1
|
Dams D, Pas C, Latka A, Drulis-Kawa Z, Fieseler L, Briers Y. A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae. Antibiotics (Basel) 2025; 14:104. [PMID: 39858389 PMCID: PMC11762384 DOI: 10.3390/antibiotics14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from Pseudomonas aeruginosa, the process is labor-intensive, limiting broader application. Methods: We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. Results: This platform achieved three key milestones: (I) engineering R2 tailocins specific to Escherichia coli serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of E. coli and K11 and K63 of Klebsiella pneumoniae; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both E. coli K1 and K. pneumoniae K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. Conclusions: This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections.
Collapse
Affiliation(s)
- Dorien Dams
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Célia Pas
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Food Microbiology Research Group, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland;
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| |
Collapse
|
2
|
Idland L, Bø-Granquist EG, Aspholm M, Lindbäck T. The Ability of Shiga Toxin-Producing Escherichia coli to Grow in Raw Cow's Milk Stored at Low Temperatures. Foods 2022; 11:3411. [PMID: 36360022 PMCID: PMC9656703 DOI: 10.3390/foods11213411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the lack of scientific evidence, some consumers assert that raw milk is a natural food with nutritional and immunological properties superior to pasteurized milk. This has led to the increased popularity of unpasteurized cow milk (UPM) and disregard for the risks of being exposed to zoonotic infections. Dairy cattle are healthy carriers of Shiga toxin (Stx)-producing E. coli (STEC), and contaminated UPM has caused STEC outbreaks worldwide. The association between STEC, carrying the eae (E. coli attachment effacement) gene, and severe diseases is well-established. We have previously isolated four eae positive STEC isolates from two neighboring dairy farms in the Southeast of Norway. A whole genome analysis revealed that isolates from different farms exhibited nearly identical genetic profiles. To explore the risks associated with drinking UPM, we examined the ability of the isolates to produce Stx and their growth in UPM at different temperatures. All the isolates produced Stx and one of the isolates was able to propagate in UPM at 8 °C (p < 0.02). Altogether, these results highlight the risk for STEC infections associated with the consumption of UPM.
Collapse
Affiliation(s)
- Lene Idland
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Erik G. Bø-Granquist
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|
3
|
Ramstad SN, Wasteson Y, Lindstedt BA, Taxt AM, Bjørnholt JV, Brandal LT, Bohlin J. Characterization of Shiga Toxin 2a Encoding Bacteriophages Isolated From High-Virulent O145:H25 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2021; 12:728116. [PMID: 34566932 PMCID: PMC8456039 DOI: 10.3389/fmicb.2021.728116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause severe disease mainly due to the ability to produce Shiga toxins (Stx) encoded on bacteriophages. In Norway, more than 30% of the reported cases with STEC O145:H25 develop hemolytic uremic syndrome (HUS), and most cases, with known travel history, acquired the infection domestically. To describe phage characteristics associated with high virulence, we extracted the Stx2a phage sequences from eight clinical Norwegian O145:H25 STEC to conduct in-depth molecular characterization using long and short read sequencing. The Stx2a phages were annotated, characterized, and compared with previously published Stx2a phages isolated from STEC of different serotypes. The Norwegian O145:H25 Stx2a phages showed high sequence identity (>99%) with 100% coverage. The Stx2a phages were located at the integration site yciD, were approximately 45 kbp long, and harbored several virulence-associated genes, in addition to stx2a, such as nanS and nleC. We observed high sequence identity (>98%) and coverage (≥94%) between Norwegian O145:H25 Stx2a phages and publicly available Stx2a phages from O145:H25 and O145:H28 STEC, isolated from HUS cases in the USA and a hemorrhagic diarrhea case from Japan, respectively. However, low similarity was seen when comparing the Norwegian O145:H25 Stx2a phage to Stx2a phages from STEC of other serotypes. In all the Norwegian O145:H25 STEC, we identified a second phage or remnants of a phage (a shadow phage, 61 kbp) inserted at the same integration site as the Stx2a phage. The shadow phage shared similarity with the Stx2a phage, but lacked stx2a and harbored effector genes not present in the Stx2a phage. We identified a conserved Stx2a phage among the Norwegian O145:H25 STEC that shared integration site with a shadow phage in all isolates. Both phage and shadow phage harbored several virulence-associated genes that may contribute to the increased pathogenicity of O145:H25 STEC.
Collapse
Affiliation(s)
- Silje N Ramstad
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arne M Taxt
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Department of Infectious Diseases and Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørgen V Bjørnholt
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lin T Brandal
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Jon Bohlin
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
4
|
Mišić D, Kiskaroly F, Szostak MP, Cabal A, Ruppitsch W, Bernreiter-Hofer T, Milovanovic V, Feßler AT, Allerberger F, Spergser J, Müller E, Schwarz S, Braun SD, Monecke S, Ehricht R, Korus M, Benković D, Korzeniowska M, Loncaric I. The First Report of mcr-1-Carrying Escherichia coli Originating from Animals in Serbia. Antibiotics (Basel) 2021; 10:1063. [PMID: 34572647 PMCID: PMC8467794 DOI: 10.3390/antibiotics10091063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was continuous monitoring of the presence of mcr-1 to mcr-5 genes in Enterobacterales isolated from cattle, pigs, and domestic poultry at intensive breeding facilities in Northern Vojvodina, Serbia, from 1 January 1 to 1 October 2020. Out of 2167 examined samples, mcr-1 was observed in five E. coli isolates originating from healthy turkeys. Four isolates belonged to the phylogenetic group B1, and one isolate to the phylogenetic group A. Detected E. coli serogenotypes (somatic O and flagellar H antigens) were O8:H25 and O29:H25. Core-genome multi-locus sequence typing (cgMLST) revealed three ST58 isolates clustering together in Clonal Complex (CC) 155 and two singletons of ST641-CC86 and ST410-CC23, respectively. Clonotyping revealed CH4-32 (n = 3), CH6-53 (n = 1) and CH4-24 (n = 1). In all isolates, the mcr-1 gene was located on a large IncX4 replicon type plasmid. Eight virulence-associated genes (VAGs) typical of avian pathogenic E. coli (APEC) (fyuA, fimH, hlyF, iss, ompT, sitA, traT, iroN) were detected in four isolates. These isolates were investigated for susceptibility to four biocides and revealed MIC values of 0.125% for glutardialdehyde, of 0.00003-0.00006% for chlorohexidine, of 4-6% for isopropanol and of 0.001-0.002% for benzalkonium chloride. All obtained MIC values of the tested biocides were comparable to the reference strain, with no indication of possible resistance. This is the first report of mcr-1.1-carrying E. coli from Serbia. Although only samples from turkeys were mcr-positive in this study, continuous monitoring of livestock samples is advised to prevent a spill-over from animals to humans.
