1
|
Sudalagunta PR, Canevarolo RR, Meads MB, Silva M, Zhao X, Cubitt CL, Sansil SS, DeAvila G, Alugubelli RR, Bishop RT, Tungesvik A, Zhang Q, Hampton O, Teer JK, Welsh EA, Yoder SJ, Shah BD, Hazlehurst L, Gatenby RA, Van Domelen DR, Chai Y, Wang F, DeCastro A, Bloomer AM, Siegel EM, Lynch CC, Sullivan DM, Alsina M, Nishihori T, Brayer J, Cleveland JL, Dalton W, Walker CJ, Landesman Y, Baz R, Silva AS, Shain KH. The Functional Transcriptomic Landscape Informs Therapeutic Strategies in Multiple Myeloma. Cancer Res 2025; 85:378-398. [PMID: 39476082 PMCID: PMC11733535 DOI: 10.1158/0008-5472.can-24-0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/19/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025]
Abstract
Several therapeutic agents have been approved for treating multiple myeloma, a cancer of bone marrow-resident plasma cells. Predictive biomarkers for drug response could help guide clinical strategies to optimize outcomes. In this study, we present an integrated functional genomic analysis of tumor samples from patients multiple myeloma that were assessed for their ex vivo drug sensitivity to 37 drugs, clinical variables, cytogenetics, mutational profiles, and transcriptomes. This analysis revealed a multiple myeloma transcriptomic topology that generates "footprints" in association with ex vivo drug sensitivity that have both predictive and mechanistic applications. Validation of the transcriptomic footprints for the anti-CD38 mAb daratumumab (DARA) and the nuclear export inhibitor selinexor (SELI) demonstrated that these footprints can accurately classify clinical responses. The analysis further revealed that DARA and SELI have anticorrelated mechanisms of resistance, and treatment with a SELI-based regimen immediately after a DARA-containing regimen was associated with improved survival in three independent clinical trials, supporting an evolutionary-based strategy involving sequential therapy. These findings suggest that this unique repository and computational framework can be leveraged to inform underlying biology and to identify therapeutic strategies to improve treatment of multiple myeloma. Significance: Functional genomic analysis of primary multiple myeloma samples elucidated predictive biomarkers for drugs and molecular pathways mediating therapeutic response, which revealed a rationale for sequential therapy to maximize patient outcomes.
Collapse
Affiliation(s)
| | - Rafael R. Canevarolo
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark B. Meads
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Maria Silva
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaohong Zhao
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christopher L. Cubitt
- Cancer Pharmacokinetics and Pharmacodynamics Core, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Samer S. Sansil
- Cancer Pharmacokinetics and Pharmacodynamics Core, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gabriel DeAvila
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Ryan T. Bishop
- Department of Tumor Microenvironment and Metastasis, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alexandre Tungesvik
- Department of Internal Medicine, University of South Florida, Tampa, Florida
| | - Qi Zhang
- Aster Insights (formerly M2Gen), Tampa, Florida
| | | | - Jamie K. Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A. Welsh
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sean J. Yoder
- Molecular Genomics Core, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bijal D. Shah
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lori Hazlehurst
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Robert A. Gatenby
- Department of Radiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Dane R. Van Domelen
- Research and Translational Development, Karyopharm Therapeutics, Newton, Massachusetts
| | - Yi Chai
- Research and Translational Development, Karyopharm Therapeutics, Newton, Massachusetts
| | - Feng Wang
- Research and Translational Development, Karyopharm Therapeutics, Newton, Massachusetts
| | - Andrew DeCastro
- Research and Translational Development, Karyopharm Therapeutics, Newton, Massachusetts
| | | | - Erin M. Siegel
- Total Cancer Care, Moffitt Cancer Center, Tampa, Florida
| | - Conor C. Lynch
- Department of Tumor Microenvironment and Metastasis, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Daniel M. Sullivan
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melissa Alsina
- Department of Blood and Marrow Transplant and Cellular Therapies, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Therapies, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jason Brayer
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John L. Cleveland
- Department of Tumor Microenvironment and Metastasis, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - William Dalton
- Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christopher J. Walker
- Research and Translational Development, Karyopharm Therapeutics, Newton, Massachusetts
| | - Yosef Landesman
- Research and Translational Development, Karyopharm Therapeutics, Newton, Massachusetts
| | - Rachid Baz
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ariosto S. Silva
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth H. Shain
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
2
|
Chen T, Ni M, Wang H, Xue F, Jiang T, Wu X, Li C, Liang S, Hong L, Wu Q. The Reparative Effect of FOXM1 in Pulmonary Disease. Lung 2024; 203:1. [PMID: 39601876 DOI: 10.1007/s00408-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
FOXM1, a key member of the FOX transcription factor family, maintains cell homeostasis by accurately controlling diverse biological processes, such as proliferation, cell cycle progression, differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, redox signaling, and drug resistance. In recent years, an increasing number of studies have focused on the role of FOXM1 in the occurrence of multiple diseases and various pathophysiological processes. In the field of pulmonary diseases, FOXM1 has a certain reparative effect by promoting cell proliferation, regulating cell cycle, antifibrosis, participating in inflammation regulation, and synergizing with other signaling pathways. On the basis of the repair properties of FOXM1, this review explores its therapeutic potential in acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, lung cancer, and other lung diseases, with the goal of providing a new perspective for the analysis of FOXM1-related mechanism of action and the expansion of clinical treatment strategies.
Collapse
Affiliation(s)
- Tianhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Ming Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Hao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Fei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Xuanpeng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Chenxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Shuhao Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Leyu Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
3
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
4
|
Suo S, Fang C, Liu W, Liu Q, Zhang Z, Chang J, Li G. FOXM1 c.1205 C > A mutation is associated with unilateral Moyamoya disease and inhibits angiogenesis in human brain endothelial cells. Hum Genet 2024; 143:939-953. [PMID: 38969938 DOI: 10.1007/s00439-024-02685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Unilateral moyamoya disease (MMD) represents a distinct subtype characterised by occlusive changes in the circle of Willis and abnormal vascular network formation. However, the aetiology and pathogenesis of unilateral MMD remain unclear. In this study, genetic screening of a family with unilateral MMD using whole-genome sequencing helped identify the c.1205 C > A variant of FOXM1, which encodes the transcription factor FOXM1 and plays a crucial role in angiogenesis and cell proliferation, as a susceptibility gene mutation. We demonstrated that this mutation significantly attenuated the proangiogenic effects of FOXM1 in human brain endothelial cells, leading to reduced proliferation, migration, and tube formation. Furthermore, FOXM1 c.1205 C > A results in increased apoptosis of human brain endothelial cells, mediated by the downregulation of the transcription of the apoptosis-inhibiting protein BCL2. These results suggest a potential role for the FOXM1 c.1205 C > A mutation in the pathogenesis of unilateral MMD and may contribute to the understanding and treatment of this condition.
Collapse
Affiliation(s)
- Sen Suo
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Wenting Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingan Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
5
|
Raghuwanshi S, Zhang X, Arbieva Z, Khan I, Mohammed H, Wang Z, Domling A, Camacho CJ, Gartel AL. Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. Cell Death Discov 2024; 10:211. [PMID: 38697979 PMCID: PMC11066125 DOI: 10.1038/s41420-024-01929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Forkhead box protein M1 (FOXM1) is often overexpressed in human cancers and strongly associated with therapy resistance and less good patient survival. The chemotherapy options for patients with the most aggressive types of solid cancers remain very limited because of the acquired drug resistance, making the therapy less effective. NPM1 mutation through the inactivation of FOXM1 via FOXM1 relocalization to the cytoplasm confers more favorable treatment outcomes for AML patients, confirming FOXM1 as a crucial target to overcome drug resistance. Pharmacological inhibition of FOXM1 could be a promising approach to sensitize therapy-resistant cancers. Here, we explore a novel FOXM1 inhibitor STL001, a first-generation modification drug of our previously reported FOXM1 inhibitor STL427944. STL001 preserves the mode of action of the STL427944; however, STL001 is up to 50 times more efficient in reducing FOXM1 activity in a variety of solid cancers. The most conventional cancer therapies studied here induce FOXM1 overexpression in solid cancers. The therapy-induced FOXM1 overexpression may explain the failure or reduced efficacy of these drugs in cancer patients. Interestingly, STL001 increased the sensitivity of cancer cells to conventional cancer therapies by suppressing both the high-endogenous and drug-induced FOXM1. Notably, STL001 does not provide further sensitization to FOXM1-KD cancer cells, suggesting that the sensitization effect is conveyed specifically through FOXM1 suppression. RNA-seq and gene set enrichment studies revealed prominent suppression of FOXM1-dependent pathways and gene ontologies. Also, gene regulation by STL001 showed extensive overlap with FOXM1-KD, suggesting a high selectivity of STL001 toward the FOXM1 regulatory network. A completely new activity of FOXM1, mediated through steroid/cholesterol biosynthetic process and protein secretion in cancer cells was also detected. Collectively, STL001 offers intriguing translational opportunities as combination therapies targeting FOXM1 activity in a variety of human cancers driven by FOXM1.
Collapse
Affiliation(s)
| | - Xu Zhang
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Zarema Arbieva
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Irum Khan
- Northwestern University, Chicago, IL, USA
| | - Hisham Mohammed
- Oregon Health & Science University, Knight Cancer Institute, School of Medicine, Chicago, IL, USA
| | - Z Wang
- The Czech Advanced Technology and Research Institute (CATRIN) of Palacký University, Chicago, IL, USA
| | - Alexander Domling
- The Czech Advanced Technology and Research Institute (CATRIN) of Palacký University, Chicago, IL, USA.
| | - Carlos Jaime Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Chicago, IL, USA.
