for HIV-1 subtype C. There were also variants that could not be mapped to reported CTL epitopes in the Los Alamos HIV database. CONCLUSION Deep sequencing revealed many Pol CTL epitopes, including some not previously reported for HIV-1 subtype C. The findings of this study support the inclusion of RT and IN epitopes in HIV-1 vaccine candidates as these proteins harbour many CTL epitopes.
Collapse
Affiliation(s)
- Paballo Nkone
- Department of Medical Virology, University of Pretoria, Private Bag X323, Gezina, 0031, South Africa
| | - Shayne Loubser
- National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Arshad Ismail
- National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simnikiwe H Mayaphi
- Department of Medical Virology, University of Pretoria, Private Bag X323, Gezina, 0031, South Africa. .,National Health Laboratory Service-Tshwane Academic Division (NHLS-TAD), Tshwane, South Africa.
| |
Collapse
|
8
|
Nguyen H, Thorball CW, Fellay J, Böni J, Yerly S, Perreau M, Hirsch HH, Kusejko K, Thurnheer MC, Battegay M, Cavassini M, Kahlert CR, Bernasconi E, Günthard HF, Kouyos RD, The Swiss HIV Cohort Study. Systematic screening of viral and human genetic variation identifies antiretroviral resistance and immune escape link. eLife 2021; 10:e67388. [PMID: 34061023 PMCID: PMC8169104 DOI: 10.7554/elife.67388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background Considering the remaining threat of drug-resistantmutations (DRMs) to antiretroviral treatment (ART) efficacy, we investigated how the selective pressure of human leukocyte antigen (HLA)-restricted cytotoxic T lymphocytes drives certain DRMs' emergence and retention. Methods We systematically screened DRM:HLA class I allele combinations in 3997 ART-naïve Swiss HIV Cohort Study (SHCS) patients. For each pair, a logistic regression model preliminarily tested for an association with the DRM as the outcome. The three HLA:DRM pairs remaining after multiple testing adjustment were analyzed in three ways: cross-sectional logistic regression models to determine any HLA/infection time interaction, survival analyses to examine if HLA type correlated with developing specific DRMs, and via NetMHCpan to find epitope binding evidence of immune escape. Results Only one pair, RT-E138:HLA-B18, exhibited a significant interaction between infection duration and HLA. The survival analyses predicted two pairs with an increased hazard of developing DRMs: RT-E138:HLA-B18 and RT-V179:HLA-B35. RT-E138:HLA-B18 exhibited the greatest significance in both analyses (interaction term odds ratio [OR] 1.169 [95% confidence interval (CI) 1.075-1.273]; p-value<0.001; survival hazard ratio 12.211 [95% CI 3.523-42.318]; p-value<0.001). The same two pairs were also predicted by netMHCpan to have epitopic binding. Conclusions We identified DRM:HLA pairs where HLA presence is associated with the presence or emergence of the DRM, indicating that the selective pressure for these mutations alternates direction depending on the presence of these HLA alleles. Funding Funded by the Swiss National Science Foundation within the framework of the SHCS, and the University of Zurich, University Research Priority Program: Evolution in Action: From Genomes Ecosystems, in Switzerland.
Collapse
Affiliation(s)
- Huyen Nguyen
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Institute of Medical Virology, Swiss National Center for Retroviruses, University of ZurichZurichSwitzerland
| | - Christian Wandell Thorball
- School of Life Sciences, École PolytechniqueFédérale de LausanneSwitzerland
- Precision Medicine Unit, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jacques Fellay
- School of Life Sciences, École PolytechniqueFédérale de LausanneSwitzerland
- Precision Medicine Unit, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jürg Böni
- Institute of Medical Virology, Swiss National Center for Retroviruses, University of ZurichZurichSwitzerland
| | - Sabine Yerly
- Laboratory of Virology, Geneva University Hospital, University of GenevaGenevaSwitzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, University Hospital Lausanne, University of LausanneLausanneSwitzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of BaselBaselSwitzerland
- Infectious Diseases and Hospital Epidemiology, Department of Medicine, University Hospital BaselBaselSwitzerland
- Clinical Virology, Laboratory Medicine, University Hospital BaselBaselSwitzerland
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Institute of Medical Virology, Swiss National Center for Retroviruses, University of ZurichZurichSwitzerland
| | - Maria Christine Thurnheer
- University Clinic of Infectious Diseases, University Hospital of Bern, University of BernBernSwitzerland
| | - Manuel Battegay
- Infectious Diseases and Hospital Epidemiology, Department of Medicine, University Hospital BaselBaselSwitzerland
| | - Matthias Cavassini
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, University of LausanneLausanneSwitzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. GallenSt. GallenSwitzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional HospitalLuganoSwitzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Institute of Medical Virology, Swiss National Center for Retroviruses, University of ZurichZurichSwitzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Institute of Medical Virology, Swiss National Center for Retroviruses, University of ZurichZurichSwitzerland
| | | |
Collapse
|
9
|
Ditse Z, Mkhize NN, Yin M, Keefer M, Montefiori DC, Tomaras GD, Churchyard G, Mayer KH, Karuna S, Morgan C, Bekker LG, Mlisana K, Gray G, Moodie Z, Gilbert P, Moore PL, Williamson C, Morris L. Effect of HIV Envelope Vaccination on the Subsequent Antibody Response to HIV Infection. mSphere 2020; 5:e00738-19. [PMID: 31996422 PMCID: PMC6992371 DOI: 10.1128/msphere.00738-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/13/2020] [Indexed: 11/20/2022] Open
Abstract
Analysis of breakthrough HIV-1 infections could elucidate whether prior vaccination primes relevant immune responses. Here, we measured HIV-specific antibody responses in 14 South African volunteers who acquired HIV infection after participating in phase 1/2 trials of envelope-containing immunogens. Serum samples were collected annually following HIV-1 infection from participants in trials HVTN 073 (subtype C, DNA/MVA, phase 1 trial, n = 1), HVTN 086 (subtype C, DNA/MVA/gp140 protein, phase 1 trial, n = 2), and HVTN 204 (multisubtype, DNA/adenovirus serotype 5 [Ad5], phase 2 trial, n = 7) and 4 placebo recipients. Binding and neutralizing antibody responses to Env proteins and peptides were determined pre- and post-HIV infection using an enzyme-linked immunosorbent assay and the TZM-bl cell neutralization assay, respectively. HIV-infected South African individuals served as unvaccinated controls. Binding antibodies to gp41, V3, V2, the membrane-proximal external region (MPER), and the CD4 binding site were detected from the first year of HIV-1 subtype C infection, and the levels were similar in vaccinated and placebo recipients. Neutralizing antibody responses against tier 1A viruses were detected in all participants, with the highest titers being to a subtype C virus, MW965.26. No responses were observed just prior to infection, indicating that vaccine-primed HIV-specific antibodies had waned. Sporadic neutralization activity against tier 2 isolates was observed after 2 to 3 years of HIV infection, but these responses were similar in the vaccinated and placebo groups as well as the unvaccinated controls. Our data suggest that prior vaccination with these immunogens did not alter the antibody responses to HIV-1 infection, nor did it accelerate the development of HIV neutralization breadth.IMPORTANCE There is a wealth of information on HIV-specific vaccine-induced immune responses among HIV-uninfected participants; however, data on immune responses among participants who acquire HIV after vaccination are limited. Here we show that HIV-specific binding antibody responses in individuals with breakthrough HIV infections were not affected by prior vaccination with HIV envelope-containing immunogens. We also found that these vectored vaccines did not prime tier 2 virus-neutralizing antibody responses, which are thought to be required for prevention against HIV acquisition, or accelerate the development of neutralization breadth. Although this study is limited, such studies can provide insights into whether vaccine-elicited antibody responses are boosted by HIV infection to acquire broader neutralizing activity, which may help to identify antigens relevant to the design of more effective vaccines.
