1
|
Krunkosky M, Krunkosky TM, Meliopoulos V, Kyriakis CS, Schultz-Cherry S, Tompkins SM. Establishment of Swine Primary Nasal, Tracheal, and Bronchial Epithelial Cell Culture Models for the Study of Influenza Virus Infection. J Virol Methods 2024; 327:114943. [PMID: 38679164 PMCID: PMC11129919 DOI: 10.1016/j.jviromet.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
We established primary porcine nasal, tracheal, and bronchial epithelial cells that recapitulate the physical and functional properties of the respiratory tract and have the ability to fully differentiate. Trans-well cultures demonstrated increased transepithelial electrical resistance over time the presence of tight junctions as demonstrated by immunohistochemistry. The nasal, tracheal, and bronchial epithelial cells developed cilia, secreted mucus, and expressed sialic acids on surface glycoproteins, the latter which are required for influenza A virus infection. Swine influenza viruses were shown to replicate efficiently in the primary epithelial cell cultures, supporting the use of these culture models to assess swine influenza and other virus infection. Primary porcine nasal, tracheal, and bronchial epithelial cell culture models enable assessment of emerging and novel influenza viruses for pandemic potential as well as mechanistic studies to understand mechanisms of infection, reassortment, and generation of novel virus. As swine are susceptible to infection with multiple viral and bacterial respiratory pathogens, these primary airway cell models may enable study of the cellular response to infection by pathogens associated with Porcine Respiratory Disease Complex.
Collapse
Affiliation(s)
- Madelyn Krunkosky
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States; Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA, United States
| | - Thomas M Krunkosky
- Department of Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Constantinos S Kyriakis
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA, United States; Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - S Mark Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States; Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA, United States.
| |
Collapse
|
2
|
Weldearegay YB, Brogaard L, Nerlich A, Schaaf D, Heegaard PMH, Valentin-Weigand P. Transcriptional Host Responses to Infection with Streptococcus suis in a Porcine Precision-Cut Lung Slice Model: Between-Strain Differences Suggest Association with Virulence Potential. Pathogens 2023; 13:4. [PMID: 38276150 PMCID: PMC10820225 DOI: 10.3390/pathogens13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Streptococcus suis is a porcine and zoonotic pathogen in the upper respiratory tract, expressing different capsular serotypes and virulence-associated factors. Given its genomic and phenotypic diversity, the virulence potential of S. suis cannot be attributed to a single factor. Since strong inflammatory response is a hallmark of S. suis infection, the objective of this study was to investigate the differences in transcriptional host responses to two serotype 2 and one serotype 9 strains. Both serotypes are frequently found in clinical isolates. We infected porcine precision-cut lung slices (PCLSs) with two serotype 2 strains of high (strain S10) and low (strain T15) virulence, and a serotype 9 strain 8067 of moderate virulence. We observed higher expression of inflammation-related genes during early infection with strains T15 and 8067, in contrast to infection with strain 10, whose expression peaked late. In addition, bacterial gene expression from infected PCLSs revealed differences, mainly of metabolism-related and certain virulence-associated bacterial genes amongst these strains. We conclude that the strain- and time-dependent induction of genes involved in innate immune response might reflect clinical outcomes of infection in vivo, implying rapid control of infection with less virulent strains compared to the highly virulent strain S10.
Collapse
Affiliation(s)
- Yenehiwot Berhanu Weldearegay
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.B.); (P.M.H.H.)
| | - Andreas Nerlich
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Désirée Schaaf
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| | - Peter M. H. Heegaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.B.); (P.M.H.H.)
- Department of Health Technology, Experimental & Translational Immunology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| |
Collapse
|
3
|
Chludzinski E, Ciurkiewicz M, Stoff M, Klemens J, Krüger J, Shin DL, Herrler G, Beineke A. Canine Distemper Virus Alters Defense Responses in an Ex Vivo Model of Pulmonary Infection. Viruses 2023; 15:v15040834. [PMID: 37112814 PMCID: PMC10144441 DOI: 10.3390/v15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Canine distemper virus (CDV), belonging to the genus Morbillivirus, is a highly contagious pathogen. It is infectious in a wide range of host species, including domestic and wildlife carnivores, and causes severe systemic disease with involvement of the respiratory tract. In the present study, canine precision-cut lung slices (PCLSs) were infected with CDV (strain R252) to investigate temporospatial viral loads, cell tropism, ciliary activity, and local immune responses during early infection ex vivo. Progressive viral replication was observed during the infection period in histiocytic and, to a lesser extent, epithelial cells. CDV-infected cells were predominantly located within the bronchial subepithelial tissue. Ciliary activity was reduced in CDV-infected PCLSs, while viability remained unchanged when compared to controls. MHC-II expression was increased in the bronchial epithelium on day three postinfection. Elevated levels of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-β) were observed in CDV-infected PCLSs on day one postinfection. In conclusion, the present study demonstrates that PCLSs are permissive for CDV. The model reveals an impaired ciliary function and an anti-inflammatory cytokine response, potentially fostering viral replication in the lung during the early phase of canine distemper.
Collapse
Affiliation(s)
- Elisa Chludzinski
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Małgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Johanna Klemens
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Johannes Krüger
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Dai-Lun Shin
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
4
|
Su A, Yan M, Pavasutthipaisit S, Wicke KD, Grassl GA, Beineke A, Felmy F, Schmidt S, Esser KH, Becher P, Herrler G. Infection Studies with Airway Organoids from Carollia perspicillata Indicate That the Respiratory Epithelium Is Not a Barrier for Interspecies Transmission of Influenza Viruses. Microbiol Spectr 2023; 11:e0309822. [PMID: 36916937 PMCID: PMC10100918 DOI: 10.1128/spectrum.03098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
Bats are a natural reservoir for many viruses and are considered to play an important role in the interspecies transmission of viruses. To analyze the susceptibility of bat airway cells to infection by viruses of other mammalian species, we developed an airway organoid culture model derived from airways of Carollia perspicillata. Application of specific antibodies for fluorescent staining indicated that the cell composition of organoids resembled those of bat trachea and lungs as determined by immunohistochemistry. Infection studies indicated that Carollia perspicillata bat airway organoids (AOs) from the trachea or the lung are highly susceptible to infection by two different porcine influenza A viruses. The bat AOs were also used to develop an air-liquid interface (ALI) culture system of filter-grown epithelial cells. Infection of these cells showed the same characteristics, including lower virulence and enhanced replication and release of the H1N1/2006 virus compared to infection with H3N2/2007. These observations agreed with the results obtained by infection of porcine ALI cultures with these two virus strains. Interestingly, lectin staining indicated that bat airway cells only contain a small amount of alpha 2,6-linked sialic acid, the preferred receptor determinant for mammalian influenza A viruses. In contrast, large amounts of alpha 2,3-linked sialic acid, the preferred receptor determinant for avian influenza viruses, are present in bat airway epithelial cells. Therefore, bat airway cells may be susceptible not only to mammalian but also to avian influenza viruses. Our culture models, which can be extended to other parts of the airways and to other species, provide a promising tool to analyze virus infectivity and the transmission of viruses both from bats to other species and from other species to bats. IMPORTANCE We developed an organoid culture system derived from the airways of the bat species Carollia perspicillata. Using this cell system, we showed that the airway epithelium of these bats is highly susceptible to infection by influenza viruses of other mammalian species and thus is not a barrier for interspecies transmission. These organoids provide an almost unlimited supply of airway epithelial cells that can be used to generate well-differentiated epithelial cells and perform infection studies. The establishment of the organoid model required only three animals, and can be extended to other epithelia (nose, intestine) as well as to other species (bat and other animal species). Therefore, organoids promise to be a valuable tool for future zoonosis research on the interspecies transmission of viruses (e.g., bat → intermediate host → human).
