1
|
Brandhorst D, Brandhorst H, Acreman S, Johnson PRV. Perlecan: An Islet Basement Membrane Protein with Protective Anti-Inflammatory Characteristics. Bioengineering (Basel) 2024; 11:828. [PMID: 39199786 PMCID: PMC11351669 DOI: 10.3390/bioengineering11080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Throughout the isolation process, human islets are subjected to destruction of the islet basement membrane (BM) and reduced oxygen supply. Reconstruction of the BM represents an option to improve islet function and survival post-transplant and may particularly be relevant for islet encapsulation devices and scaffolds. In the present study, we assessed whether Perlecan, used alone or combined with the BM proteins (BMPs) Collagen-IV and Laminin-521, has the ability to protect isolated human islets from hypoxia-induced damage. Islets isolated from the pancreas of seven different organ donors were cultured for 4-5 days at 2% oxygen in plain CMRL (sham-treated controls) or in CMRL supplemented with BMPs used either alone or in combination. Postculture, islets were characterized regarding survival, in vitro function and production of chemokines and reactive oxygen species (ROS). Individually added BMPs significantly doubled islet survival and increased in vitro function. Combining BMPs did not provide a synergistic effect. Among the tested BMPs, Perlecan demonstrated the significantly strongest inhibitory effect on chemokine and ROS production when compared with sham-treatment (p < 0.001). Perlecan may be useful to improve islet survival prior to and after transplantation. Its anti-inflammatory potency should be considered to optimise encapsulation and scaffolds to protect isolated human islets post-transplant.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Heide Brandhorst
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Samuel Acreman
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
| | - Paul R. V. Johnson
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| |
Collapse
|
2
|
Burke JA, Zhu Y, Zhang X, Rios PD, Joshi I, Lopez D, Nasir H, Roberts S, Rodriguez Q, McGarrigle J, Cook D, Oberholzer J, Luo X, Ameer GA. Phase-changing citrate macromolecule combats oxidative pancreatic islet damage, enables islet engraftment and function in the omentum. SCIENCE ADVANCES 2024; 10:eadk3081. [PMID: 38848367 PMCID: PMC11160476 DOI: 10.1126/sciadv.adk3081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.
Collapse
Affiliation(s)
- Jacqueline A. Burke
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yunxiao Zhu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Xiaomin Zhang
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Ira Joshi
- CellTrans Inc., Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | - Xunrong Luo
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
Šterk M, Zhang Y, Pohorec V, Leitgeb EP, Dolenšek J, Benninger RKP, Stožer A, Kravets V, Gosak M. Network representation of multicellular activity in pancreatic islets: Technical considerations for functional connectivity analysis. PLoS Comput Biol 2024; 20:e1012130. [PMID: 38739680 PMCID: PMC11115366 DOI: 10.1371/journal.pcbi.1012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Yaowen Zhang
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Viljem Pohorec
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Richard K. P. Benninger
- Department of Bioengineering, Barbara Davis Center for Diabetes, Aurora, Colorado, United States of America
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Vira Kravets
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor
| |
Collapse
|
4
|
Aizenshtadt A, Wang C, Abadpour S, Menezes PD, Wilhelmsen I, Dalmao‐Fernandez A, Stokowiec J, Golovin A, Johnsen M, Combriat TMD, Røberg‐Larsen H, Gadegaard N, Scholz H, Busek M, Krauss SJK. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. Adv Healthc Mater 2024; 13:e2303785. [PMID: 38221504 PMCID: PMC11468483 DOI: 10.1002/adhm.202303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Chencheng Wang
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Shadab Abadpour
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
- Institute for Surgical ResearchOslo University HospitalOsloNorway
| | - Pedro Duarte Menezes
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Andrea Dalmao‐Fernandez
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Department of PharmacyFaculty of Mathematics and Natural SciencesUniversity of OsloP.O. Box 1083Oslo0316Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Alexey Golovin
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mads Johnsen
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Thomas M. D. Combriat
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
| | - Hanne Røberg‐Larsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Nikolaj Gadegaard
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Hanne Scholz
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mathias Busek
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Stefan J. K. Krauss
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| |
Collapse
|
5
|
Leenders F, de Koning EJP, Carlotti F. Pancreatic β-Cell Identity Change through the Lens of Single-Cell Omics Research. Int J Mol Sci 2024; 25:4720. [PMID: 38731945 PMCID: PMC11083883 DOI: 10.3390/ijms25094720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional β-cell mass. This decline is predominantly attributed to β-cell death, although recent findings suggest that the loss of β-cell identity may also contribute to β-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with β-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on β-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among β-cells and have facilitated the identification of distinct β-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of β-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased β-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on β-cell identity. Lastly, this review outlines the factors that may influence the identification of β-cell subpopulations when designing and performing a single-cell omics experiment.
Collapse
Affiliation(s)
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.L.); (E.J.P.d.K.)
| |
Collapse
|
6
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
7
|
So WY, Liao Y, Liu WN, Rutter GA, Han W. Paired box 6 gene delivery preserves beta cells and improves islet transplantation efficacy. EMBO Mol Med 2023; 15:e17928. [PMID: 37933577 DOI: 10.15252/emmm.202317928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Abstract
Loss of pancreatic beta cells is the central feature of all forms of diabetes. Current therapies fail to halt the declined beta cell mass. Thus, strategies to preserve beta cells are imperatively needed. In this study, we identified paired box 6 (PAX6) as a critical regulator of beta cell survival. Under diabetic conditions, the human beta cell line EndoC-βH1, db/db mouse and human islets displayed dampened insulin and incretin signalings and reduced beta cell survival, which were alleviated by PAX6 overexpression. Adeno-associated virus (AAV)-mediated PAX6 overexpression in beta cells of streptozotocin-induced diabetic mice and db/db mice led to a sustained maintenance of glucose homeostasis. AAV-PAX6 transduction in human islets reduced islet graft loss and improved glycemic control after transplantation into immunodeficient diabetic mice. Our study highlights a previously unappreciated role for PAX6 in beta cell survival and raises the possibility that ex vivo PAX6 gene transfer into islets prior to transplantation might enhance islet graft function and transplantation outcome.
Collapse
Affiliation(s)
- Wing Yan So
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yilie Liao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
- Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong, 510530, China
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guy A Rutter
- Centre de Recherche du CHUM, Faculté de Médicine, Université de Montréal, Montréal, QC, Canada
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
8
|
Liu N, Li R, Cao J, Song X, Ma W, Liu T, Wang L, Zou J, Zhang B, Liu Z, Liang R, Zheng R, Wang S. The inhibition of FKBP5 protects β-cell survival under inflammation stress via AKT/FOXO1 signaling. Cell Death Discov 2023; 9:247. [PMID: 37452039 PMCID: PMC10349081 DOI: 10.1038/s41420-023-01506-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The FK506-binding protein 51 (FKBP51, encoded by FKBP5 gene) has emerged as a critical regulator of mammalian endocrine stress responses and as a potential pharmacological target for metabolic disorders, including type 2 diabetes (T2D). However, in β cells, which secrete the only glucose-lowering hormone-insulin, the expression and function of FKBP5 has not been documented. Here, using human pancreatic tissue and primary human islets, we demonstrated the abundant expression of FKBP5 in β cells, which displayed an responsive induction upon acute inflammatory stress mimicked by in vitro treatment with a cocktail of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α). To explore its function, siRNAs targeting FKBP5 and pharmacological inhibitor SAFit2 were applied both in clonal NIT-1 cells and primary human/mice islets. We found that FKBP5 inhibition promoted β-cell survival, improved insulin secretion, and upregulated β-cell functional gene expressions (MAFA and NKX6.1) in acute-inflammation stressed β cells. In primary human and mice islets, which constitutively suffer from inflammation stress during isolation and culture, FKBP5 inhibition also presented decent performance in improving islet function, in accordance with its protective effect against inflammation. Molecular studies found that FKBP5 is an important regulator for FOXO1 phosphorylation at Serine 256, and silencing of FOXO1 abrogated the protective effect of FKBP5 inhibition, suggesting that it is the key downstream effector of FKBP5 in β cells. At last, in situ detection of FKBP5 protein expression on human and mice pancreases revealed a reduction of FKBP5 expression in β cells in human T2D patients, as well as T2D mice model (db/db), which may indicate a FKBP5-inhibition-mediated pro-survival mechanism against the complex stresses in T2D milieus.
Collapse
Affiliation(s)
- Na Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Li
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, People's Republic of China
| | - Xinyao Song
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Wenmiao Ma
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
9
|
Fye MA, Kaverina I. Insulin secretion hot spots in pancreatic β cells as secreting adhesions. Front Cell Dev Biol 2023; 11:1211482. [PMID: 37305687 PMCID: PMC10250740 DOI: 10.3389/fcell.2023.1211482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic β cell secretion of insulin is crucial to the maintenance of glucose homeostasis and prevention of diseases related to glucose regulation, including diabetes. Pancreatic β cells accomplish efficient insulin secretion by clustering secretion events at the cell membrane facing the vasculature. Regions at the cell periphery characterized by clustered secretion are currently termed insulin secretion hot spots. Several proteins, many associated with the microtubule and actin cytoskeletons, are known to localize to and serve specific functions at hot spots. Among these proteins are the scaffolding protein ELKS, the membrane-associated proteins LL5β and liprins, the focal adhesion-associated protein KANK1, and other factors typically associated with the presynaptic active zone in neurons. These hot spot proteins have been shown to contribute to insulin secretion, but many questions remain regarding their organization and dynamics at hot spots. Current studies suggest microtubule- and F-actin are involved in regulation of hot spot proteins and their function in secretion. The hot spot protein association with the cytoskeleton networks also suggests a potential role for mechanical regulation of these proteins and hot spots in general. This perspective summarizes the existing knowledge of known hot spot proteins, their cytoskeletal-mediated regulation, and discuss questions remaining regarding mechanical regulation of pancreatic beta cell hot spots.