Collapse
Affiliation(s)
- Zanele Ditse
- National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Department of Virology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Department of Virology, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael Yin
- Department of Medicine, Columbia University, New York, New York, USA
| | - Michael Keefer
- Department of Medicine, University of Rochester, Rochester, New York, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Gavin Churchyard
- Aurum Institute, Parktown, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Kenneth H Mayer
- Fenway Health, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Cecilia Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Linda-Gail Bekker
- Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Koleka Mlisana
- University of Kwa-Zulu Natal, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Glenda Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- South African Medical Research Council, Cape Town, South Africa
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Department of Virology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Department of Virology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One 2019; 14:e0223844. [PMID: 31671105 PMCID: PMC6822742 DOI: 10.1371/journal.pone.0223844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
To develop an effective therapeutic vaccine against HIV-1, prediction of the most conserved epitopes derived from major proteins using bioinformatics tools is an alternative achievement. The epitope-driven vaccines against variable pathogens represented successful results. Hence, to overcome this hyper-variable virus, we designed the highly conserved and immunodominant peptide epitopes. Two servers were used to predict peptide-MHC-I binding affinity including NetMHCpan4.0 and Syfpeithi servers. The NetMHCIIpan3.2 server was utilized for MHC-II binding affinity. Then, we determined immunogenicity scores and allergenicity by the IEDB immunogenicity predictor and Algpred, respectively. Next, for estimation of toxicity and population coverage, ToxinPred server and IEDB population coverage tool were applied. After that, the MHC-peptide binding was investigated by GalexyPepDock peptide-protein flexible docking server. Finally, two different DNA and peptide constructs containing Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 were prepared and complexed with four various cell penetrating peptides (CPPs) for delivery into mammalian cells (MPG and HR9 CPPs for DNA delivery, and CyLoP-1 and LDP-NLS CPPs for protein delivery). Our results indicated that the designed DNA and peptide constructs could form non-covalent stable nanoparticles at certain ratios as observed by scanning electron microscope (SEM) and Zetasizer. The flow cytometry results obtained from in vitro transfection of the nanoparticles into HEK-293T cell lines showed that the percentage of GFP expressing cells was about 38.38 ± 1.34%, 25.36% ± 0.30, 54.95% ± 0.84, and 25.11% ± 0.36 for MPG/pEGFP-nef-vif-gp160-p24, MPG/pEGFP-nef-vpu-gp160-p24, HR9/pEGFP-nef-vif-gp160-p24 and HR9/pEGFP-nef-vpu-gp160-p24, respectively. Thus, these data showed that the DNA construct harboring nef-vif-gp160-p24 multi-epitope gene had higher efficiency than the DNA construct harboring nef-vpu-gp160-p24 multi-epitope gene to penetrate into the cells. Moreover, delivery of the recombinant Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 polyepitope peptides in HEK-293T cells was confirmed as a single band about 32 kDa using western blot analysis. Although, both DNA and peptide constructs could be successfully transported by a variety of CPPs into the cells, but the difference between them in transfection rate will influence the levels of immune responses for development of therapeutic vaccines.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Abstract
With the rise in novel infectious agents and disease pandemics, a new era of vaccine discovery is necessary. To address this, the new field of immunomics is described, which is synergistically powered by integrating bioinformatics methodologies with technological advances in biology and high-throughput instrumentation. By incorporating biological data from immunology and molecular biology with current genomics and proteomics, immunomics is geared to deliver an insight into immune function, optimal stimulation of immune responses and precise mapping and rational selection of immune targets that cover antigenic diversity. These efforts are expected to contribute towards the development of new generation of vaccines, tailored to both the genetic make-up of the human population and of the pathogen. Vaccine technologies are also being explored for prevention or control of non-communicable diseases.
Collapse
|
12
|
Chen X, Lin M, Qian S, Zhang Z, Fu Y, Xu J, Han X, Ding H, Dong T, Shang H, Jiang Y. The Early Antibody-Dependent Cell-Mediated Cytotoxicity Response Is Associated With Lower Viral Set Point in Individuals With Primary HIV Infection. Front Immunol 2018; 9:2322. [PMID: 30356637 PMCID: PMC6189277 DOI: 10.3389/fimmu.2018.02322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) is an immune response largely mediated by natural killer (NK) cells that can lyse target cells and combat tumors and viral infections. However, the role of ADCC in response to primary HIV infection is poorly understood. In the present study, we explored the ADCC response and evaluated its characteristics in 85 HIV-infected individuals, including 42 with primary infections. Our results showed that ADCC occurs during acute infection, and the earliest ADCC response to a single peptide was detected at 52 days. Primary HIV-infected individuals exhibiting ADCC responses had lower viral set points than those with no ADCC response, and functional analyses demonstrated that the ADCC response could significantly inhibit viral infection during primary HIV infection. HIV epitopes that provoked the ADCC response were determined and three relatively conserved epitopes (HNVWATYACVPTDPNPQE, TSVIKQACPKISFDPIPI, and VVSTQLLLNGSLAEEEII) from the surface of the three-dimensional structure of the HIV Env protein were identified. Overall, our data indicate that ADCC responses may be significant for the control of HIV from an early stage during infection. These findings merit further investigation and will facilitate improvements in vaccines or therapeutic interventions against HIV infection.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Meilin Lin
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Affiliated Hospital of Hebei University, Baoding, China
| | - Shi Qian
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tao Dong
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
13
|
Munson P, Liu Y, Bratt D, Fuller JT, Hu X, Pavlakis GN, Felber BK, Mullins JI, Fuller DH. Therapeutic conserved elements (CE) DNA vaccine induces strong T-cell responses against highly conserved viral sequences during simian-human immunodeficiency virus infection. Hum Vaccin Immunother 2018; 14:1820-1831. [PMID: 29648490 PMCID: PMC6067903 DOI: 10.1080/21645515.2018.1448328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV-specific T-cell responses play a key role in controlling HIV infection, and therapeutic vaccines for HIV that aim to improve viral control will likely need to improve on the T-cell responses induced by infection. However, in the setting of chronic infection, an effective therapeutic vaccine must overcome the enormous viral genetic diversity and the presence of pre-existing T-cell responses that are biased toward immunodominant T-cell epitopes that can readily mutate to evade host immunity and thus potentially provide inferior protection. To address these issues, we investigated a novel, epidermally administered DNA vaccine expressing SIV capsid (p27Gag) homologues of highly conserved elements (CE) of the HIV proteome in macaques experiencing chronic but controlled SHIV infection. We assessed the ability to boost or induce de novo T-cell responses against the conserved but immunologically subdominant CE epitopes. Two groups of animals were immunized with either the CE DNA vaccine or a full-length SIV p57gag DNA vaccine. Prior to vaccination, CE responses were similar in both groups. The full-length p57gag DNA vaccine, which contains the CE, increased overall Gag-specific responses but did not increase CE responses in any animals (0/4). In contrast, the CE DNA vaccine increased CE responses in all (4/4) vaccinated macaques. In SIV infected but unvaccinated macaques, those that developed stronger CE-specific responses during acute infection exhibited lower viral loads. We conclude that CE DNA vaccination can re-direct the immunodominance hierarchy towards CE in the setting of attenuated chronic infection and that induction of these responses by therapeutic vaccination may improve immune control of HIV.