Collapse
Affiliation(s)
- Ang Su
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Miaomiao Yan
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Suvarin Pavasutthipaisit
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Kathrin D. Wicke
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sabine Schmidt
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl-Heinz Esser
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Herrler
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
5
|
Wu CT, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, Jiang S, He W, Demeter J, Knight MG, Turn RE, Rojas-Hernandez LS, Ye C, Chiem K, Shon J, Martinez-Sobrido L, Bertozzi CR, Nolan GP, Nayak JV, Milla C, Andino R, Jackson PK. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023; 186:112-130.e20. [PMID: 36580912 PMCID: PMC9715480 DOI: 10.1016/j.cell.2022.11.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Ran Cheng
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan T Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei He
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Miguel G Knight
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Rachel E Turn
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Laura S Rojas-Hernandez
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Carlos Milla
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Runft S, Färber I, Krüger J, Krüger N, Armando F, Rocha C, Pöhlmann S, Burigk L, Leitzen E, Ciurkiewicz M, Braun A, Schneider D, Baumgärtner L, Freisleben B, Baumgärtner W. Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Vet Pathol 2022; 59:565-577. [PMID: 35130766 DOI: 10.1177/03009858211073678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inspired rapid research efforts targeting the host range, pathogenesis and transmission mechanisms, and the development of antiviral strategies. Genetically modified mice, rhesus macaques, ferrets, and Syrian golden hamsters have been frequently used in studies of pathogenesis and efficacy of antiviral compounds and vaccines. However, alternatives to in vivo experiments, such as immortalized cell lines, primary respiratory epithelial cells cultured at an air-liquid interface, stem/progenitor cell-derived organoids, or tissue explants, have also been used for isolation of SARS-CoV-2, investigation of cytopathic effects, and pathogen-host interactions. Moreover, initial proof-of-concept studies for testing therapeutic agents can be performed with these tools, showing that animal-sparing cell culture methods could significantly reduce the need for animal models in the future, following the 3R principles of replace, reduce, and refine. So far, only few studies using animal-derived primary cells or tissues have been conducted in SARS-CoV-2 research, although natural infection has been shown to occur in several animal species. Therefore, the need for in-depth investigations on possible interspecies transmission routes and differences in susceptibility to SARS-CoV-2 is urgent. This review gives an overview of studies employing alternative culture systems like primary cell cultures, tissue explants, or organoids for investigations of the pathophysiology and reverse zoonotic potential of SARS-CoV-2 in animals. In addition, future possibilities of SARS-CoV-2 research in animals, including previously neglected methods like the use of precision-cut lung slices, will be outlined.
Collapse
Affiliation(s)
- Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Iris Färber
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Johannes Krüger
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nadine Krüger
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Federico Armando
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Cheila Rocha
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Laura Burigk
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eva Leitzen
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
7
|
Shin DL, Siebert U, Haas L, Valentin-Weigand P, Herrler G, Wu NH. Primary harbor seal (Phoca vitulina) airway epithelial cells show high susceptibility to infection by a seal-derived influenza A virus (H5N8). Transbound Emerg Dis 2022; 69:e2378-e2388. [PMID: 35504691 DOI: 10.1111/tbed.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Highly pathogenic avian influenza viruses of the H5N8 subtype have been circulating in Europe and Asia since 2016, causing huge economic losses to the poultry industry. A new wave of H5Nx infections has begun in 2020. The viruses mainly infect wild birds and waterfowl; from there they spread to poultry and cause disease. Previous studies have shown that the H5N8 viruses have seldom spread to mammals; however, reports in early 2021 indicate that humans may be infected, and some incident reports indicate that H5Nx clade 2.3.4.4B virus may be transmitted to wild mammals, such as red foxes and seals. In order to get more information on how the H5N8 virus affects seals and other marine animals, here, we used primary cultures to analyze the cell tropism of the H5N8 virus, which was isolated from an infected gray seal (H5N8/Seal-2016). Primary tracheal epithelial cells were readily infected by H5N8/Seal -2016 virus; in contrast, the commonly used primary seal kidney cells required the presence of exogenous trypsin to initiate virus infection. When applied to an ex vivo precision-cut lung slice model, compared with recombinant human H3N2 virus or H9N2 LPAI virus, the H5N8/Seal-2016 virus replicated to a high titer and caused a strong detrimental effect; with these characteristics, the virus was superior to a human H3N2 virus and to an H9N2 LPAI virus. By using well-differentiated air-liquid interface cultures, we have observed that ALI cultures of canines, ferrets, and harbor seals are more sensitive to H5N8/Seal-2016 virus than are human or porcine ALI cultures, which cannot be fully explained by sialic acid distribution. Our results indicate that the airway epithelium of carnivores may be the main target of H5N8 viruses. Consideration should be given to an increased monitoring of the distribution of highly pathogenic avian influenza viruses in wild animals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dai-Lun Shin
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ludwig Haas
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute of Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georg Herrler
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nai-Huei Wu
- Department of Veterinary Medicine, National Taiwan University, Taiwan
| |
Collapse
|
8
|
Qin L, Meng F, He H, Yang YB, Wang G, Tang YD, Sun M, Zhang W, Cai X, Wang S. A Virulent Trueperella pyogenes Isolate, Which Causes Severe Bronchoconstriction in Porcine Precision-Cut Lung Slices. Front Vet Sci 2022; 8:824349. [PMID: 35174243 PMCID: PMC8841747 DOI: 10.3389/fvets.2021.824349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Trueperella pyogenes causes disease in cattle, sheep, goats and swine, and is involved occasionally in human disease worldwide. Most reports implicating T. pyogenes have been associated with clinical cases, whereas no report has focused on pathogenicity of T. pyogenes in mouse models or precision-cut lung slice (PCLS) cultures from swine. Here, we isolated and identified a virulent, β-hemolytic, multidrug-resistant T. pyogenes strain named 20121, which harbors the virulence marker genes fimA, fimE, nanH, nanP and plo. It was found to be highly resistant to erythromycin, azithromycin and medemycin. Strain 20121 was pathogenic in mouse infection models, displaying pulmonary congestion and inflammatory cell infiltration, partial degeneration in epithelial cells of the tracheal and bronchiolar mucosa, a small amount of inflammatory cell infiltration in the submucosa, and bacteria (>104 CFU/g) in the lung. Importantly, we used T. pyogenes 20121 to infect porcine precision-cut lung slices (PCLS) cultures for the first time, where it caused severe bronchoconstriction. Furthermore, dexamethasone showed its ability to relieve bronchoconstriction in PCLS caused by T. pyogenes 20121, highlighting dexamethasone may assist antibiotic treatment for clinical T. pyogenes infection. This is the first report of T. pyogenes used to infect and cause bronchoconstriction in porcine PCLS. Our results suggest that porcine PCLS cultures as a valuable 3D organ model for the study of T. pyogenes infection and treatment in vitro.
Collapse
Affiliation(s)
- Lei Qin
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fandan Meng
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haijuan He
- Institute of Animal Husbandry, Heilongjiang Academy of Agriculture Sciences, Harbin, China
| | - Yong-Bo Yang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxia Sun
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Xuehui Cai
| | - Shujie Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Shujie Wang
| |
Collapse
|
9
|
Viana F, O'Kane CM, Schroeder GN. Precision-cut lung slices: A powerful ex vivo model to investigate respiratory infectious diseases. Mol Microbiol 2021; 117:578-588. [PMID: 34570407 PMCID: PMC9298270 DOI: 10.1111/mmi.14817] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Respiratory infections are a leading cause of mortality worldwide. Most of the research on the underlying disease mechanisms is based on cell culture, organoid, or surrogate animal models. Although these provide important insights, they have limitations. Cell culture models fail to recapitulate cellular interactions in the lung and animal models often do not permit high‐throughput analysis of drugs or pathogen isolates; hence, there is a need for improved, scalable models. Precision‐cut lung slices (PCLS), small, uniform tissue slices generated from animal or human lungs are increasingly recognized and employed as an ex vivo organotypic model. PCLS retain remarkable cellular complexity and the architecture of the lung, providing a platform to investigate respiratory pathogens in a near‐native environment. Here, we review the generation and features of PCLS, their use to investigate the pathogenesis of viral and bacterial pathogens, and highlight their potential to advance respiratory infection research in the future.
Collapse
Affiliation(s)
- Flávia Viana
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
10
|
López-Gálvez R, Fleurot I, Chamero P, Trapp S, Olivier M, Chevaleyre C, Barc C, Riou M, Rossignol C, Guillon A, Si-Tahar M, May T, Barbry P, Bähr A, Klymiuk N, Sirard JC, Caballero I. Airway Administration of Flagellin Regulates the Inflammatory Response to Pseudomonas aeruginosa. Am J Respir Cell Mol Biol 2021; 65:378-389. [PMID: 34102087 PMCID: PMC8525202 DOI: 10.1165/rcmb.2021-0125oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Excessive lung inflammation and airway epithelial damage are hallmarks of human inflammatory lung diseases, such as cystic fibrosis (CF). Enhancement of innate immunity provides protection against pathogens while reducing lung-damaging inflammation. However, the mechanisms underlying innate immunity–mediated protection in the lung remain mysterious, in part because of the lack of appropriate animal models for these human diseases. TLR5 (Toll-like receptor 5) stimulation by its specific ligand, the bacterial protein flagellin, has been proposed to enhance protection against several respiratory infectious diseases, although other cellular events, such as calcium signaling, may also control the intensity of the innate immune response. Here, we investigated the molecular events prompted by stimulation with flagellin and its role in regulating innate immunity in the lung of the pig, which is anatomically and genetically more similar to humans than rodent models. We found that flagellin treatment modulated NF-κB signaling and intracellular calcium homeostasis in airway epithelial cells. Flagellin pretreatment reduced the NF-κB nuclear translocation and the expression of proinflammatory cytokines to a second flagellin stimulus as well as to Pseudomonas aeruginosa infection. Moreover, in vivo administration of flagellin decreased the severity of P. aeruginosa–induced pneumonia. Then we confirmed these beneficial effects of flagellin in a pathological model of CF by using ex vivo precision-cut lung slices from a CF pigz model. These results provide evidence that flagellin treatment contributes to a better regulation of the inflammatory response in inflammatory lung diseases such as CF.