Collapse
Affiliation(s)
| | - Irina Kaverina
- Kaverina Lab, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
10
|
Granlund L, Hedin A, Korsgren O, Skog O, Lundberg M. Altered microvasculature in pancreatic islets from subjects with type 1 diabetes. PLoS One 2022; 17:e0276942. [PMID: 36315525 PMCID: PMC9621430 DOI: 10.1371/journal.pone.0276942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
AIMS The transcriptome of different dissociated pancreatic islet cells has been described in enzymatically isolated islets in both health and disease. However, the isolation, culturing, and dissociation procedures likely affect the transcriptome profiles, distorting the biological conclusions. The aim of the current study was to characterize the cells of the islets of Langerhans from subjects with and without type 1 diabetes in a way that reflects the in vivo situation to the highest possible extent. METHODS Islets were excised using laser capture microdissection directly from frozen pancreatic tissue sections obtained from organ donors with (n = 7) and without (n = 8) type 1 diabetes. Transcriptome analysis of excised samples was performed using AmpliSeq. Consecutive pancreatic sections were used to estimate the proportion of beta-, alpha-, and delta cells using immunofluorescence and to examine the presence of CD31 positive endothelial regions using immunohistochemistry. RESULTS The proportion of beta cells in islets from subjects with type 1 diabetes was reduced to 0% according to both the histological and transcriptome data, and several alterations in the transcriptome were derived from the loss of beta cells. In total, 473 differentially expressed genes were found in the islets from subjects with type 1 diabetes. Functional enrichment analysis showed that several of the most upregulated gene sets were related to vasculature and angiogenesis, and histologically, vascular density was increased in subjects with type 1 diabetes. Downregulated in type 1 diabetes islets was the gene set epithelial mesenchymal transition. CONCLUSION A number of transcriptional alterations are present in islets from subjects with type 1 diabetes. In particular, several gene sets related to vasculature and angiogenesis are upregulated and there is an increased vascular density, suggesting an altered microvasculature in islets from subjects with type 1 diabetes. By studying pancreatic islets extracted directly from snap-frozen pancreatic tissue, this study reflects the in vivo situation to a high degree and gives important insights into islet pathophysiology in type 1 diabetes.
Collapse
Affiliation(s)
- Louise Granlund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anders Hedin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
11
|
Cotransplantation With Adipose Tissue-derived Stem Cells Improves Engraftment of Transplanted Hepatocytes. Transplantation 2022; 106:1963-1973. [PMID: 35404871 PMCID: PMC9521584 DOI: 10.1097/tp.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte transplantation is expected to be an alternative therapy to liver transplantation; however, poor engraftment is a severe obstacle to be overcome. The adipose tissue-derived stem cells (ADSCs) are known to improve engraftment of transplanted pancreatic islets, which have many similarities to the hepatocytes. Therefore, we examined the effects and underlying mechanisms of ADSC cotransplantation on hepatocyte engraftment. METHODS Hepatocytes and ADSCs were cotransplanted into the renal subcapsular space and livers of syngeneic analbuminemic rats, and the serum albumin level was quantified to evaluate engraftment. Immunohistochemical staining and fluorescent staining to trace transplanted cells in the liver were also performed. To investigate the mechanisms, cocultured supernatants were analyzed by a multiplex assay and inhibition test using neutralizing antibodies for target factors. RESULTS Hepatocyte engraftment at both transplant sites was significantly improved by ADSC cotransplantation ( P < 0.001, P < 0.001). In the renal subcapsular model, close proximity between hepatocytes and ADSCs was necessary to exert this effect. Unexpectedly, ≈50% of transplanted hepatocytes were attached by ADSCs in the liver. In an in vitro study, the hepatocyte function was significantly improved by ADSC coculture supernatant ( P < 0.001). The multiplex assay and inhibition test demonstrated that hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6 may be key factors for the abovementioned effects of ADSCs. CONCLUSIONS The present study revealed that ADSC cotransplantation can improve the engraftment of transplanted hepatocytes. This effect may be based on crucial factors, such as hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6, which are secreted by ADSCs.
Collapse
|
12
|
Gloyn AL, Ibberson M, Marchetti P, Powers AC, Rorsman P, Sander M, Solimena M. Every islet matters: improving the impact of human islet research. Nat Metab 2022; 4:970-977. [PMID: 35953581 PMCID: PMC11135339 DOI: 10.1038/s42255-022-00607-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
Detailed characterization of human pancreatic islets is key to elucidating the pathophysiology of all forms of diabetes, especially type 2 diabetes. However, access to human pancreatic islets is limited. Pancreatic tissue for islet retrieval can be obtained from brain-dead organ donors or from individuals undergoing pancreatectomy, often referred to as 'living donors'. Different protocols for human islet procurement can substantially impact islet function. This variability, coupled with heterogeneity between individuals and islets, results in analytical challenges to separate genuine disease pathology or differences between human donors from experimental noise. There are currently no international guidelines for human donor phenotyping, islet procurement and functional characterization. This lack of standardization means that substantial investments from multiple international efforts towards improved understanding of diabetes pathology cannot be fully leveraged. In this Perspective, we overview the status of the field of human islet research, highlight the challenges and propose actions that could accelerate research progress and increase understanding of type 2 diabetes to slow its pandemic spreading.
Collapse
Affiliation(s)
- Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Mark Ibberson
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alvin C Powers
- Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, San Diego, CA, USA
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden and German Center for Diabetes Resaerch (DZD e.V.), Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
D’Angelo CV, West HL, Whitticar NB, Corbin KL, Donovan LM, Stiadle BI, Nunemaker CS. Similarities in Calcium Oscillations Between Neonatal Mouse Islets and Mature Islets Exposed to Chronic Hyperglycemia. Endocrinology 2022; 163:6585503. [PMID: 35551371 PMCID: PMC9186310 DOI: 10.1210/endocr/bqac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Pulsatility is important to islet function. As islets mature into fully developed insulin-secreting micro-organs, their ability to produce oscillatory intracellular calcium ([Ca2+]i) patterns in response to glucose also matures. In this study, we measured [Ca2+]i using fluorescence imaging to characterize oscillations from neonatal mice on postnatal (PN) days 0, 4, and 12 in comparison to adult islets. Under substimulatory (3-mM) glucose levels, [Ca2+]i was low and quiescent for adult islets as expected, as well as for PN day 12 islets. In contrast, one-third of islets on PN day 0 and 4 displayed robust [Ca2+]i oscillations in low glucose. In stimulatory glucose (11 mM) conditions, oscillations were present on all neonatal days but differed from patterns in adults. By PN day 12, [Ca2+]i oscillations were approaching characteristics of fully developed islets. The immature response pattern of neonatal islets was due, at least in part, to differences in adenosine 5'-triphosphate (ATP)-sensitive K+-channel activity estimated by [Ca2+]i responses to KATP channel agents diazoxide and tolbutamide. Neonatal [Ca2+]i patterns were also strikingly similar to patterns observed in mature islets exposed to hyperglycemic conditions (20 mM glucose for 48 hours): elevated [Ca2+]i and oscillations in low glucose along with reduced pulse mass in high glucose. Since a hallmark of diabetic islets is dedifferentiation, we propose that diabetic islets display features of "reverse maturation," demonstrating similar [Ca2+]i dynamics as neonatal islets. Pulsatility is thus an important emergent feature of neonatal islets. Our findings may provide insight into reversing β-cell dedifferentiation and to producing better functioning β cells from pluripotent stem cells.