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Kwon YS, Lee MG, Kim NY, Nam GS, Nam KS, Jang H, Kim S. Overcoming radioresistance of breast cancer cells with MAP4K4 inhibitors. Sci Rep 2024; 14:7410. [PMID: 38548749 PMCID: PMC10978830 DOI: 10.1038/s41598-024-57000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) has recently emerged as a promising therapeutic target in cancer. In this study, we explored the biological function of MAP4K4 in radioresistant breast cancer cells using two MAP4K4 inhibitors, namely PF06260933 and GNE-495. Radioresistant SR and MR cells were established by exposing SK-BR-3 and MCF-7 breast cancer cells to 48-70 Gy of radiation delivered at 4-5 Gy twice a week over 10 months. Surprisingly, although radioresistant cells were derived from two different subtypes of breast cancer cell lines, MAP4K4 was significantly elevated regardless of subtype. Inhibition of MAP4K4 with PF06260933 or GNE-495 selectively targeted radioresistant cells and improved the response to irradiation. Furthermore, MAP4K4 inhibitors induced apoptosis through the accumulation of DNA damage by inhibiting DNA repair systems in radioresistant cells. Notably, Inhibition of MAP4K4 suppressed the expressions of ACSL4, suggesting that MAP4K4 functioned as an upstream effector of ACSL4. This study is the first to report that MAP4K4 plays a crucial role in mediating the radioresistance of breast cancer by acting upstream of ACSL4 to enhance DNA damage response and inhibit apoptosis. We hope that our findings provide a basis for the development of new drugs targeting MAP4K4 to overcome radioresistance.
Collapse
Affiliation(s)
- Yun-Suk Kwon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Jeju-do, 63240, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Nam-Yi Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Gi Suk Nam
- Department of Biomedical Laboratory Science, Honam University, Gwangsan-gu, Gwangju, 62399, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Hyunsoo Jang
- Department of Radiation Oncology, Pohang St. Mary's Hospital, Pohang, Gyeongsangbuk-do, 37661, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea.
| |
Collapse
|
7
|
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The Promise of Combination Therapies with FOXM1 Inhibitors for Cancer Treatment. Cancers (Basel) 2024; 16:756. [PMID: 38398147 PMCID: PMC10886945 DOI: 10.3390/cancers16040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mona Hajjar
- The Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA;
| | - Ying-Wei Lan
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tanya V. Kalin
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| |
Collapse
|
8
|
Gartel A, Raghuwanshi S, Zhang X, Arbieva Z, Khan I, Wang Z, Domling A, Camacho C. [WITHDRAWN] Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. RESEARCH SQUARE 2024:rs.3.rs-3711759. [PMID: 38234752 PMCID: PMC10793495 DOI: 10.21203/rs.3.rs-3711759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The full text of this preprint has been withdrawn by the authors while they make corrections to the work. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
9
|
[WITHDRAWN] Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. RESEARCH SQUARE 2024:rs.3.rs-3711759. [PMID: 38234752 PMCID: PMC10793495 DOI: 10.21203/rs.3.rs-3711759/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The full text of this preprint has been withdrawn by the authors while they make corrections to the work. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
10
|
Chen L, Fan T, Wang M, Zhu CY, Feng WY, Li Y, Yang H. Myricetin, a natural inhibitor of CD147, increases sensitivity of cisplatin in ovarian cancer. Expert Opin Ther Targets 2024; 28:83-95. [PMID: 38235574 DOI: 10.1080/14728222.2024.2306345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological tumor, but it currently lacks effective therapeutic targets. CD147, which is overexpressed in OC, plays a crucial role in promoting malignant progression and is associated with poor prognosis in patients. Therefore, CD147 has been identified as a potential therapeutic target. However, there is a limited amount of research on the development of CD147 inhibitors. METHODS Surface plasmon resonance (SPR) assay and virtual molecular docking analysis were performed to identify potential natural compounds targeting CD147. The anti‑tumor effects of myricetin were evaluated using various assays, including CCK8, Alkaline comet, immunofluorescence and xenograft mouse models. The underlying mechanism was investigated through western blot analysis and lentivirus short hairpin RNA (LV-shRNA) transfection. RESULTS Myricetin, a flavonoid commonly found in plants, was discovered to be a potent inhibitor of CD147. Our findings demonstrated that myricetin exhibited a strong affinity for CD147 and down-regulated the protein level of CD147 by facilitating its proteasome-dependent degradation. Additionally, we observed synergistic antitumor effects of myricetin and cisplatin both in vivo and in vitro. Mechanistically, myricetin suppressed the expression of FOXM1 and its downstream DNA damage response (DDR) genes E×O1and BRIP1, thereby enhancing the DDR induced by cisplatin. CONCLUSION Our data demonstrate that myricetin, a natural inhibitor of CD147, may have clinical utility in the treatment of OC due to its ability to increase genomic toxicity when combined with cisplatin.
Collapse
Affiliation(s)
- Lin Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Fan
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Miao Wang
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Chun-Yu Zhu
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Wang-You Feng
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Li
- Laboratory of Cell Biology, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Raghuwanshi S, Gartel AL. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer 2023; 1878:189015. [PMID: 37913940 DOI: 10.1016/j.bbcan.2023.189015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Forkhead box (FOX) protein M1 (FOXM1) is a critical proliferation-associated transcription factor (TF) that is aberrantly overexpressed in the majority of human cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in, cell proliferation, cell migration, invasion, angiogenesis and metastasis. The FOXM1 as a TF directly or indirectly regulates the expression of several target genes whose dysregulation is associated with almost all hallmarks of cancer. Moreover, FOXM1 expression is associated with chemoresistance to different anti-cancer drugs. Several studies have confirmed that suppression of FOXM1 enhanced the drug sensitivity of various types of cancer cells. Current data suggest that small molecule inhibitors targeting FOXM1 in combination with anticancer drugs may represent a novel therapeutic strategy for chemo-resistant cancers. In this review, we discuss the clinical utility of FOXM1, further, we summarize and discuss small-molecule inhibitors targeting FOXM1 and categorize them according to their mechanisms of targeting FOXM1. Despite great progress, small-molecule inhibitors targeting FOXM1 face many challenges, and we present here all small-molecule FOXM1 inhibitors in different stages of development. We discuss the current challenges and provide insights on the future application of FOXM1 inhibition to the clinic.
Collapse
Affiliation(s)
- Sanjeev Raghuwanshi
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Moghbeli M, Taghehchian N, Akhlaghipour I, Samsami Y, Maharati A. Role of forkhead box proteins in regulation of doxorubicin and paclitaxel responses in tumor cells: A comprehensive review. Int J Biol Macromol 2023; 248:125995. [PMID: 37499722 DOI: 10.1016/j.ijbiomac.2023.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Chemotherapy is one of the common first-line therapeutic methods in cancer patients. Despite the significant effects in improving the quality of life and survival of patients, chemo resistance is observed in a significant part of cancer patients, which leads to tumor recurrence and metastasis. Doxorubicin (DOX) and paclitaxel (PTX) are used as the first-line drugs in a wide range of tumors; however, DOX/PTX resistance limits their use in cancer patients. Considering the DOX/PTX side effects in normal tissues, identification of DOX/PTX resistant cancer patients is required to choose the most efficient therapeutic strategy for these patients. Investigating the molecular mechanisms involved in DOX/PTX response can help to improve the prognosis in cancer patients. Several cellular processes such as drug efflux, autophagy, and DNA repair are associated with chemo resistance that can be regulated by transcription factors as the main effectors in signaling pathways. Forkhead box (FOX) family of transcription factor has a key role in regulating cellular processes such as cell differentiation, migration, apoptosis, and proliferation. FOX deregulations have been associated with resistance to chemotherapy in different cancers. Therefore, we discussed the role of FOX protein family in DOX/PTX response. It has been reported that FOX proteins are mainly involved in DOX/PTX response by regulation of drug efflux, autophagy, structural proteins, and signaling pathways such as PI3K/AKT, NF-kb, and JNK. This review is an effective step in introducing the FOX protein family as the reliable prognostic markers and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Maharjan S, Lee MG, Kim SY, Lee KS, Nam KS. Morin Sensitizes MDA-MB-231 Triple-Negative Breast Cancer Cells to Doxorubicin Cytotoxicity by Suppressing FOXM1 and Attenuating EGFR/STAT3 Signaling Pathways. Pharmaceuticals (Basel) 2023; 16:ph16050672. [PMID: 37242455 DOI: 10.3390/ph16050672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Considerable emphasis is being placed on combinatorial chemotherapeutic/natural treatments for breast cancer. This study reveals the synergistic anti-tumor activity of morin and Doxorubicin (Dox) co-treatment on MDA-MB-231 triple-negative breast cancer (TNBC) cell proliferation. Morin/Dox treatment promoted Dox uptake and induced DNA damage and formation of nuclear foci of p-H2A.X. Furthermore, DNA repair proteins, RAD51 and survivin, and cell cycle proteins, cyclin B1 and forkhead Box M1 (FOXM1), were induced by Dox alone but attenuated by morin/Dox co-treatment. In addition, Annexin V/7-AAD analysis revealed that necrotic cell death after co-treatment and apoptotic cell death by Dox alone were associated with the induction of cleaved PARP and caspase-7 without Bcl-2 family involvement. FOXM1 inhibition by thiostrepton showed that co-treatment caused FOXM1-mediated cell death. Furthermore, co-treatment downregulated the phosphorylation of EGFR and STAT3. Flow cytometry showed that the accumulation of cells in the G2/M and S phases might be linked to cellular Dox uptake, p21 upregulation, and cyclin D1 downregulation. Taken together, our study shows that the anti-tumor effect of morin/Dox co-treatment is due to the suppression of FOXM1 and attenuation of EGFR/STAT3 signaling pathways in MDA-MB-231 TNBC cells, which suggests that morin offers a means of improving therapeutic efficacy in TNBC patients.