Collapse
Affiliation(s)
| | | | - Pablo Chamero
- INRAE, 27057, Laboratoire de Physiologie de la Reproduction et des Comportements UMR 0085 INRAE/CNRS/IFCE/Université de Tours, Nouzilly, France
| | - Sascha Trapp
- INRAE, 27057, Infectiologie et Santé Publique, Nouzilly, France
| | - Michel Olivier
- INRAE, 27057, Infectiologie et Santé Publique, Nouzilly, France
| | | | - Céline Barc
- INRAE, UE-1277 Plateforme d'infectiologie expérimentale (PFIE), Centre de Recherche Val de Loire, Nouzilly, France
| | - Mickael Riou
- INRAE, 27057, UE-1277 Plateforme d'infectiologie expérimentale (PFIE), Centre de Recherche Val de Loire, Nouzilly, France
| | | | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,CHRU de Tours, service de médecine intensive - réanimation, Tours, France
| | - Mustapha Si-Tahar
- INSERM U1100 - Faculty of Medicine, Study Center for Respiratory Pathologies, Tours, France
| | | | - Pascal Barbry
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France.,CNRS, 27051, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France
| | | | - Nikolai Klymiuk
- LMU, 9183, CIMM-Gene Center and Center for Innovative Medical Models, Munchen, Germany
| | - Jean-Claude Sirard
- Center for Infection and Immunity of Lille, 165209, Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 , Lille, France
| | | |
Collapse
|
11
|
Majorova D, Atkins E, Martineau H, Vokral I, Oosterhuis D, Olinga P, Wren B, Cuccui J, Werling D. Use of Precision-Cut Tissue Slices as a Translational Model to Study Host-Pathogen Interaction. Front Vet Sci 2021; 8:686088. [PMID: 34150901 PMCID: PMC8212980 DOI: 10.3389/fvets.2021.686088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
The recent increase in new technologies to analyze host-pathogen interaction has fostered a race to develop new methodologies to assess these not only on the cellular level, but also on the tissue level. Due to mouse-other mammal differences, there is a desperate need to develop relevant tissue models that can more closely recapitulate the host tissue during disease and repair. Whereas organoids and organs-on-a-chip technologies have their benefits, they still cannot provide the cellular and structural complexity of the host tissue. Here, precision cut tissue slices (PCTS) may provide invaluable models for complex ex-vivo generated tissues to assess host-pathogen interaction as well as potential vaccine responses in a “whole organ” manner. In this mini review, we discuss the current literature regarding PCTS in veterinary species and advocate that PCTS represent remarkable tools to further close the gap between target identification, subsequent translation of results into clinical studies, and thus opening avenues for future precision medicine approaches.
Collapse
Affiliation(s)
- Dominika Majorova
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Elizabeth Atkins
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Henny Martineau
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Ivan Vokral
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Prague, Czechia
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Jon Cuccui
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
12
|
Vötsch D, Willenborg M, Baumgärtner W, Rohde M, Valentin-Weigand P. Bordetella bronchiseptica promotes adherence, colonization, and cytotoxicity of Streptococcus suis in a porcine precision-cut lung slice model. Virulence 2020; 12:84-95. [PMID: 33372837 PMCID: PMC7781633 DOI: 10.1080/21505594.2020.1858604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bordetella (B.) bronchiseptica and Streptococcus (S.) suis are major pathogens in pigs, which are frequently isolated from co-infections in the respiratory tract and contribute to the porcine respiratory disease complex (PRDC). Despite the high impact of co-infections on respiratory diseases of swine (and other hosts), very little is known about pathogen-pathogen-host interactions and the mechanisms of pathogenesis. In the present study, we established a porcine precision-cut lung slice (PCLS) model to analyze the effects of B. bronchiseptica infection on adherence, colonization, and cytotoxic effects of S. suis. We hypothesized that induction of ciliostasis by a clinical isolate of B. bronchiseptica may promote subsequent infection with a virulent S. suis serotype 2 strain. To investigate this theory, we monitored the ciliary activity by light microscopy, measured the release of lactate dehydrogenase, and calculated the number of PCLS-associated bacteria. To study the role of the pore-forming toxin suilysin (SLY) in S. suis-induced cytotoxicity, we included a SLY-negative isogenic mutant and the complemented mutant strain. Furthermore, we analyzed infected PCLS by histopathology, immunofluorescence microscopy, and field emission scanning electron microscopy. Our results showed that pre-infection with B. bronchiseptica promoted adherence, colonization, and, as a consequence of the increased colonization, the cytotoxic effects of S. suis, probably by reduction of the ciliary activity. Moreover, cytotoxicity induced by S. suis is strictly dependent on the presence of SLY. Though the underlying molecular mechanisms remain to be fully clarified, our results clearly support the hypothesis that B. bronchiseptica paves the way for S. suis infection.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Wolfgang Baumgärtner
- Institute for Pathology, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research , Braunschweig, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover , Hannover, Germany
| |
Collapse
|
13
|
Avian Influenza A Virus Infects Swine Airway Epithelial Cells without Prior Adaptation. Viruses 2020; 12:v12060589. [PMID: 32481674 PMCID: PMC7374723 DOI: 10.3390/v12060589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023] Open
Abstract
Pigs play an important role in the interspecies transmission of influenza A viruses (IAV). The porcine airway epithelium contains binding sites for both swine/human IAV (α2,6-linked sialic acids) and avian IAV (α2,3-linked sialic acids) and therefore is suited for adaptation of viruses from other species as suggested by the “mixing vessel theory”. Here, we applied well-differentiated swine airway epithelial cells to find out whether efficient infection by avian IAV requires prior adaption. Furthermore, we analyzed the influence of the sialic acid-binding activity and the virus-induced detrimental effects. Surprisingly, an avian IAV H1N1 strain circulating in European poultry and waterfowl shows increased and prolonged viral replication without inducing a strong innate immune response. This virus could infect the lower respiratory tract in our precision cut-lung slice model. Pretreating the cells with poly (I:C) and/or JAK/STAT pathway inhibitors revealed that the interferon-stimulated innate immune response influences the replication of avian IAV in swine airway epitheliums but not that of swine IAV. Further studies indicated that in the infection by IAVs, the binding affinity of sialic acid is not the sole factor affecting the virus infectivity for swine or human airway epithelial cells, whereas it may be crucial in well-differentiated ferret tracheal epithelial cells. Taken together, our results suggest that the role of pigs being the vessel of interspecies transmission should be reconsidered, and the potential of avian H1N1 viruses to infect mammals needs to be characterized in more detail.
Collapse
|
14
|
Bryson KJ, Garrido D, Esposito M, McLachlan G, Digard P, Schouler C, Guabiraba R, Trapp S, Vervelde L. Precision cut lung slices: a novel versatile tool to examine host-pathogen interaction in the chicken lung. Vet Res 2020; 51:2. [PMID: 31924278 PMCID: PMC6954617 DOI: 10.1186/s13567-019-0733-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/12/2019] [Indexed: 01/12/2023] Open
Abstract
The avian respiratory tract is a common entry route for many pathogens and an important delivery route for vaccination in the poultry industry. Immune responses in the avian lung have mostly been studied in vivo due to the lack of robust, relevant in vitro and ex vivo models mimicking the microenvironment. Precision-cut lung slices (PCLS) have the major advantages of maintaining the 3-dimensional architecture of the lung and includes heterogeneous cell populations. PCLS have been obtained from a number of mammalian species and from chicken embryos. However, as the embryonic lung is physiologically undifferentiated and immunologically immature, it is less suitable to examine complex host-pathogen interactions including antimicrobial responses. Here we prepared PCLS from immunologically mature chicken lungs, tested different culture conditions, and found that serum supplementation has a detrimental effect on the quality of PCLS. Viable cells in PCLS remained present for ≥ 40 days, as determined by viability assays and sustained motility of fluorescent mononuclear phagocytic cells. The PCLS were responsive to lipopolysaccharide stimulation, which induced the release of nitric oxide, IL-1β, type I interferons and IL-10. Mononuclear phagocytes within the tissue maintained phagocytic activity, with live cell imaging capturing interactions with latex beads and an avian pathogenic Escherichia coli strain. Finally, the PCLS were also shown to be permissive to infection with low pathogenic avian influenza viruses. Taken together, immunologically mature chicken PCLS provide a suitable model to simulate live organ responsiveness and cell dynamics, which can be readily exploited to examine host-pathogen interactions and inflammatory responses.