Collapse
Affiliation(s)
- Cathleen V D’Angelo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Honors Tutorial College, Ohio University, Athens, Ohio 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Lauren M Donovan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Benjamin I Stiadle
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Craig S Nunemaker
- Correspondence: Craig S. Nunemaker, PhD, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, 1 Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
14
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Ryaboshapkina M, Saitoski K, Hamza GM, Jarnuczak AF, Pechberty S, Berthault C, Sengupta K, Underwood CR, Andersson S, Scharfmann R. Characterization of the Secretome, Transcriptome, and Proteome of Human β Cell Line EndoC-βH1. Mol Cell Proteomics 2022; 21:100229. [PMID: 35378291 PMCID: PMC9062487 DOI: 10.1016/j.mcpro.2022.100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022] Open
Abstract
Early diabetes research is hampered by limited availability, variable quality, and instability of human pancreatic islets in culture. Little is known about the human β cell secretome, and recent studies question translatability of rodent β cell secretory profiles. Here, we verify representativeness of EndoC-βH1, one of the most widely used human β cell lines, as a translational human β cell model based on omics and characterize the EndoC-βH1 secretome. We profiled EndoC-βH1 cells using RNA-seq, data-independent acquisition, and tandem mass tag proteomics of cell lysate. Omics profiles of EndoC-βH1 cells were compared to human β cells and insulinomas. Secretome composition was assessed by data-independent acquisition proteomics. Agreement between EndoC-βH1 cells and primary adult human β cells was ∼90% for global omics profiles as well as for β cell markers, transcription factors, and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-βH1 cells compared to adult β cells. Consistently, similarity was slightly higher with benign nonmetastatic insulinomas. EndoC-βH1 secreted 783 proteins in untreated baseline state and 3135 proteins when stressed with nontargeting control siRNA, including known β cell hormones INS, IAPP, and IGF2. Further, EndoC-βH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. EndoC-βH1 secretome contained an unexpectedly high proportion of predicted extracellular vesicle proteins. We believe that secretion of extracellular vesicles and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Kevin Saitoski
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Ghaith M Hamza
- Discovery Sciences, AstraZeneca, Boston, Massachusetts, USA; Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Andrew F Jarnuczak
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Séverine Pechberty
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Claire Berthault
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Kaushik Sengupta
- Alliance Management, Business Development, Licensing and Strategy, Biopharmaceuticals R&D, Astra Zeneca, Gothenburg, Sweden
| | - Christina Rye Underwood
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Raphael Scharfmann
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| |
Collapse
|
16
|
Yan LL, Ye LP, Chen YH, He SQ, Zhang CY, Mao XL, Li SW. The Influence of Microenvironment on Survival of Intraportal Transplanted Islets. Front Immunol 2022; 13:849580. [PMID: 35418988 PMCID: PMC8995531 DOI: 10.3389/fimmu.2022.849580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Clinical islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still uncommon because transplanted islets are damaged by multiple challenges, including instant blood mediated inflammatory reaction (IBMIR), inflammatory cytokines, hypoxia/reperfusion injury, and immune rejection. The transplantation microenvironment plays a vital role especially in intraportal islet transplantation. The identification and targeting of pathways that function as "master regulators" during deleterious inflammatory events after transplantation, and the induction of immune tolerance, are necessary to improve the survival of transplanted islets. In this article, we attempt to provide an overview of the influence of microenvironment on the survival of transplanted islets, as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Sai-qin He
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Chen-yang Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
17
|
Brandhorst D, Brandhorst H, Lee Layland S, Acreman S, Schenke-Layland K, Johnson PR. Basement membrane proteins improve human islet survival in hypoxia: Implications for islet inflammation. Acta Biomater 2022; 137:92-102. [PMID: 34653695 DOI: 10.1016/j.actbio.2021.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022]
Abstract
Enzymatic digestion of the pancreas during islet isolation is associated with disintegration of the islet basement membrane (IBM) that can cause reduction of functional and morphological islet integrity. Attempts to re-establish IBM by coating the surface of culture vessels with various IBM proteins (IBMP) have resulted in loss of islet phenotype and function. This study investigated the capability of Collagen-IV, Laminin-521 and Nidogen-1, utilised as single or combined media supplements, to protect human islets cultured in hypoxia. When individually supplemented to media, all IBMP significantly improved islet survival and in-vitro function, finally resulting in as much as a two-fold increase of islet overall survival. In contrast, combining IBMP enhanced the production of chemokines and reactive oxygen species diminishing all positive effects of individually added IBMP. This impact was concentration-dependent and concerned nearly all parameters of islet integrity. Predictive extrapolation of these findings to data from 116 processed human pancreases suggests that more than 90% of suboptimal pancreases could be rescued for clinical islet transplantation increasing the number of transplantable preparations from actual 25 to 40 when adding Nidogen-1 to pretransplant culture. This study suggests that media supplementation with essential IBMP protects human islets from hypoxia. Amongst those, certain IBMP may be incompatible when combined or applied at higher concentrations. STATEMENT OF SIGNIFICANCE: Pancreatic islet transplantation is a minimally-invasive treatment that can reverse type 1 diabetes in certain patients. It involves infusing of insulin-producing cell-clusters (islets) from donor pancreases. Unfortunately, islet extraction is associated with damage of the islet basement membrane (IBM) causing reduced islet function and cell death. Attempts to re-establish the IBM by coating the surface of culture vessels with IBM proteins (IBMP) have been unsuccessful. Instead, we dissolved the most relevant IBM components Collagen-IV, Laminin-521 and Nidogen-1 in media routinely used for clinical islet culture and transplantation. We found human islet survival and function was substantially improved by IBMP, particularly Nidogen-1, when exposed to a hypoxic environment as found in vivo. We also investigated IBMP combinations. Our present findings have important clinical implications.
Collapse
|
18
|
Sahin GS, Lee H, Engin F. An accomplice more than a mere victim: The impact of β-cell ER stress on type 1 diabetes pathogenesis. Mol Metab 2021; 54:101365. [PMID: 34728341 PMCID: PMC8606542 DOI: 10.1016/j.molmet.2021.101365] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pancreatic β-cells are the insulin factory of an organism with a mission to regulate glucose homeostasis in the body. Due to their high secretory activity, β-cells rely on a functional and intact endoplasmic reticulum (ER). Perturbations to ER homeostasis and unmitigated stress lead to β-cell dysfunction and death. Type 1 diabetes (T1D) is a chronic inflammatory disease caused by the autoimmune-mediated destruction of β-cells. Although autoimmunity is an essential component of T1D pathogenesis, accumulating evidence suggests an important role of β-cell ER stress and aberrant unfolded protein response (UPR) in disease initiation and progression. SCOPE OF REVIEW In this article, we introduce ER stress and the UPR, review β-cell ER stress in various mouse models, evaluate its involvement in inflammation, and discuss the effects of ER stress on β-cell plasticity and demise, and islet autoimmunity in T1D. We also highlight the relationship of ER stress with other stress response pathways and provide insight into ongoing clinical studies targeting ER stress and the UPR for the prevention or treatment of T1D. MAJOR CONCLUSIONS Evidence from ex vivo studies, in vivo mouse models, and tissue samples from patients suggest that β-cell ER stress and a defective UPR contribute to T1D pathogenesis. Thus, restoration of β-cell ER homeostasis at various stages of disease presents a plausible therapeutic strategy for T1D. Identifying the specific functions and regulation of each UPR sensor in β-cells and uncovering the crosstalk between stressed β-cells and immune cells during T1D progression would provide a better understanding of the molecular mechanisms of disease process, and may reveal novel targets for development of effective therapies for T1D.
Collapse
Affiliation(s)
- Gulcan Semra Sahin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
19
|
Kaestner KH, Campbell-Thompson M, Dor Y, Gill RG, Glaser B, Kim SK, Sander M, Stabler C, Stewart AF, Powers AC. What is a β cell? - Chapter I in the Human Islet Research Network (HIRN) review series. Mol Metab 2021; 53:101323. [PMID: 34416394 PMCID: PMC8452767 DOI: 10.1016/j.molmet.2021.101323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The pancreatic β cell, as the sole source of the vital hormone insulin, has been under intensive study for more than a century. Given the potential of newly created insulin-producing cells as a treatment or even cure of type 1 diabetes (T1D) and possibly in severe cases of type 2 diabetes (T2D), multiple academic and commercial laboratories are working to derive surrogate glucose-responsive, insulin-producing cells. SCOPE OF REVIEW The recent development of advanced phenotyping technologies, including molecular, epigenomic, histological, or functional, have greatly improved our understanding of the critical properties of human β cells. Using this information, here we summarize the salient features of normal, fully functional adult human β cells, and propose minimal criteria for what should rightfully be termed 'β cells' as opposed to insulin-producing but not fully-functional surrogates that we propose should be referred to as 'β-like' cells or insulin-producing cells. MAJOR CONCLUSIONS Clear criteria can be established to differentiate fully functional, mature β cells from 'β-like' surrogates. In addition, we outline important knowledge gaps that must be addressed to enable a greater understanding of the β cell.
Collapse
Affiliation(s)
- Klaus H Kaestner
- Insitute for Diabetes, Obesity and Metabolism and Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, 32610, USA
| | - Yuval Dor
- The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Ronald G Gill
- Departments of Surgery and Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | - Benjamin Glaser
- Hadassah Medical Center, Department of Endocrinology and Metabolism, Faculty of Medicine Hebrew University, Israel
| | - Seung K Kim
- Departments of Developmental Biology and of Medicine (Endocrinology Division), and Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Cherie Stabler
- Department of Biomedical Engineering, College of Engineering and UF Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, and VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
20
|
Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect 2021; 10:R213-R228. [PMID: 34289444 PMCID: PMC8428079 DOI: 10.1530/ec-21-0260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The most distinctive pathological characteristics of diabetes mellitus induced by various stressors or immune-mediated injuries are reductions of pancreatic islet β-cell populations and activity. Existing treatment strategies cannot slow disease progression; consequently, research to genetically engineer β-cell mimetics through bi-directional plasticity is ongoing. The current consensus implicates β-cell dedifferentiation as the primary etiology of reduced β-cell mass and activity. This review aims to summarize the etiology and proposed mechanisms of β-cell dedifferentiation and to explore the possibility that there might be a time interval from the onset of β-cell dysfunction caused by dedifferentiation to the development of diabetes, which may offer a therapeutic window to reduce β-cell injury and to stabilize functionality. In addition, to investigate β-cell plasticity, we review strategies for β-cell regeneration utilizing genetic programming, small molecules, cytokines, and bioengineering to transdifferentiate other cell types into β-cells; the development of biomimetic acellular constructs to generate fully functional β-cell-mimetics. However, the maturation of regenerated β-cells is currently limited. Further studies are needed to develop simple and efficient reprogramming methods for assembling perfectly functional β-cells. Future investigations are necessary to transform diabetes into a potentially curable disease.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence should be addressed to C Zhang:
| |
Collapse
|
21
|
Parajuli KR, Zhang Y, Cao AM, Wang H, Fonseca VA, Wu H. Pax4 Gene Delivery Improves Islet Transplantation Efficacy by Promoting β Cell Survival and α-to-β Cell Transdifferentiation. Cell Transplant 2021; 29:963689720958655. [PMID: 33086892 PMCID: PMC7784573 DOI: 10.1177/0963689720958655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transcription factor Pax4 plays an essential role in the development of insulin-producing β cells in pancreatic islets. Ectopic Pax4 expression not only promotes β cell survival but also induces α-to-β cell transdifferentiation. This dual functionality of Pax4 makes it an appealing therapeutic target for the treatment of insulin-deficient type 1 diabetes (T1D). In this study, we demonstrated that Pax4 gene delivery by an adenoviral vector, Ad5.Pax4, improved β cell function of mouse and human islets by promoting islet cell survival and α-to-β cell transdifferentiation, as assessed by multiple viability assays and lineage-tracing analysis. We then explored the therapeutic benefits of Pax4 gene delivery in the context of islet transplantation using T1D mouse models. Both mouse-to-mouse and human-to-mouse islet transplantation, via either kidney capsule or portal vein, were examined. In all settings, Ad5.Pax4-treated donor islets (mouse or human) showed substantially better therapeutic outcomes. These results suggest that Pax4 gene delivery into donor islets may be considered as an adjunct therapy for islet transplantation, which can either improve the therapeutic outcome of islet transplantation using the same amount of donor islets or allow the use of fewer donor islets to achieve normoglycemia.