Collapse
Affiliation(s)
- Paul Munson
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,b Washington National Primate Research Center , Seattle , WA , US
| | - Yi Liu
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Debra Bratt
- b Washington National Primate Research Center , Seattle , WA , US
| | - James T Fuller
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Xintao Hu
- c Human Retrovirus Pathogenesis Section and Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , US
| | - George N Pavlakis
- d Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick , MD , US
| | - Barbara K Felber
- c Human Retrovirus Pathogenesis Section and Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , US
| | - James I Mullins
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,e Department of Medicine , University of Washington , Seattle , WA , US.,f Department of Global Health , University of Washington , Seattle , WA , US.,g Department of Laboratory Medicine , University of Washington , Seattle , WA , US
| | - Deborah Heydenburg Fuller
- a Departments of Microbiology, Medicine, Global Health, and Laboratory Medicine , University of Washington , Seattle , WA , US.,b Washington National Primate Research Center , Seattle , WA , US
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RECENT FINDINGS RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. SUMMARY An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Collapse
|
15
|
Wee EG, Ondondo B, Berglund P, Archer J, McMichael AJ, Baltimore D, Ter Meulen JH, Hanke T. HIV-1 Conserved Mosaics Delivered by Regimens with Integration-Deficient DC-Targeting Lentiviral Vector Induce Robust T Cells. Mol Ther 2017; 25:494-503. [PMID: 28153096 PMCID: PMC5368423 DOI: 10.1016/j.ymthe.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022] Open
Abstract
To be effective against HIV type 1 (HIV-1), vaccine-induced T cells must selectively target epitopes, which are functionally conserved (present in the majority of currently circulating and reactivated HIV-1 strains) and, at the same time, beneficial (responses to which are associated with better clinical status and control of HIV-1 replication), and rapidly reach protective frequencies upon exposure to the virus. Heterologous prime-boost regimens using virally vectored vaccines are currently the most promising vaccine strategies; nevertheless, induction of robust long-term memory remains challenging. To this end, lentiviral vectors induce high frequencies of memory cells due to their low-inflammatory nature, while typically inducing only low anti-vector immune responses. Here, we describe construction of novel candidate vaccines ZVex.tHIVconsv1 and ZVex.tHIVconsv2, which are based on an integration-deficient lentiviral vector platform with preferential transduction of human dendritic cells and express a bivalent mosaic of conserved-region T cell immunogens with a high global HIV-1 match. Each of the two mosaic vaccines was individually immunogenic. When administered together in heterologous prime-boost regimens with chimpanzee adenovirus and/or poxvirus modified vaccinia virus Ankara (MVA) vaccines to BALB/c and outbred CD1-Swiss mice, they induced a median frequency of over 6,000 T cells/106 splenocytes, which were plurifunctional, broadly specific, and cross-reactive. These results support further development of this vaccine concept.
Collapse
Affiliation(s)
- Edmund G Wee
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
16
|
Novel, in-natural-infection subdominant HIV-1 CD8+ T-cell epitopes revealed in human recipients of conserved-region T-cell vaccines. PLoS One 2017; 12:e0176418. [PMID: 28448594 PMCID: PMC5407754 DOI: 10.1371/journal.pone.0176418] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Fine definition of targeted CD8+ T-cell epitopes and their human leucocyte antigen (HLA) class I restriction informs iterative improvements of HIV-1 T-cell vaccine designs and may predict early vaccine success or failure. Here, lymphocytes from volunteers, who had received candidate HIVconsv vaccines expressing conserved sub-protein regions of HIV-1, were used to define the optimum-length target epitopes and their HLA restriction. In HIV-1-positive patients, CD8+ T-cell responses predominantly recognize immunodominant, but hypervariable and therefore less protective epitopes. The less variable, more protective epitopes in conserved regions are typically subdominant. Therefore, induction of strong responses to conserved regions by vaccination provides an opportunity to discover novel important epitopes. METHODS Cryopreserved lymphocytes from vaccine recipients were expanded by stimulation with 15-mer responder peptides for 10 days to establish short term-cell-line (STCL) effector cells. These were subjected to intracellular cytokine staining using serially truncated peptides and peptide-pulsed 721.221 cells expressing individual HLA class I alleles to define minimal epitope length and HLA restriction by stimulation of IFN-γ and TNF-α production and surface expression of CD107a. RESULTS Using lymphocyte samples of 12 vaccine recipients, we defined 14 previously unreported optimal CD8+ T-cell HIV-1 epitopes and their four-digit HLA allele restriction (6 HLA-A, 7 HLA-B and 1 HLA-C alleles). Further 13 novel targets with incomplete information were revealed. CONCLUSIONS The high rate of discovery of novel CD8+ T-cell effector epitopes warrants further epitope mining in recipients of the conserved-region vaccines in other populations and informs development of HIV-1/AIDS vaccines. TRIAL REGISTRATION ClinicalTrials.gov NCT01151319.
Collapse
|
17
|
Wang N, Yuan Z, Niu W, Li Q, Guo J. Synthetic biology approach for the development of conditionally replicating HIV-1 vaccine. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2017; 92:455-462. [PMID: 28983143 PMCID: PMC5624719 DOI: 10.1002/jctb.5174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While the combined antiretroviral therapy has resulted in a significant decrease in HIV-1 related morbidity and mortality, the HIV-1 pandemic has not been substantially averted. To curtail the 2.4 million new infections each year, a prophylactic HIV-1 vaccine is urgently needed. This review first summarizes four major completed clinical efficacy trials of prophylactic HIV-1 vaccine and their outcomes. Next, it discusses several other approaches that have not yet advanced to clinical efficacy trials, but provided valuable insights into vaccine design. Among them, live-attenuated vaccines (LAVs) provided excellent protection in a non-human primate model. However, safety concerns have precluded the current version of LAVs from clinical application. As the major component of this review, two synthetic biology approaches for improving the safety of HIV-1 LAVs through controlling HIV-1 replication are discussed. Particular focus is on a novel approach that uses unnatural amino acid-mediated suppression of amber nonsense codon to generate conditionally replicating HIV-1 variants. The objective is to attract more attention towards this promising research field and to provoke creative designs and innovative utilization of the two control strategies.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Zhe Yuan
- Nebraska Center for Virology & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Qingsheng Li
- Nebraska Center for Virology & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
18
|
Wahid B, Ali A, Idrees M, Rafique S. Immunotherapeutic strategies for sexually transmitted viral infections: HIV, HSV and HPV. Cell Immunol 2016; 310:1-13. [PMID: 27514252 PMCID: PMC7124316 DOI: 10.1016/j.cellimm.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
More than 1 million sexually transmitted infections (STIs) are acquired each day globally. Etiotropic drugs cannot effectively control infectious diseases therefore, there is a dire need to explore alternative strategies especially those based on the regulation of immune system. The review discusses all rational approaches to develop better understanding towards immunotherapeutic strategies based on modulation of immune system in an attempt to curb the elevating risk of infectious diseases such as HIV, HPV and HSV because of their high prevalence. Development of monoclonal antibodies, vaccines and several other immune based treatments are promising alternative strategies that are offering new opportunities to eradicate pathogens.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University Mansehra, Pakistan.