Collapse
Affiliation(s)
- Dušan Mišić
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); (M.K.)
| | - Ferenc Kiskaroly
- Department of Bacteriology, Veterinary Specialistic Institute “Subotica”, 24000 Subotica, Serbia;
| | - Michael P. Szostak
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
| | - Adriana Cabal
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Tanja Bernreiter-Hofer
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Viktoria Milovanovic
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
| | - Andrea T. Feßler
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (S.S.)
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Schwarz
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (S.S.)
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maciej Korus
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); (M.K.)
| | - Damir Benković
- Department of Molecular Diagnostics, Veterinary Specialized Institute “Sombor”, 25000 Sombor, Serbia;
| | - Malgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); (M.K.)
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1010 Vienna, Austria; (M.P.S.); (T.B.-H.); (V.M.); (J.S.); (I.L.)
| |
Collapse
|
5
|
Llarena AK, Aspholm M, O'Sullivan K, Wêgrzyn G, Lindbäck T. Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages. Front Microbiol 2021; 12:640945. [PMID: 33868197 PMCID: PMC8044961 DOI: 10.3389/fmicb.2021.640945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Grzegorz Wêgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
6
|
Izumiya H, Lee K, Ishijima N, Iyoda S, Ohnishi M. Multiple-Locus Variable-Number Tandem Repeat Analysis Scheme for Non-O157 Shiga Toxin-Producing Escherichia coli: Focus on Serogroups O103, O121, O145, O165, and O91. Jpn J Infect Dis 2020; 73:481-490. [PMID: 32611976 DOI: 10.7883/yoken.jjid.2020.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) infections are a growing concern for public health. The number of sporadic cases and outbreaks of non-O157 STEC infections have increased in recent years. Molecular subtyping is an essential tool that allows high-resolution and rapid differentiation of isolates, identification of case clusters, and detection of outbreak clusters. Multiple-locus variable-number tandem repeat analysis (MLVA) is one of the most useful typing methods for differentiating isolates that cause foodborne diseases. In Japan, serogroups O26, O111, O103, O121, O145, O165, and O91 have been frequently isolated or associated with severe cases of non-O157 STEC infections. In this study, we designed an MLVA scheme (MLVA43) for serogroups O103, O121, O145, O165, and O91 by adding 26 new loci to an MLVA scheme (MLVA17) previously developed by our group for serogroups O157, O26, and O111 using 17 loci. We found that the discriminatory power of MLVA43 was comparable to that of pulsed-field gel electrophoresis (PFGE) for serogroups O103, O145, O165, and O91, and superior to that of PFGE for O121. MLVA43 identified more profiles than did MLVA17, except for serogroup O111 with 707 isolates. The MLVA43 scheme will enable rapid detection of outbreak clusters, which will aid in implementing rapid control measures against non-O157 STEC infections.
Collapse
Affiliation(s)
- Hidemasa Izumiya
- Department of Bacteriology 1, National Institute of Infectious Diseases, Japan
| | - Kenichi Lee
- Department of Bacteriology 1, National Institute of Infectious Diseases, Japan
| | - Nozomi Ishijima
- Department of Bacteriology 1, National Institute of Infectious Diseases, Japan
| | - Sunao Iyoda
- Department of Bacteriology 1, National Institute of Infectious Diseases, Japan
| | - Makoto Ohnishi
- Department of Bacteriology 1, National Institute of Infectious Diseases, Japan
| |
Collapse
|
7
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
8
|
Tarr GAM, Stokowski T, Shringi S, Tarr PI, Freedman SB, Oltean HN, Rabinowitz PM, Chui L. Contribution and Interaction of Shiga Toxin Genes to Escherichia coli O157:H7 Virulence. Toxins (Basel) 2019; 11:toxins11100607. [PMID: 31635282 PMCID: PMC6832461 DOI: 10.3390/toxins11100607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Escherichia coli O157:H7 is the predominant cause of diarrhea-associated hemolytic uremic syndrome (HUS) worldwide. Its cardinal virulence traits are Shiga toxins, which are encoded by stx genes, the most common of which are stx1a, stx2a, and stx2c. The toxins these genes encode differ in their in vitro and experimental phenotypes, but the human population-level impact of these differences is poorly understood. Using Shiga toxin-encoding bacteriophage insertion typing and real-time polymerase chain reaction, we genotyped isolates from 936 E. coli O157:H7 cases and verified HUS status via chart review. We compared the HUS risk between isolates with stx2a and those with stx2a and another gene and estimated additive interaction of the stx genes. Adjusted for age and symptoms, the HUS incidence of E. coli O157:H7 containing stx2a alone was 4.4% greater (95% confidence interval (CI) −0.3%, 9.1%) than when it occurred with stx1a. When stx1a and stx2a occur together, the risk of HUS was 27.1% lower (95% CI −87.8%, −2.3%) than would be expected if interaction were not present. At the population level, temporal or geographic shifts toward these genotypes should be monitored, and stx genotype may be an important consideration in clinically predicting HUS among E. coli O157:H7 cases.
Collapse
Affiliation(s)
- Gillian A M Tarr
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada.
| | - Taryn Stokowski
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Public Labs, Edmonton, AB T6G 2J2, Canada.