Collapse
Affiliation(s)
- Keshab R Parajuli
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, USA
| | - Yanqing Zhang
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, USA
| | - Alexander M Cao
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Vivian A Fonseca
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, USA
| | - Hongju Wu
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, USA
| |
Collapse
|
22
|
Wigger L, Barovic M, Brunner AD, Marzetta F, Schöniger E, Mehl F, Kipke N, Friedland D, Burdet F, Kessler C, Lesche M, Thorens B, Bonifacio E, Legido-Quigley C, Barbier Saint Hilaire P, Delerive P, Dahl A, Klose C, Gerl MJ, Simons K, Aust D, Weitz J, Distler M, Schulte AM, Mann M, Ibberson M, Solimena M. Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nat Metab 2021; 3:1017-1031. [PMID: 34183850 DOI: 10.1038/s42255-021-00420-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/21/2021] [Indexed: 12/19/2022]
Abstract
Most research on human pancreatic islets is conducted on samples obtained from normoglycaemic or diseased brain-dead donors and thus cannot accurately describe the molecular changes of pancreatic islet beta cells as they progress towards a state of deficient insulin secretion in type 2 diabetes (T2D). Here, we conduct a comprehensive multi-omics analysis of pancreatic islets obtained from metabolically profiled pancreatectomized living human donors stratified along the glycemic continuum, from normoglycemia to T2D. We find that islet pools isolated from surgical samples by laser-capture microdissection display remarkably more heterogeneous transcriptomic and proteomic profiles in patients with diabetes than in non-diabetic controls. The differential regulation of islet gene expression is already observed in prediabetic individuals with impaired glucose tolerance. Our findings demonstrate a progressive, but disharmonic, remodelling of mature beta cells, challenging current hypotheses of linear trajectories toward precursor or transdifferentiation stages in T2D. Furthermore, through integration of islet transcriptomics with preoperative blood plasma lipidomics, we define the relative importance of gene coexpression modules and lipids that are positively or negatively associated with HbA1c levels, pointing to potential prognostic markers.
Collapse
Affiliation(s)
- Leonore Wigger
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marko Barovic
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Flavia Marzetta
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eyke Schöniger
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicole Kipke
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Daniela Friedland
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Frederic Burdet
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Camille Kessler
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mathias Lesche
- DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ezio Bonifacio
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Center for Regenerative Therapies Dresden, Faculty of Medicine and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | - Philippe Delerive
- Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France
| | - Andreas Dahl
- DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Daniela Aust
- Department of Pathology, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- NCT Biobank Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Anke M Schulte
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Frankfurt am Main, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
23
|
A Brief Review of the Mechanisms of β-Cell Dedifferentiation in Type 2 Diabetes. Nutrients 2021; 13:nu13051593. [PMID: 34068827 PMCID: PMC8151793 DOI: 10.3390/nu13051593] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia. Over 90% of patients with diabetes have type 2 diabetes. Pancreatic β-cells are endocrine cells that produce and secrete insulin, an essential endocrine hormone that regulates blood glucose levels. Deficits in β-cell function and mass play key roles in the onset and progression of type 2 diabetes. Apoptosis has been considered as the main contributor of β-cell dysfunction and decrease in β-cell mass for a long time. However, recent studies suggest that β-cell failure occurs mainly due to increased β-cell dedifferentiation rather than limited β-cell proliferation or increased β-cell death. In this review, we summarize the current advances in the understanding of the pancreatic β-cell dedifferentiation process including potential mechanisms. A better understanding of β-cell dedifferentiation process will help to identify novel therapeutic targets to prevent and/or reverse β-cell loss in type 2 diabetes.
Collapse
|
24
|
A Systematic Comparison of Protocols for Recovery of High-Quality RNA from Human Islets Extracted by Laser Capture Microdissection. Biomolecules 2021; 11:biom11050625. [PMID: 33922227 PMCID: PMC8144988 DOI: 10.3390/biom11050625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
The isolation of high-quality RNA from endocrine pancreas sections represents a considerable challenge largely due to the high ribonuclease levels. Laser capture microdissection (LCM) of mammalian islets, in association with RNA extraction protocols, has emerged as a feasible approach to characterizing their genetic and proteomic profiles. However, a validated protocol to obtain high-quality RNA from LCM-derived human pancreas specimens that is appropriate for next-generation sequencing analysis is still lacking. In this study, we applied four methods (Picopure extraction kit, Qiazol protocol, Qiazol + Clean-up kit, and RNeasy Microkit + Carrier) to extract RNA from human islets obtained from both non-diabetic individuals and patients with type 2 diabetes who had undergone partial pancreatectomy, as well as handpicked islets from both non-diabetic and diabetic organ donors. The yield and purity of total RNA were determined by 260/280 absorbance using Nanodrop 100 and the RNA integrity number with a bioanalyzer. The results indicated that among the four methods, the RNeasy MicroKit + Carrier (Qiagen) provides the highest yield and purity.
Collapse
|
25
|
Vig S, Lambooij JM, Zaldumbide A, Guigas B. Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes. Front Immunol 2021; 12:669492. [PMID: 33936111 PMCID: PMC8085402 DOI: 10.3389/fimmu.2021.669492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In response to inflammatory signals, beta-cells engage adaptive mechanisms where the endoplasmic reticulum (ER) and mitochondria act in concert to restore cellular homeostasis. In the recent years it has become clear that this adaptive phase may trigger the development of autoimmunity by the generation of autoantigens recognized by autoreactive CD8 T cells. The participation of the ER stress and the unfolded protein response to the increased visibility of beta-cells to the immune system has been largely described. However, the role of the other cellular organelles, and in particular the mitochondria that are central mediator for beta-cell survival and function, remains poorly investigated. In this review we will dissect the crosstalk between the ER and mitochondria in the context of T1D, highlighting the key role played by this interaction in beta-cell dysfunctions and immune activation, especially through regulation of calcium homeostasis, oxidative stress and generation of mitochondrial-derived factors.
Collapse
Affiliation(s)
- Saurabh Vig
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
26
|
Nano E, Petropavlovskaia M, Rosenberg L. Islet neogenesis associated protein (INGAP) protects pancreatic β cells from IL-1β and IFNγ-induced apoptosis. Cell Death Discov 2021; 7:56. [PMID: 33731692 PMCID: PMC7969959 DOI: 10.1038/s41420-021-00441-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 11/11/2022] Open
Abstract
The goal of this study was to determine whether recombinant Islet NeoGenesis Associated Protein (rINGAP) and its active core, a pentadecapeptide INGAP104-118 (Ingap-p), protect β cells against cytokine-induced death. INGAP has been shown to induce islet neogenesis in diabetic animals, to stimulate β-cell proliferation and differentiation, and to improve islet survival and function. Importantly, Ingap-p has shown promising results in clinical trials for diabetes (phase I/II). However, the full potential of INGAP and its mechanisms of action remain poorly understood. Using rat insulinoma cells RINm5F and INS-1 treated with interleukin-1β (IL-1β) and interferon-gamma (IFN-γ), we demonstrate here that both rINGAP and Ingap-p inhibit apoptosis, Caspase-3 activation, inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production, and explore the related signaling pathways. As expected, IL-1β induced nuclear factor kappa B (NF-κB), p38, and JNK signaling, whereas interferon-gamma (IFN-γ) activated the JAK2/STAT1 pathway and potentiated the IL-1β effects. Both rINGAP and Ingap-p decreased phosphorylation of IKKα/β, IkBα, and p65, although p65 nuclear translocation was not inhibited. rINGAP, used for further analysis, also inhibited STAT3, p38, and JNK activation. Interestingly, all inhibitory effects of rINGAP were observed for the cytokine cocktail, not IL-1β alone, and were roughly equal to reversing the potentiating effects of INFγ. Furthermore, rINGAP had no effect on IL-1β/NF-κB-induced gene expression (e.g., Ccl2, Sod2) but downregulated several IFNγ-stimulated (Irf1, Socs1, Socs3) or IFNγ-potentiated (Nos2) genes. This, however, was observed again only for the cytokine cocktail, not IFNγ alone, and rINGAP did not inhibit the IFNγ-induced JAK2/STAT1 activation. Together, these intriguing results suggest that INGAP does not target either IL-1β or IFNγ individually but rather inhibits the signaling crosstalk between the two, the exact mechanism of which remains to be investigated. In summary, our study characterizes the anti-inflammatory effects of INGAP, both protein and peptide, and suggests a new therapeutic utility for INGAP in the treatment of diabetes.
Collapse
Affiliation(s)
- Eni Nano
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Department of Surgery, Faculty of Medicine, McGill University, 3755, Cote Ste-Catherine Rd, Montreal, QC, H3T 1E2, Canada
| | - Maria Petropavlovskaia
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Department of Surgery, Faculty of Medicine, McGill University, 3755, Cote Ste-Catherine Rd, Montreal, QC, H3T 1E2, Canada.