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
19
|
Abstract
OBJECTIVE Properly priming cytotoxic T-lymphocyte (CTL) responses is an important task in HIV-1 vaccination. However, the STEP trial showed no efficacy even though the vaccine elicited HIV-specific CTL responses. Our study is to investigate whether or not the STEP vaccine enhanced viral escape in infected volunteers. METHODS The signature of viral escape, the presence of multiple escape variants, could be falsely represented by the existence of multiple founder viruses. Therefore, we use a mathematical model to designate STEP study patients with infections from a single founder virus. We then conduct permutation tests on each of 9988 Gag, Pol, and Nef overlapping peptides to identify epitopes with significant differences in diversity between the vaccine and placebo groups using previously published STEP trial sequence data. RESULTS We identify signatures of vaccine-enhanced viral escape within HIV-1 Nef from the STEP trial. Vaccine-treated patients showed a greater level of epitope diversity in one of the immunodomiant epitopes, EVGFPVRPQVPL (Nef65-76), compared with placebo-treated patients (P = 0.0038). In the other three Nef epitopes, there is a marginally significant difference in the epitope diversity between the vaccine and placebo group (P < 0.1). This greater epitope diversity was neither due to any difference in infection duration nor overall nef gene diversity between the two groups, suggesting that the increase in viral escape was likely mediated by vaccine-induced T-cell responses. CONCLUSION Viral escape in Nef is elevated preferentially in STEP vaccine-treated individuals, suggesting that vaccination primarily modulated initial CTL responses. Our observations provide important insights into improving vaccine-primed first immune control.
Collapse
|
20
|
Mutua G, Farah B, Langat R, Indangasi J, Ogola S, Onsembe B, Kopycinski JT, Hayes P, Borthwick NJ, Ashraf A, Dally L, Barin B, Tillander A, Gilmour J, De Bont J, Crook A, Hannaman D, Cox JH, Anzala O, Fast PE, Reilly M, Chinyenze K, Jaoko W, Hanke T, HIV-CORE 004 study group T. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8(+) T cells in African adults. Mol Ther Methods Clin Dev 2016; 3:16061. [PMID: 27617268 PMCID: PMC5006719 DOI: 10.1038/mtm.2016.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8(+) T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy.
Collapse
Affiliation(s)
- Gaudensia Mutua
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Bashir Farah
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Robert Langat
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | | | - Simon Ogola
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Brian Onsembe
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Jakub T Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | | | - Ambreen Ashraf
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Len Dally
- Emmes Corporation, Rockville, Maryland, USA
| | - Burc Barin
- Emmes Corporation, Rockville, Maryland, USA
| | | | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Jan De Bont
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | - Alison Crook
- Jenner Institute, University of Oxford, Oxford, UK
| | - Drew Hannaman
- ICHOR Medical Systems, Inc., San Diego, California, USA
| | - Josephine H Cox
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Omu Anzala
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Patricia E Fast
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | | | - Kundai Chinyenze
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Tomáš Hanke
- Jenner Institute, University of Oxford, Oxford, UK
- International Research Center for Medical Sciences, Kumamoto University, Japan
| | | |
Collapse
|
21
|
Ondondo B, Murakoshi H, Clutton G, Abdul-Jawad S, Wee EGT, Gatanaga H, Oka S, McMichael AJ, Takiguchi M, Korber B, Hanke T. Novel Conserved-region T-cell Mosaic Vaccine With High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection. Mol Ther 2016; 24:832-42. [PMID: 26743582 PMCID: PMC4886941 DOI: 10.1038/mt.2016.3] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
An effective human immunodeficiency virus type 1 (HIV-1) vaccine is the best solution for halting the acquired immune deficiency syndrome epidemic. Here, we describe the design and preclinical immunogenicity of T-cell vaccine expressing novel immunogens tHIVconsvX, vectored by DNA, simian (chimpanzee) adenovirus, and poxvirus modified vaccinia virus Ankara (MVA), a combination highly immunogenic in humans. The tHIVconsvX immunogens combine the three leading strategies for elicitation of effective CD8(+) T cells: use of regions of HIV-1 proteins functionally conserved across all M group viruses (to make HIV-1 escape costly on viral fitness), inclusion of bivalent complementary mosaic immunogens (to maximize global epitope matching and breadth of responses, and block common escape paths), and inclusion of epitopes known to be associated with low viral load in infected untreated people (to induce field-proven protective responses). tHIVconsvX was highly immunogenic in two strains of mice. Furthermore, the magnitude and breadth of CD8(+) T-cell responses to tHIVconsvX-derived peptides in treatment-naive HIV-1(+) patients significantly correlated with high CD4(+) T-cell count and low viral load. Overall, the tHIVconsvX design, combining the mosaic and conserved-region approaches, provides an indisputably better coverage of global HIV-1 variants than previous T-cell vaccines. These immunogens delivered in a highly immunogenic framework of adenovirus prime and MVA boost are ready for clinical development.
Collapse
Affiliation(s)
- Beatrice Ondondo
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK
| | | | - Genevieve Clutton
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK
- Current address: Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Edmund G-T Wee
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Bette Korber
- Los Alamo National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico, USA
- The New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol 2016; 17:104-109. [PMID: 26985884 DOI: 10.1016/j.coviro.2016.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
Abstract
Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Non-efficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials.
Collapse
|
23
|
Fiore-Gartland A, Manso BA, Friedrich DP, Gabriel EE, Finak G, Moodie Z, Hertz T, De Rosa SC, Frahm N, Gilbert PB, McElrath MJ. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials. PLoS One 2016; 11:e0147812. [PMID: 26863315 PMCID: PMC4749288 DOI: 10.1371/journal.pone.0147812] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/22/2015] [Indexed: 11/19/2022] Open
Abstract
The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides.
Collapse
Affiliation(s)
- Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
- * E-mail:
| | - Bryce A. Manso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - David P. Friedrich
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Erin E. Gabriel
- Biostatistics Research Branch, National Institute of Allergy and Infectious Disease, Rockville, Maryland, 20852, United States of America
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Tomer Hertz
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion Institute of the Negev, Beer-Sheva, 84105, Israel
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| |
Collapse
|
24
|
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis comparing vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent non-human primate (NHP) challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
|
25
|
Excler JL, Robb ML, Kim JH. Prospects for a globally effective HIV-1 vaccine. Vaccine 2015; 33 Suppl 4:D4-12. [PMID: 26100921 DOI: 10.1016/j.vaccine.2015.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis compared vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent NHP challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and MSM in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA
| |
Collapse
|
26
|
A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults. PLoS One 2015; 10:e0125954. [PMID: 25961283 PMCID: PMC4427332 DOI: 10.1371/journal.pone.0125954] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445
Collapse
|
27
|
Brown J, Excler JL, Kim JH. New prospects for a preventive HIV-1 vaccine. J Virus Erad 2015; 1:78-88. [PMID: 26523292 PMCID: PMC4625840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune correlates of risk analysis and recent non-human primate (NHP) challenge studies have generated hypotheses that suggest HIV-1 envelope may be essential and, perhaps, sufficient to induce protective antibody responses against HIV-1 acquisition at the mucosal entry. New prime-boost mosaic and conserved-sequence, together with replicating vector immunisation strategies aiming at inducing immune responses or greater breadth, as well as the development of immunogens inducing broadly neutralising antibodies and mucosal responses, should be actively pursued and tested in humans. Whether the immune correlates of risk identified in RV144 can be extended to other vaccines, other populations, or different modes and intensity of transmission, and against increasing HIV-1 genetic diversity, remains to be demonstrated. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key for answering the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
| | - Jean-Louis Excler
- US Military HIV Research Program,
Bethesda,
MD,
USA,The Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA,Corresponding author: Jean-Louis Excler,
US Military HIV Research Program,
6720-A Rockledge Drive, Suite 400Bethesda,
MD20817,
USA
| | - Jerome H Kim
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MD,
USA
| |
Collapse
|
28
|
Hancock G, Yang H, Yorke E, Wainwright E, Bourne V, Frisbee A, Payne TL, Berrong M, Ferrari G, Chopera D, Hanke T, Mothe B, Brander C, McElrath MJ, McMichael A, Goonetilleke N, Tomaras GD, Frahm N, Dorrell L. Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses. PLoS Pathog 2015; 11:e1004658. [PMID: 25723536 PMCID: PMC4344337 DOI: 10.1371/journal.ppat.1004658] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023] Open
Abstract
Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called “beneficial” regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control. Attempts to develop an HIV vaccine that elicits potent cell-mediated immunity have so far been unsuccessful. This is due in part to the use of immunogens that appear to recapitulate responses induced naturally by HIV that are, at best, partially effective. We previously showed that the capacity of CD8+ T cells from patients to block HIV replication in culture is strongly correlated with HIV control in vivo, therefore, we investigated the virological determinants of potent CD8+ T cell inhibitory activity. We observed that CD8+ T cells from patients with naturally low plasma viral loads (viremic controllers) were better able to inhibit the replication of diverse HIV strains in vitro than CD8+ T cells from HIV-noncontroller patients. Importantly, we also found that the potency of the antiviral activity in the latter group was strongly correlated with recognition of selected regions across the viral proteome that are critical to viral fitness. Vaccines that encode full-length viral proteins rarely elicited responses to these vulnerable regions. Taken together, our results provide insight into the characteristics of effective cell-mediated immune responses against HIV and how these may inform the design of better immunogens.