Collapse
Affiliation(s)
- Karen Jane Bryson
- Division of Infection and Immunity, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| | - Damien Garrido
- INRAE, Université de Tours, UMR ISP, Centre Val de Loire, 37380 Nouzilly, France
| | - Marco Esposito
- Division of Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| | - Gerry McLachlan
- Division of Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| | - Paul Digard
- Division of Infection and Immunity, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| | - Catherine Schouler
- INRAE, Université de Tours, UMR ISP, Centre Val de Loire, 37380 Nouzilly, France
| | - Rodrigo Guabiraba
- INRAE, Université de Tours, UMR ISP, Centre Val de Loire, 37380 Nouzilly, France
| | - Sascha Trapp
- INRAE, Université de Tours, UMR ISP, Centre Val de Loire, 37380 Nouzilly, France
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG UK
| |
Collapse
|
15
|
Zhang J, Gauger PC. Isolation of Swine Influenza A Virus in Cell Cultures and Embryonated Chicken Eggs. Methods Mol Biol 2020; 2123:281-294. [PMID: 32170695 DOI: 10.1007/978-1-0716-0346-8_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Influenza virus isolation is a procedure to obtain a live and infectious virus that can be used for antigenic characterization, pathogenesis investigation, vaccine production, and so on. Embryonated chicken egg inoculation is traditionally considered the "gold standard" method for influenza virus isolation and propagation. However, many primary cells and continuous cell lines have also been examined or developed for influenza virus isolation and replication. Specifically, influenza A virus in swine (IAV-S) isolation and propagation has been attempted and compared in embryonated chicken eggs, some primary porcine cells, and a number of continuous cell lines. Currently, Madin-Darby canine kidney (MDCK) cells remain the most commonly used cell line for the isolation, propagation, and titration of IAV-S. Virus isolation in embryonated chicken eggs or in different cell lines offers alternative approaches when IAV-S isolation in MDCK cells is unsuccessful. Optimal specimens for IAV-S isolation includes nasal swabs, nasopharyngeal swabs, oral fluids, bronchoalveolar lavage, lung tissues, and so on. In this chapter, we describe the procedures of sample processing, IAV-S isolation in MDCK cells and in embryonated chicken eggs, as well as the methods used for confirming the virus isolation results.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
16
|
Host-Pathogen Interactions of Mycoplasma mycoides in Caprine and Bovine Precision-Cut Lung Slices (PCLS) Models. Pathogens 2019; 8:pathogens8020082. [PMID: 31226867 PMCID: PMC6631151 DOI: 10.3390/pathogens8020082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Respiratory infections caused by mycoplasma species in ruminants lead to considerable economic losses. Two important ruminant pathogens are Mycoplasma mycoides subsp. Mycoides (Mmm), the aetiological agent of contagious bovine pleuropneumonia and Mycoplasma mycoides subsp. capri (Mmc), which causes pneumonia, mastitis, arthritis, keratitis, and septicemia in goats. We established precision cut lung slices (PCLS) infection model for Mmm and Mmc to study host-pathogen interactions. We monitored infection over time using immunohistological analysis and electron microscopy. Moreover, infection burden was monitored by plating and quantitative real-time PCR. Results were compared with lungs from experimentally infected goats and cattle. Lungs from healthy goats and cattle were also included as controls. PCLS remained viable for up to two weeks. Both subspecies adhered to ciliated cells. However, the titer of Mmm in caprine PCLS decreased over time, indicating species specificity of Mmm. Mmc showed higher tropism to sub-bronchiolar tissue in caprine PCLS, which increased in a time-dependent manner. Moreover, Mmc was abundantly observed on pulmonary endothelial cells, indicating partially, how it causes systemic disease. Tissue destruction upon prolonged infection of slices was comparable to the in vivo samples. Therefore, PCLS represents a novel ex vivo model to study host-pathogen interaction in livestock mycoplasma.
Collapse
|
17
|
Xie X, Gan Y, Pang M, Shao G, Zhang L, Liu B, Xu Q, Wang H, Feng Y, Yu Y, Chen R, Wu M, Zhang Z, Hua L, Xiong Q, Liu M, Feng Z. Establishment and characterization of a telomerase-immortalized porcine bronchial epithelial cell line. J Cell Physiol 2018; 233:9763-9776. [PMID: 30078190 DOI: 10.1002/jcp.26942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/12/2018] [Indexed: 01/03/2023]
Abstract
Primary porcine bronchial epithelial cells (PBECs) are an ideal model to study the molecular and pathogenic mechanisms of various porcine respiratory pathogens. However, the short lifespan of primary PBECs greatly limit their application. Here, we isolated and cultured primary PBECs and established immortalized PBECs by transfecting primary PBECs with the pEGFP-hTERT recombinant plasmid containing human telomerase reverse transcriptase (hTERT). Immortalized PBECs (hTERT-PBECs) retained the morphological and functional features of primary PBECs as indicated by cytokeratin 18 expression, telomerase activity assay, proliferation assays, karyotype analysis, and quantitative reverse-transcriptase polymerase chain reaction. Compared to primary PBECs, hTERT-PBECs had higher telomerase activity, extended replicative lifespan, and displayed enhanced proliferative activity. Moreover, this cell line is not transformed in vitro and does not exhibit a malignant phenotype in vivo, suggesting that it can be safely used in further studies. Besides, hTERT-PBECs were susceptible to swine influenza virus of H3N2 subtype and porcine circovirus type 2. In conclusion, the immortalized hTERT-PBECs represent a valuable in vitro model, which can be widely used in the study of porcine respiratory pathogenic infections.
Collapse
Affiliation(s)
- Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan Gan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Beibei Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiyan Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanyan Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Meng Wu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lizhong Hua
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
18
|
Fu Y, Tong J, Meng F, Hoeltig D, Liu G, Yin X, Herrler G. Ciliostasis of airway epithelial cells facilitates influenza A virus infection. Vet Res 2018; 49:65. [PMID: 30021653 PMCID: PMC6052543 DOI: 10.1186/s13567-018-0568-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/06/2018] [Indexed: 01/28/2023] Open
Abstract
Porcine precision-cut lung slices (PCLS) were used to analyze the effect of the ciliary activity on infection of airway epithelial cells by influenza viruses. Treatment of slices with 2% NaCl for 30 min resulted in reversible ciliostasis. When PCLS were infected by a swine influenza virus of the H3N2 subtype under ciliostatic conditions, the viral yield was about twofold or threefold higher at 24 or 48 h post-infection, respectively, as compared to slices with ciliary activity. Therefore, the cilia beating not only transports the mucus out of the airways, it also impedes virus infection.
Collapse
Affiliation(s)
- Yuguang Fu
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.,Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Jie Tong
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Doris Hoeltig
- Clinic of Swine and Small Ruminants and Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guangliang Liu
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xiangping Yin
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
19
|
Thomas M, Pierson M, Uprety T, Zhu L, Ran Z, Sreenivasan CC, Wang D, Hause B, Francis DH, Li F, Kaushik RS. Comparison of Porcine Airway and Intestinal Epithelial Cell Lines for the Susceptibility and Expression of Pattern Recognition Receptors upon Influenza Virus Infection. Viruses 2018; 10:E312. [PMID: 29880757 PMCID: PMC6024858 DOI: 10.3390/v10060312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Influenza viruses infect the epithelial cells of the swine respiratory tract. Cell lines derived from the respiratory tract of pigs could serve as an excellent in vitro model for studying the pathogenesis of influenza viruses. In this study, we examined the replication of influenza viruses in the MK1-OSU cell line, which was clonally derived from pig airway epithelium. MK1-OSU cells expressed both cytokeratin and vimentin proteins and displayed several sugar moieties on the cell membrane. These cells also expressed both Sial2-3Gal and Sial2-6Gal receptors and were susceptible to swine influenza A, but not to human B and C viruses. Interestingly, these cells were also permissive to infection by influenza D virus that utilized 9-O-acetylated glycans. To study the differences in the expression of pattern recognition receptors (PRRs) upon influenza virus infection in the respiratory and digestive tract, we compared the protein expression of various PRRs in MK1-OSU cells with that in the SD-PJEC cell line, a clonally derived cell line from the porcine jejunal epithelium. Toll-like receptor 7 (TLR-7) and melanoma differentiation-associated protein 5 (MDA5) receptors showed decreased expression in influenza A infected MK1-OSU cells, while only TLR-7 expression decreased in SD-PJEC cells. Further research is warranted to study the mechanism behind the virus-mediated suppression of these proteins. Overall, this study shows that the porcine respiratory epithelial cell line, MK1-OSU, could serve as an in-vitro model for studying the pathogenesis and innate immune responses to porcine influenza viruses.