| | - Lawrence Rosenberg
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Department of Surgery, Faculty of Medicine, McGill University, 3755, Cote Ste-Catherine Rd, Montreal, QC, H3T 1E2, Canada
| |
Collapse
|
27
|
Brandhorst D, Brandhorst H, Acreman S, Abraham A, Johnson PRV. High Concentrations of Etanercept Reduce Human Islet Function and Integrity. J Inflamm Res 2021; 14:599-610. [PMID: 33679137 PMCID: PMC7926188 DOI: 10.2147/jir.s294663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background Most islet transplant groups worldwide routinely use the TNFα inhibitor Etanercept in their peri-transplant protocols. Surprisingly, there have been no published dose-response studies on the effects of Etanercept on human islets. Our study aimed to address this by treating cultured human islets with increasing concentrations of Etanercept. Materials and Methods Isolated human islets were cultured for 3–4 days in normoxic (21% oxygen) or in hypoxic (2% oxygen) atmosphere using Etanercept dissolved in a range of 2.5–40 µg/mL prior to islet characterisation. Results In normoxic atmosphere, it was found that 5 µg/mL is the most efficient dose to preserve islet morphological and functional integrity during culture. Increasing the dose to 10 µg/mL or more resulted in detrimental effects with respect to viability and glucose-stimulated insulin release. When human islets were cultured for 3 to 4 days in clinically relevant hypoxia and treated with 5 µg/mL Etanercept, post-culture islet survival (P < 0.001) and in vitro function (P < 0.01) were significantly improved. This correlated with a substantially reduced cytokine production (P < 0.05), improved mitochondrial function (P < 0.01), and reduced production of reactive oxygen species (P < 0.001) in hypoxia-exposed islets. Conclusion These findings suggest that the therapeutic window of Etanercept is very narrow and that this should be considered when optimising the dosage and route of Etanercept administration in islet-transplant recipients or when designing novel drug-delivering islet scaffolds.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - Samuel Acreman
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - Anju Abraham
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| |
Collapse
|
28
|
Improvement of Islet Allograft Function Using Cibinetide, an Innate Repair Receptor Ligand. Transplantation 2021; 104:2048-2058. [PMID: 32345869 DOI: 10.1097/tp.0000000000003284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND During intraportal pancreatic islet transplantation (PITx), early inflammatory reactions cause an immediate loss of more than half of the transplanted graft and potentiate subsequent allograft rejection. Previous findings suggest that cibinetide, a selective innate repair receptor agonist, exerts islet protective and antiinflammatory properties and improved transplant efficacy in syngeneic mouse PITx model. In a stepwise approach toward a clinical application, we have here investigated the short- and long-term effects of cibinetide in an allogeneic mouse PITx model. METHODS Streptozotocin-induced diabetic C57BL/6N (H-2) mice were transplanted with 320 (marginal) or 450 (standard) islets from BALB/c (H-2) mice via the portal vein. Recipients were treated perioperative and thereafter daily during 14 d with cibinetide (120 µg/kg), with or without tacrolimus injection (0.4 mg/kg/d) during days 4-14 after transplantation. Graft function was assessed using nonfasting glucose measurements. Relative gene expressions of proinflammatory cytokines and proinsulin of the graft-bearing liver were assessed by quantitative polymerase chain reaction. Cibinetide's effects on dendritic cell maturation were investigated in vitro. RESULTS Cibinetide ameliorated the local inflammatory responses in the liver and improved glycemic control immediately after allogeneic PITx and significantly delayed the onset of allograft loss. Combination treatment with cibinetide and low-dose tacrolimus significantly improved long-term graft survival following allogeneic PITx. In vitro experiments indicated that cibinetide lowered bone-marrow-derived-immature-dendritic cell maturation and subsequently reduced allogeneic T-cell response. CONCLUSIONS Cibinetide reduced the initial transplantation-related severe inflammation and delayed the subsequent alloreactivity. Cibinetide, in combination with low-dose tacrolimus, could significantly improve long-term graft survival in allogeneic PITx.
Collapse
|
29
|
Cayabyab F, Nih LR, Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front Endocrinol (Lausanne) 2021; 12:732431. [PMID: 34589059 PMCID: PMC8473744 DOI: 10.3389/fendo.2021.732431] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a complex disease that affects over 400 million people worldwide. The life-long insulin injections and continuous blood glucose monitoring required in type 1 diabetes (T1D) represent a tremendous clinical and economic burdens that urges the need for a medical solution. Pancreatic islet transplantation holds great promise in the treatment of T1D; however, the difficulty in regulating post-transplantation immune reactions to avoid both allogenic and autoimmune graft rejection represent a bottleneck in the field of islet transplantation. Cell replacement strategies have been performed in hepatic, intramuscular, omentum, and subcutaneous sites, and have been performed in both animal models and human patients. However more optimal transplantation sites and methods of improving islet graft survival are needed to successfully translate these studies to a clinical relevant therapy. In this review, we summarize the current progress in the field as well as methods and sites of islet transplantation, including stem cell-derived functional human islets. We also discuss the contribution of immune cells, vessel formation, extracellular matrix, and nutritional supply on islet graft survival. Developing new transplantation sites with emerging technologies to improve islet graft survival and simplify immune regulation will greatly benefit the future success of islet cell therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Fritz Cayabyab
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Lina R. Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
30
|
Bosi E, Marselli L, De Luca C, Suleiman M, Tesi M, Ibberson M, Eizirik DL, Cnop M, Marchetti P. Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes. NAR Genom Bioinform 2020; 2:lqaa097. [PMID: 33575641 PMCID: PMC7679065 DOI: 10.1093/nargab/lqaa097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet β-cell failure is key to the onset and progression of type 2 diabetes (T2D). The advent of single-cell RNA sequencing (scRNA-seq) has opened the possibility to determine transcriptional signatures specifically relevant for T2D at the β-cell level. Yet, applications of this technique have been underwhelming, as three independent studies failed to show shared differentially expressed genes in T2D β-cells. We performed an integrative analysis of the available datasets from these studies to overcome confounding sources of variability and better highlight common T2D β-cell transcriptomic signatures. After removing low-quality transcriptomes, we retained 3046 single cells expressing 27 931 genes. Cells were integrated to attenuate dataset-specific biases, and clustered into cell type groups. In T2D β-cells (n = 801), we found 210 upregulated and 16 downregulated genes, identifying key pathways for T2D pathogenesis, including defective insulin secretion, SREBP signaling and oxidative stress. We also compared these results with previous data of human T2D β-cells from laser capture microdissection and diabetic rat islets, revealing shared β-cell genes. Overall, the present study encourages the pursuit of single β-cell RNA-seq analysis, preventing presently identified sources of variability, to identify transcriptomic changes associated with human T2D and underscores specific traits of dysfunctional β-cells across different models and techniques.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier Sorge, CH-1015 Lausanne, Switzerland
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| |
Collapse
|
31
|
Fignani D, Licata G, Brusco N, Nigi L, Grieco GE, Marselli L, Overbergh L, Gysemans C, Colli ML, Marchetti P, Mathieu C, Eizirik DL, Sebastiani G, Dotta F. SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Front Endocrinol (Lausanne) 2020; 11:596898. [PMID: 33281748 PMCID: PMC7691425 DOI: 10.3389/fendo.2020.596898] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. In light of the recent data highlighting an association between COVID-19 and diabetes, a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies. Using multiple reagents and antibodies, we showed that ACE2 is expressed in human pancreatic islets, where it is preferentially expressed in subsets of insulin producing β-cells. ACE2 is also highly expressed in pancreas microvasculature pericytes and moderately expressed in rare scattered ductal cells. By using different ACE2 antibodies we showed that a recently described short-ACE2 isoform is also prevalently expressed in human β-cells. Finally, using RT-qPCR, RNA-seq and High-Content imaging screening analysis, we demonstrated that pro-inflammatory cytokines, but not palmitate, increase ACE2 expression in the β-cell line EndoC-βH1 and in primary human pancreatic islets. Taken together, our data indicate a potential link between SARS-CoV-2 and diabetes through putative infection of pancreatic microvasculature and/or ductal cells and/or through direct β-cell virus tropism.
Collapse
Affiliation(s)
- Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppina E. Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lut Overbergh
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KULEUVEN), Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KULEUVEN), Leuven, Belgium
| | - Maikel L. Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KULEUVEN), Leuven, Belgium
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
32
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Shrestha P, Batra L, Tariq Malik M, Tan M, Yolcu ES, Shirwan H. Immune checkpoint CD47 molecule engineered islets mitigate instant blood-mediated inflammatory reaction and show improved engraftment following intraportal transplantation. Am J Transplant 2020; 20:2703-2714. [PMID: 32342638 DOI: 10.1111/ajt.15958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 01/25/2023]
Abstract
Instant blood-mediated inflammatory reaction (IBMIR) causes significant destruction of islets transplanted intraportally. Myeloid cells are a major culprit of IBMIR. Given the critical role of CD47 as a negative checkpoint for myeloid cells, we hypothesized that the presence of CD47 on islets will minimize graft loss by mitigating IBMIR. We herein report the generation of a chimeric construct, SA-CD47, encompassing the extracellular domain of CD47 modified to include core streptavidin (SA). SA-CD47 protein was expressed in insect cells and efficiently displayed on biotin-modified mouse islet surface without a negative impact on their viability and function. Rat cells engineered with SA-CD47 were refractory to phagocytosis by mouse macrophages. SA-CD47-engineered islets showed intact structure and minimal infiltration by CD11b+ granulocytes/macrophages as compared with SA-engineered controls in an in vitro loop assay mitigating IBMIR. In a syngeneic marginal mass model of intraportal transplantation, SA-CD47-engineered islets showed better engraftment and function as compared with the SA-control group (87.5% vs 14.3%). Engraftment was associated with low levels of intrahepatic inflammatory cells and mediators of islet destruction, including high-mobility group box-1, tissue factor, and IL-1β. These findings support the use of CD47 as an innate immune checkpoint to mitigate IBMIR for enhanced islet engraftment with translational potential.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Lalit Batra
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Mohammad Tariq Malik
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Min Tan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
34
|
Yamane K, Anazawa T, Tada S, Fujimoto N, Inoguchi K, Emoto N, Nagai K, Masui T, Okajima H, Takaori K, Sumi S, Uemoto S. Mitomycin C treatment improves pancreatic islet graft longevity in intraportal islet transplantation by suppressing proinflammatory response. Sci Rep 2020; 10:12086. [PMID: 32694579 PMCID: PMC7374693 DOI: 10.1038/s41598-020-69009-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
The in vitro culture period prior to cell transplantation (i.e. pancreatic islet transplantation) enables cell modification and is thus advantageous. However, the islet preconditioning method has not been fully explored. Here we present a simple approach for islet preconditioning that uses the antibiotic mitomycin C (MMC), which has antitumor activity, to reduce islet immunogenicity and prevent proinflammatory events in an intraportal islet transplantation model. Freshly isolated mice islets were treated for 30 min with 10 μg/mL MMC or not, cultured for 20 h and transplanted into the livers of syngeneic or allogeneic diabetic mouse recipients. In the allogeneic model, MMC preconditioning significantly prolonged graft survival without requiring immunosuppressants. In vitro, MMC treatment suppressed the expression of proinflammatory cytokines in islet allografts, while immunohistochemical studies revealed the suppression of inflammatory cell infiltration into MMC-treated allografts relative to untreated allografts. Furthermore, MMC preconditioning significantly suppressed the mRNA expression of proinflammatory cytokines into the transplant site and induced the differentiation of regulatory T cells with the ability to suppress CD4+ T cell-mediated immune responses. In conclusion, islet preconditioning with MMC prolonged graft survival in an intraportal islet transplantation model by suppressing proinflammatory events and inducing potentially regulatory lymphocytes.