Collapse
Affiliation(s)
- Gemma Hancock
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Emma Wainwright
- Department of Sexual Health, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - Victoria Bourne
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alyse Frisbee
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Tamika L. Payne
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Mark Berrong
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Denis Chopera
- Institute of Infectious Diseases and Molecular Medicine & Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Tomas Hanke
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Beatriz Mothe
- Irsicaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Christian Brander
- Irsicaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M. Juliana McElrath
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrew McMichael
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Georgia D. Tomaras
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Tongo M, Burgers WA. Challenges in the design of a T cell vaccine in the context of HIV-1 diversity. Viruses 2014; 6:3968-90. [PMID: 25341662 PMCID: PMC4213573 DOI: 10.3390/v6103968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/27/2022] Open
Abstract
The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE) variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored.
Collapse
Affiliation(s)
- Marcel Tongo
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
30
|
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 2014; 66:423-37. [PMID: 25341006 DOI: 10.1146/annurev-med-052912-123749] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RV144 remains the only HIV-1 vaccine trial to demonstrate efficacy against HIV-1 acquisition. The prespecified analysis of immune correlates of risk showed that antibodies directed against the V1V2 region of gp120, in particular the IgG1 and IgG3 subclass mediating antibody-dependent cell-mediated cytotoxicity, seem to play a predominant role in protection against HIV-1 acquisition and that plasma envelope (Env)-specific IgA antibodies were directly correlated with risk. RV144 and recent nonhuman primate challenge studies suggest that Env is essential, and perhaps sufficient, to induce protective antibody responses against mucosal HIV-1 acquisition. Follow-up clinical trials are ongoing to further dissect the immune responses elicited by the RV144 ALVAC-HIV and AIDSVAX® B/E regimen. The study of gp120 Env immunogens and immune correlates of risk has resulted in the development of improved antigens. Whether the RV144 immune correlates of risk will generalize to other populations vaccinated with similar immunogens with different modes and intensity of transmission remains to be demonstrated. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand.
Collapse
Affiliation(s)
- Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910; ,
| | | | | |
Collapse
|
31
|
Abstract
UNLABELLED Host and viral factors influence the HIV-1 infection course. Reduced Nef function has been observed in HIV-1 controllers during the chronic phase, but the kinetics and mechanisms of Nef attenuation in such individuals remain unclear. We examined plasma RNA-derived Nef clones from 10 recently infected individuals who subsequently suppressed viremia to less than 2,000 RNA copies/ml within 1 year postinfection (acute controllers) and 50 recently infected individuals who did not control viremia (acute progressors). Nef clones from acute controllers displayed a lesser ability to downregulate CD4 and HLA class I from the cell surface and a reduced ability to enhance virion infectivity compared to those from acute progressors (all P<0.01). HLA class I downregulation activity correlated inversely with days postinfection (Spearman's R=-0.85, P=0.004) and positively with baseline plasma viral load (Spearman's R=0.81, P=0.007) in acute controllers but not in acute progressors. Nef polymorphisms associated with functional changes over time were identified in follow-up samples from six controllers. For one such individual, mutational analyses indicated that four polymorphisms selected by HLA-A*31 and B*37 acted in combination to reduce Nef steady-state protein levels and HLA class I downregulation activity. Our results demonstrate that relative control of initial HIV-1 viremia is associated with Nef clones that display reduced function, which in turn may influence the course of HIV-1 infection. Transmission of impaired Nef sequences likely contributed in part to this observation; however, accumulation of HLA-associated polymorphisms in Nef that impair function also suggests that CD8+ T-cell pressures play a role in this phenomenon. IMPORTANCE Rare individuals can spontaneously control HIV-1 viremia in the absence of antiretroviral treatment. Understanding the host and viral factors that contribute to the controller phenotype may identify new strategies to design effective vaccines or therapeutics. The HIV-1 Nef protein enhances viral pathogenesis through multiple mechanisms. We examined the function of plasma HIV-1 RNA-derived Nef clones isolated from 10 recently infected individuals who subsequently controlled HIV viremia compared to the function of those from 50 individuals who failed to control viremia. Our results demonstrate that early Nef clones from HIV controllers displayed lower HLA class I and CD4 downregulation activity, as well as a reduced ability to enhance virion infectivity. The accumulation of HLA-associated polymorphisms in Nef during the first year postinfection was associated with impaired protein function in some controllers. This report highlights the potential for host immune responses to modulate HIV pathogenicity and disease outcome by targeting cytotoxic T lymphocyte (CTL) epitopes in Nef.
Collapse
|
32
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
33
|
Excler JL, Robb ML, Kim JH. HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother 2014; 10:1734-46. [PMID: 24637946 DOI: 10.4161/hv.28462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Merlin L Robb
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Jerome H Kim
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA
| |
Collapse
|
34
|
Kopycinski J, Hayes P, Ashraf A, Cheeseman H, Lala F, Czyzewska-Khan J, Spentzou A, Gill DK, Keefer MC, Excler JL, Fast P, Cox J, Gilmour J. Broad HIV epitope specificity and viral inhibition induced by multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 2014; 9:e90378. [PMID: 24609066 PMCID: PMC3946500 DOI: 10.1371/journal.pone.0090378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/29/2014] [Indexed: 12/11/2022] Open
Abstract
A correlation between in vivo and in vitro virus control mediated by CD8+ T-cell populations has been demonstrated by CD8 T-cell-mediated inhibition of HIV-1 and SIV replication in vitro in peripheral blood mononuclear cells (PBMCs) from infected humans and non-human primates (NHPs), respectively. Here, the breadth and specificity of T-cell responses induced following vaccination with replication-defective adenovirus serotype 35 (Ad35) vectors containing a fusion protein of Gag, reverse transcriptase (RT), Integrase (Int) and Nef (Ad35-GRIN) and Env (Ad35-ENV), derived from HIV-1 subtype A isolates, was assessed in 25 individuals. The vaccine induced responses to a median of 4 epitopes per vaccinee. We correlated the CD8 responses to conserved vs. variable regions with the ability to inhibit a panel of 7 HIV-1 isolates representing multiple clades in a virus inhibition assay (VIA). The results indicate that targeting immunodominant responses to highly conserved regions of the HIV-1 proteome may result in an increased ability to inhibit multiple clades of HIV-1 in vitro. The data further validate the use of the VIA to screen and select future HIV vaccine candidates. Moreover, our data suggest that future T cell-focused vaccine design should aim to induce immunodominant responses to highly conserved regions of the virus.
