1
|
Diaz MC, Oses C, Vázquez Lareu A, Roberti SL, Guberman AS, Levi V. A Simple Method for Generating Light-induced Clusters of Transcription Factors: Effects on the Nuclear Distribution of OCT4 and on its Interactions With Chromatin. J Mol Biol 2025; 437:169118. [PMID: 40174669 DOI: 10.1016/j.jmb.2025.169118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
In recent years, a wealth of evidence revealed that many transcription-related molecules concentrate in membrane less nuclear compartments which are now recognized as relevant for transcription regulation. However, many aspects of this relationship remain unclear partly due to the experimental challenges of manipulating the distribution of transcription factors (TFs) in a controlled fashion. Here, we introduce a simple procedure to generate in live cells light-induced clusters (LICs) of TFs labeled with Janelia Fluor® probes through the HaloTag. When irradiated with the appropriate laser, the photooxidation/photobleaching of fluorescent molecules leads to the formation of a cluster which grows by incorporating other TF molecules, some through weak interactions. While the method was mostly tested with OCT4, other TFs such as SOX2 and the hormone-stimulated glucocorticoid receptor also form LICs. Relevantly, the inactive receptor in stem cells fails to form LICs suggesting that the process requires certain TF conformations and/or cellular contexts. Finally, we show that the recruitment of OCT4 to large LICs lowers its nucleoplasmic concentration and modifies both the overall distribution of the TF and its interactions with chromatin. In contrast, the generation of smaller LICs triggers the dissolution of nearby natural condensates of OCT4 but does not affect its nucleoplasmic concentration and OCT4-chromatin interactions. These results suggest that OCT4 condensates act as reservoirs, buffering variations in the nucleoplasmic concentration of this TF. This new method could be a valuable tool for exploring the relation between TFs distribution, landscape of interactions with chromatin and transcriptional output.
Collapse
Affiliation(s)
- Maria Candelaria Diaz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Alejo Vázquez Lareu
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Sabrina Lorena Roberti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires C1428EGA, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
2
|
Eschweiler D, Yilmaz R, Baumann M, Laube I, Roy R, Jose A, Brückner D, Stegmaier J. Denoising diffusion probabilistic models for generation of realistic fully-annotated microscopy image datasets. PLoS Comput Biol 2024; 20:e1011890. [PMID: 38377165 PMCID: PMC10906858 DOI: 10.1371/journal.pcbi.1011890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Recent advances in computer vision have led to significant progress in the generation of realistic image data, with denoising diffusion probabilistic models proving to be a particularly effective method. In this study, we demonstrate that diffusion models can effectively generate fully-annotated microscopy image data sets through an unsupervised and intuitive approach, using rough sketches of desired structures as the starting point. The proposed pipeline helps to reduce the reliance on manual annotations when training deep learning-based segmentation approaches and enables the segmentation of diverse datasets without the need for human annotations. We demonstrate that segmentation models trained with a small set of synthetic image data reach accuracy levels comparable to those of generalist models trained with a large and diverse collection of manually annotated image data, thereby offering a streamlined and specialized application of segmentation models.
Collapse
Affiliation(s)
- Dennis Eschweiler
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Rüveyda Yilmaz
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Matisse Baumann
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Ina Laube
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Rijo Roy
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Abin Jose
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Daniel Brückner
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Johannes Stegmaier
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| |
Collapse
|
3
|
Panconi L, Tansell A, Collins AJ, Makarova M, Owen DM. Three-dimensional topology-based analysis segments volumetric and spatiotemporal fluorescence microscopy. BIOLOGICAL IMAGING 2023; 4:e1. [PMID: 38516632 PMCID: PMC10951800 DOI: 10.1017/s2633903x23000260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 03/23/2024]
Abstract
Image analysis techniques provide objective and reproducible statistics for interpreting microscopy data. At higher dimensions, three-dimensional (3D) volumetric and spatiotemporal data highlight additional properties and behaviors beyond the static 2D focal plane. However, increased dimensionality carries increased complexity, and existing techniques for general segmentation of 3D data are either primitive, or highly specialized to specific biological structures. Borrowing from the principles of 2D topological data analysis (TDA), we formulate a 3D segmentation algorithm that implements persistent homology to identify variations in image intensity. From this, we derive two separate variants applicable to spatial and spatiotemporal data, respectively. We demonstrate that this analysis yields both sensitive and specific results on simulated data and can distinguish prominent biological structures in fluorescence microscopy images, regardless of their shape. Furthermore, we highlight the efficacy of temporal TDA in tracking cell lineage and the frequency of cell and organelle replication.
Collapse
Affiliation(s)
- Luca Panconi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
| | - Amy Tansell
- College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- School of Mathematics, University of Birmingham, Birmingham, UK
| | | | - Maria Makarova
- School of Biosciences, College of Life and Environmental Science, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dylan M. Owen
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
- School of Mathematics, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Wu H, Niyogisubizo J, Zhao K, Meng J, Xi W, Li H, Pan Y, Wei Y. A Weakly Supervised Learning Method for Cell Detection and Tracking Using Incomplete Initial Annotations. Int J Mol Sci 2023; 24:16028. [PMID: 38003217 PMCID: PMC10670924 DOI: 10.3390/ijms242216028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 11/26/2023] Open
Abstract
The automatic detection of cells in microscopy image sequences is a significant task in biomedical research. However, routine microscopy images with cells, which are taken during the process whereby constant division and differentiation occur, are notoriously difficult to detect due to changes in their appearance and number. Recently, convolutional neural network (CNN)-based methods have made significant progress in cell detection and tracking. However, these approaches require many manually annotated data for fully supervised training, which is time-consuming and often requires professional researchers. To alleviate such tiresome and labor-intensive costs, we propose a novel weakly supervised learning cell detection and tracking framework that trains the deep neural network using incomplete initial labels. Our approach uses incomplete cell markers obtained from fluorescent images for initial training on the Induced Pluripotent Stem (iPS) cell dataset, which is rarely studied for cell detection and tracking. During training, the incomplete initial labels were updated iteratively by combining detection and tracking results to obtain a model with better robustness. Our method was evaluated using two fields of the iPS cell dataset, along with the cell detection accuracy (DET) evaluation metric from the Cell Tracking Challenge (CTC) initiative, and it achieved 0.862 and 0.924 DET, respectively. The transferability of the developed model was tested using the public dataset FluoN2DH-GOWT1, which was taken from CTC; this contains two datasets with reference annotations. We randomly removed parts of the annotations in each labeled data to simulate the initial annotations on the public dataset. After training the model on the two datasets, with labels that comprise 10% cell markers, the DET improved from 0.130 to 0.903 and 0.116 to 0.877. When trained with labels that comprise 60% cell markers, the performance was better than the model trained using the supervised learning method. This outcome indicates that the model's performance improved as the quality of the labels used for training increased.
Collapse
Affiliation(s)
- Hao Wu
- Shenzhen Key Laboratory of Intelligent Bioinformatics and Center for High Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.W.); (J.N.); (K.Z.); (J.M.); (W.X.)
| | - Jovial Niyogisubizo
- Shenzhen Key Laboratory of Intelligent Bioinformatics and Center for High Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.W.); (J.N.); (K.Z.); (J.M.); (W.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keliang Zhao
- Shenzhen Key Laboratory of Intelligent Bioinformatics and Center for High Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.W.); (J.N.); (K.Z.); (J.M.); (W.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jintao Meng
- Shenzhen Key Laboratory of Intelligent Bioinformatics and Center for High Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.W.); (J.N.); (K.Z.); (J.M.); (W.X.)
| | - Wenhui Xi
- Shenzhen Key Laboratory of Intelligent Bioinformatics and Center for High Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.W.); (J.N.); (K.Z.); (J.M.); (W.X.)
| | - Hongchang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yi Pan
- College of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yanjie Wei
- Shenzhen Key Laboratory of Intelligent Bioinformatics and Center for High Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.W.); (J.N.); (K.Z.); (J.M.); (W.X.)
| |
Collapse
|
5
|
Wagner R, Lopez CF, Stiller C. Self-supervised pseudo-colorizing of masked cells. PLoS One 2023; 18:e0290561. [PMID: 37616272 PMCID: PMC10449109 DOI: 10.1371/journal.pone.0290561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Self-supervised learning, which is strikingly referred to as the dark matter of intelligence, is gaining more attention in biomedical applications of deep learning. In this work, we introduce a novel self-supervision objective for the analysis of cells in biomedical microscopy images. We propose training deep learning models to pseudo-colorize masked cells. We use a physics-informed pseudo-spectral colormap that is well suited for colorizing cell topology. Our experiments reveal that approximating semantic segmentation by pseudo-colorization is beneficial for subsequent fine-tuning on cell detection. Inspired by the recent success of masked image modeling, we additionally mask out cell parts and train to reconstruct these parts to further enrich the learned representations. We compare our pre-training method with self-supervised frameworks including contrastive learning (SimCLR), masked autoencoders (MAEs), and edge-based self-supervision. We build upon our previous work and train hybrid models for cell detection, which contain both convolutional and vision transformer modules. Our pre-training method can outperform SimCLR, MAE-like masked image modeling, and edge-based self-supervision when pre-training on a diverse set of six fluorescence microscopy datasets. Code is available at: https://github.com/roydenwa/pseudo-colorize-masked-cells.