Collapse
Affiliation(s)
- Sushma Maharjan
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - So-Young Kim
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
14
|
Kuthethur R, Adiga D, Kandettu A, Jerome MS, Mallya S, Mumbrekar KD, Kabekkodu SP, Chakrabarty S. MiR-4521 perturbs FOXM1-mediated DNA damage response in breast cancer. Front Mol Biosci 2023; 10:1131433. [PMID: 37025658 PMCID: PMC10070856 DOI: 10.3389/fmolb.2023.1131433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: Forkhead (FOX) transcription factors are involved in cell cycle control, cellular differentiation, maintenance of tissues, and aging. Mutation or aberrant expression of FOX proteins is associated with developmental disorders and cancers. FOXM1, an oncogenic transcription factor, is a promoter of cell proliferation and accelerated development of breast adenocarcinomas, squamous carcinoma of the head, neck, and cervix, and nasopharyngeal carcinoma. High FOXM1 expression is correlated with chemoresistance in patients treated with doxorubicin and Epirubicin by enhancing the DNA repair in breast cancer cells. Method: miRNA-seq identified downregulation of miR-4521 in breast cancer cell lines. Stable miR-4521 overexpressing breast cancer cell lines (MCF-7, MDA-MB-468) were developed to identify miR-4521 target gene and function in breast cancer. Results: Here, we showed that FOXM1 is a direct target of miR-4521 in breast cancer. Overexpression of miR-4521 significantly downregulated FOXM1 expression in breast cancer cells. FOXM1 regulates cell cycle progression and DNA damage response in breast cancer. We showed that miR-4521 expression leads to increased ROS levels and DNA damage in breast cancer cells. FOXM1 plays a critical role in ROS scavenging and promotes stemness which contributes to drug resistance in breast cancer. We observed that breast cancer cells stably expressing miR-4521 lead to cell cycle arrest, impaired FOXM1 mediated DNA damage response leading to increased cell death in breast cancer cells. Additionally, miR-4521-mediated FOXM1 downregulation perturbs cell proliferation, invasion, cell cycle progression, and epithelial-to-mesenchymal progression (EMT) in breast cancer. Discussion: High FOXM1 expression has been associated with radio and chemoresistance contributing to poor patient survival in multiple cancers, including breast cancer. Our study showed that FOXM1 mediated DNA damage response could be targeted using miR-4521 mimics as a novel therapeutic for breast cancer.
Collapse
Affiliation(s)
- Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
15
|
Abdollahzade A, Rahimi H, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Targeted delivery of doxorubicin and therapeutic FOXM1 aptamer to tumor cells using gold nanoparticles modified with AS1411 and ATP aptamers. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1177-1187. [PMID: 37736517 PMCID: PMC10510489 DOI: 10.22038/ijbms.2023.71129.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 09/23/2023]
Abstract
Objectives A targeted delivery platform was prepared to co-deliver both doxorubicin (Dox) as an anticancer drug and FOXM1 aptamer as a therapeutic substance to breast cancer cells (4T1 and MCF-7) to reduce Dox side effects and increase its therapeutic efficacy. The targeted system (AuNPs-AFPA) consisted of FOXM1 aptamer, AS1411 aptamer (targeting oligonucleotide), ATP aptamer, and gold nanoparticles (AuNPs) as a carrier. Materials and Methods AuNPs were synthesized by reduction of HAuCl4. Next, after pegylation of ATP aptamer, FOXM1 aptamer-PEGylated ATP aptamer conjugate (FPA) was prepared. Then, the AS1411 aptamer and FPA were exposed to the AuNPs surface through their thiol groups. Subsequently, Dox was loaded into the complex to form a targeted therapeutic complex. Results The data of the MTT assay displayed that the targeted complex could remarkably reduce cell viability rate in target cells due to the overexpression of nucleolin on their cell membranes compared to nontarget cells, showing the targeting ability of AuNPs-AFPA-Dox. The in vivo antitumor effect confirmed that AuNPs-AFPA-Dox was capable of remarkably diminishing tumor growth relative to the free Dox in mice bearing 4T1 tumor cells. Conclusion The results confirmed that the targeted system improved the therapeutic effect by loading high amounts of Dox alongside the presence of the therapeutic effect of FOXM1 aptamer. Finally, it can be concluded that AuNPs-AFPA-Dox by enhancing antitumor effectiveness and reducing toxicity toward non-target cells, can be used potentially as an effective strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Aref Abdollahzade
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Rahimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Tan J, Ge Y, Zhang M, Ding M. Proteomics analysis uncovers plasminogen activator PLAU as a target of the STING pathway for suppression of cancer cell migration and invasion. J Biol Chem 2022; 299:102779. [PMID: 36496076 PMCID: PMC9823231 DOI: 10.1016/j.jbc.2022.102779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The stimulator of interferon genes (STING) pathway is vital for immune defense against pathogen invasion and cancer. Although ample evidence substantiates that the STING signaling pathway plays an essential role in various cancers via cytokines, no comprehensive investigation of secretory proteins regulated by the STING pathway has been conducted hitherto. Herein, we identify 24 secretory proteins significantly regulated by the STING signaling pathway through quantitative proteomics. Mechanistic analyses reveal that STING activation inhibits the translation of urokinase-type plasminogen activator (PLAU) via the STING-PERK-eIF2α signaling axis. PLAU is highly expressed in a variety of cancers and promotes the migration and invasion of cancer cells. Notably, the activation of STING inhibits cancer cell migration and invasion by suppressing PLAU. Collectively, these results provide novel insights into the anticancer mechanism of the STING pathway, offering a theoretical basis for precision therapy for this patient population.
Collapse
|
17
|
Hu X, Jin X, Cao X, Liu B. The Anaphase-Promoting Complex/Cyclosome Is a Cellular Ageing Regulator. Int J Mol Sci 2022; 23:ijms232315327. [PMID: 36499653 PMCID: PMC9740938 DOI: 10.3390/ijms232315327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.
Collapse
Affiliation(s)
- Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
18
|
Tsoi H, You CP, Leung MH, Man EPS, Khoo US. Targeting Ribosome Biogenesis to Combat Tamoxifen Resistance in ER+ve Breast Cancer. Cancers (Basel) 2022; 14:1251. [PMID: 35267559 PMCID: PMC8909264 DOI: 10.3390/cancers14051251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease. Around 70% of breast cancers are estrogen receptor-positive (ER+ve), with tamoxifen being most commonly used as an adjuvant treatment to prevent recurrence and metastasis. However, half of the patients will eventually develop tamoxifen resistance. The overexpression of c-MYC can drive the development of ER+ve breast cancer and confer tamoxifen resistance through multiple pathways. One key mechanism is to enhance ribosome biogenesis, synthesising mature ribosomes. The over-production of ribosomes sustains the demand for proteins necessary to maintain a high cell proliferation rate and combat apoptosis induced by therapeutic agents. c-MYC overexpression can induce the expression of eIF4E that favours the translation of structured mRNA to produce oncogenic factors that promote cell proliferation and confer tamoxifen resistance. Either non-phosphorylated or phosphorylated eIF4E can mediate such an effect. Since ribosomes play an essential role in c-MYC-mediated cancer development, suppressing ribosome biogenesis may help reduce aggressiveness and reverse tamoxifen resistance in breast cancer. CX-5461, CX-3543 and haemanthamine have been shown to repress ribosome biogenesis. Using these chemicals might help reverse tamoxifen resistance in ER+ve breast cancer, provided that c-MYC-mediated ribosome biogenesis is the crucial factor for tamoxifen resistance. To employ these ribosome biogenesis inhibitors to combat tamoxifen resistance in the future, identification of predictive markers will be necessary.
Collapse
Affiliation(s)
| | | | | | | | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (C.-P.Y.); (M.-H.L.); (E.P.S.M.)
| |
Collapse
|
19
|
SOD2, a Potential Transcriptional Target Underpinning CD44-Promoted Breast Cancer Progression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030811. [PMID: 35164076 PMCID: PMC8839817 DOI: 10.3390/molecules27030811] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
CD44, a cell-adhesion molecule has a dual role in tumor growth and progression; it acts as a tumor suppressor as well as a tumor promoter. In our previous work, we developed a tetracycline-off regulated expression of CD44's gene in the breast cancer (BC) cell line MCF-7 (B5 clone). Using cDNA oligo gene expression microarray, we identified SOD2 (superoxide dismutase 2) as a potential CD44-downstream transcriptional target involved in BC metastasis. SOD2 gene belongs to the family of iron/manganese superoxide dismutase family and encodes a mitochondrial protein. SOD2 plays a role in cell proliferation and cell invasion via activation of different signaling pathways regulating angiogenic abilities of breast tumor cells. This review will focus on the findings supporting the underlying mechanisms associated with the oncogenic potential of SOD2 in the onset and progression of cancer, especially in BC and the potential clinical relevance of its various inhibitors.
Collapse
|
20
|
Chesnokov MS, Borhani S, Halasi M, Arbieva Z, Khan I, Gartel AL. FOXM1-AKT Positive Regulation Loop Provides Venetoclax Resistance in AML. Front Oncol 2021; 11:696532. [PMID: 34381718 PMCID: PMC8350342 DOI: 10.3389/fonc.2021.696532] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Forkhead box protein M1 (FOXM1) is a crucial regulator of cancer development and chemoresistance. It is often overexpressed in acute myeloid leukemia (AML) and is associated with poor survival and reduced efficacy of cytarabine therapy. Molecular mechanisms underlying high FOXM1 expression levels in malignant cells are still unclear. Here we demonstrate that AKT and FOXM1 constitute a positive autoregulatory loop in AML cells that sustains high activity of both pro-oncogenic regulators. Inactivation of either AKT or FOXM1 signaling results in disruption of whole loop, coordinated suppression of FOXM1 or AKT, respectively, and similar transcriptomic changes. AML cells with inhibited AKT activity or stable FOXM1 knockdown display increase in HOXA genes expression and BCL2L1 suppression that are associated with prominent sensitization to treatment with Bcl-2 inhibitor venetoclax. Taken together, our data indicate that AKT and FOXM1 in AML cells should not be evaluated as single independent regulators but as two parts of a common FOXM1-AKT positive feedback circuit. We also report for the first time that FOXM1 inactivation can overcome AML venetoclax resistance. Thus, targeting FOXM1-AKT loop may open new possibilities in overcoming AML drug resistance and improving outcomes for AML patients.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Soheila Borhani
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Marianna Halasi
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Zarema Arbieva
- Genome Research Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Irum Khan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei L. Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Chesnokov MS, Halasi M, Borhani S, Arbieva Z, Shah BN, Oerlemans R, Khan I, Camacho CJ, Gartel AL. Novel FOXM1 inhibitor identified via gene network analysis induces autophagic FOXM1 degradation to overcome chemoresistance of human cancer cells. Cell Death Dis 2021; 12:704. [PMID: 34262016 PMCID: PMC8280155 DOI: 10.1038/s41419-021-03978-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
FOXM1 transcription factor is an oncogene and a master regulator of chemoresistance in multiple cancers. Pharmacological inhibition of FOXM1 is a promising approach but has proven to be challenging. We performed a network-centric transcriptomic analysis to identify a novel compound STL427944 that selectively suppresses FOXM1 by inducing the relocalization of nuclear FOXM1 protein to the cytoplasm and promoting its subsequent degradation by autophagosomes. Human cancer cells treated with STL427944 exhibit increased sensitivity to cytotoxic effects of conventional chemotherapeutic treatments (platinum-based agents, 5-fluorouracil, and taxanes). RNA-seq analysis of STL427944-induced gene expression changes revealed prominent suppression of gene signatures characteristic for FOXM1 and its downstream targets but no significant changes in other important regulatory pathways, thereby suggesting high selectivity of STL427944 toward the FOXM1 pathway. Collectively, the novel autophagy-dependent mode of FOXM1 suppression by STL427944 validates a unique pathway to overcome tumor chemoresistance and improve the efficacy of treatment with conventional cancer drugs.