Collapse
Affiliation(s)
- Jakub Kopycinski
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
- * E-mail:
| | - Peter Hayes
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Ambreen Ashraf
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Hannah Cheeseman
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Francesco Lala
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Justyna Czyzewska-Khan
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Aggeliki Spentzou
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Dilbinder K. Gill
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Michael C. Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | | | | | - Josephine Cox
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
35
|
Hanke T. Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opin Biol Ther 2014; 14:601-16. [PMID: 24490585 DOI: 10.1517/14712598.2014.885946] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Effective vaccines are the best solution for stopping the spread of HIV/AIDS and other infectious diseases. Their development and in-depth understanding of pathogen-host interactions rely on technological advances. AREAS COVERED Rational vaccine development can be effectively approached by conceptual separation of, on one hand, design of immunogens from improving their presentation to the immune system and, on the other, induction of antibodies from induction of killer CD8(+) T cells. The biggest roadblock for many vaccines is the pathogens' variability. This is best tackled by focusing both antibodies and T cells on the functionally most conserved regions of proteins common to many variants, including escape mutants. For vectored vaccines, these 'universal' subunit immunogens are most efficiently delivered using heterologous prime-boost regimens, which can be further optimised by adjuvantation and route of delivery. EXPERT OPINION Development of vaccines against human diseases has many features in common. Acceleration of vaccine discovery depends on basic research and new technologies. Novel strategies should be safely, but rapidly tested in humans. While out-of-the-box thinking is important, vaccine success largely depends on incremental advances best achieved through small, systematic, iterative clinical studies. Failures are inevitable, but the end rewards are huge. The future will be exciting.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ , UK
| |
Collapse
|
36
|
Kulkarni V, Valentin A, Rosati M, Alicea C, Singh AK, Jalah R, Broderick KE, Sardesai NY, Le Gall S, Mothe B, Brander C, Rolland M, Mullins JI, Pavlakis GN, Felber BK. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS One 2014; 9:e86254. [PMID: 24465991 PMCID: PMC3900501 DOI: 10.1371/journal.pone.0086254] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022] Open
Abstract
HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24gag elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ashish K. Singh
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Kate E. Broderick
- Inovio Pharmaceuticals, Inc., Blue Bell, Pennsylvania, United States of America
| | | | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Autonomous University of Barcelona, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Autonomous University of Barcelona, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Morgane Rolland
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (GNP); (BKF)
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (GNP); (BKF)
| |
Collapse
|
37
|
Co-delivery of LIGHT expression plasmid enhances humoral and cellular immune responses to HIV-1 Nef in mice. Arch Virol 2014; 159:1663-9. [PMID: 24435162 DOI: 10.1007/s00705-014-1981-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/03/2014] [Indexed: 01/17/2023]
Abstract
The immunogenicity and efficacy of a DNA vaccine can be greatly enhanced when a gene adjuvant is used. LIGHT, a member of TNF superfamily, can function as a costimulatory molecule for human naïve T cells to proliferate and can be a potential gene adjuvant. In the current study, the eukaryotic expression plasmid pcDNA-nef was constructed by inserting a full-length nef gene into pcDNA3.1(+), and an in vitro transfection experiment suggested that the nef gene could be expressed successfully in mammalian cells. BALB/c mice were immunized with HIV-1 nef DNA vaccine plasmids alone or in combination with LIGHT expression plasmids, and the specific humoral and cellular immune responses were measured. The data showed that HIV-1 nef DNA vaccine plasmids could induce anti-Nef antibodies, Nef-specific lymphocyte proliferation and CTL activity, whereas stronger specific immune responses were induced in mice when co-immunizing with HIV-1 nef DNA vaccine plasmids and LIGHT expression plasmids, suggesting that the eukaryotic expression vector encoding HIV-1 nef is capable of inducing specific immune responses towards HIV-1 Nef and that LIGHT could be considered as a gene adjuvant for HIV-1 DNA vaccination.
Collapse
|
38
|
Roff SR, Noon-Song EN, Yamamoto JK. The Significance of Interferon-γ in HIV-1 Pathogenesis, Therapy, and Prophylaxis. Front Immunol 2014; 4:498. [PMID: 24454311 PMCID: PMC3888948 DOI: 10.3389/fimmu.2013.00498] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/17/2013] [Indexed: 12/24/2022] Open
Abstract
Interferon-γ (IFNγ) plays various roles in the pathogenesis of HIV/AIDS. In an HIV-1 infected individual, the production of IFNγ is detected as early as the acute phase and continually detected throughout the course of infection. Initially produced to clear the primary infection, IFNγ together with other inflammatory cytokines are involved in establishing a chronic immune activation that exacerbates clinical diseases associated with AIDS. Unlike Type 1 IFNs, IFNγ has no direct antiviral activity against HIV-1 in primary cultures, as supported by the in vivo findings of IFNγ therapy in infected subjects. Results from both in vitro and ex vivo studies show that IFNγ can instead enhance HIV-1 replication and its associated diseases, and therapies aimed at decreasing its production are under consideration. On the other hand, IFNγ has been shown to enhance cytotoxic T lymphocytes and NK cell activities against HIV-1 infected cells. These activities are important in controlling HIV-1 replication in an individual and will most likely play a role in the prophylaxis of an effective vaccine against HIV-1. Additionally, IFNγ has been used in combination with HIV-1 vaccine to augment antiviral immunity. Technological advancements have focused on using IFNγ as a biological marker to analyze the type(s) of immunity generated by candidate HIV vaccines and the levels of immunity restored by anti-retroviral drug therapies or novel immunotherapies. Hence, in addition to its valuable ancillary role as a biological marker for the development of effective HIV-1 prophylactic and therapeutic strategies, IFNγ has a vital role in promoting the pathogenesis of HIV.