Collapse
Affiliation(s)
- Royden Wagner
- Karlsruhe Institute of Technology (KIT), Karlsruhe, BW, Germany
| | | | | |
Collapse
|
6
|
Legartová S, Fagherazzi P, Goswami P, Brazda V, Lochmanová G, Koutná I, Bártová E. Irradiation potentiates p53 phosphorylation and p53 binding to the promoter and coding region of the TP53 gene. Biochimie 2023; 204:154-168. [PMID: 36167255 DOI: 10.1016/j.biochi.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Abstract
An essential factor of the DNA damage response is 53BP1, a multimeric protein that inhibits the resection-dependent double-strand break (DBS) repair. The p53 protein is a tumor suppressor known as a guardian of the genome. Although the interaction between 53BP1 and its p53 partner is well-known in regulating gene expression, a question remains whether genome injury can affect the interaction between 53BP1 and p53 proteins or p53 binding to DNA. Here, using mass spectrometry, we determine post-translational modifications and interaction properties of 53BP1 and p53 proteins in non-irradiated and γ-irradiated cells. In addition, we used Atomic Force Microscopy (AFM) and Fluorescent Lifetime Imaging Microscopy combined with Fluorescence Resonance Energy Transfer (FLIM-FRET) for studies of p53 binding to DNA. Also, we used local laser microirradiation as a tool of advanced confocal microscopy, showing selected protein accumulation at locally induced DNA lesions. We observed that 53BP1 and p53 proteins accumulate at microirradiated chromatin but with distinct kinetics. The density of 53BP1 (53BP1pS1778) phosphorylated form was lower in DNA lesions than in the non-specified form. By mass spectrometry, we found 22 phosphorylations, 4 acetylation sites, and methylation of arginine 1355 within the DNA-binding domain of the 53BP1 protein (aa1219-1711). The p53 protein was phosphorylated on 8 amino acids and acetylated on the N-terminal domain. Post-translational modifications (PTMs) of 53BP1 were not changed in cells exposed to γ-radiation, while γ-rays increased the level of S6ph and S15ph in p53. Interaction analysis showed that 53BP1 and p53 proteins have 54 identical interaction protein partners, and AFM revealed that p53 binds to both non-specific and TP53-specific sequences (AGACATGCCTA GGCATGTCT). Irradiation by γ-rays enhanced the density of the p53 protein at the AGACATGCCTAGGCATGTCT region, and the binding of p53 S15ph to the TP53 promoter was potentiated in irradiated cells. These findings show that γ-irradiation, in general, strengthens the binding of phosphorylated p53 protein to the encoding gene.
Collapse
Affiliation(s)
- Soňa Legartová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Paolo Fagherazzi
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Pratik Goswami
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Vaclav Brazda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Gabriela Lochmanová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Irena Koutná
- The International Clinical Research Center of St. Anne's University Hospital in Brno (FNUSA-ICRC), Pekařská 53, 656 91, Brno, Czech Republic
| | - Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
7
|
Routila J, Qiao X, Weltner J, Rantala JK, Carpén T, Hagström J, Mäkitie A, Leivo I, Ruuskanen M, Söderlund J, Rintala M, Hietanen S, Irjala H, Minn H, Westermarck J, Ventelä S. Cisplatin overcomes radiotherapy resistance in OCT4-expressing head and neck squamous cell carcinoma. Oral Oncol 2022; 127:105772. [PMID: 35245886 DOI: 10.1016/j.oraloncology.2022.105772] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Cisplatin is combined with radiotherapy for advanced head and neck squamous cell carcinoma (HNSCC). While providing a beneficial effect on survival, it also causes side effects and thus is an important target when considering treatment de-escalation. Currently, there are no biomarkers to predict its patient-selective therapeutic utility. In this study, we examined the role of the stem cell factor OCT4 as a potential biomarker to help clinicians stratify HNSCC patients between radiotherapy and chemoradiotherapy. MATERIALS AND METHODS OCT4 immunohistochemical staining of a population-validated tissue microarray (PV-TMA) (n = 166) representative of a standard HNSCC patients was carried out, and 5-year survival was analyzed. The results were validated using ex vivo drug sensitivity analysis of HNSCC tumor samples, and further cross-validated in independent oropharyngeal (n = 118), nasopharyngeal (n = 170), and vulvar carcinoma (n = 95) clinical datasets. In vitro, genetically modified, patient-derived HNSCC cells were used. RESULTS OCT4 expression in HNSCC tumors was associated with radioresistance. However, combination therapy with cisplatin was found to overcome thisradioresistance in OCT4-expressing HNSCC tumors. The results were validated by using several independent patient cohorts. Furthermore, CRISPRa-based OCT4 overexpression in the HNSCC cell line resulted in apoptosis resistance, and cisplatin was found to downregulate OCT4 protein expression in vitro. Ex vivo drug sensitivity analysis of HNSCC tumors confirmed the association between OCT4 expression and cisplatin sensitivity. CONCLUSION This study introduces OCT4 immunohistochemistry as a simple and cost-effective diagnostic approach for clinical practice to identify HNSCC patients benefitting from radiosensitization by cisplatin using either full or reduced dosing.
Collapse
Affiliation(s)
- Johannes Routila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Xi Qiao
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jere Weltner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, SE-14186 Stockholm, Sweden
| | - Juha K Rantala
- MISVIK Biology Ltd, Karjakatu 35 B, 20520 Turku, Finland
| | - Timo Carpén
- Department for Otorhinolaryngology - Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, P.O.Box 263, FI-00029 HUS Helsinki, Finland
| | - Jaana Hagström
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| | - Antti Mäkitie
- Department for Otorhinolaryngology - Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, P.O.Box 263, FI-00029 HUS Helsinki, Finland
| | - Ilmo Leivo
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland; Institute of Biomedicine, Pathology, University of Turku, Kiinamyllynkatu 10 D, 20520 Turku, Finland
| | - Miia Ruuskanen
- Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Jenni Söderlund
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Marjut Rintala
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland; FICAN West Cancer Centre, Turku, Finland
| | - Heikki Irjala
- Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Heikki Minn
- FICAN West Cancer Centre, Turku, Finland; Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Biomedical Institute, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; FICAN West Cancer Centre, Turku, Finland
| | - Sami Ventelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland; FICAN West Cancer Centre, Turku, Finland.
| |
Collapse
|
8
|
Bilodeau A, Bouchard C, Lavoie-Cardinal F. Automated Microscopy Image Segmentation and Analysis with Machine Learning. Methods Mol Biol 2022; 2440:349-365. [PMID: 35218549 DOI: 10.1007/978-1-0716-2051-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of automated quantitative image analysis pipelines requires thoughtful considerations to extract meaningful information. Commonly, extraction rules for quantitative parameters are defined and agreed beforehand to ensure repeatability between annotators. Machine/Deep Learning (ML/DL) now provides tools to automatically extract the set of rules to obtain quantitative information from the images (e.g. segmentation, enumeration, classification, etc.). Many parameters must be considered in the development of proper ML/DL pipelines. We herein present the important vocabulary, the necessary steps to create a thorough image segmentation pipeline, and also discuss technical aspects that should be considered in the development of automated image analysis pipelines through ML/DL.
Collapse
Affiliation(s)
- Anthony Bilodeau
- Université Laval, Québec, QC, Canada
- CERVO Brain research center, Québec, QC, Canada
| | - Catherine Bouchard
- Université Laval, Québec, QC, Canada
- CERVO Brain research center, Québec, QC, Canada
| | - Flavie Lavoie-Cardinal
- CERVO Brain research center, Québec, QC, Canada.