Collapse
Affiliation(s)
| | - Marianna Halasi
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA
| | - Soheila Borhani
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Zarema Arbieva
- University of Illinois at Chicago, Genome Research Core, Chicago, IL, USA
| | - Binal N Shah
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Rick Oerlemans
- University of Pittsburgh, College of Medicine, Pittsburgh, PA, USA
| | - Irum Khan
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Carlos J Camacho
- University of Pittsburgh, College of Medicine, Pittsburgh, PA, USA.
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Yamazaki S, Ohka F, Hirano M, Shiraki Y, Motomura K, Tanahashi K, Tsujiuchi T, Motomura A, Aoki K, Shinjo K, Murofushi Y, Kitano Y, Maeda S, Kato A, Shimizu H, Yamaguchi J, Adilijiang A, Wakabayashi T, Saito R, Enomoto A, Kondo Y, Natsume A. Newly Established Patient-derived Organoid Model of Intracranial Meningioma. Neuro Oncol 2021; 23:1936-1948. [PMID: 34214169 DOI: 10.1093/neuonc/noab155] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent comprehensive studies have revealed several molecular alterations that are frequently found in meningiomas. However, effective treatment reagents targeting specific molecular alterations have not yet been identified because of the limited number of representative research models of meningiomas. METHODS We performed organoid cultures using meningioma cells and meningioma tumor tissues. Using immunohistochemistry and molecular analyses consisting of whole exome sequencing, RNA-seq, and DNA methylation analyses, we compared the histological findings and molecular profiling of organoid models with those of parental tumors. Further, using these organoid models together with a public database of meningiomas, we explored molecular alterations, which are a potent treatment target for meningioma. RESULTS We established 18 organoid models comprising of two malignant meningioma cells (HKBMM and IOMM-Lee), 10 benign meningiomas, four malignant meningiomas, and two solitary fibrous tumors (SFTs). The organoids exhibited consistent histological features and molecular profiles with those of the parental tumors. Using a public database, we identified that upregulated forkhead box M1 (FOXM1) was correlated with increased tumor proliferation. Overexpression of FOXM1 in benign meningioma organoids increased organoid proliferation; depletion of FOXM1 in malignant organoids decreased proliferation. Additionally, thiostrepton, a FOXM1 inhibitor combined with radiation therapy, significantly inhibited proliferation of malignant meningioma organoid models. CONCLUSIONS An organoid model for meningioma enabled us to elucidate the tumor biology of meningioma along with potent treatment targets for meningioma.
Collapse
Affiliation(s)
- Shintaro Yamazaki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Hirano
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kuniaki Tanahashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Ayako Motomura
- Department of Neurosurgery, Daido hospital, Nagoya, Japan
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Shimizu
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Alimu Adilijiang
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
23
|
Ulhaka K, Kanokwiroon K, Khongkow M, Bissanum R, Khunpitak T, Khongkow P. The Anticancer Effects of FDI-6, a FOXM1 Inhibitor, on Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:6685. [PMID: 34206484 PMCID: PMC8269391 DOI: 10.3390/ijms22136685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) presents an important clinical challenge, as it does not respond to endocrine therapies or other available targeting agents. FOXM1, an oncogenic transcriptional factor, has reported to be upregulated and associated with poor clinical outcomes in TNBC patients. In this study, we investigated the anti-cancer effects of FDI-6, a FOXM1 inhibitor, as well as its molecular mechanisms, in TNBC cells. Two TNBC cell lines, MDA-MB-231 and HS578T, were used in this study. The anti-cancer activities of FDI-6 were evaluated using various 2D cell culture assays, including Sulforhodamine B (SRB), wound healing, and transwell invasion assays together with 3D spheroid assays, mimicking real tumour structural properties. After treatment with FDI-6, the TNBC cells displayed a significant inhibition in cell proliferation, migration, and invasion. Increased apoptosis was also observed in the treated cells. In addition, we found that FDI-6 lead to the downregulation of FOXM1 and its key oncogenic targets, including CyclinB1, Snail, and Slug. Interestingly, we also found that the FDI-6/Doxorubicin combination significantly enhanced the cytotoxicity and apoptotic properties, suggesting that FDI-6 might improve chemotherapy treatment efficacy and reduce unwanted side effects. Altogether, FDI-6 exhibited promising anti-tumour activities and could be developed as a newly effective treatment for TNBC.
Collapse
Affiliation(s)
- Karan Ulhaka
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.U.); (T.K.)
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Rassanee Bissanum
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
| | - Thanaporn Khunpitak
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.U.); (T.K.)
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
| | - Pasarat Khongkow
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.U.); (T.K.)
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (K.K.); (R.B.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
24
|
Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small cell lung cancer. J Control Release 2021; 335:369-388. [PMID: 34058270 DOI: 10.1016/j.jconrel.2021.05.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
In spite of huge developments in cancer treatment, versatile combinational formulations of different chemotherapeutic agents to enhance anticancer activity while reducing systemic toxicity still remains a challenge. In this regard, in the current study, an amphiphilic hyaluronic acid-b-polycaprolactone diblock copolymer was synthesized using "click chemistry". The synthesized copolymer was self-assembled to form polymersomal structures for co-encapsulation of hydrophilic doxorubicin (DOX) and hydrophobic camptothecin (CPT) in their interior aqueous compartment and their bilayer, respectively with 1:10 and 1:1 ratios. The prepared polymersomal combinational formulation surrounded by hyaluronic acid brush as hydrophilic segment, could provide active targeting of the system against CD44 marker expressed on the surface of cancerous cells. The hyaluronic acid shell could also provide flexible chemistry for the conjugation of therapeutic FOXM1-specific DNA aptamer (Forkhead Box M1; against transcription factor FOXM1) on the surface of polymersomes in order to further suppress cancerous cell proliferation. The obtained results demonstrated that the prepared co-formulation provided sustained, controlled release of the entrapped drugs during 200 h. In vitro cytotoxicity experiments on non-small cell lung cancer, A549 and SK-MES-1 cell lines, demonstrated that the co-formulation of DOX and CPT provided synergistic effect and significantly higher cytotoxicity in comparison with free drugs. The cytotoxicity experiment also indicated that the aptamer conjugation on the co-formulations surface could significantly increase the cytotoxicity and induce apoptosis in combination therapy on both A549 and SK-MES-1 cell lines while aptamer-conjugated blank NPs did not show any cytotoxicity which emphasizes on the sensitization capability of the FOXM1 DNA aptamer against non-small cell lung cancer. Furthermore, it was shown that the co-formulation with or without aptamer renders the formulation specific tumor accumulation in vivo 24 h post-administration, assisting the combination synergy observed in vitro to be translated to in vivo antitumor efficacy. This combinatorial delivery platform strongly offers a novel approach for the synergistic controlled transportation of several chemotherapeutics for the treatment of non-small cell lung cancer.
Collapse
|
25
|
Shahinozzaman M, Islam M, Basak B, Sultana A, Emran R, Ashrafizadeh M, Islam ATMR. A review on chemistry, source and therapeutic potential of lambertianic acid. Z NATURFORSCH C 2021; 76:347-356. [PMID: 33826808 DOI: 10.1515/znc-2020-0267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 01/05/2023]
Abstract
Lambertianic acid (LA) is a diterpene bioactive compound mainly purified from different species of Pinus. It is an optical isomer of another natural compound daniellic acid and was firstly purified from Pinus lambertiana. LA can be synthesized in laboratory from podocarpic acid. It has been reported to have potential health benefits in attenuating obesity, allergies and different cancers including breast, liver, lung and prostate cancer. It exhibits anticancer properties through inhibiting cancer cell proliferation and survival, and inducing apoptosis, targeting major signalling components including AKT, AMPK, NFkB, COX-2, STAT3, etc. Most of the studies with LA were done using in vitro models, thus warranting future investigations with animal models to evaluate its pharmacological effects such as antidiabetic, anti-inflammatory and neuroprotective effects as well as to explore the underlying molecular mechanisms and toxicological profile. This review describes the chemistry, source, purification and therapeutic potentials of LA and it can therefore be a suitable guideline for any future study with LA.
Collapse
Affiliation(s)
- Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Moutushi Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Arifa Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rashiduzzaman Emran
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.,Department of Agricultural Extension (DAE), Dhaka 1215, Bangladesh
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | | |
Collapse
|
26
|
Iness AN, Rubinsak L, Meas SJ, Chaoul J, Sayeed S, Pillappa R, Temkin SM, Dozmorov MG, Litovchick L. Oncogenic B-Myb Is Associated With Deregulation of the DREAM-Mediated Cell Cycle Gene Expression Program in High Grade Serous Ovarian Carcinoma Clinical Tumor Samples. Front Oncol 2021; 11:637193. [PMID: 33747961 PMCID: PMC7969987 DOI: 10.3389/fonc.2021.637193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Cell cycle control drives cancer progression and treatment response in high grade serous ovarian carcinoma (HGSOC). MYBL2 (encoding B-Myb), an oncogene with prognostic significance in several cancers, is highly expressed in most HGSOC cases; however, the clinical significance of B-Myb in this disease has not been well-characterized. B-Myb is associated with cell proliferation through formation of the MMB (Myb and MuvB core) protein complex required for transcription of mitotic genes. High B-Myb expression disrupts the formation of another transcriptional cell cycle regulatory complex involving the MuvB core, DREAM (DP, RB-like, E2F, and MuvB), in human cell lines. DREAM coordinates cell cycle dependent gene expression by repressing over 800 cell cycle genes in G0/G1. Here, we take a bioinformatics approach to further evaluate the effect of B-Myb expression on DREAM target genes in HGSOC and validate our cellular model with clinical specimens. We show that MYBL2 is highly expressed in HGSOC and correlates with expression of DREAM and MMB target genes in both The Cancer Genome Atlas (TCGA) as well as independent analyses of HGSOC primary tumors (N = 52). High B-Myb expression was also associated with poor overall survival in the TCGA cohort and analysis by a DREAM target gene expression signature yielded a negative impact on survival. Together, our data support the conclusion that high expression of MYBL2 is associated with deregulation of DREAM/MMB-mediated cell cycle gene expression programs in HGSOC and may serve as a prognostic factor independent of its cell cycle role. This provides rationale for further, larger scale studies aimed to determine the clinical predictive value of the B-Myb gene expression signature for treatment response as well as patient outcomes.