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stephen B Freedman
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada.
| | - Hanna N Oltean
- Washington State Department of Health, Shoreline, WA 98155, USA.
| | - Peter M Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Public Labs, Edmonton, AB T6G 2J2, Canada.
| |
Collapse
|
9
|
Delannoy S, Mariani-Kurkdjian P, Webb HE, Bonacorsi S, Fach P. The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains Intra-Serotype Diversity. Front Microbiol 2017; 8:1625. [PMID: 28932209 PMCID: PMC5592225 DOI: 10.3389/fmicb.2017.01625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin-producing Escherichia coli of serotype O26:H11/H- constitute a diverse group of strains and several clones with distinct genetic characteristics have been identified and characterized. Whole genome sequencing was performed using Illumina and PacBio technologies on eight stx2-positive O26:H11 strains circulating in France. Comparative analyses of the whole genome of the stx2-positive O26:H11 strains indicate that several clones of EHEC O26:H11 are co-circulating in France. Phylogenetic analysis of the French strains together with stx2-positive and stx-negative E. coli O26:H11 genomes obtained from Genbank indicates the existence of four clonal complexes (SNP-CCs) separated in two distinct lineages, one of which comprises the "new French clone" (SNP-CC1) that appears genetically closely related to stx-negative attaching and effacing E. coli (AEEC) strains. Interestingly, the whole genome SNP (wgSNP) phylogeny is summarized in the cas gene phylogeny, and a simple qPCR assay targeting the CRISPR array specific to SNP-CC1 (SP_O26-E) can distinguish between the two main lineages. The PacBio sequencing allowed a detailed analysis of the mobile genetic elements (MGEs) of the strains. Numerous MGEs were identified in each strain, including a large number of prophages and up to four large plasmids, representing overall 8.7-19.8% of the total genome size. Analysis of the prophage pool of the strains shows a considerable diversity with a complex history of recombination. Each clonal complex (SNP-CC) is characterized by a unique set of plasmids and phages, including stx-prophages, suggesting evolution through separate acquisition events. Overall, the MGEs appear to play a major role in O26:H11 intra-serotype clonal diversification.
Collapse
Affiliation(s)
- Sabine Delannoy
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| | - Patricia Mariani-Kurkdjian
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Hattie E. Webb
- Department of Animal and Food Sciences, Texas Tech UniversityLubbock, TX, United States
| | - Stephane Bonacorsi
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Patrick Fach
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| |
Collapse
|
10
|
Söderlund R, Hurel J, Jinnerot T, Sekse C, Aspán A, Eriksson E, Bongcam-Rudloff E. Genomic comparison of Escherichia coli serotype O103:H2 isolates with and without verotoxin genes: implications for risk assessment of strains commonly found in ruminant reservoirs. Infect Ecol Epidemiol 2016; 6:30246. [PMID: 26895282 PMCID: PMC4759829 DOI: 10.3402/iee.v6.30246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/03/2022] Open
Abstract
Introduction Escherichia coli O103:H2 occurs as verotoxigenic E. coli (VTEC) carrying only vtx1 or vtx2 or both variants, but also as vtx-negative atypical enteropathogenic E. coli (aEPEC). The majority of E. coli O103:H2 identified from cases of human disease are caused by the VTEC form. If aEPEC strains frequently acquire verotoxin genes and become VTEC, they must be considered a significant public health concern. In this study, we have characterized and compared aEPEC and VTEC isolates of E. coli O103:H2 from Swedish cattle. Methods Fourteen isolates of E. coli O103:H2 with and without verotoxin genes were collected from samples of cattle feces taken during a nationwide cattle prevalence study 2011–2012. Isolates were sequenced with a 2×100 bp setup on a HiSeq2500 instrument producing >100× coverage per isolate. Single-nucleotide polymorphism (SNP) typing was performed using the genome analysis tool kit (GATK). Virulence genes and other regions of interest were detected. Susceptibility to transduction by two verotoxin-encoding phages was investigated for one representative aEPEC O103:H2 isolate. Results and Discussion This study shows that aEPEC O103:H2 is more commonly found (64%) than VTEC O103:H2 (36%) in the Swedish cattle reservoir. The only verotoxin gene variant identified was vtx1a. Phylogenetic comparison by SNP analysis indicates that while certain subgroups of aEPEC and VTEC are closely related and have otherwise near identical virulence gene repertoires, they belong to separate lineages. This indicates that the uptake or loss of verotoxin genes is a rare event in the natural cattle environment of these bacteria. However, a representative of a VTEC-like aEPEC O103:H2 subgroup could be stably lysogenized by a vtx-encoding phage in vitro.