- Département de psychiatrie et de neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
9
|
Legartová S, Svobodová Kovaříková A, Běhalová Suchánková J, Polášek-Sedláčková H, Bártová E. Early recruitment of PARP-dependent m 8A RNA methylation at DNA lesions is subsequently accompanied by active DNA demethylation. RNA Biol 2022; 19:1153-1171. [PMID: 36382943 PMCID: PMC9673957 DOI: 10.1080/15476286.2022.2139109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA methylation, especially 6-methyladenosine (m6A)-modified RNAs, plays a specific role in DNA damage response (DDR). Here, we also observe that RNA modified at 8-methyladenosine (m8A) is recruited to UVA-damaged chromatin immediately after microirradiation. Interestingly, the level of m8A RNA at genomic lesions was reduced after inhibition of histone deacetylases and DNA methyltransferases. It appears in later phases of DNA damage response, accompanied by active DNA demethylation. Also, PARP inhibitor (PARPi), Olaparib, prevented adenosine methylation at microirradiated chromatin. PARPi abrogated not only m6A and m8A RNA positivity at genomic lesions, but also XRCC1, the factor of base excision repair (BER), did not recognize lesions in DNA. To this effect, Olaparib enhanced the genome-wide level of γH2AX. This histone modification interacted with m8A RNAs to a similar extent as m8A RNAs with DNA. Pronounced interaction properties we did not observe for m6A RNAs and DNA; however, m6A RNA interacted with XRCC1 with the highest efficiency, especially in microirradiated cells. Together, we show that the recruitment of m6A RNA and m8A RNA to DNA lesions is PARP dependent. We suggest that modified RNAs likely play a role in the BER mechanism accompanied by active DNA demethylation. In this process, γH2AX stabilizes m6A/m8A-positive RNA-DNA hybrid loops via its interaction with m8A RNAs. R-loops could represent basic three-stranded structures recognized by PARP-dependent non-canonical m6A/m8A-mediated DNA repair pathway.
Collapse
Affiliation(s)
- Soňa Legartová
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Alena Svobodová Kovaříková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Běhalová Suchánková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Hana Polášek-Sedláčková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic,CONTACT Eva Bártová Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
10
|
Jia Y, Chen X, Sun J. Apremilast ameliorates IL-1α-induced dysfunction in epidermal stem cells. Aging (Albany NY) 2021; 13:19293-19305. [PMID: 34375302 PMCID: PMC8386542 DOI: 10.18632/aging.203265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Skin tissue is the natural barrier that protects our body, the damage of which can be repaired by the epidermal stem cells (ESCs). However, external factors abolish the self-repair ability of ESCs by inducing oxidative stress and severe inflammation. Apremilast is a small molecular inhibitor of phosphodiesterase 4 that was approved for the treatment of psoriasis. In the present study, the protective property of Apremilast against IL-1α-induced dysfunction on epidermal stem cells, as well as the preliminary mechanism, will be investigated. METHODS ESCs were isolated from neonatal mice. The expression levels of TNF-α, IL-8, IL-12, MMP-2, and MMP-9 were detected using real-time PCR and ELISA. MitoSOX Red assay was used to determine the level of mitochondrial reactive oxygen species (ROS). Western blot and real-time PCR were utilized to determine the expression levels of IL-1R1, Myd88, and TRAF6. Activation of NF-κB was assessed by measuring the p-NF-κB p65 and luciferase activity. Capacities of ESCs were evaluated by measuring the gene expressions of integrin β1 and Krt19 using real-time PCR. RESULTS Firstly, the expression levels of TNF-α, IL-8, IL-12, MMP-2, MMP-9 and IL-1R1, as well as the ROS level, were significantly elevated by IL-1α but greatly suppressed by treatment with Apremilast. Subsequently, we found that the activated Myd88/TRAF6/NF-κB signaling pathway induced by stimulation with IL-1α was significantly inhibited by the introduction of Apremilast. As a result, Apremilast protected ESCs against IL-1α-induced impairment in capacities of ESCs, this was verified by the elevated expression levels of integrin β1 and Krt19. CONCLUSIONS Apremilast might ameliorate IL-1α-induced dysfunction in ESCs by mitigating oxidative stress and inflammation through inhibiting the activation of the Myd88/TRAF6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuxi Jia
- Department of Dermatology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Xiangru Chen
- Department of Dermatology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jing Sun
- Department of Dermatology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| |
Collapse
|
11
|
Ghannoum S, Antos K, Leoncio Netto W, Gomes C, Köhn-Luque A, Farhan H. CellMAPtracer: A User-Friendly Tracking Tool for Long-Term Migratory and Proliferating Cells Associated with FUCCI Systems. Cells 2021; 10:cells10020469. [PMID: 33671785 PMCID: PMC7927118 DOI: 10.3390/cells10020469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 01/23/2023] Open
Abstract
Cell migration is a fundamental biological process of key importance in health and disease. Advances in imaging techniques have paved the way to monitor cell motility. An ever-growing collection of computational tools to track cells has improved our ability to analyze moving cells. One renowned goal in the field is to provide tools that track cell movement as comprehensively and automatically as possible. However, fully automated tracking over long intervals of time is challenged by dividing cells, thus calling for a combination of automated and supervised tracking. Furthermore, after the emergence of various experimental tools to monitor cell-cycle phases, it is of relevance to integrate the monitoring of cell-cycle phases and motility. We developed CellMAPtracer, a multiplatform tracking system that achieves that goal. It can be operated as a conventional, automated tracking tool of single cells in numerous imaging applications. However, CellMAPtracer also allows adjusting tracked cells in a semiautomated supervised fashion, thereby improving the accuracy and facilitating the long-term tracking of migratory and dividing cells. CellMAPtracer is available with a user-friendly graphical interface and does not require any coding or programming skills. CellMAPtracer is compatible with two- and three-color fluorescent ubiquitination-based cell-cycle indicator (FUCCI) systems and allows the user to accurately monitor various migration parameters throughout the cell cycle, thus having great potential to facilitate new discoveries in cell biology.
Collapse
Affiliation(s)
- Salim Ghannoum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway;
- Correspondence: (S.G.); (K.A.); Tel.: +46-76-577-0129 (S.G.)
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, 90736 Umeå, Sweden
- Correspondence: (S.G.); (K.A.); Tel.: +46-76-577-0129 (S.G.)
| | - Waldir Leoncio Netto
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (W.L.N.); (A.K.-L.)
| | - Cecil Gomes
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (W.L.N.); (A.K.-L.)
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway;
- Institute of Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Komůrková D, Svobodová Kovaříková A, Bártová E. G-Quadruplex Structures Colocalize with Transcription Factories and Nuclear Speckles Surrounded by Acetylated and Dimethylated Histones H3. Int J Mol Sci 2021; 22:1995. [PMID: 33671470 PMCID: PMC7922289 DOI: 10.3390/ijms22041995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded helical structures that regulate several nuclear processes, including gene expression and telomere maintenance. We observed that G4s are located in GC-rich (euchromatin) regions and outside the fibrillarin-positive compartment of nucleoli. Genomic regions around G4s were preferentially H3K9 acetylated and H3K9 dimethylated, but H3K9me3 rarely decorated G4 structures. We additionally observed the variability in the number of G4s in selected human and mouse cell lines. We found the highest number of G4s in human embryonic stem cells. We observed the highest degree of colocalization between G4s and transcription factories, positive on the phosphorylated form of RNA polymerase II (RNAP II). Similarly, a high colocalization rate was between G4s and nuclear speckles, enriched in pre-mRNA splicing factor SC-35. PML bodies, the replication protein SMD1, and Cajal bodies colocalized with G4s to a lesser extent. Thus, G4 structures seem to appear mainly in nuclear compartments transcribed via RNAP II, and pre-mRNA is spliced via the SC-35 protein. However, α-amanitin, an inhibitor of RNAP II, did not affect colocalization between G4s and transcription factories as well as G4s and SC-35-positive domains. In addition, irradiation by γ-rays did not change a mutual link between G4s and DNA repair proteins (G4s/γH2AX, G4s/53BP1, and G4s/MDC1), accumulated into DNA damage foci. Described characteristics of G4s seem to be the manifestation of pronounced G4s stability that is likely maintained not only via a high-order organization of these structures but also by a specific histone signature, including H3K9me2, responsible for chromatin compaction.