Collapse
Affiliation(s)
- Shannon R. Roff
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ezra N. Noon-Song
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Janet K. Yamamoto
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Considerable HIV-1 vaccine development efforts have been deployed over the past decade. Put into perspective, the results from efficacy trials and the identification of correlates of risk have opened large and unforeseen avenues for vaccine development. RECENT FINDINGS The Thai efficacy trial, RV144, provided the first evidence that HIV-1 vaccine protection against HIV-1 acquisition could be achieved. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop inversely correlated with a decreased risk of infection, whereas Env-specific IgA directly correlated with risk. Further clinical trials will focus on testing new envelope subunit proteins formulated with adjuvants capable of inducing higher and more durable functional antibody responses (both binding and broadly neutralizing antibodies). Moreover, vector-based vaccine regimens that can induce cell-mediated immune responses in addition to humoral responses remain a priority. SUMMARY Future efficacy trials will focus on prevention of HIV-1 transmission in heterosexual population in Africa and MSM in Asia. The recent successes leading to novel directions in HIV-1 vaccine development are a result of collaboration and commitment among vaccine manufacturers, funders, scientists and civil society stakeholders. Sustained and broad collaborative efforts are required to advance new vaccine strategies for higher levels of efficacy.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program (MHRP), Bethesda, Maryland 20817, USA.
| | | | | |
Collapse
|
40
|
Watanabe K, Murakoshi H, Tamura Y, Koyanagi M, Chikata T, Gatanaga H, Oka S, Takiguchi M. Identification of cross-clade CTL epitopes in HIV-1 clade A/E-infected individuals by using the clade B overlapping peptides. Microbes Infect 2013; 15:874-86. [PMID: 23968885 DOI: 10.1016/j.micinf.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Identification of cross-clade T cell epitopes is one of key factors for the development of a widely applicable AIDS vaccine. We here investigated cross-clade CD8(+) T cell responses between clade B and A/E viruses in chronically HIV-1 clade A/E-infected Japanese individuals. CD8(+) T cell responses to 11-mer overlapping peptides derived from Nef, Gag, and Pol clade B consensus sequences were at a similar level to those to the same peptides found in clade B-infected individuals. Fifteen cross-clade CTL epitopes were identified from 13 regions where the frequency of responders was high in the clade A/E-infected individuals. The sequences of 6 epitopes were conserved between the clade B and clade A/E viruses whereas 9 epitopes had different amino acid sequences between the 2 viruses. CD8(+) T cells specific for the 6 conserved epitopes recognized cells infected with the clade A/E virus, whereas those for 8 diverse epitopes recognized both the clade A/E virus-infected and clade B-infected cells. All of the cross-clade CD8(+) T cells specific for conserved and diverse epitopes were detected in chronically HIV-1 clade A/E-infected individuals. These results show that in addition to conserved regions polymorphic ones across the clades can be targets for cross-clade CTLs.
Collapse
Affiliation(s)
- Koji Watanabe
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schiffner T, Sattentau QJ, Dorrell L. Development of prophylactic vaccines against HIV-1. Retrovirology 2013; 10:72. [PMID: 23866844 PMCID: PMC3722125 DOI: 10.1186/1742-4690-10-72] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/11/2013] [Indexed: 01/12/2023] Open
Abstract
The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.
Collapse
Affiliation(s)
- Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
42
|
Evolutionarily conserved epitopes on human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus reverse transcriptases detected by HIV-1-infected subjects. J Virol 2013; 87:10004-15. [PMID: 23824804 DOI: 10.1128/jvi.00359-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-human immunodeficiency virus (HIV) cytotoxic T lymphocyte (CTL)-associated epitopes, evolutionarily conserved on both HIV type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptases (RT), were identified using gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and carboxyfluorescein diacetate succinimide ester (CFSE) proliferation assays followed by CTL-associated cytotoxin analysis. The peripheral blood mononuclear cells (PBMC) or T cells from HIV-1-seropositive (HIV(+)) subjects were stimulated with overlapping RT peptide pools. The PBMC from the HIV(+) subjects had more robust IFN-γ responses to the HIV-1 peptide pools than to the FIV peptide pools, except for peptide-pool F3. In contrast, much higher and more frequent CD8(+) T-cell proliferation responses were observed with the FIV peptide pools than with the HIV peptide pools. HIV-1-seronegative subjects had no proliferation or IFN-γ responses to the HIV and FIV peptide pools. A total of 24% (40 of 166) of the IFN-γ responses to HIV pools and 43% (23 of 53) of the CD8(+) T-cell proliferation responses also correlated to responses to their counterpart FIV pools. Thus, more evolutionarily conserved functional epitopes were identified by T-cell proliferation than by IFN-γ responses. In the HIV(+) subjects, peptide-pool F3, but not the HIV H3 counterpart, induced the most IFN-γ and proliferation responses. These reactions to peptide-pool F3 were highly reproducible and persisted over the 1 to 2 years of testing. All five individual peptides and epitopes of peptide-pool F3 induced IFN-γ and/or proliferation responses in addition to inducing CTL-associated cytotoxin responses (perforin, granzyme A, granzyme B). The epitopes inducing polyfunctional T-cell activities were highly conserved among human, simian, feline, and ungulate lentiviruses, which indicated that these epitopes are evolutionarily conserved. These results suggest that FIV peptides could be used in an HIV-1 vaccine.
Collapse
|
43
|
Hertz T, Ahmed H, Friedrich DP, Casimiro DR, Self SG, Corey L, McElrath MJ, Buchbinder S, Horton H, Frahm N, Robertson MN, Graham BS, Gilbert P. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1. PLoS Pathog 2013; 9:e1003404. [PMID: 23818843 PMCID: PMC3688560 DOI: 10.1371/journal.ppat.1003404] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/17/2013] [Indexed: 02/06/2023] Open
Abstract
Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different vaccine candidates can be compared in early phases of evaluation. The HIV epidemic is a major global health challenge leading to more than 1.8 million deaths annually, and despite significant efforts, the search for an efficacious and safe vaccine continues. Several candidate vaccines were designed to elicit CD8+ T-cell responses and were based on using recombinant Adenovirus serotype 5 (rAd-5) vector that expresses HIV-derived antigens. While none of these vaccines had protective effects, they provide an opportunity to study vaccine-induced T-cell responses on a population level. Here, we analyze data from the three largest epitope mapping studies performed in three clinical trials testing two rAd-5 vaccines. We find that vaccine-induced responses tend to cluster in “epitope hotspots” and that these hotspots are different for each vaccine and more surprisingly in two different vaccine trials testing the same vaccine. We also compared vaccine-induced hotspots to those elicited by natural infection and found that some of the vaccine-induced hotspots are not observed in natural infection. Finally, we show that epitope prediction methods can be useful for predicting vaccine induced hotspots based on participants HLA alleles.
Collapse
Affiliation(s)
- Tomer Hertz
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kunwar P, Hawkins N, Dinges WL, Liu Y, Gabriel EE, Swan DA, Stevens CE, Maenza J, Collier AC, Mullins JI, Hertz T, Yu X, Horton H. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design. PLoS One 2013; 8:e64405. [PMID: 23741326 PMCID: PMC3669284 DOI: 10.1371/journal.pone.0064405] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022] Open
Abstract
A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that can elicit CD8+ T cell responses to multiple conserved epitopes of HIV-1.
Collapse
Affiliation(s)
- Pratima Kunwar
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Natalie Hawkins
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Warren L. Dinges
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Polyclinic Infectious Disease, Seattle, Washington, United States of America
| | - Yi Liu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Erin E. Gabriel
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David A. Swan
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Claire E. Stevens
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janine Maenza
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ann C. Collier
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Tomer Hertz
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xuesong Yu
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Helen Horton
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
45
|
Krotova O, Starodubova E, Petkov S, Kostic L, Agapkina J, Hallengärd D, Viklund A, Latyshev O, Gelius E, Dillenbeck T, Karpov V, Gottikh M, Belyakov IM, Lukashov V, Isaguliants MG. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells. PLoS One 2013; 8:e62720. [PMID: 23667513 PMCID: PMC3648577 DOI: 10.1371/journal.pone.0062720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN) of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V) with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids) were highly expressed in human and murine cell lines (>0.7 ng/cell). Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus-infected cells via both MHC class I and II pathways.