Collapse
Affiliation(s)
- Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Max Pierson
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Tirth Uprety
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Laihua Zhu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Zhiguang Ran
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Chithra C Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSNTR, Brookings, SD 57007, USA.
| | - Ben Hause
- Cambridge Technologies, Oxford Street Worthington, MN 56187, USA.
| | - David H Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSNTR, Brookings, SD 57007, USA.
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
20
|
Yang W, Lambertz RLO, Punyadarsaniya D, Leist SR, Stech J, Schughart K, Herrler G, Wu NH, Meng F. Increased virulence of a PB2/HA mutant of an avian H9N2 influenza strain after three passages in porcine differentiated airway epithelial cells. Vet Microbiol 2017; 211:129-134. [PMID: 29102108 DOI: 10.1016/j.vetmic.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023]
Abstract
We analyzed the adaptation of influenza viruses to growth in differentiated airway epithelial cells of a new host by passaging an avian H9N2 virus three times in porcine precision-cut lung slices (PCLS). Sequence analysis revealed four mutations: one each in the PB2 and NS1 proteins, and two in the HA protein. In this study, we characterized the PB2 mutation G685R by generating recombinant H9N2 viruses containing the PB2 single mutation alone or in combination with one of the HA mutations (A190V or T212I). When analyzed in porcine cells - a tracheal cell line (NPTr) or PCLS - the PB2-685 mutant did not provide a growth advantage and had no effect on the ciliary activity which is a virulence marker of swine influenza viruses. Pathogenicity for mice was also not increased by the single PB2 mutation. However, both double mutants (HA-190+PB2-685 and HA-212+PB2-685) showed significantly increased virulence in mice. Therefore, the mutations in the HA and PB2 proteins may confer early adaptation of an avian H9N2 virus to a mammalian host. In conclusion, we expect that a broader ensemble of mutations will be required to render an H9N2 virus virulent for pigs.
Collapse
Affiliation(s)
- Wei Yang
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ruth L O Lambertz
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | - Darsaniya Punyadarsaniya
- Virology and Immunology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | - Jürgen Stech
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany; University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
21
|
Carranza-Rosales P, Carranza-Torres IE, Guzmán-Delgado NE, Lozano-Garza G, Villarreal-Treviño L, Molina-Torres C, Villarreal JV, Vera-Cabrera L, Castro-Garza J. Modeling tuberculosis pathogenesis through ex vivo lung tissue infection. Tuberculosis (Edinb) 2017; 107:126-132. [PMID: 29050759 PMCID: PMC7106348 DOI: 10.1016/j.tube.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 02/02/2023]
Abstract
Tuberculosis (TB) is one of the top 10 causes of death worldwide. Several in vitro and in vivo experimental models have been used to study TB pathogenesis and induction of immune response during Mycobacterium tuberculosis infection. Precision cut lung tissue slices (PCLTS) is an experimental model, in which all the usual cell types of the organ are found, the tissue architecture and the interactions amongst the different cells are maintained. PCLTS in good physiological conditions, monitored by MTT assay and histology, were infected with either virulent Mycobacterium tuberculosis strain H37Rv or the TB vaccine strain Mycobacterium bovis BCG. Histological analysis showed that bacilli infecting lung tissue slices were observed in the alveolar septa, alveolar light spaces, near to type II pneumocytes, and inside macrophages. Mycobacterial infection of PCLTS induced TNF-α production, which is consistent with previous M. tuberculosis in vitro and in vivo studies. This is the first report of using PCLTS as a system to study M. tuberculosis infection. The PCLTS model provides a useful tool to evaluate the innate immune responses and other aspects during the early stages of mycobacterial infection.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 2 de Abril 501 ote, Col. Independencia, 64720, Monterrey, N.L., Mexico.
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 2 de Abril 501 ote, Col. Independencia, 64720, Monterrey, N.L., Mexico; Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Avenida Pedro de Alba y Manuel L, Barragán s/n, Cd. Universitaria, 66450, San Nicolás de los Garza, N.L., Mexico.
| | - Nancy Elena Guzmán-Delgado
- Departamento de Patología, Unidad Médica de Alta Especialidad # 34, Instituto Mexicano del Seguro Social, Monterrey, N.L. 64730, Mexico.
| | - Gerardo Lozano-Garza
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 2 de Abril 501 ote, Col. Independencia, 64720, Monterrey, N.L., Mexico.
| | - Licet Villarreal-Treviño
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Avenida Pedro de Alba y Manuel L, Barragán s/n, Cd. Universitaria, 66450, San Nicolás de los Garza, N.L., Mexico.
| | - Carmen Molina-Torres
- Servicio de Dermatología, Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos, Col. Mitras Centro, Monterrey, N.L., Mexico.
| | - Javier Vargas Villarreal
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 2 de Abril 501 ote, Col. Independencia, 64720, Monterrey, N.L., Mexico.
| | - Lucio Vera-Cabrera
- Servicio de Dermatología, Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos, Col. Mitras Centro, Monterrey, N.L., Mexico.
| | - Jorge Castro-Garza
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 2 de Abril 501 ote, Col. Independencia, 64720, Monterrey, N.L., Mexico.
| |
Collapse
|
22
|
Comparison of mono- and co-infection by swine influenza A viruses and porcine respiratory coronavirus in porcine precision-cut lung slices. Res Vet Sci 2017; 115:470-477. [PMID: 28779714 PMCID: PMC7111742 DOI: 10.1016/j.rvsc.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/31/2017] [Accepted: 07/16/2017] [Indexed: 01/09/2023]
Abstract
Coronaviruses as well as influenza A viruses are widely spread in pig fattening and can cause high economical loss. Here we infected porcine precision-cut lung slices with porcine respiratory coronavirus and two Influenza A viruses to analyze if co-infection with these viruses may enhance disease outcome in swine. Ciliary activity of the epithelial cells in the bronchus of precision-cut lung slices was measured. Co-infection of PCLS reduced virulence of both virus species compared to mono-infection. Similar results were obtained by mono- and co-infection experiments on a porcine respiratory cell line. Again lower titers in co-infection groups indicated an interference of the two RNA viruses. This is in accordance with in vivo experiments, revealing cell innate immune answers to both PRCoV and SIV that are able to restrict the virulence and pathogenicity of the viruses. PCLS can be used to analyze porcine respiratory coronavirus infection. Co-infection of PCLS with PRCoV and SIV reduces viral replication efficiency. SIV replication is reduced after co-infection of NPTr cells with PRCoV. Porcine influenza and coronaviruses interfere during infection.
Collapse
|
23
|
Sid H, Hartmann S, Winter C, Rautenschlein S. Interaction of Influenza A Viruses with Oviduct Explants of Different Avian Species. Front Microbiol 2017; 8:1338. [PMID: 28775714 PMCID: PMC5518544 DOI: 10.3389/fmicb.2017.01338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022] Open
Abstract
Infection of poultry with low pathogenic avian influenza viruses (LPAIV) is often associated with mild respiratory symptoms but may also lead to loss in egg production in laying birds. In vivo susceptibility of the reproductive tract for LPAIV infection was reported for turkeys and chickens, but virus-interaction with epithelial cells of the oviduct and possible stimulation of the local antiviral immune responses have not been characterized. In this study, we wanted to investigate the suitability of magnum organ cultures (MOC) as an in vitro model to study virus-host interactions. We compared the susceptibility of duck (Du), chicken (Ch), and turkey (Tu) MOC for three different influenza A viruses (IAV). Overall, the course of infection and the antiviral immune response varied between strains as well as host cell origin, but MOC gave reproducible results for all investigated parameters within each species. While pandemic (p) H1N1 and H9N2 efficiently replicated in MOC-Ch and MOC-Tu, MOC-Du were significantly less susceptible to infection as indicated by a reduced replication level for both viruses (p < 0.05). Overall, virus replication levels did not correlate with interferonα (IFNα) mRNA-expression levels in neither species. H9N2-infection led to a significant upregulation of interferonλ (IFNλ) mRNA expression in MOC of all species compared to the non-infected controls (p < 0.05), while a correlation with replication levels was only seen for MOC-Tu. pH1N1-infection induced only significant upregulation of IFNλ mRNA expression in MOC-Tu at 48 hours post infection (p < 0.05), but the expression pattern did not correlate with replication levels. Our results show that MOC are a suitable model to study IAV-interaction with the mucosal surface of the avian reproductive tract. The data suggest that the reproductive tract may play a role in the pathobiology of IAV in poultry.