Collapse
Affiliation(s)
| | | | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Department of Molecular Cytology and Cytometry, Královopolská 135, 612 65 Brno, Czech Republic; (D.K.); (A.S.K.)
| |
Collapse
|
13
|
Legartová S, Fagherazzi P, Stixová L, Kovařík A, Raška I, Bártová E. The SC-35 Splicing Factor Interacts with RNA Pol II and A-Type Lamin Depletion Weakens This Interaction. Cells 2021; 10:cells10020297. [PMID: 33535591 PMCID: PMC7912905 DOI: 10.3390/cells10020297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
The essential components of splicing are the splicing factors accumulated in nuclear speckles; thus, we studied how DNA damaging agents and A-type lamin depletion affect the properties of these regions, positive on the SC-35 protein. We observed that inhibitor of PARP (poly (ADP-ribose) polymerase), and more pronouncedly inhibitors of RNA polymerases, caused DNA damage and increased the SC-35 protein level. Interestingly, nuclear blebs, induced by PARP inhibitor and observed in A-type lamin-depleted or senescent cells, were positive on both the SC-35 protein and another component of the spliceosome, SRRM2. In the interphase cell nuclei, SC-35 interacted with the phosphorylated form of RNAP II, which was A-type lamin-dependent. In mitotic cells, especially in telophase, the SC-35 protein formed a well-visible ring in the cytoplasmic fraction and colocalized with β-catenin, associated with the plasma membrane. The antibody against the SRRM2 protein showed that nuclear speckles are already established in the cytoplasm of the late telophase and at the stage of early cytokinesis. In addition, we observed the occurrence of splicing factors in the nuclear blebs and micronuclei, which are also sites of both transcription and splicing. This conclusion supports the fact that splicing proceeds transcriptionally. According to our data, this process is A-type lamin-dependent. Lamin depletion also reduces the interaction between SC-35 and β-catenin in mitotic cells.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Paolo Fagherazzi
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Ivan Raška
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00 Praha, Czech Republic;
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
- Correspondence:
| |
Collapse
|
14
|
Takaya E, Takeichi Y, Ozaki M, Kurihara S. Sequential semi-supervised segmentation for serial electron microscopy image with small number of labels. J Neurosci Methods 2021; 351:109066. [PMID: 33417965 DOI: 10.1016/j.jneumeth.2021.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Segmentation of electron microscopic continuous section images by deep learning has attracted attention as a technique to reduce the cost of annotation for researchers attempting to make observations using 3D reconstruction methods. However, when the observed samples are rare, or scanning circumstances are unstable, pursuing generalization performance for newly obtained samples is not appropriate. NEW METHODS We assume a transductive setting that predicts all labels in a dataset from only partially obtained labels while avoiding the pursuit of generalization performance for unknown data. Then, we propose sequential semi-supervised segmentation (4S), which semi-automatically extracts neural regions from electron microscopy image stacks. This method focuses on the fact that adjacent images have a strong correlation in serial images. Our 4S repeats training, inference, and pseudo-labeling using a minimal number of teacher labels and performs segmentation on all slices. RESULT Our experiments using two types of serial section images showed effectiveness in terms of both quality and quantity. In addition, we experimentally clarified the effect of the number and position of teacher labels on performance. COMPARISON WITH EXISTING METHODS Compared with supervised learning when a small number of labeled data was obtained, the performance of the proposed method was shown to be superior. CONCLUSION Our 4S leverages a limited number of labeled data and a large amount of unlabeled data to extract neural regions from serial image stacks in a transductive setting. We plan to develop this method as a core module of a general-purpose annotation tool in our future work.
Collapse
Affiliation(s)
- Eichi Takaya
- School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, Kanagawa, Japan.
| | - Yusuke Takeichi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Mamiko Ozaki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan; Division of Strategic Research of the Humanosphere, Research Institute of Sustainable Humanosphere, Kyoto University, Kyoto, Japan; KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan; RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Satoshi Kurihara
- Department of Industrial and Systems Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
15
|
Bhattacharya A, Mukherjee S, Khan P, Banerjee S, Dutta A, Banerjee N, Sengupta D, Basak U, Chakraborty S, Dutta A, Chattopadhyay S, Jana K, Sarkar DK, Chatterjee S, Das T. SMAR1 repression by pluripotency factors and consequent chemoresistance in breast cancer stem-like cells is reversed by aspirin. Sci Signal 2020; 13:13/654/eaay6077. [PMID: 33082288 DOI: 10.1126/scisignal.aay6077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The high abundance of drug efflux pumps in cancer stem cells (CSCs) contributes to chemotherapy resistance. The transcriptional regulator SMAR1 suppresses CSC expansion in colorectal cancer, and increased abundance of SMAR1 is associated with better prognosis. Here, we found in breast tumors that the expression of SMAR1 was decreased in CSCs through the cooperative interaction of the pluripotency factors Oct4 and Sox2 with the histone deacetylase HDAC1. Overexpressing SMAR1 sensitized CSCs to chemotherapy through SMAR1-dependent recruitment of HDAC2 to the promoter of the gene encoding the drug efflux pump ABCG2. Treating cultured CSCs or 4T1 tumor-bearing mice with the nonsteroidal anti-inflammatory drug aspirin restored SMAR1 expression and ABCG2 repression and enhanced tumor sensitivity to doxorubicin. Our findings reveal transcriptional mechanisms regulating SMAR1 that also regulate cancer stemness and chemoresistance and suggest that, by restoring SMAR1 expression, aspirin might enhance chemotherapeutic efficacy in patients with stem-like tumors.
Collapse
Affiliation(s)
- Apoorva Bhattacharya
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Shravanti Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Poulami Khan
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Debomita Sengupta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Abhishek Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, BITS-Pilani, K K Birla Goa Campus, NH 17B, Zuarinagar, Goa-403 726, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Diptendra K Sarkar
- Department of Surgery, IPGMER and SSKM Hospital, Kolkata- 700 020, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India.
| |
Collapse
|
16
|
A role of the 53BP1 protein in genome protection: structural and functional characteristics of 53BP1-dependent DNA repair. Aging (Albany NY) 2020; 11:2488-2511. [PMID: 30996128 PMCID: PMC6519998 DOI: 10.18632/aging.101917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Nuclear architecture plays a significant role in DNA repair mechanisms. It is evident that proteins involved in DNA repair are compartmentalized in not only spontaneously occurring DNA lesions or ionizing radiation-induced foci (IRIF), but a specific clustering of these proteins can also be observed within the whole cell nucleus. For example, 53BP1-positive and BRCA1-positive DNA repair foci decorate chromocenters and can appear close to nuclear speckles. Both 53BP1 and BRCA1 are well-described factors that play an essential role in double-strand break (DSB) repair. These proteins are members of two protein complexes: 53BP1-RIF1-PTIP and BRCA1-CtIP, which make a “decision” determining whether canonical nonhomologous end joining (NHEJ) or homology-directed repair (HDR) is activated. It is generally accepted that 53BP1 mediates the NHEJ mechanism, while HDR is activated via a BRCA1-dependent signaling pathway. Interestingly, the 53BP1 protein appears relatively quickly at DSB sites, while BRCA1 is functional at later stages of DNA repair, as soon as the Mre11-Rad50-Nbs1 complex is recruited to the DNA lesions. A function of the 53BP1 protein is also linked to a specific histone signature, including phosphorylation of histone H2AX (γH2AX) or methylation of histone H4 at the lysine 20 position (H4K20me); therefore, we also discuss an epigenetic landscape of 53BP1-positive DNA lesions.