Collapse
Affiliation(s)
- Kei Yamane
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Takayuki Anazawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan.
| | - Seiichiro Tada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Nanae Fujimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Kenta Inoguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Norio Emoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Kazuyuki Nagai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Toshihiko Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Hideaki Okajima
- Department of Paediatric Surgery, Kanazawa Medical University, Kanazawa, 9200293, Japan
| | - Kyoichi Takaori
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 6068507, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| |
Collapse
|
35
|
Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, Moore A. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep 2020; 10:5302. [PMID: 32210316 PMCID: PMC7093482 DOI: 10.1038/s41598-020-62269-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 11/30/2022] Open
Abstract
Aberrant expression of miRNAs in pancreatic islets is closely related to the development of type 1 diabetes (T1D). The aim of this study was to identify key miRNAs dysregulated in pancreatic islets during T1D progression and to develop a theranostic approach to modify their expression using an MRI-based nanodrug consisting of iron oxide nanoparticles conjugated to miRNA-targeting oligonucleotides in a mouse model of T1D. Isolated pancreatic islets were derived from NOD mice of three distinct age groups (3, 8 and 18-week-old). Total RNA collected from cultured islets was purified and global miRNA profiling was performed with 3D-Gene global miRNA microarray mouse chips encompassing all mouse miRNAs available on the Sanger miRBase V16. Of the miRNAs that were found to be differentially expressed across three age groups, we identified one candidate (miR-216a) implicated in beta cell proliferation for subsequent validation by RT-PCR. Alterations in miR-216a expression within pancreatic beta cells were also examined using in situ hybridization on the frozen pancreatic sections. For in vitro studies, miR-216a mimics/inhibitors were conjugated to iron oxide nanoparticles and incubated with beta cell line, βTC-6. Cell proliferation marker Ki67 was evaluated. Expression of the phosphatase and tensin homolog (PTEN), which is one of the direct targets of miR-216a, was analyzed using western blot. For in vivo study, the miR-216a mimics/inhibitors conjugated to the nanoparticles were injected into 12-week-old female diabetic Balb/c mice via pancreatic duct. The delivery of the nanodrug was monitored by in vivo MRI. Blood glucose of the treated mice was monitored post injection. Ex vivo histological analysis of the pancreatic sections included staining for insulin, PTEN and Ki67. miRNA microarray demonstrated that the expression of miR-216a in the islets from NOD mice significantly changed during T1D progression. In vitro studies showed that treatment with a miR-216a inhibitor nanodrug suppressed proliferation of beta cells and increased the expression of PTEN, a miR-216a target. In contrast, introduction of a mimic nanodrug decreased PTEN expression and increased beta cell proliferation. Animals treated in vivo with a mimic nanodrug had higher insulin-producing functionality compared to controls. These observations were in line with downregulation of PTEN and increase in beta cell proliferation in that group. Our studies demonstrated that miR-216a could serve as a potential therapeutic target for the treatment of diabetes. miR-216a-targeting theranostic nanodrugs served as exploratory tools to define functionality of this miRNA in conjunction with in vivo MR imaging.
Collapse
Affiliation(s)
- Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Hongwei Zhao
- Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Department of Gynecologic Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Jack Owen Bishop
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA
- Department of Neuroscience, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Guoli Zhou
- Biomedical Research Informatics Core, Clinical & Translational Sciences Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| | - L Karl Olson
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Anna Moore
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.
| |
Collapse
|
36
|
Sayers SR, Beavil RL, Fine NHF, Huang GC, Choudhary P, Pacholarz KJ, Barran PE, Butterworth S, Mills CE, Cruickshank JK, Silvestre MP, Poppitt SD, McGill AT, Lavery GG, Hodson DJ, Caton PW. Structure-functional changes in eNAMPT at high concentrations mediate mouse and human beta cell dysfunction in type 2 diabetes. Diabetologia 2020; 63:313-323. [PMID: 31732790 PMCID: PMC6946736 DOI: 10.1007/s00125-019-05029-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/11/2019] [Indexed: 02/26/2023]
Abstract
AIMS/HYPOTHESIS Progressive decline in functional beta cell mass is central to the development of type 2 diabetes. Elevated serum levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT) are associated with beta cell failure in type 2 diabetes and eNAMPT immuno-neutralisation improves glucose tolerance in mouse models of diabetes. Despite this, the effects of eNAMPT on functional beta cell mass are poorly elucidated, with some studies having separately reported beta cell-protective effects of eNAMPT. eNAMPT exists in structurally and functionally distinct monomeric and dimeric forms. Dimerisation is essential for the NAD-biosynthetic capacity of NAMPT. Monomeric eNAMPT does not possess NAD-biosynthetic capacity and may exert distinct NAD-independent effects. This study aimed to fully characterise the structure-functional effects of eNAMPT on pancreatic beta cell functional mass and to relate these to beta cell failure in type 2 diabetes. METHODS CD-1 mice and serum from obese humans who were without diabetes, with impaired fasting glucose (IFG) or with type 2 diabetes (from the Body Fat, Surgery and Hormone [BodyFatS&H] study) or with or at risk of developing type 2 diabetes (from the VaSera trial) were used in this study. We generated recombinant wild-type and monomeric eNAMPT to explore the effects of eNAMPT on functional beta cell mass in isolated mouse and human islets. Beta cell function was determined by static and dynamic insulin secretion and intracellular calcium microfluorimetry. NAD-biosynthetic capacity of eNAMPT was assessed by colorimetric and fluorescent assays and by native mass spectrometry. Islet cell number was determined by immunohistochemical staining for insulin, glucagon and somatostatin, with islet apoptosis determined by caspase 3/7 activity. Markers of inflammation and beta cell identity were determined by quantitative reverse transcription PCR. Total, monomeric and dimeric eNAMPT and nicotinamide mononucleotide (NMN) were evaluated by ELISA, western blot and fluorometric assay using serum from non-diabetic, glucose intolerant and type 2 diabetic individuals. RESULTS eNAMPT exerts bimodal and concentration- and structure-functional-dependent effects on beta cell functional mass. At low physiological concentrations (~1 ng/ml), as seen in serum from humans without diabetes, eNAMPT enhances beta cell function through NAD-dependent mechanisms, consistent with eNAMPT being present as a dimer. However, as eNAMPT concentrations rise to ~5 ng/ml, as in type 2 diabetes, eNAMPT begins to adopt a monomeric form and mediates beta cell dysfunction, reduced beta cell identity and number, increased alpha cell number and increased apoptosis, through NAD-independent proinflammatory mechanisms. CONCLUSIONS/INTERPRETATION We have characterised a novel mechanism of beta cell dysfunction in type 2 diabetes. At low physiological levels, eNAMPT exists in dimer form and maintains beta cell function and identity through NAD-dependent mechanisms. However, as eNAMPT levels rise, as in type 2 diabetes, structure-functional changes occur resulting in marked elevation of monomeric eNAMPT, which induces a diabetic phenotype in pancreatic islets. Strategies to selectively target monomeric eNAMPT could represent promising therapeutic strategies for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sophie R Sayers
- Diabetes Research Group, Department of Diabetes, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | - Rebecca L Beavil
- Protein Production Facility, Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Guo C Huang
- Diabetes Research Group, Department of Diabetes, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | - Pratik Choudhary
- Diabetes Research Group, Department of Diabetes, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | - Kamila J Pacholarz
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Manchester Institute of Biotechnology, Manchester, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Manchester Institute of Biotechnology, Manchester, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charlotte E Mills
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK
- Nutrition Research Group, University of Reading, Reading, UK
| | - J Kennedy Cruickshank
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK
| | - Marta P Silvestre
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anne-Thea McGill
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- School of Health & Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Paul W Caton
- Diabetes Research Group, Department of Diabetes, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.
| |
Collapse
|
37
|
Panzer JK, Cohrs CM, Speier S. Using Pancreas Tissue Slices for the Study of Islet Physiology. Methods Mol Biol 2020; 2128:301-312. [PMID: 32180201 DOI: 10.1007/978-1-0716-0385-7_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies on islet of Langerhans physiology are crucial to understand the role of the endocrine pancreas in diabetes pathogenesis and the development of new therapeutic approaches. However, so far most research addressing islet of Langerhans biology relies on islets obtained via enzymatic isolation from the pancreas, which is known to cause mechanical and chemical stress, thus having a major impact on islet cell physiology. To circumvent the limitations of islet isolation, we have pioneered a platform for the study of islet physiology using the pancreas tissue slice technique. This approach allows to explore the detailed three-dimensional morphology of intact pancreatic tissue at a cellular level and to investigate islet cell function under near-physiological conditions. The described procedure is less damaging and faster than alternative approaches and particularly advantageous for studying infiltrated and structurally damaged islets. Furthermore, pancreas tissue slices have proven valuable for acute studies of endocrine as well as exocrine cell physiology in their conserved natural environment. We here provide a detailed protocol for the preparation of mouse pancreas tissue slices, the assessment of slice viability, and the study of pancreas cell physiology by hormone secretion and immunofluorescence staining.