Collapse
Affiliation(s)
- Audra N Iness
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Lisa Rubinsak
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven J Meas
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Jessica Chaoul
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sadia Sayeed
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Raghavendra Pillappa
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah M Temkin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Mikhail G Dozmorov
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
27
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
28
|
Khademi Z, Lavaee P, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohydr Polym 2020; 248:116735. [PMID: 32919550 DOI: 10.1016/j.carbpol.2020.116735] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/17/2022]
Abstract
Herein, a nanotherapeutic delivery method was presented for co-delivery of doxorubicin (DOX) and aptamer against Forkhead box M1 (FOXM1 Apt) to cancer cells. Firstly, the vehicle composed of chitosan (CS)-Gold nanoparticles (AuNPs) conjugate was prepared. Nucleolin aptamer (AS1411) and FOXM1 Apt were loaded onto the CS-AuNPs and formed Aptamers (Apts)-CS-AuNPs. Subsequently, DOX was added to the Apts-CS-AuNPs to obtain the DOX-Apts-CS-AuNPs complex for synergistic treatment of tumor. The data of flow cytometry analysis and fluorescence imaging displayed that the complex was effectively internalized into target cells (A549 and 4T1 cells, nucleolin+) but not into CHO cells as nontarget cells. The results of the MTT assay showed that the complex significantly increased cell mortality in 4T1 and A549 cells compared to CHO cells treated with the complex. The in vivo studies demonstrated that the DOX-Apts-CS-AuNPs complex exhibited more tumor inhibitory effect and less distribution in other organs compared to free DOX.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/pharmacokinetics
- CHO Cells
- Cell Line, Tumor
- Chitosan/chemistry
- Cricetinae
- Cricetulus
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacokinetics
- Drug Delivery Systems/methods
- Drug Liberation
- Forkhead Box Protein M1/genetics
- Gold/chemistry
- Humans
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/ultrastructure
- Mice, Inbred BALB C
- Microscopy, Atomic Force
- Microscopy, Electron, Scanning
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- Nucleolin
Collapse
Affiliation(s)
- Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parirokh Lavaee
- Academic Center for Education, Culture and Research, Research Institute for Industrial Biotechnology, Industrial Biotechnology on Microorganisms, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Tabatabaei Dakhili SA, Pérez DJ, Gopal K, Haque M, Ussher JR, Kashfi K, Velázquez-Martínez CA. SP1-independent inhibition of FOXM1 by modified thiazolidinediones. Eur J Med Chem 2020; 209:112902. [PMID: 33069434 DOI: 10.1016/j.ejmech.2020.112902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
This research article describes an approach to modify the thiazolidinedione scaffold to produce test drugs capable of binding to, and inhibit, the in vitro transcriptional activity of the oncogenic protein FOXM1. This approach allowed us to obtain FOXM1 inhibitors that bind directly to the FOXM1-DNA binding domain without targeting the expression levels of Sp1, an upstream transcription factor protein known to activate the expression of FOXM1. Briefly, we modified the chemical structure of the thiazolidinedione scaffold present in anti-diabetic medications such as pioglitazone, rosiglitazone and the former anti-diabetic drug troglitazone, because these drugs have been reported to exert inhibition of FOXM1 but hit other targets as well. After the chemical synthesis of 11 derivatives possessing a modified thiazolidinedione moiety, we screened all test compounds using in vitro protocols to measure their ability to (a) dissociate a FOXM1-DNA complex (EMSA assay); (b) decrease the expression of FOXM1 in triple negative-breast cancer cells (WB assay); (c) downregulate the expression of FOXM1 downstream targets (luciferase reporter assays and qPCR); and inhibit the formation of colonies of MDA-MB-231 cancer cells (colony formation assay). We also identified a potential binding mode associated with these compounds in which compound TFI-10, one of the most active molecules, exerts binding interactions with Arg289, Trp308, and His287. Unlike the parent drug, troglitazone, compound TFI-10 does not target the in vitro expression of Sp1, suggesting that it is possible to design FOXM1 inhibitors with a better selectivity profile.
Collapse
Affiliation(s)
| | - David J Pérez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khosrow Kashfi
- Department of Molecular, Cellular, & Biomedical Sciences, City University of New York School of Medicine, New York, USA; Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | | |
Collapse
|
30
|
Ghandhariyoun N, Jaafari MR, Nikoofal-Sahlabadi S, Taghdisi SM, Moosavian SA. Reducing Doxorubicin resistance in breast cancer by liposomal FOXM1 aptamer: In vitro and in vivo. Life Sci 2020; 262:118520. [PMID: 33010284 DOI: 10.1016/j.lfs.2020.118520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
AIMS Drug resistance is one of the main obstacles in cancer chemotherapy. The forkhead box M1 (FOXM1) is a transcription factor and its overexpression in breast cancer is related to resistance to chemotherapy. In this study, we prepare liposomal FOXM1 aptamer (Lip-FOXM1apt) and evaluate its effects on Doxorubicin (Dox) resistance in vitro and in vivo. MAIN METHODS MTT assay, cell association, cellular uptake, Annexin V-FITC/PI dual staining assay were investigated in MDA-MB-231, MCF-7, 4T1. In vivo studies were performed in 4T1 tumor-bearing BALB/c mice. KEY FINDINGS We found that the combination therapy of Dox and Lip-FOXM1apt significantly increases both Dox cytotoxicity on cancer cells as well as Dox-induced apoptosis. Administering Lip-FOXM1apt remarkably improved the anti-tumor efficacy of Dox in mice model that was strikingly more effective than Dox monotherapy. SIGNIFICANCE Taken together, this study provides a new strategy to overcome Dox resistance and merits further investigation.
Collapse
Affiliation(s)
- Negin Ghandhariyoun
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | - Sara Nikoofal-Sahlabadi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran.
| |
Collapse
|
31
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
32
|
Phosphorylation independent eIF4E translational reprogramming of selective mRNAs determines tamoxifen resistance in breast cancer. Oncogene 2020; 39:3206-3217. [PMID: 32066877 PMCID: PMC7142019 DOI: 10.1038/s41388-020-1210-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 11/12/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) selectively promotes translation of mRNAs with atypically long and structured 5′-UTRs and has been implicated in drug resistance. Through genome-wide transcriptome and translatome analysis we revealed eIF4E overexpression could promote cellular activities mediated by ERα and FOXM1 signalling pathways. Whilst eIF4E overexpression could enhance the translation of both ERα and FOXM1, it also led to enhanced transcription of FOXM1. Polysome fractionation experiments confirmed eIF4E could modulate the translation of ERα and FOXM1 mRNA. The enhancement of FOXM1 transcription was contingent upon the presence of ERα, and it was the high levels of FOXM1 that conferred Tamoxifen resistance. Furthermore, tamoxifen resistance was conferred by phosphorylation independent eIF4E overexpression. Immunohistochemistry on 134 estrogen receptor (ER+) primary breast cancer samples confirmed that high eIF4E expression was significantly associated with increased ERα and FOXM1, and significantly associated with tamoxifen resistance. Our study uncovers a novel mechanism whereby phosphorylation independent eIF4E translational reprogramming in governing the protein synthesis of ERα and FOXM1 contributes to anti-estrogen insensitivity in ER+ breast cancer. In eIF4E overexpressing breast cancer, the increased ERα protein expression in turn enhances FOXM1 transcription, which together with its increased translation regulated by eIF4E, contributes to tamoxifen resistance. Coupled with eIF4E translational regulation, our study highlights an important mechanism conferring tamoxifen resistance via both ERα dependent and independent pathways.
Collapse
|
33
|
Bollu LR, Shepherd J, Zhao D, Ma Y, Tahaney W, Speers C, Mazumdar A, Mills GB, Brown PH. Mutant P53 induces MELK expression by release of wild-type P53-dependent suppression of FOXM1. NPJ Breast Cancer 2020; 6:2. [PMID: 31909186 PMCID: PMC6941974 DOI: 10.1038/s41523-019-0143-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, and is associated with a poor prognosis due to frequent distant metastasis and lack of effective targeted therapies. Previously, we identified maternal embryonic leucine zipper kinase (MELK) to be highly expressed in TNBCs as compared with ER-positive breast cancers. Here we determined the molecular mechanism by which MELK is overexpressed in TNBCs. Analysis of publicly available data sets revealed that MELK mRNA is elevated in p53-mutant breast cancers. Consistent with this observation, MELK protein levels are higher in p53-mutant vs. p53 wild-type breast cancer cells. Furthermore, inactivation of wild-type p53, by loss or mutation of the p53 gene, increases MELK expression, whereas overexpression of wild-type p53 in p53-null cells reduces MELK promoter activity and MELK expression. We further analyzed MELK expression in breast cancer data sets and compared that with known wild-type p53 target genes. This analysis revealed that MELK expression strongly correlates with genes known to be suppressed by wild-type p53. Promoter deletion studies identified a p53-responsive region within the MELK promoter that did not map to the p53 consensus response elements, but to a region containing a FOXM1-binding site. Consistent with this result, knockdown of FOXM1 reduced MELK expression in p53-mutant TNBC cells and expression of wild-type p53 reduced FOXM1 expression. ChIP assays demonstrated that expression of wild-type p53 reduces binding of E2F1 (a critical transcription factor controlling FOXM1 expression) to the FOXM1 promoter, thereby, reducing FOXM1 expression. These results show that wild-type p53 suppresses FOXM1 expression, and thus MELK expression, through indirect mechanisms. Overall, these studies demonstrate that wild-type p53 represses MELK expression by inhibiting E2F1A-dependent transcription of FOXM1 and that mutation-driven loss of wild-type p53, which frequently occurs in TNBCs, induces MELK expression by suppressing FOXM1 expression and activity in p53-mutant breast cancers.