Collapse
Affiliation(s)
- Robert Söderlund
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.,Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden;
| | - Julie Hurel
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Tomas Jinnerot
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Camilla Sekse
- Department of Laboratory Services, Norwegian Veterinary Institute (NVI), Oslo, Norway
| | - Anna Aspán
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Eriksson
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
11
|
Prieto-Calvo M, López M, Prieto M, Alvarez-Ordóñez A. Variability in resistance to Cold Atmospheric Plasma (CAP) and Ultraviolet light (UV) and multiple stress resistance analysis of pathogenic verocytotoxigenic Escherichia coli (VTEC). Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Yin S, Rusconi B, Sanjar F, Goswami K, Xiaoli L, Eppinger M, Dudley EG. Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages. BMC Genomics 2015; 16:733. [PMID: 26416807 PMCID: PMC4587872 DOI: 10.1186/s12864-015-1934-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023] Open
Abstract
Background Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen that causes severe human diseases including hemolytic uremic syndrome (HUS). The virulence factor that mediates HUS, Shiga toxin (Stx), is encoded within the genome of a lambdoid prophage. Although draft sequences are publicly available for a large number of E. coli O157:H7 strains, the high sequence similarity of stx-converting bacteriophages with other lambdoid prophages poses challenges to accurately assess the organization and plasticity among stx-converting phages due to assembly difficulties. Methods To further explore genome plasticity of stx-converting prophages, we enriched phage DNA from 45 ciprofloxacin-induced cultures for subsequent 454 pyrosequencing to facilitate assembly of the complete phage genomes. In total, 22 stx2a-converting phage genomes were closed. Results Comparison of the genomes distinguished nine distinct phage sequence types (PSTs) delineated by variation in obtained sequences, such as single nucleotide polymorphisms (SNPs) and insertion sequence element prevalence and location. These nine PSTs formed three distinct clusters, designated as PST1, PST2 and PST3. The PST2 cluster, identified in two clade 8 strains, was related to stx2a-converting phages previously identified in non-O157 Shiga-toxin producing E. coli (STEC) strains associated with a high incidence of HUS. The PST1 cluster contained phages related to those from E. coli O157:H7 strain Sakai (lineage I, clade 1), and PST3 contained a single phage that was distinct from the rest but most related to the phage from E. coli O157:H7 strain EC4115 (lineage I/II, clade 8). Five strains carried identical stx2a-converting phages (PST1-1) integrated at the same chromosomal locus, but these strains produced different levels of Stx2. Conclusion The stx2a-converting phages of E. coli O157:H7 can be categorized into at least three phage types. Diversification within a phage type is mainly driven by IS629 and by a small number of SNPs. Polymorphisms between phage genomes may help explain differences in Stx2a production between strains, however our data indicates that genes encoded external to the phage affect toxin production as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1934-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Yin
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Brigida Rusconi
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Fatemeh Sanjar
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kakolie Goswami
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lingzi Xiaoli
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark Eppinger
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA. .,Center of Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA. .,427 Food Science Building, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Yan X, Fratamico PM, Bono JL, Baranzoni GM, Chen CY. Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-serotypes of Shiga toxin-producing Escherichia coli O104. BMC Microbiol 2015; 15:83. [PMID: 25887577 PMCID: PMC4393859 DOI: 10.1186/s12866-015-0413-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/12/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Various H-serotypes of the Shiga toxin-producing Escherichia coli (STEC) O104, including H4, H7, H21, and H¯, have been associated with sporadic cases of illness and have caused food-borne outbreaks globally. In the U.S., STEC O104:H21 caused an outbreak associated with milk in 1994. However, there is little known on the evolutionary origins of STEC O104 strains, and how genotypic diversity contributes to pathogenic potential of various O104 H-antigen serotypes isolated from different ecological niches and/or geographical regions. RESULTS Two STEC O104:H21 (milk outbreak strain) and O104:H7 (cattle isolate) strains were shot-gun sequenced, and the genomes were closed. The intimin (eae) gene, involved in the attaching-effacing phenotype of diarrheagenic E. coli, was not found in either strain. Examining various O104 genome sequences, we found that two "complete" left and right end portions of the locus of enterocyte effacement (LEE) pathogenicity island were present in 13 O104 strains; however, the central portion of LEE was missing, where the eae gene is located. In O104:H4 strains, the missing central portion of the LEE locus was replaced by a pathogenicity island carrying the aidA (adhesin involved in diffuse adherence) gene and antibiotic resistance genes commonly carried on plasmids. Enteroaggregative E. coli-specific virulence genes and European outbreak O104:H4-specific stx2-encoding Escherichia P13374 or Escherichia TL-2011c bacteriophages were missing in some of the O104:H4 genome sequences available from public databases. Most of the genomic variations in the strains examined were due to the presence of different mobile genetic elements, including prophages and genomic island regions. The presence of plasmids carrying virulence-associated genes may play a role in the pathogenic potential of O104 strains. CONCLUSIONS The two strains sequenced in this study (O104:H21 and O104:H7) are genetically more similar to each other than to the O104:H4 strains that caused an outbreak in Germany in 2011 and strains found in Central Africa. A hypothesis on strain evolution and pathogenic potential of various H-serotypes of E. coli O104 strains is proposed.
Collapse
Affiliation(s)
- Xianghe Yan
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
- U.S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, 600 East Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - Pina M Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - James L Bono
- USDA, Agricultural Research Service, Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Gian Marco Baranzoni
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - Chin-Yi Chen
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| |
Collapse
|
14
|
White DJ, Hall RJ, Jakob-Hoff R, Wang J, Jackson B, Tompkins DM. Exudative cloacitis in the kakapo (Strigops habroptilus) potentially linked to Escherichia coli infection. N Z Vet J 2015; 63:167-70. [PMID: 25186371 DOI: 10.1080/00480169.2014.960905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM To investigate the initiating causes of cloacitis (inflammation of the cloaca) in kakapo (Strigops habroptilus). METHODS Metagenomics using unbiased RNA or DNA sequencing was applied to faecal material from an 11-year-old female kakapo with exudative cloacitis, and a pool of eight birds (male and female aged 1-20 years) with no current signs or history of the disease. Faecal material from the diseased bird was collected pre- and post-treatment. For RNA sequencing, extracted RNA/DNA was subject to DNase, and the remaining RNA reverse transcribed to cDNA and subject to multiple displacement amplification prior to sequencing. RESULTS No significant alignment to any known avian virus sequence was obtained from any faecal samples. However significant BLAST alignments to five bacteriophages known to infect enterobacteria were obtained. Strong evidence was obtained for the presence of the bacteriophage Escherichia phage TL-2011b, a bacteriophage known to occur in Escherichia coli causing outbreaks of foodborne disease in humans, in the sample from the diseased bird, but not the non-diseased pool. Differences in E. coli community structure between the diseased bird and the non-diseased pool were also apparent. CONCLUSIONS Escherichia coli infection of human origin is suggested as a possible cause of exudative cloacitis, although confirmatory work is required to test this hypothesis.