Collapse
Affiliation(s)
- Julia K Panzer
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian M Cohrs
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany. .,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
38
|
Christen U, Kimmel R. Chemokines as Drivers of the Autoimmune Destruction in Type 1 Diabetes: Opportunity for Therapeutic Intervention in Consideration of an Optimal Treatment Schedule. Front Endocrinol (Lausanne) 2020; 11:591083. [PMID: 33193102 PMCID: PMC7604482 DOI: 10.3389/fendo.2020.591083] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is mainly precipitated by the destruction of insulin-producing β-cells in the pancreatic islets of Langerhans by autoaggressive T cells. The etiology of the disease is still not clear, but besides genetic predisposition the exposure to environmental triggers seems to play a major role. Virus infection of islets has been demonstrated in biopsies of T1D patients, but there is still no firm proof that such an infection indeed results in islet-specific autoimmunity. However, virus infection results in a local inflammation with expression of inflammatory factors, such as cytokines and chemokines that attract and activate immune cells, including potential autoreactive T cells. Many chemokines have been found to be elevated in the serum and expressed by islet cells of T1D patients. In mouse models, it has been demonstrated that β-cells express chemokines involved in the initial recruitment of immune cells to the islets. The bulk load of chemokines is however released by the infiltrating immune cells that also express multiple chemokine receptors. The result is a mutual attraction of antigen-presenting cells and effector immune cells in the local islet microenvironment. Although there is a considerable redundancy within the chemokine ligand-receptor network, a few chemokines, such as CXCL10, seem to play a key role in the T1D pathogenesis. Studies with neutralizing antibodies and investigations in chemokine-deficient mice demonstrated that interfering with certain chemokine ligand-receptor axes might also ameliorate human T1D. However, one important aspect of such a treatment is the time of administration. Blockade of the recruitment of immune cells to the site of autoimmune destruction might not be effective when the disease process is already ongoing. By that time, autoaggressive cells have already arrived in the islet microenvironment and a blockade of migration might even hold them in place leading to accelerated destruction. Thus, an anti-chemokine therapy makes most sense in situations where the cells have not yet migrated to the islets. Such situations include treatment of patients at risk already carrying islet-antigen autoantibodies but are not yet diabetic, islet transplantation recipients, and patients that have undergone a T cell reset as occurring after anti-CD3 antibody treatment.
Collapse
|
39
|
Brandhorst H, Brandhorst D, Abraham A, Acreman S, Schive SW, Scholz H, Johnson PR. Proteomic Profiling Reveals the Ambivalent Character of the Mesenchymal Stem Cell Secretome: Assessing the Effect of Preconditioned Media on Isolated Human Islets. Cell Transplant 2020; 29:963689720952332. [PMID: 33150790 PMCID: PMC7784517 DOI: 10.1177/0963689720952332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or hypoxia for 6-8 or 3-4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning. Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere. These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the production of advanced clinical grade islet culture media with higher protective qualities.
Collapse
Affiliation(s)
- Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anju Abraham
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Samuel Acreman
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Simen W. Schive
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Paul R.V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Quantitative Proteomics Evaluation of Human Multipotent Stromal Cell for β Cell Regeneration. Cell Rep 2019; 25:2524-2536.e4. [PMID: 30485817 DOI: 10.1016/j.celrep.2018.10.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
Human multipotent stromal cells (hMSCs) are one of the most versatile cell types used in regenerative medicine due to their ability to respond to injury. In the context of diabetes, it has been previously shown that the regenerative capacity of hMSCs is donor specific after transplantation into streptozotocin (STZ)-treated immunodeficient mice. However, in vivo transplantation models to determine regenerative potency of hMSCs are lengthy, costly, and low throughput. Therefore, a high-throughput quantitative proteomics assay was developed to screen β cell regenerative potency of donor-derived hMSC lines. Using proteomics, we identified 16 proteins within hMSC conditioned media that effectively identify β cell regenerative hMSCs. This protein signature was validated using human islet culture assay, ELISA, and the potency was confirmed by recovery of hyperglycemia in STZ-treated mice. Herein, we demonstrated that quantitative proteomics can determine sample-specific protein signatures that can be used to classify previously uncharacterized hMSC lines for β cell regenerative clinical applications.
Collapse
|
41
|
Redick SD, Leehy L, Rittenhouse AR, Blodgett DM, Derr AG, Kucukural A, Garber MG, Shultz LD, Greiner DL, Wang JP, Harlan DM, Bortell R, Jurczyk A. Recovery of viable endocrine-specific cells and transcriptomes from human pancreatic islet-engrafted mice. FASEB J 2019; 34:1901-1911. [PMID: 31914605 PMCID: PMC6972551 DOI: 10.1096/fj.201901022rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022]
Abstract
Human pancreatic islets engrafted into immunodeficient mice serve as an important model for in vivo human diabetes studies. Following engraftment, islet function can be monitored in vivo by measuring circulating glucose and human insulin; however, it will be important to recover viable cells for more complex graft analyses. Moreover, RNA analyses of dissected grafts have not distinguished which hormone-specific cell types contribute to gene expression. We developed a method for recovering live cells suitable for fluorescence-activated cell sorting from human islets engrafted in mice. Although yields of recovered islet cells were relatively low, the ratios of bulk-sorted β, α, and δ cells and their respective hormone-specific RNA-Seq transcriptomes are comparable pretransplant and posttransplant, suggesting that the cellular characteristics of islet grafts posttransplant closely mirror the original donor islets. Single-cell RNA-Seq transcriptome analysis confirms the presence of appropriate β, α, and δ cell subsets. In addition, ex vivo perifusion of recovered human islet grafts demonstrated glucose-stimulated insulin secretion. Viable cells suitable for patch-clamp analysis were recovered from transplanted human embryonic stem cell-derived β cells. Together, our functional and hormone-specific transcriptome analyses document the broad applicability of this system for longitudinal examination of human islet cells undergoing developmental/metabolic/pharmacogenetic manipulation in vivo and may facilitate the discovery of treatments for diabetes.
Collapse
Affiliation(s)
- Sambra D Redick
- Diabetes Center of Excellence, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Linda Leehy
- Diabetes Center of Excellence, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ann R Rittenhouse
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - David M Blodgett
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Math and Science Division, Babson College, Wellesley, MA, USA
| | - Alan G Derr
- Diabetes Center of Excellence, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alper Kucukural
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Manuel G Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Dale L Greiner
- Diabetes Center of Excellence, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer P Wang
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - David M Harlan
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rita Bortell
- Diabetes Center of Excellence, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Agata Jurczyk
- Diabetes Center of Excellence, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
42
|
Son DO, Liu W, Li X, Prud'homme GJ, Wang Q. Combined effect of GABA and glucagon-like peptide-1 receptor agonist on cytokine-induced apoptosis in pancreatic β-cell line and isolated human islets. J Diabetes 2019; 11:563-572. [PMID: 30520247 DOI: 10.1111/1753-0407.12881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Treatment with GABA or glucagon-like peptide-1 (GLP-1) can preserve pancreatic β-cell mass and prevent diabetes. Recently, we reported that the combination of GABA and sitagliptin (a dipeptidyl peptidase-4 inhibitor that increases endogenous GLP-1) was more effective than either agent alone in reducing drug-induced β-cell damage and promoting β-cell regeneration in mice. However, in human islets, it remains unclear whether GABA and GLP-1 exert similar effects. METHODS To investigate GABA and GLP-1 interactions, human islets or INS-1 cells were treated with GABA and/or exendin-4, a GLP-1 receptor agonist (GLP-1RA) in clinical use, and incubated with a cytokine mixture for 24 hours. Cleaved caspase-3 and annexin V binding were measured by western blot and flow cytometry analysis, respectively, to investigate effects on cytokine-induced apoptosis. RESULTS Cytokine-induced apoptosis was reduced by either GABA or exendin-4 alone. This was markedly improved by combining GABA and exendin-4, resulting in a reversal of apoptosis. The combination notably increased Akt pathway signaling. Furthermore, sirtuin-1 (SIRT1) and α-Klotho, both reported to have protective effects on β-cells, were increased. Importantly, the combination ameliorated insulin secretion by human β-cells. CONCLUSIONS The combination of GABA and a GLP-1RA exerted additive effects on β-cell survival and function, suggesting that this combination may be superior to either drug alone in the treatment of diabetes.
Collapse
Affiliation(s)
- Dong Ok Son
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Wenjuan Liu
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
- Department of Endocrinology, Huashan Hospital, Medical School, Fudan University, Shanghai, China
| | - Xiaoming Li
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Gerald J Prud'homme
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Qinghua Wang
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
- Department of Endocrinology, Huashan Hospital, Medical School, Fudan University, Shanghai, China
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. Clin Sci (Lond) 2019; 133:1321-1339. [PMID: 31221822 DOI: 10.1042/cs20190372] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is among the most common complications of diabetes mellitus (DM), and remains the leading cause of end-stage renal diseases (ESRDs) in developed countries, with no definitive therapy yet available. It is imperative to decipher the exact mechanisms underlying DKD and identify novel therapeutic targets. Burgeoning evidence indicates that long non-coding RNAs (lncRNAs) are essential for diverse biological processes. However, their roles and the mechanisms of action remain to be defined in disease conditions like diabetes and DKD. The pathogenesis of DKD is twofold, so is the principle of treatments. As the underlying disease, diabetes per se is the root cause of DKD and thus a primary focus of therapy. Meanwhile, aberrant molecular signaling in kidney parenchymal cells and inflammatory cells may directly contribute to DKD. Evidence suggests that a number of lncRNAs are centrally involved in development and progression of DKD either via direct pathogenic roles or as indirect mediators of some nephropathic pathways, like TGF-β1, NF-κB, STAT3 and GSK-3β signaling. Some lncRNAs are thus likely to serve as biomarkers for early diagnosis or prognosis of DKD or as therapeutic targets for slowing progression or even inducing regression of established DKD. Here, we elaborated the latest evidence in support of lncRNAs as a key player in DKD. In an attempt to strengthen our understanding of the pathogenesis of DKD, and to envisage novel therapeutic strategies based on targeting lncRNAs, we also delineated the potential mechanisms of action as well as the efficacy of targeting lncRNA in preclinical models of DKD.