Collapse
Affiliation(s)
- Lakshmi Reddy Bollu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
| | - Jonathan Shepherd
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
| | - Dekuang Zhao
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
| | - Yanxia Ma
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
| | - William Tahaney
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan USA
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
- Present Address: Precision Oncology, OHSU Knight Cancer Institute, Oregon Health and Science University, 2720 Southwest Moody Avenue, Knight Cancer Research Building, Level 2, Portland, Oregon 97201 USA
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas USA
| |
Collapse
|
34
|
Ai C, Zhang J, Lian S, Ma J, Győrffy B, Qian Z, Han Y, Feng Q. FOXM1 functions collaboratively with PLAU to promote gastric cancer progression. J Cancer 2020; 11:788-794. [PMID: 31949481 PMCID: PMC6959008 DOI: 10.7150/jca.37323] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Gastric cancer (GC) is one of the main mortality cause worldwide. Previously, we found Forkhead box protein (FOXM1) or Urokinase-type plasminogen activator (PLAU) are independent prognostic markers of GC. This study aims to explore the combining prognostic efficacy and the potential insights underlying additive effect of FOXM1 to PLAU in GC progression through in-silico analyses. Method: The expression of FOXM1 and PLAU were profiled in 33 cancer types using public data. A merged GC expression dataset containing 598 samples was used for evaluating prognostic significance of FOXM1/PLAU. Gene Set Enrichment Analysis (GSEA) was performed to elucidate the mechanisms underlying FOXM1/PLAU promoted GC progression. The Cancer Genome Atlas (TCGA) was used for analyzing the association between FOXM1/PLAU and tumor immune infiltration. Genomic and proteomic differences between FOXM1+PLAU+ and FOXM1-PLAU- groups were also computed using TCGA GC data. Drugs targeting FOXM1/PLAU associated gene expression pattern was analyzed using LINCs database. Results: FOXM1 and PLAU are overexpressed in 17/33 cancer types including GC. Kaplan-Meier analyses indicate that the FOXM1+PLAU+ subgroup have the worst prognosis, while FOXM1-PLAU- subgroup have the best survival. Bioinformatics analysis indicated that FOXM1+PLAU+ associated genes are enriched in TGF-beta, DNA repair and drug resistance signaling pathways; FOXM1 and PLAU expression are negatively correlated with tumor immune infiltration. Genomic and proteomic differences between FOXM1+PLAU+ and FOXM1-PLAU- groups were presented. Data mining from LINCs suggested several chemicals or drugs that could target the gene expression pattern of FOXM1+PLAU+ patients. Conclusion: FOXM1+PLAU+ can serve as effective prognostic biomarkers and potential therapeutic targets for GC. Due to the additive effect of these two genes, screening for drugs or chemicals that targeting the expression patterns PLAU+FOXM1+ subgroup may exert important clinical impact on GC management.
Collapse
Affiliation(s)
- Chao Ai
- Department of Pharmacy, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
| | - Jixin Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Shenyi Lian
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Balázs Győrffy
- Momentum Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, H-1117, Hungary; Second Department of Pediatrics, Semmelweis University, Budapest, H-1094, Hungary
| | - Zhenyuan Qian
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Qin Feng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital &Institute, Beijing, China
| |
Collapse
|
35
|
Marchand B, Pitarresi JR, Reichert M, Suzuki K, Laczkó D, Rustgi AK. PRRX1 isoforms cooperate with FOXM1 to regulate the DNA damage response in pancreatic cancer cells. Oncogene 2019; 38:4325-4339. [PMID: 30705403 PMCID: PMC6542713 DOI: 10.1038/s41388-019-0725-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
PRRX1 is a homeodomain transcriptional factor, which has two isoforms, PRXX1A and PRRX1B. The PRRX1 isoforms have been demonstrated to be important in pancreatic cancer, especially in the regulation of epithelial-to-mesenchymal transition (EMT) in Pancreatic Ductal Adenocarcinoma (PDAC) and of mesenchymal-to-epithelial transition (MET) in liver metastasis. In order to determine the functional underpinnings of PRRX1 and its isoforms, we have unraveled a new interplay between PRRX1 and the FOXM1 transcriptional factors. Our detailed biochemical analysis reveals the direct physical interaction between PRRX1 and FOXM1 proteins that requires the PRRX1A/B 200-222/217 amino acid (aa) region and the FOXM1 Forkhead domain. Additionally, we demonstrate the cooperation between PRRX1 and FOXM1 in the regulation of FOXM1-dependent transcriptional activity. Moreover, we establish FOXM1 as a critical downstream target of PRRX1 in pancreatic cancer cells. We demonstrate a novel role for PRRX1 in the regulation of genes involved in DNA repair pathways. Indeed, we show that expression of PRRX1 isoforms may limit the induction of DNA damage in pancreatic cancer cells. Finally, we demonstrate that targeting FOXM1 with the small molecule inhibitor FDI6 suppress pancreatic cancer cell proliferation and induces their apoptotic cell death. FDI6 sensitizes pancreatic cancer cells to Etoposide and Gemcitabine induced apoptosis. Our data provide new insights into PRRX1's involvement in regulating DNA damage and provide evidence of a possible PRRX1-FOXM1 axis that is critical for PDAC cells.
Collapse
Affiliation(s)
- Benoît Marchand
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maximilian Reichert
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- II. Medizinische Klinik, Technical University of Munich, 81675, Munich, Germany
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kensuke Suzuki
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dorottya Laczkó
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Gu C, Jing X, Holman C, Sompallae R, Zhan F, Tricot G, Yang Y, Janz S. Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. BMC Cancer 2018; 18:1152. [PMID: 30463534 PMCID: PMC6249818 DOI: 10.1186/s12885-018-5015-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following up on previous work demonstrating the involvement of the transcription factor forkhead box M1 (FOXM1) in the biology and outcome of a high-risk subset of newly diagnosed multiple myeloma (nMM), this study evaluated whether FOXM1 gene expression may be further upregulated upon tumor recurrence in patients with relapsed multiple myeloma (rMM). Also assessed was the hypothesis that increased levels of FOXM1 diminish the sensitivity of myeloma cells to commonly used myeloma drugs, such as the proteasome inhibitor bortezomib (Bz) and the DNA intercalator doxorubicin (Dox). METHODS FOXM1 message was evaluated in 88 paired myeloma samples from patients with nMM and rMM, using gene expression microarrays as measurement tool. Sources of differential gene expression were identified and outlier analyses were performed using statistical methods. Two independent human myeloma cell lines (HMCLs) containing normal levels of FOXM1 (FOXM1N) or elevated levels of lentivirus-encoded FOXM1 (FOXM1Hi) were employed to determine FOXM1-dependent changes in cell proliferation, survival, efflux-pump activity, and drug sensitivity. Levels of retinoblastoma (Rb) protein were determined with the assistance of Western blotting. RESULTS Upregulation of FOXM1 occurred in 61 of 88 (69%) patients with rMM, including 4 patients that exhibited > 20-fold elevated expression peaks. Increased FOXM1 levels in FOXM1Hi myeloma cells caused partial resistance to Bz (1.9-5.6 fold) and Dox (1.5-2.9 fold) in vitro, using FOXM1N myeloma as control. Reduced sensitivity of FOXM1Hi cells to Bz was confirmed in vivo using myeloma-in-mouse xenografts. FOXM1-dependent regulation of total and phosphorylated Rb agreed with a working model of myeloma suggesting that FOXM1 governs both chromosomal instability (CIN) and E2F-dependent proliferation, using a mechanism that involves interaction with NIMA related kinase 2 (NEK2) and cyclin dependent kinase 6 (CDK6), respectively. CONCLUSIONS These findings enhanced our understanding of the emerging FOXM1 genetic network in myeloma and provided preclinical support for the therapeutic targeting of the FOXM1-NEK2 and CDK4/6-Rb-E2F pathways using small-drug CDK and NEK2 inhibitors. Clinical research is warranted to assess whether this approach may overcome drug resistance in FOXM1Hi myeloma and, thereby, improve the outcome of patients in which the transcription factor is expressed at high levels.
Collapse
Affiliation(s)
- Chunyan Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Xuefang Jing
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Carol Holman
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Ramakrishna Sompallae
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Iowa Institute for Genetics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Guido Tricot
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Key Laboratory of Acupuncture and Medicine Research, Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53213 USA
| |
Collapse
|
37
|
Abnous K, Danesh NM, Ramezani M, Charbgoo F, Bahreyni A, Taghdisi SM. Targeted delivery of doxorubicin to cancer cells by a cruciform DNA nanostructure composed of AS1411 and FOXM1 aptamers. Expert Opin Drug Deliv 2018; 15:1045-1052. [PMID: 30269603 DOI: 10.1080/17425247.2018.1530656] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Here, a novel cruciform DNA nanostructure was developed for targeted delivery of doxorubicin (Dox), as an anticancer agent, to lung (A549 cells) and breast (4T1 cells) cancer cells. The cruciform DNA nanostructure consisted of AS1411 aptamer as targeting agent and Forkhead Box Protein M1(FOXM1) aptamer as therapeutic agent. METHODS MTT assay, fluorescence imaging, flow cytometry analysis, and in vivoantitumor efficacy were performed to evaluate the function of the Dox-DNA nanostructure complex. RESULTS The presented delivery system benefited from tumor targeting, high stability in serum and simple construction. The Dox-DNA nanostructure complex showed a noticeable higher internalization degree into A549 and 4T1 cells (target), overexpressing nucleolin on their cell membranes, compared to CHO cells (nontarget, nucleolin negative). Moreover, the results of MTT assay exhibited that Dox-DNA nanostructure complex significantly decreased cell viability in A549 and 4T1 cells compared to CHO cells, which significantly preserved their viability. Besides, Dox-DNA nanostructure complex significantly reduced tumor growth in tumor-bearing mice in comparison with Dox and DNA nanostructure treatments. CONCLUSION These findings confirmed that synergistic combination of FOXM1 aptamer and Dox into Dox-DNA nanostructure complex enhanced antitumor effectiveness and reduced toxicity toward nontarget cells, opening up new insights in cancer treatment.