Collapse
Affiliation(s)
- Hicham Sid
- Clinic for Poultry, University of Veterinary Medicine HannoverHannover, Germany
| | - Sandra Hartmann
- Clinic for Poultry, University of Veterinary Medicine HannoverHannover, Germany
| | - Christine Winter
- Institute of Virology, University of Veterinary Medicine HannoverHannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine HannoverHannover, Germany
| |
Collapse
|
24
|
The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int J Mol Sci 2017; 18:ijms18071541. [PMID: 28714909 PMCID: PMC5536029 DOI: 10.3390/ijms18071541] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza A virus are responsible for the surface interactions of the virion with the host. Entry of the virus is mediated by functions of the HA: binding to cellular receptors and facilitating fusion of the virion membrane with the endosomal membrane. The HA structure contains receptor binding sites in the globular membrane distal head domains of the trimer, and the fusion machinery resides in the stem region. These sites have specific characteristics associated with subtype and host, and the differences often define species barriers. For example, avian viruses preferentially recognize α2,3-Sialic acid terminating glycans as receptors and mammalian viruses recognize α2,6-Sialic acid. The neuraminidase, or the receptor-destroying protein, cleaves the sialic acid from cellular membrane constituents and viral glycoproteins allowing for egress of nascent virions. A functional balance of activity has been demonstrated between the two glycoproteins, resulting in an optimum level of HA affinity and NA enzymatic cleavage to allow for productive infection. As more is understood about both HA and NA, the relevance for functional balance between HA and NA continues to expand, with potential implications for interspecies transmission, host adaptation, and pathogenicity.
Collapse
|
25
|
Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice. J Virol 2017; 91:JVI.02125-16. [PMID: 28148793 DOI: 10.1128/jvi.02125-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
The natural reservoir for influenza viruses is waterfowl, and from there they succeeded in crossing the barrier to different mammalian species. We analyzed the adaptation of avian influenza viruses to a mammalian host by passaging an H9N2 strain three times in differentiated swine airway epithelial cells. Using precision-cut slices from the porcine lung to passage the parental virus, isolates from each of the three passages (P1 to P3) were characterized by assessing growth curves and ciliostatic effects. The only difference noted was an increased growth kinetics of the P3 virus. Sequence analysis revealed four mutations: one each in the PB2 and NS1 proteins and two in the HA protein. The HA mutations, A190V and T212I, were characterized by generating recombinant viruses containing either one or both amino acid exchanges. Whereas the parental virus recognized α2,3-linked sialic acids preferentially, the HA190 mutant bound to a broad spectrum of glycans with α2,6/8/9-linked sialic acids. The HA212 mutant alone differed only slightly from the parental virus; however, the combination of both mutations (HA190+HA212) increased the binding affinity to those glycans recognized by the HA190 mutant. Remarkably, only the HA double mutant showed a significantly increased pathogenicity in mice. In contrast, none of those mutations affected the ciliary activity of the epithelial cells which is characteristic for virulent swine influenza viruses. Taken together, our results indicate that shifts in the HA receptor affinity are just an early adaptation step of avian H9N2 strains; further mutational changes may be required to become virulent for pigs.IMPORTANCE Swine play an important role in the interspecies transmission of influenza viruses. Avian influenza A viruses (IAV) of the H9N2 subtype have successfully infected hosts from different species but have not established a stable lineage. We have analyzed the adaptation of IAV-H9N2 virus to target cells of a new host by passaging the virus three times in differentiated porcine respiratory epithelial cells. Among the four mutations detected, the two HA mutations were analyzed by generating recombinant viruses. Depending on the infection system used, the mutations differed in their phenotypic expression, e.g., sialic acid binding activity, replication kinetics, plaque size, and pathogenicity in inbred mice. However, none of the mutations affected the ciliary activity which serves as a virulence marker. Thus, early adaptive mutation enhances the replication kinetics, but more mutations are required for IAV of the H9N2 subtype to become virulent.
Collapse
|
26
|
Wu NH, Yang W, Beineke A, Dijkman R, Matrosovich M, Baumgärtner W, Thiel V, Valentin-Weigand P, Meng F, Herrler G. The differentiated airway epithelium infected by influenza viruses maintains the barrier function despite a dramatic loss of ciliated cells. Sci Rep 2016; 6:39668. [PMID: 28004801 PMCID: PMC5177954 DOI: 10.1038/srep39668] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022] Open
Abstract
Virus-host interactions in the respiratory epithelium during long term influenza virus infection are not well characterized. Therefore, we developed an air-liquid interface culture system for differentiated porcine respiratory epithelial cells to study the effect of virus-induced cellular damage. In our well-differentiated cells, α2,6-linked sialic acid is predominantly expressed on the apical surface and the basal cells mainly express α2,3-linked sialic acid. During the whole infection period, release of infectious virus was maintained at a high titre for more than seven days. The infected epithelial cells were subject to apoptosis resulting in the loss of ciliated cells together with a thinner thickness. Nevertheless, the airway epithelium maintained trans-epithelial electrical resistance and retained its barrier function. The loss of ciliated cells was compensated by the cells which contained the KRT5 basal cell marker but were not yet differentiated into ciliated cells. These specialized cells showed an increase of α2,3-linked sialic acid on the apical surface. In sum, our results help to explain the localized infection of the airway epithelium by influenza viruses. The impairment of mucociliary clearance in the epithelial cells provides an explanation why prior viral infection renders the host more susceptible to secondary co-infection by another pathogen.
Collapse
Affiliation(s)
- Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wei Yang
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Institute of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ronald Dijkman
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | | | - Wolfgang Baumgärtner
- Institute of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Thiel
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
27
|
Shanmuganatham KK, Jones JC, Marathe BM, Feeroz MM, Jones-Engel L, Walker D, Turner J, Rabiul Alam SM, Kamrul Hasan M, Akhtar S, Seiler P, McKenzie P, Krauss S, Webby RJ, Webster RG. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals. Emerg Microbes Infect 2016; 5:e35. [PMID: 27094903 PMCID: PMC4855072 DOI: 10.1038/emi.2016.29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 01/28/2023]
Abstract
H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.
Collapse
Affiliation(s)
| | - Jeremy C Jones
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mohammed M Feeroz
- Department of Zoology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Lisa Jones-Engel
- National Primate Research Center University of Washington, Seattle, WA 98195-5502, USA
| | - David Walker
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jasmine Turner
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - S M Rabiul Alam
- Department of Zoology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - M Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Patrick Seiler
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott Krauss
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert G Webster
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
28
|
Wu NH, Meng F, Seitz M, Valentin-Weigand P, Herrler G. Sialic acid-dependent interactions between influenza viruses and Streptococcus suis affect the infection of porcine tracheal cells. J Gen Virol 2015; 96:2557-2568. [PMID: 26297001 DOI: 10.1099/jgv.0.000223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial co-infections are a major complication in influenza-virus-induced disease in both humans and animals. Either of the pathogens may induce a host response that affects the infection by the other pathogen. A unique feature in the co-infection by swine influenza viruses (SIV) and Streptococcus suis serotype 2 is the direct interaction between the two pathogens. It is mediated by the haemagglutinin of SIV that recognizes the α2,6-linked sialic acid present in the capsular polysaccharide of Streptococcus suis. In the present study, this interaction was demonstrated for SIV of both H1N1 and H3N2 subtypes as well as for human influenza viruses that recognize α2,6-linked sialic acid. Binding of SIV to Streptococcus suis resulted in co-sedimentation of virus with bacteria during low-speed centrifugation. Viruses bound to bacteria retained infectivity but induced only tiny plaques compared with control virus. Infection of porcine tracheal cells by SIV facilitated adherence of Streptococcus suis, which was evident by co-staining of bacterial and viral antigen. Sialic-acid-dependent binding of Streptococcus suis was already detectable after incubation for 30 min. By contrast, bacterial co-infection had a negative effect on the replication of SIV as indicated by lower virus titres in the supernatant and a delay in the kinetics of virus release.
Collapse
Affiliation(s)
- Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Seitz
- Institute of Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute of Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
29
|
Liu R, An L, Liu G, Li X, Tang W, Chen X. Mouse lung slices: An ex vivo model for the evaluation of antiviral and anti-inflammatory agents against influenza viruses. Antiviral Res 2015; 120:101-11. [PMID: 26022197 PMCID: PMC7125926 DOI: 10.1016/j.antiviral.2015.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 11/20/2022]
Abstract
Mouse lung slices stay alive for at least 5 days ex vivo. Influenza viruses can replicate in mouse lung slices and trigger robust cytokine and chemokine responses. A positive correlation in cytokine and chemokine responses between ex vivo and in vivo exists. Neuraminidase and IP-10 can serve as readouts for antiviral and anti-inflammation activities, respectively. This ex vivo model may predict efficacy of drug candidates in antiviral and anti-inflammation activities in vivo.