Collapse
|
17
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
18
|
Bártová E, Lochmanová G, Legartová S, Suchánková J, Fedr R, Krejčí J, Zdráhal Z. Irradiation by γ-rays reduces the level of H3S10 phosphorylation and weakens the G2 phase-dependent interaction between H3S10 phosphorylation and γH2AX. Biochimie 2018; 154:86-98. [DOI: 10.1016/j.biochi.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
19
|
Bartlett E, Bonfiglio JJ, Prokhorova E, Colby T, Zobel F, Ahel I, Matic I. Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Rep 2018; 24:3488-3502.e5. [PMID: 30257210 PMCID: PMC6172693 DOI: 10.1016/j.celrep.2018.08.092] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
Serine ADP-ribosylation (Ser-ADPr) is a recently discovered protein modification that is catalyzed by PARP1 and PARP2 when in complex with the eponymous histone PARylation factor 1 (HPF1). In addition to numerous other targets, core histone tails are primary acceptors of Ser-ADPr in the DNA damage response. Here, we show that specific canonical histone marks interfere with Ser-ADPr of neighboring residues and vice versa. Most notably, acetylation, but not methylation of H3K9, is mutually exclusive with ADPr of H3S10 in vitro and in vivo. We also broaden the O-linked ADPr spectrum by providing evidence for tyrosine ADPr on HPF1 and other proteins. Finally, we facilitate wider investigations into the interplay of histone marks with Ser-ADPr by introducing a simple approach for profiling posttranslationally modified peptides. Our findings implicate Ser-ADPr as a dynamic addition to the complex interplay of modifications that shape the histone code.
Collapse
Affiliation(s)
- Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Juan José Bonfiglio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Florian Zobel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany.
| |
Collapse
|
20
|
Fabbrizi MR, Meyer B, Misri S, Raj S, Zobel CL, Hallahan DE, Sharma GG. Transient PP2A inhibition alleviates normal tissue stem cell susceptibility to cell death during radiotherapy. Cell Death Dis 2018; 9:492. [PMID: 29706648 PMCID: PMC5924762 DOI: 10.1038/s41419-018-0559-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Unintended outcomes of cancer therapy include ionizing radiation (IR)-induced stem cell depletion, diminished regenerative capacity, and accelerated aging. Stem cells exhibit attenuated DNA damage response (DDR) and are hypersensitive to IR, as compared to differentiated non-stem cells. We performed genomic discovery research to compare stem cells to differentiated cells, which revealed Phosphoprotein phosphatase 2A (PP2A) as a potential contributor to susceptibility in stem cells. PP2A dephosphorylates pATM, γH2AX, pAkt etc. and is believed to play dual role in regulating DDR and apoptosis. Although studied widely in cancer cells, the role of PP2A in normal stem cell radiosensitivity is unknown. Here we demonstrate that constitutively high expression and radiation induction of PP2A in stem cells plays a role in promoting susceptibility to irradiation. Transient inhibition of PP2A markedly restores DNA repair, inhibits apoptosis, and enhances survival of stem cells, without affecting differentiated non-stem and cancer cells. PP2Ai-mediated stem cell radioprotection was demonstrated in murine embryonic, adult neural, intestinal, and hematopoietic stem cells.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Barbara Meyer
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Sandeep Misri
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Suyash Raj
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Cheri L Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Dennis E Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA.,Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Girdhar G Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA. .,Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
| |
Collapse
|
21
|
Legartová S, Suchánková J, Krejčí J, Kovaříková A, Bártová E. Advanced Confocal Microscopy Techniques to Study Protein-protein Interactions and Kinetics at DNA Lesions. J Vis Exp 2017. [PMID: 29155761 DOI: 10.3791/55999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Local microirradiation with lasers represents a useful tool for studies of DNA-repair-related processes in live cells. Here, we describe a methodological approach to analyzing protein kinetics at DNA lesions over time or protein-protein interactions on locally microirradiated chromatin. We also show how to recognize individual phases of the cell cycle using the Fucci cellular system to study cell-cycle-dependent protein kinetics at DNA lesions. A methodological description of the use of two UV lasers (355 nm and 405 nm) to induce different types of DNA damage is also presented. Only the cells microirradiated by the 405-nm diode laser proceeded through mitosis normally and were devoid of cyclobutane pyrimidine dimers (CPDs). We also show how microirradiated cells can be fixed at a given time point to perform immunodetection of the endogenous proteins of interest. For the DNA repair studies, we additionally describe the use of biophysical methods including FRAP (Fluorescence Recovery After Photobleaching) and FLIM (Fluorescence Lifetime Imaging Microscopy) in cells with spontaneously occurring DNA damage foci. We also show an application of FLIM-FRET (Fluorescence Resonance Energy Transfer) in experimental studies of protein-protein interactions.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences
| | | | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences
| | | | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences;
| |
Collapse
|
22
|
Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang JY, Chen F, Wang YS, Li X, Huo LJ. Olaquindox disrupts tight junction integrity and cytoskeleton architecture in mouse Sertoli cells. Oncotarget 2017; 8:88630-88644. [PMID: 29179463 PMCID: PMC5687633 DOI: 10.18632/oncotarget.20289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Sertoli cells, by creating an immune-privileged and nutrition supporting environment, maintain mammalian spermatogenesis and thereby holds the heart of male fertility. Olaquindox, an effective feed additive in livestock industry, could potentially expose human into the risk of biological hazards due to its genotoxicity and cytotoxicity, highlighting the significance of determining its bio-safety regarding human reproduction. Herein, we deciphered the detrimental effects of olaquindox on male fertility by mechanistically unraveling how olaquindox intervenes blood-testis barrier in mouse. Olaquindox (400 μg/ml) exposure significantly compromised tight junction permeability function, decreased or dislocated the junction proteins (e.g., ZO-1, occludin and N-cadherin) and attenuated mTORC2 signaling pathway in primary Sertoli cells. Furthermore, olaquindox disrupted F-actin architecture through interfering with the expression of actin branching protein complex (CDC42-N-WASP-Arp3) and actin bunding protein palladin. Olaquindox also triggered severely DNA damage and apoptosis while inhibiting autophagic flux in Sertoli cell presumably due to the exacerbated generation of reactive oxygen species (ROS). Pre-treatment with antioxidant N-acetylcysteine effectively ameliorated olaquindox-induced exhaustion of ZO-1 and N-Cadherin proteins, DNA damage and apoptosis. More significantly, olaquindox disrupted the epigenetic status in Sertoli cells with hypermethylation and concomitantly hypoacetylation of H3K9 and H3K27. Overall, our study determines olaquindox targets Sertoli cells to affect BTB function through tight junction proteins and F-actin orgnization, which might disrupt the process of spermatogenesis.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Jia-Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| |
Collapse
|
23
|
Lee S, Wottrich S, Bonavida B. Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol 2017; 39:1010428317692253. [PMID: 28378634 DOI: 10.1177/1010428317692253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Raf-kinase inhibitor protein has been reported to inhibit both the Raf/mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase and nuclear factor kappa-light-chain of activated B cells pathways. It has also been reported in cancers that Raf-kinase inhibitor protein behaves as a metastatic suppressor as well as a chemo-immunosensitizing factor to drug/immune-mediated apoptosis. The majority of cancers exhibit low or no levels of Raf-kinase inhibitor protein. Hence, the activities of Raf-kinase inhibitor protein contrast, in part, to those mediated by several cancer stem cell transcription factors for their roles in resistance and metastasis. In this review, the existence of crosstalks in the signaling pathways between Raf-kinase inhibitor protein and several cancer stem cell transcription factors (Oct4, KLF4, Sox2 and Nanog) was assembled. Oct4 is induced by Lin28, and Raf-kinase inhibitor protein inhibits the microRNA binding protein Lin28. The expression of Raf-kinase inhibitor protein inversely correlates with the expression of Oct4. KLF4 does not interact directly with Raf-kinase inhibitor protein, but rather interacts indirectly via Raf-kinase inhibitor protein's regulation of the Oct4/Sox2/KLF4 complex through the mitogen-activated protein kinase pathway. The mechanism by which Raf-kinase inhibitor protein inhibits Sox2 is via the inhibition of the mitogen-activated protein kinase pathway by Raf-kinase inhibitor protein. Thus, Raf-kinase inhibitor protein's relationship with Sox2 is via its regulation of Oct4. Inhibition of extracellular signal-regulated kinase by Raf-kinase inhibitor protein results in the upregulation of Nanog. The inhibition of Oct4 by Raf-kinase inhibitor protein results in the failure of the heterodimer formation of Oct4 and Sox2 that is necessary to bind to the Nanog promoter for the transcription of Nanog. The findings revealed that there exists a direct correlation between the expression of Raf-kinase inhibitor protein and the expression of each of the above transcription factors. Based on these analyses, we suggest that the expression level of Raf-kinase inhibitor protein may be involved in the regulation of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- SoHyun Lee
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wottrich
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Cooper DJ, Chen IC, Hernandez C, Wang Y, Walter CA, McCarrey JR. Pluripotent cells display enhanced resistance to mutagenesis. Stem Cell Res 2017; 19:113-117. [PMID: 28129601 DOI: 10.1016/j.scr.2016.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022] Open
Abstract
Pluripotent cells have been reported to exhibit lower frequencies of point mutations and higher levels of DNA repair than differentiated cells. This predicts that pluripotent cells are less susceptible to mutagenic exposures than differentiated cells. To test this prediction, we used a lacI mutation-reporter transgene system to assess the frequency of point mutations in multiple lines of mouse pluripotent embryonic stem cells and induced pluripotent cells, as well as in multiple lines of differentiated fibroblast cells, before and after exposure to a moderate dose of the mutagen, methyl methanesulfonate. We also measured levels of key enzymes in the base excision repair (BER) pathway in each cell line before and after exposure to the mutagen. Our results confirm that pluripotent cells normally maintain lower frequencies of point mutations than differentiated cells, and show that differentiated cells exhibit a large increase in mutation frequency following a moderate mutagenic exposure, whereas pluripotent cells subjected to the same exposure show no increase in mutations. This result likely reflects the higher levels of BER proteins detectable in pluripotent cells prior to exposure and supports our thesis that maintenance of enhanced genetic integrity is a fundamental characteristic of pluripotent cells.