Collapse
Affiliation(s)
- Khalil Abnous
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
- b Department of Medicinal Chemistry, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | | | - Mohammad Ramezani
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Fahimeh Charbgoo
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Bahreyni
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- d Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
- e Department of Pharmaceutical Biotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
38
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
39
|
Lee VS, McRobb LS, Moutrie V, Santos ED, Siu TL. Effects of FOXM1 inhibition and ionizing radiation on melanoma cells. Oncol Lett 2018; 16:6822-6830. [PMID: 30405826 DOI: 10.3892/ol.2018.9482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Metastatic melanoma can be highly refractory to conventional radiotherapy and chemotherapy but combinatorial-targeted therapeutics are showing greater promise on improving treatment efficacy. Previous studies have shown that knockdown of Forkhead box M1 (FOXM1) can sensitize various tumor types to radiation-induced cell death. The effect of combining radiation with a small molecule FOXM1 inhibitor, Siomycin A, on growth, death and migration of a metastatic melanoma cell line (SK-MEL-28) that overexpresses this pleiotropic cell cycle regulator was investigated. Siomycin A (SIOA) was found to be a strong inducer of apoptosis, and inhibitor of proliferation and migration in a scratch wound assay in this cell line. Induction of apoptosis occurred at concentrations >1 µM in association with reductions in the constitutive FOXM1 and anti-apoptotic B-cell lymphoma 2 protein levels found in these cells. Single doses of ionizing radiation (0-40 Gy) delivered by linear accelerator caused inhibition of growth and migration without significant induction of cell death. Pretreatment with SIOA did not increase the sensitivity of this melanoma cell line to radiation as observed in other tumor types. These data confirm that as a single agent, SIOA is an effective inducer of cell death and inhibitor of migration in metastatic melanoma cells expressing constitutive FOXM1. In combination with radiation, SIOA pre-treatment, however, may not be of added benefit.
Collapse
Affiliation(s)
- Vivienne S Lee
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lucinda S McRobb
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Vaughan Moutrie
- Genesis Cancer Care, Macquarie University Hospital, Sydney, New South Wales 2109, Australia
| | - Estavam D Santos
- Genesis Cancer Care, Macquarie University Hospital, Sydney, New South Wales 2109, Australia
| | - Timothy L Siu
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
40
|
Hwang SM, Lee HJ, Jung JH, Sim DY, Hwang J, Park JE, Shim BS, Kim SH. Inhibition of Wnt3a/FOXM1/β-Catenin Axis and Activation of GSK3β and Caspases are Critically Involved in Apoptotic Effect of Moracin D in Breast Cancers. Int J Mol Sci 2018; 19:ijms19092681. [PMID: 30201862 PMCID: PMC6164368 DOI: 10.3390/ijms19092681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Although Moracin D derived from Morus alba was known to have anti-inflammatory and antioxidant activities, the underlying antitumor mechanism of Moracin D has not been unveiled thus far. Thus, in the recent study, the apoptotic mechanism of Moracin D was elucidated in breast cancer cells. Herein, Moracin D exerted significant cytotoxicity in MDA-MB-231 and MCF-7 cells. Furthermore, Moracin D increased sub G1 population; cleaved poly (Adenosine diphosphate (ADP-ribose)) polymerase (PARP); activated cysteine aspartyl-specific protease 3 (caspase 3); and attenuated the expression of c-Myc, cyclin D1, B-cell lymphoma 2 (Bcl-2), and X-linked inhibitor of apoptosis protein (XIAP) in MDA-MB231 cells. Of note, Moracin D reduced expression of Forkhead box M1 (FOXM1), β-catenin, Wnt3a, and upregulated glycogen synthase kinase 3 beta (GSK3β) on Tyr216 along with disturbed binding of FOXM1 with β-catenin in MDA-MB-231 cells. Conversely, GSK3β inhibitor SB216763 reversed the apoptotic ability of Moracin D to reduce expression of FOXM1, β-catenin, pro-caspase3, and pro-PARP in MDA-MB-231 cells. Overall, these findings provide novel insight that Moracin D inhibits proliferation and induces apoptosis via suppression of Wnt3a/FOXM1/β-catenin signaling and activation of caspases and GSK3β.
Collapse
Affiliation(s)
- Sung Min Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
41
|
Lee JH, Lee HJ, Sim DY, Jung JH, Kim KR, Kim SH. Apoptotic effect of lambertianic acid through AMPK/FOXM1 signaling in MDA-MB231 breast cancer cells. Phytother Res 2018; 32:1755-1763. [PMID: 29722086 DOI: 10.1002/ptr.6105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023]
Abstract
Though lambertianic acid (LA) was known to exert antitumor effect in liver and prostate cancers, its underlying anticancer mechanism is never reported in breast cancers so far. Thus, in this study, apoptotic mechanism of LA was elucidated in MDA-MB-231 breast cancer cells. Here, LA increased cytotoxicity in MCF-7 and MDA-MB-231 cells; enhanced sub-G1 population, G2/M arrest, and cleaved poly(ADP-ribose) polymerase; activated phosphorylation of AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase pathway; and also suppressed phosphorylation of AKT and the expression of forkhead box M1 (FOXM1), X-linked inhibitor of apoptosis protein, B-cell lymphoma 2, and CyclinB1 in MDA-MB-231 cells. Furthermore, AMPK inhibitor compound C reversed the effect of LA on FOXM1, Cyclin B1, and cleaved poly(ADP-ribose) polymerase in MDA-MB-231 cells. Notably, immunoprecipitation revealed that LA disturbed the direct binding of AKT and FOXM1 in MDA-MB-231 cells. Overall, these findings suggest that LA-induced apoptosis is mediated via activation of AMPK and inhibition of AKT/FOXM1 signaling pathway.
Collapse
Affiliation(s)
- Jae Hee Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Ka Ram Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| |
Collapse
|
42
|
A selective cyclin-dependent kinase 4, 6 dual inhibitor, Ribociclib (LEE011) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer. Cancer Lett 2018; 417:131-140. [PMID: 29306020 DOI: 10.1016/j.canlet.2017.12.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022]
Abstract
The RB-E2F1 pathway is an important mechanism of cell-cycle control, and deregulation of this pathway is one of the key factors contributing to tumorigenesis. Cyclin-dependent kinases (CDKs) and Cyclin D have been known to increase in aggressive thyroid cancer. However, there has been no study to investigate effects of a selective CDK 4/6 inhibitor, Ribociclib (LEE011), in thyroid cancer. Performing Western blotting, we found that RB phosphorylation and the expression of Cyclin D are significantly higher in papillary thyroid cancer (PTC) cell lines as well as anaplastic thyroid cancer (ATC) cell lines, compared with normal thyroid cell line and follicular thyroid cancer cell line. LEE011 dose-dependently inhibited RB phosphorylation and also decreased the expressions of its target genes such as FOXM1, Cyclin A1, and Myc in ATC. Furthermore, LEE011 induced cell cycle arrest in G0-G1 phase and cell apoptosis, and inhibited cell proliferation in ATC. Consistently, oral administration of LEE011 to ATC xenograft models strongly inhibited tumor growth with decreased expressions of pRB, pAKT and Ki-67, and also significantly increased tumor cell apoptosis. Taken together, our data support the rationale for clinical development of the CDK4/6 inhibitor as a therapy for patients with aggressive thyroid cancer.
Collapse
|
43
|
Westhoff GL, Chen Y, Teng NNH. Targeting FOXM1 Improves Cytotoxicity of Paclitaxel and Cisplatinum in Platinum-Resistant Ovarian Cancer. Int J Gynecol Cancer 2017; 27:1602-1609. [PMID: 28692634 DOI: 10.1097/igc.0000000000001063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Aberrantly activated FOXM1 (forkhead box protein M1) leading to uncontrolled cell proliferation and dysregulation of FOXM1 transcription network occurs in 84% of ovarian cancer cases. It was demonstrated that thiostrepton, a thiazole antibiotic, decreases FOXM1 expression. We aimed to determine if targeting the FOXM1 pathway with thiostrepton could improve the efficacy of paclitaxel and cisplatin in human ovarian cancer ascites cells ex vivo. METHODS Human ovarian cancer cell lines and patients' ascites cells were treated with paclitaxel, cisplatin, and thiostrepton or a combination for 48 hours, and cytotoxicity was assessed. Drug combination effects were determined by calculating the combination index values using the Chou and Talalay method. Quantitative reverse transcriptase-polymerase chain reaction was performed to determine changes in FOXM1 expression and its downstream targets. RESULTS Ovarian cancer cell lines and the patients' ascites cancer cells had an overexpression of FOXM1 expression levels. Targeting FOXM1 with thiostrepton decreased FOXM1 mRNA expression and its downstream targets such as CCNB1 and CDC25B, leading to cell death in both cell lines and patients' ascites cancer cells. Furthermore, addition of thiostrepton to paclitaxel and cisplatin showed synergistic effects in chemoresistant ovarian cancer patients' ascites cells ex vivo. CONCLUSION Targeting FOXM1 may lead to novel therapeutics for chemoresistant epithelial ovarian cancer.