Collapse
|
44
|
Zhang Y, Gago-Lopez N, Li N, Zhang Z, Alver N, Liu Y, Martinson AM, Mehri A, MacLellan WR. Single-cell imaging and transcriptomic analyses of endogenous cardiomyocyte dedifferentiation and cycling. Cell Discov 2019; 5:30. [PMID: 31231540 PMCID: PMC6547664 DOI: 10.1038/s41421-019-0095-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 11/16/2022] Open
Abstract
While it is recognized that there are low levels of new cardiomyocyte (CM) formation throughout life, the source of these new CM generates much debate. One hypothesis is that these new CMs arise from the proliferation of existing CMs potentially after dedifferentiation although direct evidence for this is lacking. Here we explore the mechanisms responsible for CM renewal in vivo using multi-reporter transgenic mouse models featuring efficient adult CM (ACM) genetic cell fate mapping and real-time cardiomyocyte lineage and dedifferentiation reporting. Our results demonstrate that non-myocytes (e.g., cardiac progenitor cells) contribute negligibly to new ACM formation at baseline or after cardiac injury. In contrast, we found a significant increase in dedifferentiated, cycling CMs in post-infarct hearts. ACM cell cycling was enhanced within the dedifferentiated CM population. Single-nucleus transcriptomic analysis demonstrated that CMs identified with dedifferentiation reporters had significant down-regulation in gene networks for cardiac hypertrophy, contractile, and electrical function, with shifts in metabolic pathways, but up-regulation in signaling pathways and gene sets for active cell cycle, proliferation, and cell survival. The results demonstrate that dedifferentiation may be an important prerequisite for CM proliferation and explain the limited but measurable cardiac myogenesis seen after myocardial infarction (MI).
Collapse
Affiliation(s)
- Yiqiang Zhang
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Nuria Gago-Lopez
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Ning Li
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,4State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhe Zhang
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Naima Alver
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Yonggang Liu
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Amy M Martinson
- 2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,5Department of Pathology, University of Washington, Seattle, WA USA
| | - Avin Mehri
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - William Robb MacLellan
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,6Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|
45
|
Böni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes. Semin Immunopathol 2019; 41:501-513. [PMID: 30989320 PMCID: PMC6592966 DOI: 10.1007/s00281-019-00745-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Metabolic diseases including type 2 diabetes are associated with meta-inflammation. β-Cell failure is a major component of the pathogenesis of type 2 diabetes. It is now well established that increased numbers of innate immune cells, cytokines, and chemokines have detrimental effects on islets in these chronic conditions. Recently, evidence emerged which points to initially adaptive and restorative functions of inflammatory factors and immune cells in metabolism. In the following review, we provide an overview on the features of islet inflammation in diabetes and models of prediabetes. We separately emphasize what is known on islet inflammation in humans and focus on in vivo animal models and how they are used to elucidate mechanistic aspects of islet inflammation. Further, we discuss the recently emerging physiologic signaling role of cytokines during adaptation and normal function of islet cells.
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland. .,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Daniel T Meier
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland.,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| |
Collapse
|
46
|
Synergic effects of oxygen supply and antioxidants on pancreatic β-cell spheroids. Sci Rep 2019; 9:1802. [PMID: 30755634 PMCID: PMC6372787 DOI: 10.1038/s41598-018-38011-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes is one of the most common metabolic disorders, and is characterized by the inability to secrete/sense insulin and abnormal blood glucose concentration. Many researchers have concentrated their efforts on improving islet transplantation, in particular by fabricating bioartificial pancreatic islets in vitro. One of the critical points for the success of this research direction is the improvement of culture conditions, such as oxygen supply, in the engineering of bioartificial pancreatic islets to ensure their viability and functionality after transplantation. In this work, we fabricated microwell spheroid culture devices made of oxygen-permeable polydimethylsiloxane (PDMS), with which hypoxia in the core of bioartificial islets was alleviated and glucose-stimulated insulin secretion was increased ~2.5-fold compared to a device with the same configuration but made of non-oxygen-permeable plastic. We also demonstrated that antioxidants, such as ascorbic acid-2-phosphate (AA2P), could neutralize islet damage caused by increased reactive oxygen species (ROS) in the cell culture environment. These results suggest that supply of oxygen together with removal of ROS may lead to a better approach to prepare highly viable and functional bioartificial pancreatic islets.
Collapse
|
47
|
3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep 2018; 14:177-188. [PMID: 29181780 DOI: 10.1007/s12015-017-9783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for physiologically relevant assay platforms to provide functionally relevant models of diabetes, to accelerate the discovery of new treatment options and boost developments in drug discovery. In this review, we compare several 3D-strategies that have been used to increase the functional relevance of ex vivo human primary pancreatic islets and developments into the generation of stem cell derived pancreatic beta-cells (β-cells). Special attention will be given to recent approaches combining the use of extracellular matrix (ECM) scaffolds with pancreatic molecular memory, which can be used to improve yield and functionality of in vitro stem cell-derived pancreatic models. The ultimate goal is to develop scalable cell-based platforms for diabetes research and drug screening. This article will critically assess key aspects related to in vitro pancreatic 3D-ECM models and highlight the most promising approaches for future research.
Collapse
|
48
|
Teo AKK, Lim CS, Cheow LF, Kin T, Shapiro JA, Kang NY, Burkholder W, Lau HH. Single-cell analyses of human islet cells reveal de-differentiation signatures. Cell Death Discov 2018; 4:14. [PMID: 29531811 PMCID: PMC5841351 DOI: 10.1038/s41420-017-0014-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023] Open
Abstract
Human pancreatic islets containing insulin-secreting β-cells are notoriously heterogeneous in cell composition. Since β-cell failure is the root cause of diabetes, understanding this heterogeneity is of paramount importance. Recent reports have cataloged human islet transcriptome but not compared single β-cells in detail. Here, we scrutinized ex vivo human islet cells from healthy donors and show that they exhibit de-differentiation signatures. Using single-cell gene expression and immunostaining analyses, we found healthy islet cells to contain polyhormonal transcripts, and INS+ cells to express decreased levels of β-cell genes but high levels of progenitor markers. Rare cells that are doubly positive for progenitor markers/exocrine signatures, and endocrine/exocrine hormones were also present. We conclude that ex vivo human islet cells are plastic and can possibly de-/trans-differentiate across pancreatic cell fates, partly accounting for β-cell functional decline once isolated. Therefore, stabilizing β-cell identity upon isolation may improve its functionality.
Collapse
Affiliation(s)
- Adrian Keong Kee Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chang Siang Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Lih Feng Cheow
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, AB, Canada
| | - James A. Shapiro
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, AB, Canada
| | - Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Helios, Singapore, Singapore
| | - William Burkholder
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| |
Collapse
|
49
|
Rutman AK, Negi S, Gasparrini M, Hasilo CP, Tchervenkov J, Paraskevas S. Immune Response to Extracellular Vesicles From Human Islets of Langerhans in Patients With Type 1 Diabetes. Endocrinology 2018; 159:3834-3847. [PMID: 30307543 DOI: 10.1210/en.2018-00649] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
The autoimmune response that characterizes type 1 diabetes (T1D) has no clear cause. Extracellular vesicles (EVs) play an important role in triggering the immune response in other contexts. Here, we propose a model by which EVs isolated from human islets stimulate proinflammatory immune responses and lead to peripheral blood mononuclear cell (PBMC) activation. We show that human islet EVs are internalized by monocytes and B cells and lead to an increase in T-helper 1, 2, and 17 cytokine expression, as well as T and B cell proliferation. Importantly, we demonstrate memory T and B cell activation by EVs selectively in PBMCs of patients with T1D. Additionally, human islet EVs induce an increase in antibodies against glutamic acid decarboxylase 65 (GAD65) in T1D PBMCs. Furthermore, pretreatment of T1D PBMCs with ibrutinib, an inhibitor of Bruton tyrosine kinase, dampens EV-induced memory B cell activation and GAD65 antibody production. Collectively, our findings indicate a role for human islet EVs in mediating activation of B and T cells and GAD65 autoantibody production.
Collapse
Affiliation(s)
- Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Sarita Negi
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Marco Gasparrini
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Craig P Hasilo
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Jean Tchervenkov
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| |
Collapse
|
50
|
Harata M, Liu S, Promes JA, Burand AJ, Ankrum JA, Imai Y. Delivery of shRNA via lentivirus in human pseudoislets provides a model to test dynamic regulation of insulin secretion and gene function in human islets. Physiol Rep 2018; 6:e13907. [PMID: 30370689 PMCID: PMC6204361 DOI: 10.14814/phy2.13907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Rodent islets are widely used to study the pathophysiology of beta cells and islet function, however, structural and functional differences exist between human and rodent islets, highlighting the need for human islet studies. Human islets are highly variable, deteriorate during culture, and are difficult to genetically modify, making mechanistic studies difficult to conduct and reproduce. To overcome these limitations, we tested whether pseudoislets, created by dissociation and reaggregation of islet cell suspensions, allow for assessment of dynamic islet function after genetic modulation. Characterization of pseudoislets cultured for 1 week revealed better preservation of first-phase glucose-stimulated insulin secretion (GSIS) compared with cultured-intact islets and insulin secretion profiles similar to fresh islets when challenged by glibenclamide and KCl. qPCR indicated that pseudoislets are similar to the original islets for the expression of markers for cell types, beta cell function, and cellular stress with the exception of reduced proinflammatory cytokine genes (IL1B, CCL2, CXCL8). The expression of extracellular matrix markers (ASPN, COL1A1, COL4A1) was also altered in pseudoislets compared with intact islets. Compared with intact islets transduced by adenovirus, pseudoislets transduced by lentivirus showed uniform transduction and better first-phase GSIS. Lastly, the lentiviral-mediated delivery of short hairpin RNA targeting glucokinase (GCK) achieved significant reduction of GCK expression in pseudoislets as well as marked reduction of both first and second phase GSIS without affecting the insulin secretion in response to KCl. Thus, pseudoislets are a tool that enables efficient genetic modulation of human islet cells while preserving insulin secretion.
Collapse
Affiliation(s)
- Mikako Harata
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
| | - Siming Liu
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
| | - Joseph A. Promes
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
| | - Anthony J. Burand
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowa
| | - James A. Ankrum
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowa
| | - Yumi Imai
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
| |
Collapse
|