The influenza A virus is notoriously known for its ability to cause recurrent epidemics and global pandemics. Antiviral therapy is effective when treatment is initiated within 48 h of symptom onset, and delaying treatment beyond this time frame is associated with decreased efficacy. Research on anti-inflammatory therapy to ameliorate influenza-induced inflammation is currently underway and seems important to the impact on the clinical outcome. Both antiviral and anti-inflammatory drugs with novel mechanisms of action are urgently needed. Current methods for evaluating the efficacy of anti-influenza drugs rely mostly on transformed cells and animals. Transformed cell models are distantly related to physiological and pathological conditions. Although animals are the best choices for preclinical drug testing, they are not time- or cost-efficient. In this study, we established an ex vivo model using mouse lung slices to evaluate both antiviral and anti-inflammatory agents against influenza virus infection. Both influenza virus PR8 (H1N1) and A/Human/Hubei/3/2005 (H3N2) can replicate efficiently in mouse lung slices and trigger significant cytokine and chemokine responses. The induction of selected cytokines and chemokines were found to have a positive correlation between ex vivo and in vivo experiments, suggesting that the ex vivo cultured lung slices may closely resemble the lung functionally in an in vivo configuration when challenged by influenza virus. Furthermore, a set of agents with known antiviral and/or anti-inflammatory activities were tested to validate the ex vivo model. Our results suggested that mouse lung slices provide a robust, convenient and cost-efficient model for the assessment of both antiviral and anti-inflammatory agents against influenza virus infection in one assay. This ex vivo model may predict the efficacy of drug candidates’ antiviral and anti-inflammatory activities in vivo.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43001, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei An
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43001, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Anatomy, The University of Hong Kong, Hong Kong, China(1)
| | - Ge Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43001, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43001, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43001, Hubei, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43001, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Dynamic Virus-Bacterium Interactions in a Porcine Precision-Cut Lung Slice Coinfection Model: Swine Influenza Virus Paves the Way for Streptococcus suis Infection in a Two-Step Process. Infect Immun 2015; 83:2806-15. [PMID: 25916988 DOI: 10.1128/iai.00171-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Swine influenza virus (SIV) and Streptococcus suis are common pathogens of the respiratory tract in pigs, with both being associated with pneumonia. The interactions of both pathogens and their contribution to copathogenesis are only poorly understood. In the present study, we established a porcine precision-cut lung slice (PCLS) coinfection model and analyzed the effects of a primary SIV infection on secondary infection by S. suis at different time points. We found that SIV promoted adherence, colonization, and invasion of S. suis in a two-step process. First, in the initial stages, these effects were dependent on bacterial encapsulation, as shown by selective adherence of encapsulated, but not unencapsulated, S. suis to SIV-infected cells. Second, at a later stage of infection, SIV promoted S. suis adherence and invasion of deeper tissues by damaging ciliated epithelial cells. This effect was seen with a highly virulent SIV subtype H3N2 strain but not with a low-virulence subtype H1N1 strain, and it was independent of the bacterial capsule, since an unencapsulated S. suis mutant behaved in a way similar to that of the encapsulated wild-type strain. In conclusion, the PCLS coinfection model established here revealed novel insights into the dynamic interactions between SIV and S. suis during infection of the respiratory tract. It showed that at least two different mechanisms contribute to the beneficial effects of SIV for S. suis, including capsule-mediated bacterial attachment to SIV-infected cells and capsule-independent effects involving virus-mediated damage of ciliated epithelial cells.
Collapse
|
31
|
Zhang J, Gauger PC. Isolation of swine influenza virus in cell cultures and embryonated chicken eggs. Methods Mol Biol 2015; 1161:265-76. [PMID: 24899436 DOI: 10.1007/978-1-4939-0758-8_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Influenza virus isolation is a procedure to obtain a live and infectious virus that can be used for antigenic characterization, pathogenesis investigation, and vaccine production. Embryonated chicken egg inoculation is traditionally considered the "gold standard" method for influenza virus isolation and propagation. However, many primary cells and continuous cell lines have also been examined or developed for influenza virus isolation and replication. Specifically, swine influenza virus (SIV) isolation and propagation have been attempted and compared in embryonated chicken eggs, some primary porcine cells, and a number of continuous cell lines. Currently Madin-Darby canine kidney (MDCK) cells remain the most commonly used cell line for isolation, propagation, and titration of SIV. Virus isolation in embryonated chicken eggs or in different cell lines offers alternative approaches when SIV isolation in MDCK cells is unsuccessful. Nasal swabs, lung tissues, and oral fluids are three major specimen types for SIV isolation. In this chapter, we describe the procedures of sample processing, SIV isolation in MDCK cells and in embryonated chicken eggs, as well as methods used for confirming the virus isolation results.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Veterinary Diagnostic Laboratory, Iowa State University, 1600 South 16th Street, Ames, IA, 50011, USA,
| | | |
Collapse
|
32
|
Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses. J Virol Methods 2014; 212:71-5. [PMID: 25445801 PMCID: PMC7172049 DOI: 10.1016/j.jviromet.2014.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 11/22/2022]
Abstract
Infection of differentiated intestinal epithelial cells, influenza virus, receptors, sialic acid, cell surface. PCIS can be used for virus cultivation. PCIS can be used to analyze infection of target cells by intestinal viruses.
Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species.
Collapse
|
33
|
Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices. Vet Res 2014; 45:42. [PMID: 24712747 PMCID: PMC4021251 DOI: 10.1186/1297-9716-45-42] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/12/2014] [Indexed: 01/03/2023] Open
Abstract
Viral respiratory diseases remain of major importance in swine breeding units. Swine influenza virus (SIV) is one of the main known contributors to infectious respiratory diseases. The innate immune response to swine influenza viruses has been assessed in many previous studies. However most of these studies were carried out in a single-cell population or directly in the live animal, in all its complexity. In the current study we report the use of a trachea epithelial cell line (newborn pig trachea cells – NPTr) in comparison with alveolar macrophages and lung slices for the characterization of innate immune response to an infection by a European SIV of the H3N2 subtype. The expression pattern of transcripts involved in the recognition of the virus, interferon type I and III responses, and the host-response regulation were assessed by quantitative PCR in response to infection. Some significant differences were observed between the three systems, notably in the expression of type III interferon mRNA. Then, results show a clear induction of JAK/STAT and MAPK signaling pathways in infected NPTr cells. Conversely, PI3K/Akt signaling pathways was not activated. The inhibition of the JAK/STAT pathway clearly reduced interferon type I and III responses and the induction of SOCS1 at the transcript level in infected NPTr cells. Similarly, the inhibition of MAPK pathway reduced viral replication and interferon response. All together, these results contribute to an increased understanding of the innate immune response to H3N2 SIV and may help identify strategies to effectively control SIV infection.
Collapse
|
34
|
Characterization of the sialic acid binding activity of influenza A viruses using soluble variants of the H7 and H9 hemagglutinins. PLoS One 2014; 9:e89529. [PMID: 24586849 PMCID: PMC3931807 DOI: 10.1371/journal.pone.0089529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/22/2014] [Indexed: 12/25/2022] Open
Abstract
Binding of influenza viruses to target cells is mediated by the viral surface protein hemagglutinin. To determine the presence of binding sites for influenza A viruses on cells and tissues, soluble hemagglutinins of the H7 and H9 subtype were generated by connecting the hemagglutinin ectodomain to the Fc portion of human immunoglobulin G (H7Fc and H9Fc). Both chimeric proteins bound to different cells and tissues in a sialic acid-dependent manner. Pronounced differences were observed between H7Fc and H9Fc, in the binding both to different mammalian and avian cultured cells and to cryosections of the respiratory epithelium of different virus host species (turkey, chicken and pig). Binding of the soluble hemagglutinins was similar to the binding of virus particles, but showed differences in the binding pattern when compared to two sialic acid-specific plant lectins. These findings were substantiated by a comparative glycan array analysis revealing a very narrow recognition of sialoglycoconjugates by the plant lectins that does not reflect the glycan structures preferentially recognized by H7Fc and H9Fc. Thus, soluble hemagglutinins may serve as sialic acid-specific lectins and are a more reliable indicator of the presence of binding sites for influenza virus HA than the commonly used plant lectins.
Collapse
|
35
|
Eckerle I, Ehlen L, Kallies R, Wollny R, Corman VM, Cottontail VM, Tschapka M, Oppong S, Drosten C, Müller MA. Bat airway epithelial cells: a novel tool for the study of zoonotic viruses. PLoS One 2014; 9:e84679. [PMID: 24454736 PMCID: PMC3890267 DOI: 10.1371/journal.pone.0084679] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023] Open
Abstract
Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat) and Eidolon helvum (Straw-colored fruit bat), were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells.