Collapse
Affiliation(s)
- D J White
- a Landcare Research , Auckland Mail Centre , Private Bag 92170, Auckland , New Zealand
| | | | | | | | | | | |
Collapse
|
15
|
Diversity of Shiga Toxin-Producing Escherichia coli (STEC) O26:H11 Strains Examined via stx Subtypes and Insertion Sites of Stx and EspK Bacteriophages. Appl Environ Microbiol 2015; 81:3712-21. [PMID: 25819955 DOI: 10.1128/aem.00077-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that may be responsible for severe human infections. Only a limited number of serotypes, including O26:H11, are involved in the majority of serious cases and outbreaks. The main virulence factors, Shiga toxins (Stx), are encoded by bacteriophages. Seventy-four STEC O26:H11 strains of various origins (including human, dairy, and cattle) were characterized for their stx subtypes and Stx phage chromosomal insertion sites. The majority of food and cattle strains possessed the stx(1a) subtype, while human strains carried mainly stx(1a) or stx(2a). The wrbA and yehV genes were the main Stx phage insertion sites in STEC O26:H11, followed distantly by yecE and sbcB. Interestingly, the occurrence of Stx phages inserted in the yecE gene was low in dairy strains. In most of the 29 stx-negative E. coli O26:H11 strains also studied here, these bacterial insertion sites were vacant. Multilocus sequence typing of 20 stx-positive or stx-negative E. coli O26:H11 strains showed that they were distributed into two phylogenetic groups defined by sequence type 21 (ST21) and ST29. Finally, an EspK-carrying phage was found inserted in the ssrA gene in the majority of the STEC O26:H11 strains but in only a minority of the stx-negative E. coli O26:H11 strains. The differences in the stx subtypes and Stx phage insertion sites observed in STEC O26:H11 according to their origin might reflect that strains circulating in cattle and foods are clonally distinct from those isolated from human patients.
Collapse
|
16
|
Iversen H, Lindbäck T, L’Abée-Lund TM, Roos N, Aspholm M, Stenfors Arnesen L. The gut bacterium Bacteroides thetaiotaomicron influences the virulence potential of the enterohemorrhagic Escherichia coli O103:H25. PLoS One 2015; 10:e0118140. [PMID: 25719195 PMCID: PMC4342160 DOI: 10.1371/journal.pone.0118140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is associated with severe gastrointestinal disease. Upon entering the gastrointestinal tract, EHEC is exposed to a fluctuating environment and a myriad of other bacterial species. To establish an infection, EHEC strains have to modulate their gene expression according to the GI tract environment. In order to explore the interspecies interactions between EHEC and an human intestinal commensal, the global gene expression profile was determined of EHEC O103:H25 (EHEC NIPH-11060424) co-cultured with B. thetaiotaomicron (CCUG 10774) or grown in the presence of spent medium from B. thetaiotaomicron. Microarray analysis revealed that approximately 1% of the EHEC NIPH-11060424 genes were significantly up-regulated both in co-culture (30 genes) and in the presence of spent medium (44 genes), and that the affected genes differed between the two conditions. In co-culture, genes encoding structural components of the type three secretion system were among the most affected genes with an almost 4-fold up-regulation, while the most affected genes in spent medium were involved in chemotaxis and were more than 3-fold up-regulated. The operons for type three secretion system (TTSS) are located on the Locus of enterocyte effacement (LEE) pathogenicity island, and qPCR showed that genes of all five operons (LEE1-LEE5) were up-regulated. Moreover, an increased adherence to HeLa cells was observed in EHEC NIPH-11060424 exposed to B. thetaiotaomicron. Expression of stx2 genes, encoding the main virulence factor of EHEC, was down-regulated in both conditions (co-culture/spent medium). These results show that expression of EHEC genes involved in colonization and virulence is modulated in response to direct interspecies contact between cells, or to diffusible factors released from B. thetaiotaomicron. Such interspecies interactions could allow the pathogen to recognize its predilection site and modulate its behaviour accordingly, thus increasing the efficiency of colonization of the colon mucosa, facilitating its persistence and increasing its virulence potential.
Collapse
Affiliation(s)
- Hildegunn Iversen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Trine M. L’Abée-Lund
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marina Aspholm
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Lotte Stenfors Arnesen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
- * E-mail:
| |
Collapse
|
17
|
Iversen H, L' Abée-Lund TM, Aspholm M, Arnesen LPS, Lindbäck T. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction. Front Cell Infect Microbiol 2015; 5:5. [PMID: 25692100 PMCID: PMC4315091 DOI: 10.3389/fcimb.2015.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a food-borne pathogen that causes disease ranging from uncomplicated diarrhea to life-threatening hemolytic uremic syndrome (HUS) and nervous system complications. Shiga toxin 2 (Stx2) is the major virulence factor of EHEC and is critical for development of HUS. The genes encoding Stx2 are carried by lambdoid bacteriophages and the toxin production is tightly linked to the production of phages during lytic cycle. It has previously been suggested that commensal E. coli could amplify the production of Stx2-phages and contribute to the severity of disease. In this study we examined the susceptibility of commensal E. coli strains to the Stx2-converting phage ϕ734, isolated from a highly virulent EHEC O103:H25 (NIPH-11060424). Among 38 commensal E. coli strains from healthy children below 5 years, 15 were lysogenized by the ϕ734 phage, whereas lytic infection was not observed. Three of the commensal E. coli ϕ734 lysogens were tested for stability, and appeared stable and retained the phage for at least 10 cultural passages. When induced to enter lytic cycle by H2O2 treatment, 8 out of 13 commensal lysogens produced more ϕ734 phages than NIPH-11060424. Strikingly, five of them even spontaneously (non-induced) produced higher levels of phage than the H2O2 induced NIPH-11060424. An especially high frequency of HUS (60%) was seen among children infected by NIPH-11060424 during the outbreak in 2006. Based on our findings, a high Stx2 production by commensal E. coli lysogens cannot be ruled out as a contributor to the high frequency of HUS during this outbreak.