Collapse
Affiliation(s)
- Gina L Westhoff
- *Division of Gynecologic Oncology, Legacy Health, Portland, OR; and †Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | | | | |
Collapse
|
44
|
Nandi D, Cheema PS, Jaiswal N, Nag A. FoxM1: Repurposing an oncogene as a biomarker. Semin Cancer Biol 2017; 52:74-84. [PMID: 28855104 DOI: 10.1016/j.semcancer.2017.08.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
The past few decades have witnessed a tremendous progress in understanding the biology of cancer, which has led to more comprehensive approaches for global gene expression profiling and genome-wide analysis. This has helped to determine more sophisticated prognostic and predictive signature markers for the prompt diagnosis and precise screening of cancer patients. In the search for novel biomarkers, there has been increased interest in FoxM1, an extensively studied transcription factor that encompasses most of the hallmarks of malignancy. Considering the attractive potential of this multifarious oncogene, FoxM1 has emerged as an important molecule implicated in initiation, development and progression of cancer. Bolstered with the skill to maneuver the proliferation signals, FoxM1 bestows resistance to contemporary anti-cancer therapy as well. This review sheds light on the large body of literature that has accumulated in recent years that implies that FoxM1 neoplastic functions can be used as a novel predictive, prognostic and therapeutic marker for different cancers. This assessment also highlights the key features of FoxM1 that can be effectively harnessed to establish FoxM1 as a strong biomarker in diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Neha Jaiswal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
45
|
Souza TM, van den Beucken T, Kleinjans JCS, Jennen DGJ. Inferring transcription factor activity from microarray data reveals novel targets for toxicological investigations. Toxicology 2017; 389:101-107. [PMID: 28743512 DOI: 10.1016/j.tox.2017.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 01/09/2023]
Abstract
Transcription factors (TFs) are important modulators of the inducible portion of the transcriptome, and therefore relevant in the context of exposure to exogenous compounds. Current approaches to predict the activity of TFs in biological systems are usually restricted to a few entities at a time due to low-throughput techniques targeting a limited fraction of annotated human TFs. Therefore, high-throughput alternatives may help to identify new targets of mechanistic and predictive value in toxicological investigations. In this study, we inferred the activity multiple TFs using publicly available microarray data from primary human hepatocytes exposed to hundreds of chemicals and evaluated these molecular profiles using multiple correspondence analysis. Our results demonstrate that the lowest dose and latest exposure time (24h) in a subset of chemicals generates a signature indicative of carcinogenicity possibly due to DNA-damaging properties. Furthermore, profiles from the earliest exposure time (2h) and highest dose creates clusters of chemicals implicated in the development of diverse forms of drug-induced liver injury (DILI). Both approaches yielded a number of TFs with similar activity across groups of chemicals, including TFs known in toxicological responses such as AhR, NFE2L2 (Nrf2), NF-κB and PPARG. FOXM1, IRF1 and E2F4 were some of the TFs identified that may be relevant in genotoxic carcinogenesis. SMADs (SMAD1, SMAD2, SMAD5) and KLF5 were identified as some of potentially new TFs whose inferred activities were linked to acute and progressive outcomes in DILI. In conclusion this study offers a novel mechanistic approach targeting TF activity during chemical exposure.
Collapse
Affiliation(s)
- T M Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - T van den Beucken
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - J C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - D G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
46
|
Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X. The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma. J Cancer 2017; 8:1619-1628. [PMID: 28775781 PMCID: PMC5535717 DOI: 10.7150/jca.18778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Ning Duan
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Tao Song
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Zhong Li
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xun Chen
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| |
Collapse
|
47
|
Westhoff GL, Chen Y, Teng NNH. Targeting Foxm1 Improves Cytotoxicity of Paclitaxel and Cisplatinum in Platinum-Resistant Ovarian Cancer. Int J Gynecol Cancer 2017; 27:887-894. [PMID: 28498253 DOI: 10.1097/igc.0000000000000969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Aberrantly activated FOXM1 (forkhead box protein M1) leading to uncontrolled cell proliferation and dysregulation of FOXM1 transcription network occurs in 84% of ovarian cancer cases. It was demonstrated that thiostrepton, a thiazole antibiotic, decreases FOXM1 expression. We aimed to determine if targeting the FOXM1 pathway with thiostrepton could improve the efficacy of paclitaxel and cisplatin in human ovarian cancer ascites cells ex vivo. METHODS Human ovarian cancer cell lines and patients' ascites cells were treated with paclitaxel, cisplatin, and thiostrepton or a combination for 48 hours, and cytotoxicity was assessed. Drug combination effects were determined by calculating the combination index values using the Chou and Talalay method. Quantitative real-time polymerase chain reaction was performed to determine changes in FOXM1 expression and its downstream targets. RESULTS Ovarian cancer cell lines and the patients' ascites cancer cells had an overexpression of FOXM1 expression levels. Targeting FOXM1 with thiostrepton decreased FOXM1 mRNA expression and its downstream targets such as CCNB1, CDC25B, leading to cell death in both cell lines and patients' ascites cancer cells. Furthermore, addition of thiostrepton to paclitaxel and cisplatin showed synergistic effects in chemoresistant ovarian cancer patients' ascites cells ex vivo. CONCLUSION Targeting FOXM1 may lead to novel therapeutics for chemoresistant epithelial ovarian cancer.
Collapse
Affiliation(s)
- Gina L Westhoff
- *Division of Gynecologic Oncology, Legacy Health, Portland, OR; and †Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | | | | |
Collapse
|
48
|
Tassi RA, Todeschini P, Siegel ER, Calza S, Cappella P, Ardighieri L, Cadei M, Bugatti M, Romani C, Bandiera E, Zanotti L, Tassone L, Guarino D, Santonocito C, Capoluongo ED, Beltrame L, Erba E, Marchini S, D'Incalci M, Donzelli C, Santin AD, Pecorelli S, Sartori E, Bignotti E, Odicino F, Ravaggi A. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:63. [PMID: 28482906 PMCID: PMC5422964 DOI: 10.1186/s13046-017-0536-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/19/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a spectrum of different diseases, which makes their treatment a challenge. Forkhead box M1 (FOXM1) is an oncogene aberrantly expressed in many solid cancers including serous EOC, but its role in non-serous EOCs remains undefined. We examined FOXM1 expression and its correlation to prognosis across the three major EOC subtypes, and its role in tumorigenesis and chemo-resistance in vitro. METHODS Gene signatures were generated by microarray for 14 clear-cell and 26 endometrioid EOCs, and 15 normal endometrium snap-frozen biopsies. Validation of FOXM1 expression was performed by RT-qPCR and immunohistochemistry in the same samples and additionally in 50 high-grade serous EOCs and in their most adequate normal controls (10 luminal fallopian tube and 20 ovarian surface epithelial brushings). Correlations of FOXM1 expression to clinic-pathological parameters and patients' prognosis were evaluated by Kaplan-Meier and Cox proportional-hazards analyses. OVCAR-3 and two novel deeply characterized EOC cell lines (EOC-CC1 and OSPC2, with clear-cell and serous subtype, respectively) were employed for in vitro studies. Effects of FOXM1 inhibition by transient siRNA transfection were evaluated on cell-proliferation, cell-cycle, colony formation, invasion, and response to conventional first- and second-line anticancer agents, and to the PARP-inhibitor olaparib. Gene signatures of FOXM1-silenced cell lines were generated by microarray and confirmed by RT-qPCR. RESULTS A significant FOXM1 mRNA up-regulation was found in EOCs compared to normal controls. FOXM1 protein overexpression significantly correlated to serous histology (p = 0.001) and advanced FIGO stage (p = 0.004). Multivariate analyses confirmed FOXM1 protein overexpression as an independent indicator of worse disease specific survival in non-serous EOCs, and of shorter time to progression in platinum-resistant cases. FOXM1 downregulation in EOC cell lines inhibited cell growth and clonogenicity, and promoted the cytotoxic effects of platinum compounds, doxorubicin hydrochloride and olaparib. Upon FOXM1 knock-down in EOC-CC1 and OSPC2 cells, microarray and RT-qPCR analyses revealed the deregulation of several common and other unique subtype-specific FOXM1 putative targets involved in cell cycle, metastasis, DNA repair and drug response. CONCLUSIONS FOXM1 is up-regulated in all three major EOCs subtypes, and is a prognostic biomarker and a potential combinatorial therapeutic target in platinum resistant disease, irrespective of tumor histology.
Collapse
Affiliation(s)
- Renata A Tassi
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy.
| | - Paola Todeschini
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Unit of Biostatistics, University of Brescia, Brescia, Italy
| | | | - Laura Ardighieri
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Moris Cadei
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Chiara Romani
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Bandiera
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Laura Zanotti
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Laura Tassone
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Donatella Guarino
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Concetta Santonocito
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Ettore D Capoluongo
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Luca Beltrame
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Eugenio Erba
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Sergio Marchini
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Carla Donzelli
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Sergio Pecorelli
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Enrico Sartori
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Franco Odicino
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Antonella Ravaggi
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
49
|
Dong GZ, Jeong JH, Lee YI, Han YE, Shin JS, Kim YJ, Jeon R, Kim YH, Park TJ, Kim KI, Ryu JH. A lignan induces lysosomal dependent degradation of FoxM1 protein to suppress β-catenin nuclear translocation. Sci Rep 2017; 7:45951. [PMID: 28378765 PMCID: PMC5380986 DOI: 10.1038/srep45951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
Colon cancer is one of the most common cancers. In this study, we isolated a lignan [(−)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol, DFS] from Alnus japonica (Betulaceae) and investigated its biological activity and mechanism of action on colon cancer. DFS reduced the viability of colon cancer cells and induced cell cycle arrest. DFS also suppressed β-catenin nuclear translocation and β-catenin target gene expression through a reduction in FoxM1 protein. To assess the mechanism of the action of DFS, we investigated the effect of DFS on endogenous and exogenous FoxM1 protein degradation in colon cancer cells. DFS-induced FoxM1 protein degradation was suppressed by lysosomal inhibitors, chloroquine and bafilomycin A1, but not by knock-down of proteasomal proteins. The mechanism of DFS for FoxM1 degradation is lysosomal dependent, which was not reported before. Furthermore, we found that FoxM1 degradation was partially lysosomal-dependent under normal conditions. These observations indicate that DFS from A. japonica suppresses colon cancer cell proliferation by reducing β-catenin nuclear translocation. DFS induces lysosomal-dependent FoxM1 protein degradation. This is the first report on the lysosomal degradation of FoxM1 by a small molecule. DFS may be useful in treating cancers that feature the elevated expression of FoxM1.
Collapse
Affiliation(s)
- Guang-Zhi Dong
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Ji Hye Jeong
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Yu-Ih Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Yeong Eun Han
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Jung Sook Shin
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Yoon-Jung Kim
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Raok Jeon
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Young Hwa Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Ajou University, Suwon, 16499, Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, School of Medicine, Ajou University, Suwon, 16499, Korea
| | - Keun Il Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
50
|
Abstract
Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|