Collapse
Affiliation(s)
- Isabella Eckerle
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Lukas Ehlen
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - René Kallies
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Robert Wollny
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Victor M. Corman
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Marco Tschapka
- Institute of Experimental Ecology, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Samuel Oppong
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Marcel A. Müller
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
36
|
Dobrescu I, Levast B, Lai K, Delgado-Ortega M, Walker S, Banman S, Townsend H, Simon G, Zhou Y, Gerdts V, Meurens F. In vitro and ex vivo analyses of co-infections with swine influenza and porcine reproductive and respiratory syndrome viruses. Vet Microbiol 2013; 169:18-32. [PMID: 24418046 PMCID: PMC7117334 DOI: 10.1016/j.vetmic.2013.11.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 12/26/2022]
Abstract
Viral respiratory diseases remain problematic in swine. Among viruses, porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SIV), alone or in combination, are the two main known contributors to lung infectious diseases. Previous studies demonstrated that experimental dual infections of pigs with PRRSV followed by SIV can cause more severe disease than the single viral infections. However, our understanding of the impact of one virus on the other at the molecular level is still extremely limited. Thus, the aim of the current study was to determine the influence of dual infections, compared to single infections, in porcine alveolar macrophages (PAMs) and precision cut lung slices (PCLS). PAMs were isolated and PCLS were acquired from the lungs of healthy 8-week-old pigs. Then, PRRSV (ATCC VR-2385) and a local SIV strain of H1N1 subtype (A/Sw/Saskatchewan/18789/02) were applied simultaneously or with 3 h apart on PAMs and PCLS for a total of 18 h. Immuno-staining for both viruses and beta-tubulin, real-time quantitative PCR and ELISA assays targeting various genes (pathogen recognition receptors, interferons (IFN) type I, cytokines, and IFN-inducible genes) and proteins were performed to analyze the cell and the tissue responses. Interference caused by the first virus on replication of the second virus was observed, though limited. On the host side, a synergistic effect between PRRSV and SIV co-infections was observed for some transcripts such as TLR3, RIG-I, and IFNβ in PCLS. The PRRSV infection 3 h prior to SIV infection reduced the response to SIV while the SIV infection prior to PRRSV infection had limited impact on the second infection. This study is the first to show an impact of PRRSV/SIV co-infection and superinfections in the cellular and tissue immune response at the molecular level. It opens the door to further research in this exciting and intriguing field.
Collapse
Affiliation(s)
- I Dobrescu
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - K Lai
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - M Delgado-Ortega
- INRA, Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France; Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France
| | - S Walker
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - S Banman
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada
| | - H Townsend
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - G Simon
- Anses, Ploufragan-Plouzané Laboratory, Swine Virology Immunology Unit, Zoopôle Les Croix, BP 53, 22440 Ploufragan, France
| | - Y Zhou
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - V Gerdts
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
37
|
Meng F, Punyadarsaniya D, Uhlenbruck S, Hennig-Pauka I, Schwegmann-Wessels C, Ren X, Dürrwald R, Herrler G. Replication characteristics of swine influenza viruses in precision-cut lung slices reflect the virulence properties of the viruses. Vet Res 2013; 44:110. [PMID: 24225030 PMCID: PMC3840634 DOI: 10.1186/1297-9716-44-110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/29/2013] [Indexed: 12/30/2022] Open
Abstract
Precision-cut lung slices of pigs were infected with five swine influenza A viruses of different subtypes (A/sw/Potsdam/15/1981 H1N1, A/sw/Bad Griesbach/IDT5604/2006 H1N1, A/sw/Bakum/1832/2000 H1N2, A/sw/Damme/IDT5673/2006 H3N2, A/sw/Herford/IDT5932/2007 H3N2). The viruses were able to infect ciliated and mucus-producing cells. The infection of well-differentiated respiratory epithelial cells by swine influenza A viruses was analyzed with respect to the kinetics of virus release into the supernatant. The highest titres were determined for H3N2/2006 and H3N2/2007 viruses. H1N1/1981 and H1N2/2000 viruses replicated somewhat slower than the H3N2 viruses whereas a H1N1 strain from 2006 multiplied at significantly lower titres than the other strains. Regarding their ability to induce a ciliostatic effect, the two H3N2 strains were found to be most virulent. H1N1/1981 and H1N2/2000 were somewhat less virulent with respect to their effect on ciliary activity. The lowest ciliostatic effect was observed with H1N1/2006. In order to investigate whether this finding is associated with a corresponding virulence in the host, pigs were infected experimentally with H3N2/2006, H1N2/2000, H1N1/1981 and H1N1/2006 viruses. The H1N1/2006 virus was significantly less virulent than the other viruses in pigs which was in agreement with the results obtained by the in vitro-studies. These findings offer the possibility to develop an ex vivo-system that is able to assess virulence of swine influenza A viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georg Herrler
- Institute of Virology University of Veterinary Medicine, Hannover, Germany.
| |
Collapse
|
38
|
Activation of influenza A viruses by host proteases from swine airway epithelium. J Virol 2013; 88:282-91. [PMID: 24155384 DOI: 10.1128/jvi.01635-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways.
Collapse
|
39
|
Crisci E, Mussá T, Fraile L, Montoya M. Review: Influenza virus in pigs. Mol Immunol 2013; 55:200-11. [PMID: 23523121 DOI: 10.1016/j.molimm.2013.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 12/19/2022]
|
40
|
Reassortment of NS segments modifies highly pathogenic avian influenza virus interaction with avian hosts and host cells. J Virol 2013; 87:5362-71. [PMID: 23468508 DOI: 10.1128/jvi.02969-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 have caused numerous outbreaks in diverse poultry species and rising numbers of human infections. Both HPAIV subtypes support a growing concern of a pandemic outbreak, specifically via the avian-human link. Natural reassortment of both HPAIV subtypes is a possible event with unpredictable outcome for virulence and host specificity of the progeny virus for avian and mammalian species. NS reassortment of H5N1 HPAIV viruses in the background of A/FPV/Rostock/1934 (H7N1) HPAIV has been shown to change virus replication kinetics and host cell responses in mammalian cells. However, not much is known about the virus-host interaction of such viruses in avian species. In the present study, we show that the NS segment of A/Vietnam/1203/2004 (FPV NS VN, H5N1) HPAIV significantly altered the characteristics of the H7 prototype HPAIV in tracheal organ cultures (TOC) of chicken and turkey in vitro, with decreased replication efficiency accompanied by increased induction of type I interferon (IFN) and apoptosis. Furthermore, species-specific differences between chicken and turkey were demonstrated. Interestingly, NS-reassortant FPV NS VN showed an overall highly pathogenic phenotype, with increased virulence and replication potential compared to the wild-type virus after systemic infection of chicken and turkey embryos. Our data demonstrate that single reassortment of an H5-type NS into an H7-type HPAIV significantly changed virus replication abilities and influenced the avian host cell response without prior adaptation.
Collapse
|
41
|
Capua I, Munoz O. Emergence of influenza viruses with zoonotic potential: open issues which need to be addressed. A review. Vet Microbiol 2013; 165:7-12. [PMID: 23567150 DOI: 10.1016/j.vetmic.2013.01.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/22/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
The real and perceived impact of influenza infections in animals has changed dramatically over the last 10 years, due mainly to the better understanding of the public health implications of avian and swine influenza viruses. On a number of occasions in the last decade avian-to-human transmissions of H5, H7 and H9 virus subtypes have occurred, and the first influenza pandemic of the new millennium occurred as a result of the emergence and spread of a virus from pigs. Although the mechanisms that allow influenza viruses to jump from one host species to another are not fully understood, several genetic signatures linked to the crossing of species barriers have been identified. This has led to a re-evaluation of the importance of understanding these viruses in the animal reservoir, to the extent that millions of euros have been invested in surveillance, research and capacity building worldwide. This has resulted in an enhanced collaboration with our medical counterparts, leading to many discoveries that will contribute to an understanding of the complex mechanisms that lead to the emergence of a pandemic virus.
Collapse
Affiliation(s)
- Ilaria Capua
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at Human-Animal Interface, Viale dell'Università 10, 35020, Legnaro, Padova, Italy.
| | | |
Collapse
|
42
|
Moncorgé O, Long JS, Cauldwell AV, Zhou H, Lycett SJ, Barclay WS. Investigation of influenza virus polymerase activity in pig cells. J Virol 2013; 87:384-94. [PMID: 23077313 PMCID: PMC3536367 DOI: 10.1128/jvi.01633-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/12/2012] [Indexed: 02/04/2023] Open
Abstract
Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a "mixing vessel" for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs.
Collapse
Affiliation(s)
- Olivier Moncorgé
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Jason S. Long
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Anna V. Cauldwell
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Hongbo Zhou
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Samantha J. Lycett
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Wendy S. Barclay
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| |
Collapse
|
43
|
Morin JP, Baste JM, Gay A, Crochemore C, Corbière C, Monteil C. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies. Xenobiotica 2012; 43:63-72. [DOI: 10.3109/00498254.2012.727043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|