Collapse
Affiliation(s)
- Hildegunn Iversen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Trine M L' Abée-Lund
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Marina Aspholm
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Lotte P S Arnesen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
18
|
Bergan J, Skotland T, Lingelem ABD, Simm R, Spilsberg B, Lindbäck T, Sylvänne T, Simolin H, Ekroos K, Sandvig K. The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cell Mol Life Sci 2014; 71:4285-300. [PMID: 24740796 PMCID: PMC11113769 DOI: 10.1007/s00018-014-1624-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 11/24/2022]
Abstract
Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, DL-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC₅₀) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50-70% of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70% of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Roger Simm
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Bjørn Spilsberg
- Section of Bacteriology-Food and GMO, Norwegian Veterinary Institute, Oslo, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Grande L, Michelacci V, Tozzoli R, Ranieri P, Maugliani A, Caprioli A, Morabito S. Whole genome sequence comparison of vtx2-converting phages from Enteroaggregative Haemorrhagic Escherichia coli strains. BMC Genomics 2014; 15:574. [PMID: 25001858 PMCID: PMC4122784 DOI: 10.1186/1471-2164-15-574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/03/2014] [Indexed: 11/23/2022] Open
Abstract
Background Enteroaggregative Haemorrhagic E. coli (EAHEC) is a new pathogenic group of E. coli characterized by the presence of a vtx2-phage integrated in the genomic backbone of Enteroaggregative E. coli (EAggEC). So far, four distinct EAHEC serotypes have been described that caused, beside the large outbreak of infection occurred in Germany in 2011, a small outbreak and six sporadic cases of HUS in the time span 1992–2012. In the present work we determined the whole genome sequence of the vtx2-phage, termed Phi-191, present in the first described EAHEC O111:H2 isolated in France in 1992 and compared it with those of the vtx-phages whose sequences were available. Results The whole genome sequence of the Phi-191 phage was identical to that of the vtx2-phage P13374 present in the EAHEC O104:H4 strain isolated during the German outbreak 20 years later. Moreover, it was also almost identical to those of the other vtx2-phages of EAHEC O104:H4 strains described so far. Conversely, the Phi-191 phage appeared to be different from the vtx2-phage carried by the EAHEC O111:H21 isolated in the Northern Ireland in 2012. The comparison of the vtx2-phages sequences from EAHEC strains with those from the vtx-phages of typical Verocytotoxin-producing E. coli strains showed the presence of a 900 bp sequence uniquely associated with EAHEC phages and encoding a tail fiber. Conclusions At least two different vtx2-phages, both characterized by the presence of a peculiar tail fiber-coding gene, intervened in the emergence of EAHEC. The finding of an identical vtx2-phage in two EAggEC strains isolated after 20 years in spite of the high variability described for vtx-phages is unexpected and suggests that such vtx2-phages are kept under a strong selective pressure. The observation that different EAHEC infections have been traced back to countries where EAggEC infections are endemic and the treatment of human sewage is often ineffective suggests that such countries may represent the cradle for the emergence of the EAHEC pathotype. In these regions, EAggEC of human origin can extensively contaminate the environment where they can meet free vtx-phages likely spread by ruminants excreta. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-574) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Grande
- EU Reference Laboratory for E, coli, Veterinary Public Health and Food Safety Department, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bletz S, Bielaszewska M, Leopold SR, Köck R, Witten A, Schuldes J, Zhang W, Karch H, Mellmann A. Evolution of enterohemorrhagic escherichia coli O26 based on single-nucleotide polymorphisms. Genome Biol Evol 2014; 5:1807-16. [PMID: 24105689 PMCID: PMC3814194 DOI: 10.1093/gbe/evt136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H− is the predominant non-O157 EHEC serotype among patients with diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS) worldwide. To elucidate their phylogeny and association between their phylogenetic background and clinical outcome of the infection, we investigated 120 EHEC O26:H11/H− strains isolated between 1965 and 2012 from asymptomatic carriers and patients with diarrhea or HUS. Whole-genome shotgun sequencing (WGS) was applied to ten representative EHEC O26 isolates to determine single nucleotide polymorphism (SNP) localizations within a predefined set of core genes. A multiplex SNP assay, comprising a randomly distributed subset of 48 SNPs, was established to detect SNPs in 110 additional EHEC O26 strains. Within approximately 1 Mb of core genes, WGS resulted in 476 high-quality bi-allelic SNP localizations. Forty-eight of these were subsequently investigated in 110 EHEC O26 and four different SNP clonal complexes (SNP-CC) were identified. SNP-CC2 was significantly associated with the development of HUS. Within the subsequently established evolutionary model of EHEC O26, we dated the emergence of human EHEC O26 to approximately 19,700 years ago and demonstrated a recent evolution within humans into the 4 SNP-CCs over the past 1,650 years. WGS and subsequent SNP typing enabled us to gain new insights into the evolution of EHEC O26 suggesting a common theme in this EHEC group with analogies to EHEC O157. In addition, the SNP-CC analysis may help to assess a risk in infected individuals for the progression to HUS and to implement more specific infection control measures.
Collapse
Affiliation(s)
- Stefan Bletz
- Institute of Hygiene, University of Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sandvig K, Bergan J, Kavaliauskiene S, Skotland T. Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 2014; 54:1-13. [PMID: 24462587 DOI: 10.1016/j.plipres.2014.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
22
|
Abstract
In the United States, it is estimated that non-O157 Shiga toxin-producing Escherichia coli (STEC) cause more illnesses than STEC O157:H7, and the majority of cases of non-O157 STEC infections are due to serogroups O26, O45, O103, O111, O121, and O145, referred to as the top six non-O157 STEC. The diseases caused by non-O157 STEC are generally milder than those induced by O157 STEC; nonetheless, non-O157 STEC strains have also been associated with serious illnesses such as hemorrhagic colitis and hemolytic uremic syndrome, as well as death. Ruminants, particularly cattle, are reservoirs for both O157 and non-O157 STEC, which are transmitted to humans by person-to-person or animal contact and by ingestion of food or water contaminated with animal feces. Improved strategies to control STEC colonization and shedding in cattle and contamination of meat and produce are needed. In general, non-O157 STEC respond to stresses such as acid, heat, and other stresses induced during food preparation similar to O157 STEC. Similar to O157:H7, the top six non-O157 STEC are classified as adulterants in beef by the USDA Food Safety and Inspection Service, and regulatory testing for these pathogens began in June 2012. Due to the genetic and phenotypic variability of non-O157 STEC strains, the development of accurate and reliable methods for detection and isolation of these pathogens has been challenging. Since the non-O157 STEC are responsible for a large portion of STEC-related illnesses, more extensive studies on their physiology, genetics, pathogenicity, and evolution are needed in order to develop more effective control strategies.