Collapse
Affiliation(s)
- Daniel J Cooper
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - I-Chung Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christine Hernandez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christi A Walter
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
25
|
Meyer B, Fabbrizi MR, Raj S, Zobel CL, Hallahan DE, Sharma GG. Histone H3 Lysine 9 Acetylation Obstructs ATM Activation and Promotes Ionizing Radiation Sensitivity in Normal Stem Cells. Stem Cell Reports 2016; 7:1013-1022. [PMID: 27974220 PMCID: PMC5161741 DOI: 10.1016/j.stemcr.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
Dynamic spatiotemporal modification of chromatin around DNA damage is vital for efficient DNA repair. Normal stem cells exhibit an attenuated DNA damage response (DDR), inefficient DNA repair, and high radiosensitivity. The impact of unique chromatin characteristics of stem cells in DDR regulation is not yet recognized. We demonstrate that murine embryonic stem cells (ES) display constitutively elevated acetylation of histone H3 lysine 9 (H3K9ac) and low H3K9 tri-methylation (H3K9me3). DNA damage-induced local deacetylation of H3K9 was abrogated in ES along with the subsequent H3K9me3. Depletion of H3K9ac in ES by suppression of monocytic leukemia zinc finger protein (MOZ) acetyltransferase improved ATM activation, DNA repair, diminished irradiation-induced apoptosis, and enhanced clonogenic survival. Simultaneous suppression of the H3K9 methyltransferase Suv39h1 abrogated the radioprotective effect of MOZ inhibition, suggesting that high H3K9ac promoted by MOZ in ES cells obstructs local upregulation of H3K9me3 and contributes to muted DDR and increased radiosensitivity.
Collapse
Affiliation(s)
- Barbara Meyer
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA
| | - Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA
| | - Suyash Raj
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA
| | - Cheri L Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA
| | - Dennis E Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Girdhar G Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
26
|
Legartová S, Sehnalová P, Malyšková B, Küntziger T, Collas P, Cmarko D, Raška I, Sorokin DV, Kozubek S, Bártová E. Localized Movement and Levels of 53BP1 Protein Are Changed by γ-irradiation in PML Deficient Cells. J Cell Biochem 2016; 117:2583-96. [PMID: 27526954 DOI: 10.1002/jcb.25551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023]
Abstract
We studied epigenetics, distribution pattern, kinetics, and diffusion of proteins recruited to spontaneous and γ-radiation-induced DNA lesions. We showed that PML deficiency leads to an increased number of DNA lesions, which was accompanied by changes in histone signature. In PML wt cells, we observed two mobile fractions of 53BP1 protein with distinct diffusion in spontaneous lesions. These protein fractions were not detected in PML-deficient cells, characterized by slow-diffusion of 53BP1. Single particle tracking analysis revealed limited local motion of 53BP1 foci in PML double null cells and local motion 53BP1 foci was even more reduced after γ-irradiation. However, radiation did not change co-localization between 53BP1 nuclear bodies and interchromatin granule-associated zones (IGAZs), nuclear speckles, or chromocenters. This newly observed interaction pattern imply that 53BP1 protein could be a part of not only DNA repair, but also process mediated via components accumulated in IGAZs, nuclear speckles, or paraspeckles. Together, PML deficiency affected local motion of 53BP1 nuclear bodies and changed composition and a number of irradiation-induced foci. J. Cell. Biochem. 117: 2583-2596, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Barbora Malyšková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | | | - Philippe Collas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Dušan Cmarko
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic
| | - Dmitry V Sorokin
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic.,Faculty of Informatics, Masaryk University, Botanická 68a, Brno, 602 00, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic. .,Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic.
| |
Collapse
|
27
|
Franek M, Suchánková J, Sehnalová P, Krejčí J, Legartová S, Kozubek S, Večeřa J, Sorokin DV, Bártová E. Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:326-341. [PMID: 26903193 DOI: 10.1017/s1431927616000052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.
Collapse
Affiliation(s)
- Michal Franek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Suchánková
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Krejčí
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Soňa Legartová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | | | | | - Eva Bártová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| |
Collapse
|
28
|
Zhang X, Kluz T, Gesumaria L, Matsui MS, Costa M, Sun H. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes. PLoS One 2016; 11:e0150175. [PMID: 26918332 PMCID: PMC4769140 DOI: 10.1371/journal.pone.0150175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.
Collapse
Affiliation(s)
- Xiaoru Zhang
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
| | - Thomas Kluz
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
| | - Lisa Gesumaria
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
| | - Mary S. Matsui
- Estee Lauder Companies, Inc., Melville, New York, United States of America
| | - Max Costa
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
- * E-mail: (HS); (MC)
| | - Hong Sun
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
- * E-mail: (HS); (MC)
| |
Collapse
|
29
|
Suchánková J, Kozubek S, Legartová S, Sehnalová P, Küntziger T, Bártová E. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of γH2AX- and NBS1-positive repair foci. Biol Cell 2015; 107:440-54. [DOI: 10.1111/boc.201500050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/13/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jana Suchánková
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| | - Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| | | | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| |
Collapse
|
30
|
Huna A, Salmina K, Erenpreisa J, Vazquez-Martin A, Krigerts J, Inashkina I, Gerashchenko BI, Townsend PA, Cragg MS, Jackson TR. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. Cell Cycle 2015; 14:2969-84. [PMID: 26102294 PMCID: PMC4825594 DOI: 10.1080/15384101.2015.1056948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor cellular senescence induced by genotoxic treatments has recently been found to be paradoxically linked to the induction of “stemness.” This observation is critical as it directly impinges upon the response of tumors to current chemo-radio-therapy treatment regimens. Previously, we showed that following etoposide (ETO) treatment embryonal carcinoma PA-1 cells undergo a p53-dependent upregulation of OCT4A and p21Cip1 (governing self-renewal and regulating cell cycle inhibition and senescence, respectively). Here we report further detail on the relationship between these and other critical cell-fate regulators. PA-1 cells treated with ETO display highly heterogeneous increases in OCT4A and p21Cip1 indicative of dis-adaptation catastrophe. Silencing OCT4A suppresses p21Cip1, changes cell cycle regulation and subsequently suppresses terminal senescence; p21Cip1-silencing did not affect OCT4A expression or cellular phenotype. SOX2 and NANOG expression did not change following ETO treatment suggesting a dissociation of OCT4A from its pluripotency function. Instead, ETO-induced OCT4A was concomitant with activation of AMPK, a key component of metabolic stress and autophagy regulation. p16ink4a, the inducer of terminal senescence, underwent autophagic sequestration in the cytoplasm of ETO-treated cells, allowing alternative cell fates. Accordingly, failure of autophagy was accompanied by an accumulation of p16ink4a, nuclear disintegration, and loss of cell recovery. Together, these findings imply that OCT4A induction following DNA damage in PA-1 cells, performs a cell stress, rather than self-renewal, function by moderating the expression of p21Cip1, which alongside AMPK helps to then regulate autophagy. Moreover, this data indicates that exhaustion of autophagy, through persistent DNA damage, is the cause of terminal cellular senescence.