Collapse
Affiliation(s)
- Olga Krotova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Agapkina
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alecia Viklund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Vadim Karpov
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Marina Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor M. Belyakov
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, and the Department of Internal Medicine, University of Michigan, School of Medicine, Ann Arbor, Michigan, United States of America
| | - Vladimir Lukashov
- DI Ivanovsky Institute of Virology, Moscow, Russia
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria G. Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- * E-mail:
| |
Collapse
|
46
|
Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV. Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines 2012; 11:733-44. [PMID: 22873129 DOI: 10.1586/erv.12.35] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liposomes containing monophosphoryl lipid A (MPLA) have previously exhibited considerable potency and safety in human trials with a variety of candidate vaccines, including vaccines to malaria, HIV-1 and several different types of cancer. The long history of research and development of MPLA and liposomal MPLA as vaccine adjuvants reveals that there are numerous opportunities for creation and development of generic (nonproprietary) adjuvant system formulations with these materials that are not only highly potent and safe, but also readily available as native materials or as synthetic compounds. They are easily manufactured as potentially inexpensive and easy to use adjuvant systems and might be effective even with synthetic peptides as antigens.
Collapse
Affiliation(s)
- Carl R Alving
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | |
Collapse
|
47
|
Sanou MP, De Groot AS, Murphey-Corb M, Levy JA, Yamamoto JK. HIV-1 Vaccine Trials: Evolving Concepts and Designs. Open AIDS J 2012; 6:274-88. [PMID: 23289052 PMCID: PMC3534440 DOI: 10.2174/1874613601206010274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
Abstract
An effective prophylactic HIV-1 vaccine is needed to eradicate the HIV/AIDS pandemic but designing such a vaccine is a challenge. Despite many advances in vaccine technology and approaches to generate both humoral and cellular immune responses, major phase-II and -III vaccine trials against HIV/AIDS have resulted in only moderate successes. The modest achievement of the phase-III RV144 prime-boost trial in Thailand re-emphasized the importance of generating robust humoral and cellular responses against HIV. While antibody-directed approaches are being pursued by some groups, others are attempting to develop vaccines targeting cell-mediated immunity, since evidence show CTLs to be important for the control of HIV replication. Phase-I and -IIa multi-epitope vaccine trials have already been conducted with vaccine immunogens consisting of known CTL epitopes conserved across HIV subtypes, but have so far fallen short of inducing robust and consistent anti-HIV CTL responses. The concepts leading to the development of T-cell epitope-based vaccines, the outcomes of related clinical vaccine trials and efforts to enhance the immunogenicity of cell-mediated approaches are summarized in this review. Moreover, we describe a novel approach based on the identification of SIV and FIV antigens which contain conserved HIV-specific T-cell epitopes and represent an alternative method for developing an effective HIV vaccine against global HIV isolates.
Collapse
Affiliation(s)
- Missa P Sanou
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - Anne S De Groot
- EpiVax Inc., University of Rhode Island, Providence, RI 02903, USA
| | - Michael Murphey-Corb
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, E1252 Biomedical Science Tower 200, Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jay A Levy
- Department of Medicine, University of California San Francisco, S-1280, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Janet K Yamamoto
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| |
Collapse
|
48
|
Zhu R, Huang W, Wang W, Liu Q, Nie J, Meng S, Yu Y, Wang Y. Comparison on virulence and immunogenicity of two recombinant vaccinia vaccines, Tian Tan and Guang9 strains, expressing the HIV-1 envelope gene. PLoS One 2012; 7:e48343. [PMID: 23139778 PMCID: PMC3491055 DOI: 10.1371/journal.pone.0048343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The vaccinia virus Guang9 strain (VG9), derived from the vaccinia virus Tian Tan strain (VTT) has been found to be less virulent than VTT. METHODOLOGY/PRINCIPAL FINDINGS To investigate whether VG9 could be a potential replicating virus vector, the TK genes in VG9 and VTT were replaced with the HIV-1 envelope gene via homologous recombination, resulting in the recombinant viruses, VG9-E and VTT-E. The biology, virulence, humoral and cellular immunological responses of VG9-E and VTT-E were evaluated. Our results indicated no obvious difference in range of host cells and diffusion between two recombinant viruses. Neurovirulence for VG9-E in weanling and suckling mice, and skin virulence in rabbits, were lower than that of VTT-E. The humoral immune responses, including binding antibody and neutralizing antibody responses, induced by VG9-E were not significantly different from those for VTT-E whilst IFN-γ response which represented cellular immune response induced by VG9-E was significantly higher than that did by VTT-E. CONCLUSIONS/SIGNIFICANCE Our results indicated that VG9-E was less virulent, yet induced higher cellular immune response than VTT-E. Therefore, it could be an ideal replicating vaccinia vector for HIV vaccine research and development.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Cell Biology, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- Wuhan Institute of Biological Products, Wuhan, China
| | - Weijin Huang
- Department of Cell Biology, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Wenbo Wang
- Department of Cell Biology, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qiang Liu
- Department of Cell Biology, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jianhui Nie
- Department of Cell Biology, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Shufang Meng
- Department of Cell Biology, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yongxin Yu
- The First Department of Viral Vaccine, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Department of Cell Biology, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
49
|
Full-length HIV-1 immunogens induce greater magnitude and comparable breadth of T lymphocyte responses to conserved HIV-1 regions compared with conserved-region-only HIV-1 immunogens in rhesus monkeys. J Virol 2012; 86:11434-40. [PMID: 22896617 DOI: 10.1128/jvi.01779-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A global HIV-1 vaccine will likely need to induce immune responses against conserved HIV-1 regions to contend with the profound genetic diversity of HIV-1. Here we evaluated the capacity of immunogens consisting of only highly conserved HIV-1 sequences that are aimed at focusing cellular immune responses on these potentially critical regions. We assessed in rhesus monkeys the breadth and magnitude of T lymphocyte responses elicited by adenovirus vectors expressing either full-length HIV-1 Gag/Pol/Env immunogens or concatenated immunogens consisting of only highly conserved HIV-1 sequences. Surprisingly, we found that the full-length immunogens induced comparable breadth (P = 1.0) and greater magnitude (P = 0.01) of CD8(+) T lymphocyte responses against conserved HIV-1 regions compared with the conserved-region-only immunogens. Moreover, the full-length immunogens induced a 5-fold increased total breadth of HIV-1-specific T lymphocyte responses compared with the conserved-region-only immunogens (P = 0.007). These results suggest that full-length HIV-1 immunogens elicit a substantially increased magnitude and breadth of cellular immune responses compared with conserved-region-only HIV-1 immunogens, including greater magnitude and comparable breadth of responses against conserved sequences.
Collapse
|
50
|
Keefer MC, Gilmour J, Hayes P, Gill D, Kopycinski J, Cheeseman H, Cashin-Cox M, Naarding M, Clark L, Fernandez N, Bunce CA, Hay CM, Welsh S, Komaroff W, Hachaambwa L, Tarragona-Fiol T, Sayeed E, Zachariah D, Ackland J, Loughran K, Barin B, Cormier E, Cox JH, Fast P, Excler JL. A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 2012; 7:e41936. [PMID: 22870265 PMCID: PMC3411704 DOI: 10.1371/journal.pone.0041936] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/26/2012] [Indexed: 11/28/2022] Open
Abstract
Background We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults. Methods Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions) or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively) within one of four dosage groups: Ad35-GRIN/ENV 2×109 (A), 2×1010 (B), 2×1011 (C), or Ad35-GRIN 1×1010 (D) viral particles. Results No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A–D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC) per 106 PBMC to any antigen was 78–139 across Groups A–C and 158–174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A–C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination. Conclusion/Significance Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination. T-cell responses were broad and polyfunctional. Trial Registration ClinicalTrials.gov NCT00851383
Collapse
Affiliation(s)
- Michael C Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|