Collapse
Affiliation(s)
- James L Smith
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Pina M Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA.
| | - Nereus W Gunther
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| |
Collapse
|
23
|
Beutin L, Hammerl JA, Reetz J, Strauch E. Shiga toxin-producing Escherichia coli strains from cattle as a source of the Stx2a bacteriophages present in enteroaggregative Escherichia coli O104:H4 strains. Int J Med Microbiol 2013; 303:595-602. [DOI: 10.1016/j.ijmm.2013.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 12/16/2022] Open
|
24
|
Occurrence of potentially human-pathogenic Escherichia coli O103 in Norwegian sheep. Appl Environ Microbiol 2013; 79:7502-9. [PMID: 24077709 DOI: 10.1128/aem.01825-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The investigation of an outbreak of hemorrhagic-uremic syndrome in Norway in 2006 indicated that the outbreak strain Escherichia coli O103:H25 could originate from sheep. A national survey of the Norwegian sheep population was performed, with the aim of identifying and describing a possible reservoir of potentially human-pathogenic E. coli O103, in particular of the H types 2 and 25. The investigation of fecal samples from 585 sheep flocks resulted in 1,222 E. coli O103 isolates that were analyzed for the presence of eae and stx genes, while a subset of 369 isolates was further examined for flagellar antigens (H typing), stx subtypes, bfpA, astA, and molecular typing by pulsed-field gel electrophoresis (PFGE). The total ovine E. coli O103 serogroup was genetically diverse by numbers of H types, virulotypes, and PFGE banding patterns identified, although a tendency of clustering toward serotypes was seen. The flocks positive for potentially human-pathogenic E. coli O103 were geographically widely distributed, and no association could be found with county or geographical region. The survey showed that eae-negative, stx-negative E. coli O103, probably nonpathogenic to humans, is very common in sheep, with 27.5% of flocks positive. Moreover, the study documented a low prevalence (0.7%) of potentially human-pathogenic Shiga toxin-producing E. coli O103:H2, while STEC O103:H25 was not detected. However, 3.1% and 5.8% of the flocks were positive for enteropathogenic E. coli O103 belonging to H types 2 and 25, respectively. These isolates are of concern as potential human pathogens by themselves but more importantly as possible precursors for human-pathogenic STEC.
Collapse
|
25
|
Shiga toxin 2-encoding bacteriophages in human fecal samples from healthy individuals. Appl Environ Microbiol 2013; 79:4862-8. [PMID: 23747705 DOI: 10.1128/aem.01158-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. Previous studies have shown that high densities of free and infectious Stx phages are found in environments polluted with feces and also in food samples. Taken together, these two findings suggest that Stx phages could be excreted through feces, but this has not been tested to date. In this study, we purified Stx phages from 100 fecal samples from 100 healthy individuals showing no enteric symptoms. The phages retrieved from each sample were then quantified by quantitative PCR (qPCR). In total, 62% of the samples carried Stx phages, with an average value of 2.6 × 10(4) Stx phages/g. This result confirms the excretion of free Stx phages by healthy humans. Moreover, the Stx phages from feces were able to propagate in enrichment cultures of stx-negative Escherichia coli (strains C600 and O157:H7) and in Shigella sonnei, indicating that at least a fraction of the Stx phages present were infective. Plaque blot hybridization revealed lysis by Stx phages from feces. Our results confirm the presence of infectious free Stx phages in feces from healthy persons, possibly explaining the environmental prevalence observed in previous studies. It cannot be ruled out, therefore, that some positive stx results obtained during the molecular diagnosis of Shiga toxin-producing Escherichia coli (STEC)-related diseases using stool samples are due to the presence of Stx phages.
Collapse
|
26
|
Guy L, Jernberg C, Arvén Norling J, Ivarsson S, Hedenström I, Melefors Ö, Liljedahl U, Engstrand L, Andersson SGE. Adaptive mutations and replacements of virulence traits in the Escherichia coli O104:H4 outbreak population. PLoS One 2013; 8:e63027. [PMID: 23675451 PMCID: PMC3651199 DOI: 10.1371/journal.pone.0063027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/27/2013] [Indexed: 12/15/2022] Open
Abstract
The sequencing of highly virulent Escherichia coli O104:H4 strains isolated during the outbreak of bloody diarrhea and hemolytic uremic syndrome in Europe in 2011 revealed a genome that contained a Shiga toxin encoding prophage and a plasmid encoding enteroaggregative fimbriae. Here, we present the draft genome sequence of a strain isolated in Sweden from a patient who had travelled to Tunisia in 2010 (E112/10) and was found to differ from the outbreak strains by only 38 SNPs in non-repetitive regions, 16 of which were mapped to the branch to the outbreak strain. We identified putatively adaptive mutations in genes for transporters, outer surface proteins and enzymes involved in the metabolism of carbohydrates. A comparative analysis with other historical strains showed that E112/10 contained Shiga toxin prophage genes of the same genotype as the outbreak strain, while these genes have been replaced by a different genotype in two otherwise very closely related strains isolated in the Republic of Georgia in 2009. We also present the genome sequences of two enteroaggregative E. coli strains affiliated with phylogroup A (C43/90 and C48/93) that contain the agg genes for the AAF/I-type fimbriae characteristic of the outbreak population. Interestingly, C43/90 also contained a tet/mer antibiotic resistance island that was nearly identical in sequence to that of the outbreak strain, while the corresponding island in the Georgian strains was most similar to E. coli strains of other serotypes. We conclude that the pan-genome of the outbreak population is shared with strains of the A phylogroup and that its evolutionary history is littered with gene replacement events, including most recently independent acquisitions of antibiotic resistance genes in the outbreak strains and its nearest neighbors. The results are summarized in a refined evolutionary model for the emergence of the O104:H4 outbreak population.