Collapse
Affiliation(s)
- Anda Huna
- a Latvian Biomedical Research and Study Center ; Riga, Latvia
| | | | | | | | - Jekabs Krigerts
- a Latvian Biomedical Research and Study Center ; Riga, Latvia
| | - Inna Inashkina
- a Latvian Biomedical Research and Study Center ; Riga, Latvia
| | - Bogdan I Gerashchenko
- a Latvian Biomedical Research and Study Center ; Riga, Latvia.,d R. E. Kavetsky Institute of Experimental Pathology; Oncology and Radiobiology; National Academy of Sciences of Ukraine ; Kyiv , Ukraine
| | - Paul A Townsend
- b Institute of Cancer Sciences; Manchester Cancer Research Center; University of Manchester; Manchester Academic Health Science Center ; Manchester , UK
| | - Mark S Cragg
- c Cancer Sciences Unit; University of Southampton; Faculty of Medicine; General Hospital ; Southampton , UK
| | - Thomas R Jackson
- b Institute of Cancer Sciences; Manchester Cancer Research Center; University of Manchester; Manchester Academic Health Science Center ; Manchester , UK
| |
Collapse
|
31
|
Stixová L, Sehnalová P, Legartová S, Suchánková J, Hrušková T, Kozubek S, Sorokin DV, Matula P, Raška I, Kovařík A, Fulneček J, Bártová E. HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics Chromatin 2014; 7:39. [PMID: 25587355 PMCID: PMC4293114 DOI: 10.1186/1756-8935-7-39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022] Open
Abstract
Background The repair of spontaneous and induced DNA lesions is a multistep process. Depending on the type of injury, damaged DNA is recognized by many proteins specifically involved in distinct DNA repair pathways. Results We analyzed the DNA-damage response after ultraviolet A (UVA) and γ irradiation of mouse embryonic fibroblasts and focused on upstream binding factor 1 (UBF1), a key protein in the regulation of ribosomal gene transcription. We found that UBF1, but not nucleolar proteins RPA194, TCOF, or fibrillarin, was recruited to UVA-irradiated chromatin concurrently with an increase in heterochromatin protein 1β (HP1β) level. Moreover, Förster Resonance Energy Transfer (FRET) confirmed interaction between UBF1 and HP1β that was dependent on a functional chromo shadow domain of HP1β. Thus, overexpression of HP1β with a deleted chromo shadow domain had a dominant-negative effect on UBF1 recruitment to UVA-damaged chromatin. Transcription factor UBF1 also interacted directly with DNA inside the nucleolus but no interaction of UBF1 and DNA was confirmed outside the nucleolus, where UBF1 recruitment to DNA lesions appeared simultaneously with cyclobutane pyrimidine dimers; this occurrence was cell-cycle-independent. Conclusions We propose that the simultaneous presence and interaction of UBF1 and HP1β at DNA lesions is activated by the presence of cyclobutane pyrimidine dimers and mediated by the chromo shadow domain of HP1β. This might have functional significance for nucleotide excision repair. Electronic supplementary material The online version of this article (doi:10.1186/1756-8935-7-39) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenka Stixová
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Sehnalová
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Soňa Legartová
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Jana Suchánková
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Tereza Hrušková
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Stanislav Kozubek
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Dmitry V Sorokin
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic ; Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
| | - Pavel Matula
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic ; Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague, Czech Republic
| | - Aleš Kovařík
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Jaroslav Fulneček
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Eva Bártová
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
32
|
Bártová E, Foltánková V, Legartová S, Sehnalová P, Sorokin DV, Suchánková J, Kozubek S. Coilin is rapidly recruited to UVA-induced DNA lesions and γ-radiation affects localized movement of Cajal bodies. Nucleus 2014; 5:460-8. [PMID: 24859326 DOI: 10.4161/nucl.29229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cajal bodies are important nuclear structures containing proteins that preferentially regulate RNA-related metabolism. We investigated the cell-type specific nuclear distribution of Cajal bodies and the level of coilin, a protein of Cajal bodies, in non-irradiated and irradiated human tumor cell lines and embryonic stem (ES) cells. Cajal bodies were localized in different nuclear compartments, including DAPI-poor regions, in the proximity of chromocenters, and adjacent to nucleoli. The number of Cajal bodies per nucleus was cell cycle-dependent, with higher numbers occurring during G2 phase. Human ES cells contained a high coilin level in the nucleoplasm, but coilin-positive Cajal bodies were also identified in nuclei of mouse and human ES cells. Coilin, but not SMN, recognized UVA-induced DNA lesions, which was cell cycle-independent. Treatment with γ-radiation reduced the localized movement of Cajal bodies in many cell types and GFP-coilin fluorescence recovery after photobleaching was very fast in nucleoplasm in comparison with GFP-coilin recovery in DNA lesions. By contrast, nucleolus-localized coilin displayed very slow fluorescence recovery after photobleaching, which indicates very slow rates of protein diffusion, especially in nucleoli of mouse ES cells.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Veronika Foltánková
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Dmitry V Sorokin
- Faculty of Informatics; Masaryk University; Brno, Czech Republic
| | - Jana Suchánková
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| |
Collapse
|
33
|
Suchánková J, Legartová S, Sehnalová P, Kozubek S, Valente S, Labella D, Mai A, Eckerich C, Fackelmayer FO, Sorokin DV, Bartova E. PRMT1 arginine methyltransferase accumulates in cytoplasmic bodies that respond to selective inhibition and DNA damage. Eur J Histochem 2014; 58:2389. [PMID: 24998928 PMCID: PMC4083328 DOI: 10.4081/ejh.2014.2389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 12/18/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are responsible for symmetric and asymmetric methylation of arginine residues of nuclear and cytoplasmic proteins. In the nucleus, PRMTs belong to important chromatin modifying enzymes of immense functional significance that affect gene expression, splicing and DNA repair. By time-lapse microscopy we have studied the sub-cellular localization and kinetics of PRMT1 after inhibition of PRMT1 and after irradiation. Both transiently expressed and endogenous PRMT1 accumulated in cytoplasmic bodies that were located in the proximity of the cell nucleus. The shape and number of these bodies were stable in untreated cells. However, when cell nuclei were microirradiated by UV-A, the mobility of PRMT1 cytoplasmic bodies increased their, size was reduced, and they disappeared within approximately 20 min. The same response occurred after γ-irradiation of the whole cell population, but with delayed kinetics. Treatment with PRMT1 inhibitors induced disintegration of these PRMT1 cytoplasmic bodies and prevented formation of 53BP1 nuclear bodies (NBs) that play a role during DNA damage repair. The formation of 53BP1 NBs was not influenced by PRMT1 over-expression. Taken together, we show that PRMT1 concentrates in cytoplasmic bodies, which respond to DNA injury in the cell nucleus, and to treatment with various PRMT1 inhibitors.
Collapse
|
34
|
Sehnalová P, Legartová S, Cmarko D, Kozubek S, Bártová E. Recruitment of HP1β to UVA-induced DNA lesions is independent of radiation-induced changes in A-type lamins. Biol Cell 2014; 106:151-65. [DOI: 10.1111/boc.201300076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/03/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Dušan Cmarko
- Institute of Cellular Biology and Pathology; The First Faculty of Medicine, Charles University in Prague; Prague 128 00 Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| |
Collapse
|
35
|
Rizzino A. Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 2014; 31:1033-9. [PMID: 23401375 DOI: 10.1002/stem.1352] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/03/2013] [Indexed: 11/08/2022]
Abstract
The transcription factors Sox2 and Oct4 have been a major focus of stem cell biology since the discovery, more than 10 years ago, that they play critical roles during embryogenesis. Early work established that these two transcription factors work together to regulate genes required for the self-renewal and pluripotency of embryonic stem cells (ESC). Surprisingly, small changes (∼twofold) in the levels of either Oct4 or Sox2 induce the differentiation of ESC. Consequently, ESC must maintain the levels of these two transcription factors within narrow limits. Genome-wide binding studies and unbiased proteomic screens have been conducted to decipher the complex roles played by Oct4 and Sox2 in the transcriptional circuitry of ESC. Together, these and other studies provide a comprehensive understanding of the molecular machinery that sustains the self-renewal of ESC and restrains their differentiation. Importantly, these studies paint a landscape in which Oct4 and Sox2 are part of a much larger interdependent network composed of many transcription factors that are interconnected at multiple levels of function.