Collapse
Affiliation(s)
- Lionel Guy
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Cecilia Jernberg
- Department of Preparedness, Swedish Institute for Communicable Disease Control, Solna, Sweden
| | - Jenny Arvén Norling
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sofie Ivarsson
- Department of Preparedness, Swedish Institute for Communicable Disease Control, Solna, Sweden
| | - Ingela Hedenström
- Department of Preparedness, Swedish Institute for Communicable Disease Control, Solna, Sweden
| | - Öjar Melefors
- Department of Preparedness, Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor- and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Liljedahl
- Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Preparedness, Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor- and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Siv G. E. Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
27
|
Alvarez-Ordóñez A, Alvseike O, Omer MK, Heir E, Axelsson L, Holck A, Prieto M. Heterogeneity in resistance to food-related stresses and biofilm formation ability among verocytotoxigenic Escherichia coli strains. Int J Food Microbiol 2012; 161:220-30. [PMID: 23337122 DOI: 10.1016/j.ijfoodmicro.2012.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/26/2012] [Accepted: 12/02/2012] [Indexed: 01/14/2023]
Abstract
This study assessed the resistance of ten verocytotoxigenic Escherichia coli (VTEC) isolates of commonly encountered serogroups/-types and two non-pathogenic E. coli strains to various food-related stresses (acid, alkaline, heat and high hydrostatic pressure treatments) and their biofilm formation ability. In addition, the global changes in the cellular composition in response to the exposure to these adverse environments were monitored by Fourier Transform Infrared (FT-IR) spectroscopy for two of the strains. Large inter-strain variations in stress resistance were observed. The most tolerant strains belonged to serogroup O157 which included both the O157:H7 type strain EDL933 and a representative isolate of the sorbitol fermenting O157:H- VTEC clone (strain MF3582). Strain C-600, a non-pathogenic laboratory strain, was sensitive to multiple stresses. Although wide variation in biofilm-forming ability was observed among VTEC isolates, no consistent relationships between biofilm-forming ability and capacity to withstand stress exposures were found. Analysis of the allelic status of the rpoS gene, involved in the general stress response of stationary-phase cells, allowed detection of loss-of-function mutations for two strains, E218/02 and MF2411, both of them showing as common features a high sensitivity to alkaline and heat treatments and a poor ability to form mature biofilms. Evidences found in this study confirm rpoS as a highly mutable gene in nature, and suggest its relevance not only for the mount of an active stress response but also for the establishment of mature biofilm communities. Our findings contribute to increase the knowledge on the resistance of VTEC to environmental stresses commonly encountered in the food chain, which can lead to improved strategies for preventing VTEC infections.
Collapse
Affiliation(s)
- A Alvarez-Ordóñez
- Department of Food Hygiene and Technology, University of León, Campus de Vegazana, E-24071 León, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Spread of a distinct Stx2-encoding phage prototype among Escherichia coli O104:H4 strains from outbreaks in Germany, Norway, and Georgia. J Virol 2012; 86:10444-55. [PMID: 22811533 DOI: 10.1128/jvi.00986-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) O104:H4 caused one of the world's largest outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in Germany in 2011. These strains have evolved from enteroaggregative E. coli (EAEC) by the acquisition of the Stx2 genes and have been designated enteroaggregative hemorrhagic E. coli. Nucleotide sequencing has shown that the Stx2 gene is carried by prophages integrated into the chromosome of STEC O104:H4. We studied the properties of Stx2-encoding bacteriophages which are responsible for the emergence of this new type of E. coli pathogen. For this, we analyzed Stx bacteriophages from STEC O104:H4 strains from Germany (in 2001 and 2011), Norway (2006), and the Republic of Georgia (2009). Viable Stx2-encoding bacteriophages could be isolated from all STEC strains except for the Norwegian strain. The Stx2 phages formed lysogens on E. coli K-12 by integration into the wrbA locus, resulting in Stx2 production. The nucleotide sequence of the Stx2 phage P13374 of a German STEC O104:H4 outbreak was determined. From the bioinformatic analyses of the prophage sequence of 60,894 bp, 79 open reading frames were inferred. Interestingly, the Stx2 phages from the German 2001 and 2011 outbreak strains were found to be identical and closely related to the Stx2 phages from the Georgian 2009 isolates. Major proteins of the virion particles were analyzed by mass spectrometry. Stx2 production in STEC O104:H4 strains was inducible by mitomycin C and was compared to Stx2 production of E. coli K-12 lysogens.
Collapse
|
29
|
Molecular characterization reveals three distinct clonal groups among clinical shiga toxin-producing Escherichia coli strains of serogroup O103. J Clin Microbiol 2012; 50:2894-900. [PMID: 22718945 DOI: 10.1128/jcm.00789-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the most important groups of food-borne pathogens, and STEC strains belonging to the serotype O103:H2 can cause diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans. STEC O103:non-H2 strains are also sometimes isolated from human patients, but their genetic characteristics and role in significant human enteric disease are not yet understood. Here, we investigated 17 STEC O103:non-H2 strains, including O103:H11, O103:H25, O103:HUT (UT [untypeable]), and O103:H- (nonmotile) isolated in Japan, and their characteristics were compared to those of STEC O103:H2 and other serotype STEC strains. Sequence analyses of fliC and eae genes revealed that strains possessed any of the following combinations: fliC-H2/eae-epsilon, fliC-H11/eae-beta1, and fliC-H25/eae-theta, where fliC-H2, -H11, and -H25 indicate fliC genes encoding H2, H11, and H25 flagella antigens, respectively, and eae-epsilon, -beta1, and -theta indicate eae genes encoding epsilon, beta1, and theta subclass intimins, respectively. Phylogenetic analysis based on the sequences of seven housekeeping genes demonstrated that the O103:H11/[fliC-H11] and O103:H25/[fliC-H25] strains formed two distinct groups, different from that of the O103:H2/[fliC-H2] strains. Interestingly, a group consisting of O103:H11 strains was closely related to STEC O26:H11, which is recognized as a most important non-O157 serotype, suggesting that the STEC O103:H11 and STEC O26:H11 clones evolved from a common ancestor. The multiplex PCR system for the rapid typing of STEC O103 strains described in the present study may aid clinical and epidemiological studies of the STEC O103:H2, O103:H11, and O103:H25 groups. In addition, our data provide further insights into the high variability of STEC stains with emerging new serotypes.
Collapse
|