Collapse
Affiliation(s)
- Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.
| |
Collapse
|
36
|
Legartová S, Stixová L, Laur O, Kozubek S, Sehnalová P, Bártová E. Nuclear Structures Surrounding Internal Lamin Invaginations. J Cell Biochem 2014; 115:476-87. [DOI: 10.1002/jcb.24681] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/23/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Lenka Stixová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Oskar Laur
- Emory University School of Medicine; Emory University; Atlanta Georgia 30322
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| |
Collapse
|
37
|
Tan X, Xu X, Elkenani M, Smorag L, Zechner U, Nolte J, Engel W, Pantakani DK. Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells. Stem Cell Res 2013; 11:1045-59. [DOI: 10.1016/j.scr.2013.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 07/09/2013] [Accepted: 07/22/2013] [Indexed: 01/12/2023] Open
|
38
|
QI HAO, XU FENG. CONTROLLED ASYMMETRICAL DIFFERENTIATION OF MOUSE EMBRYOID BODIES IN MICROWELLS WITH DESIGNED HETEROGENEOUS BIOCHEMICAL FEATURES. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413400034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a novel engineered microwells to spatially control differentiation of mouse embryoid bodies. With integrating multiple functionally distinct biomaterials by soft-photolithography technology, this method enables simple and reliable manufacture of biochemically heterogeneous microwells that are capable of regulating differentiation of stem cell in a spatial-specific manner. This simple technology offers a new dimension of spatial control over embryoid bodies development and has great potential in tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- HAO QI
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - FENG XU
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
39
|
Erenpreisa J, Cragg MS. Three steps to the immortality of cancer cells: senescence, polyploidy and self-renewal. Cancer Cell Int 2013; 13:92. [PMID: 24025698 PMCID: PMC4015969 DOI: 10.1186/1475-2867-13-92] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
Metastatic cancer is rarely cured by current DNA damaging treatments, apparently due to the development of resistance. However, recent data indicates that tumour cells can elicit the opposing processes of senescence and stemness in response to these treatments, the biological significance and molecular regulation of which is currently poorly understood. Although cellular senescence is typically considered a terminal cell fate, it was recently shown to be reversible in a small population of polyploid cancer cells induced after DNA damage. Overcoming genotoxic insults is associated with reversible polyploidy, which itself is associated with the induction of a stemness phenotype, thereby providing a framework linking these separate phenomena. In keeping with this suggestion, senescence and autophagy are clearly intimately involved in the emergence of self-renewal potential in the surviving cells that result from de-polyploidisation. Moreover, subsequent analysis indicates that senescence may paradoxically be actually required to rejuvenate cancer cells after genotoxic treatments. We propose that genotoxic resistance is thereby afforded through a programmed life-cycle-like process which intimately unites senescence, polyploidy and stemness.
Collapse
|
40
|
Přikrylová T, Pacherník J, Kozubek S, Bártová E. Epigenetics and chromatin plasticity in embryonic stem cells. World J Stem Cells 2013; 5:73-85. [PMID: 23951389 PMCID: PMC3744133 DOI: 10.4252/wjsc.v5.i3.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson's disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.
Collapse
Affiliation(s)
- Terézia Přikrylová
- Terézia Přikrylová, Stanislav Kozubek, Eva Bártová, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
41
|
Foltánková V, Legartová S, Kozubek S, Hofer M, Bártová E. DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene 2013; 522:156-67. [PMID: 23566839 DOI: 10.1016/j.gene.2013.03.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
Abstract
DNA repair events have functional significance especially for genome stability. Although the DNA damage response within the whole genome has been extensively studied, the region-specific characteristics of nuclear sub-compartments such as the nucleolus or fragile sites have not been fully elucidated. Here, we show that the heterochromatin protein HP1 and PML protein recognize spontaneously occurring 53BP1- or γ-H2AX-positive DNA lesions throughout the genome. Moreover, 53BP1 nuclear bodies, which co-localize with PML bodies, also occur within the nucleoli compartments. Irradiation of the human osteosarcoma cell line U2OS with γ-rays increases the degree of co-localization between 53BP1 and PML bodies throughout the genome; however, the 53BP1 protein is less abundant in chromatin of ribosomal genes and fragile sites (FRA3B and FRA16D) in γ-irradiated cells. Most epigenomic marks on ribosomal genes and fragile sites are relatively stable in both non-irradiated and γ-irradiated cells. However, H3K4me2, H3K9me3, H3K27me3 and H3K79me1 were significantly changed in promoter and coding regions of ribosomal genes after exposure of cells to γ-rays. In fragile sites, γ-irradiation induces a decrease in H3K4me3, changes the levels of HP1β, and modifies the levels of H3K9 acetylation, while the level of H3K9me3 was relatively stable. In these studies, we confirm a specific DNA-damage response that differs between the ribosomal genes and fragile sites, which indicates the region-specificity of DNA repair.
Collapse
Affiliation(s)
- Veronika Foltánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
42
|
Foltánková V, Matula P, Sorokin D, Kozubek S, Bártová E. Hybrid detectors improved time-lapse confocal microscopy of PML and 53BP1 nuclear body colocalization in DNA lesions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:360-369. [PMID: 23410959 DOI: 10.1017/s1431927612014353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We used hybrid detectors (HyDs) to monitor the trajectories and interactions of promyelocytic leukemia (GFP-PML) nuclear bodies (NBs) and mCherry-53BP1-positive DNA lesions. 53BP1 protein accumulates in NBs that occur spontaneously in the genome or in γ-irradiation-induced foci. When we induced local DNA damage by ultraviolet irradiation, we also observed accumulation of 53BP1 proteins into discrete bodies, instead of the expected dispersed pattern. In comparison with photomultiplier tubes, which are used for standard analysis by confocal laser scanning microscopy, HyDs significantly eliminated photobleaching of GFP and mCherry fluorochromes during image acquisition. The low laser intensities used for HyD-based confocal analysis enabled us to observe NBs for the longer time periods, necessary for studies of the trajectories and interactions of PML and 53BP1 NBs. To further characterize protein interactions, we used resonance scanning and a novel bioinformatics approach to register and analyze the movements of individual PML and 53BP1 NBs. The combination of improved HyD-based confocal microscopy with a tailored bioinformatics approach enabled us to reveal damage-specific properties of PML and 53BP1 NBs.
Collapse
Affiliation(s)
- Veronika Foltánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
43
|
Gao Z, Cox JL, Gilmore JM, Ormsbee BD, Mallanna SK, Washburn MP, Rizzino A. Determination of protein interactome of transcription factor Sox2 in embryonic stem cells engineered for inducible expression of four reprogramming factors. J Biol Chem 2012; 287:11384-97. [PMID: 22334693 DOI: 10.1074/jbc.m111.320143] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Unbiased proteomic screens provide a powerful tool for defining protein-protein interaction networks. Previous studies employed multidimensional protein identification technology to identify the Sox2-interactome in embryonic stem cells (ESC) undergoing differentiation in response to a small increase in the expression of epitope-tagged Sox2. Thus far the Sox2-interactome in ESC has not been determined. To identify the Sox2-interactome in ESC, we engineered ESC for inducible expression of different combinations of epitope-tagged Sox2 along with Oct4, Klf4, and c-Myc. Epitope-tagged Sox2 was used to circumvent the lack of suitable Sox2 antibodies needed to perform an unbiased proteomic screen of Sox2-associated proteins. Although i-OS-ESC differentiate when both Oct4 and Sox2 are elevated, i-OSKM-ESC do not differentiate even when the levels of the four transcription factors are coordinately elevated ∼2-3-fold. Our findings with i-OS-ESC and i-OSKM-ESC provide new insights into the reasons why ESC undergo differentiation when Sox2 and Oct4 are elevated in ESC. Importantly, the use of i-OSKM-ESC enabled us to identify the Sox2-interactome in undifferentiated ESC. Using multidimensional protein identification technology, we identified >70 proteins that associate with Sox2 in ESC. We extended these findings by testing the function of the Sox2-assoicated protein Smarcd1 and demonstrate that knockdown of Smarcd1 disrupts the self-renewal of ESC and induces their differentiation. Together, our work provides the first description of the Sox2-interactome in ESC and indicates that Sox2 along with other master regulators is part of a highly integrated protein-protein interaction landscape in ESC.
Collapse
Affiliation(s)
- Zhiguang Gao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | | | | | | | | | | | | |
Collapse
|