1
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
2
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2022; 42:1267-1281. [PMID: 33400084 PMCID: PMC11421708 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
3
|
Anderton H, Chopin M, Dawson CA, Nutt SL, Whitehead L, Silke N, Lalaloui N, Silke J. Langerhans cells are an essential cellular intermediary in chronic dermatitis. Cell Rep 2022; 39:110922. [PMID: 35675765 DOI: 10.1016/j.celrep.2022.110922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
SHARPIN regulates signaling from the tumor necrosis factor (TNF) superfamily and pattern-recognition receptors. An inactivating Sharpin mutation in mice causes TNF-mediated dermatitis. Blocking cell death prevents the phenotype, implicating TNFR1-induced cell death in causing the skin disease. However, the source of TNF that drives dermatitis is unknown. Immune cells are a potent source of TNF in vivo and feature prominently in the skin pathology; however, T cells, B cells, and eosinophils are dispensable for the skin phenotype. We use targeted in vivo cell ablation, immune profiling, and extensive imaging to identify immune populations driving dermatitis. We find that systemic depletion of Langerin+ cells significantly reduces disease severity. This is enhanced in mice that lack Langerhans cells (LCs) from soon after birth. Reconstitution of LC-depleted Sharpin mutant mice with TNF-deficient LCs prevents dermatitis, implicating LCs as a potential cellular source of pathogenic TNF and highlighting a T cell-independent role in driving skin inflammation.
Collapse
Affiliation(s)
- Holly Anderton
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Caleb A Dawson
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Natasha Silke
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Najoua Lalaloui
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - John Silke
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
4
|
Zhu ZY, Tang N, Wang MF, Zhou JC, Wang JL, Ren HZ, Shi XL. Comprehensive Pan-Cancer Genomic Analysis Reveals PHF19 as a Carcinogenic Indicator Related to Immune Infiltration and Prognosis of Hepatocellular Carcinoma. Front Immunol 2022; 12:781087. [PMID: 35069553 PMCID: PMC8766761 DOI: 10.3389/fimmu.2021.781087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As a crucial constituent part of Polycomb repressive complex 2, PHD finger protein 19 (PHF19) plays a pivotal role in epigenetic regulation, and acts as a critical regulator of multiple pathophysiological processes. However, the exact roles of PHF19 in cancers remain enigmatic. The present research was primarily designed to provide the prognostic landscape visualizations of PHF19 in cancers, and study the correlations between PHF19 expression and immune infiltration characteristics in tumor microenvironment. METHODS Raw data in regard to PHF19 expression were extracted from TCGA and GEO data portals. We examined the expression patterns, prognostic values, mutation landscapes, and protein-protein interaction network of PHF19 in pan-cancer utilizing multiple databases, and investigated the relationship of PHF19 expression with immune infiltrates across TCGA-sequenced cancers. The R language was used to conduct KEGG and GO enrichment analyses. Besides, we built a risk-score model of hepatocellular carcinoma (HCC) and validated its prognostic classification efficiency. RESULTS On balance, PHF19 expression was significantly higher in cancers in comparison with that in noncancerous samples. Increased expression of PHF19 was detrimental to the clinical prognoses of cancer patients, especially HCC. There were significant correlations between PHF19 expression and TMB or MSI in several cancers. High PHF19 levels were critically associated with the infiltration of myeloid-derived suppressor cells (MDSCs) and Th2 subsets of CD4+ T cells in most cancers. Enrichment analyses revealed that PHF19 participated in regulating carcinogenic processes including cell cycle and DNA replication, and was correlated with the progression of HCC. Intriguingly, GSEA suggested that PHF19 was correlated with the cellular components including immunoglobulin complex and T cell receptor complex in HCC. Based on PHF19-associated functional gene sets, an eleven-gene prognostic signature was constructed to predict HCC prognosis. Finally, we validated pan-cancer PHF19 expression, and its impacts on immune infiltrates in HCC. CONCLUSION The epigenetic related regulator PHF19 participates in the carcinogenic progression of multiple cancers, and may contribute to the immune infiltration in tumor microenvironment. Our study suggests that PHF19 can serve as a carcinogenic indicator related to prognosis in pan-cancer, especially HCC, and shed new light on therapeutics of cancers for clinicians.
Collapse
Affiliation(s)
- Zheng-yi Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ning Tang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming-fu Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-chao Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-lin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Jahan AS, Elbæk CR, Damgaard RB. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond. Cell Death Differ 2021; 28:473-492. [PMID: 33441937 DOI: 10.1038/s41418-020-00676-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Post-translational modification of proteins with ubiquitin (ubiquitination) provides a rapid and versatile mechanism for regulating cellular signalling systems. Met1-linked (or 'linear') ubiquitin chains have emerged as a key regulatory signal that controls cell death, immune signalling, and other vital cellular functions. The molecular machinery that assembles, senses, and disassembles Met1-linked ubiquitin chains is highly specific. In recent years, the thorough biochemical and genetic characterisation of the enzymes and proteins of the Met1-linked ubiquitin signalling machinery has paved the way for substantial advances in our understanding of how Met1-linked ubiquitin chains control cell signalling and biology. Here, we review current knowledge and recent insights into the role of Met1-linked ubiquitin chains in cell signalling with an emphasis on their role in disease biology. Met1-linked ubiquitin has potent regulatory functions in immune signalling, NF-κB transcription factor activation, and cell death. Importantly, mounting evidence shows that dysregulation of Met1-linked ubiquitin signalling is associated with multiple human diseases, including immune disorders, cancer, and neurodegeneration. We discuss the latest evidence on the cellular function of Met1-linked ubiquitin in the context of its associated diseases and highlight new emerging roles of Met1-linked ubiquitin chains in cell signalling, including regulation of protein quality control and metabolism.
Collapse
Affiliation(s)
- Akhee Sabiha Jahan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
6
|
Crisci E, Moroldo M, Vu Manh TP, Mohammad A, Jourdren L, Urien C, Bouguyon E, Bordet E, Bevilacqua C, Bourge M, Pezant J, Pléau A, Boulesteix O, Schwartz I, Bertho N, Giuffra E. Distinctive Cellular and Metabolic Reprogramming in Porcine Lung Mononuclear Phagocytes Infected With Type 1 PRRSV Strains. Front Immunol 2020; 11:588411. [PMID: 33365028 PMCID: PMC7750501 DOI: 10.3389/fimmu.2020.588411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has an extensive impact on pig production. The causative virus (PRRSV) is divided into two species, PRRSV-1 (European origin) and PRRSV-2 (North American origin). Within PRRSV-1, PRRSV-1.3 strains, such as Lena, are more pathogenic than PRRSV-1.1 strains, such as Flanders 13 (FL13). To date, the molecular interactions of PRRSV with primary lung mononuclear phagocyte (MNP) subtypes, including conventional dendritic cells types 1 (cDC1) and 2 (cDC2), monocyte-derived DCs (moDC), and pulmonary intravascular macrophages (PIM), have not been thoroughly investigated. Here, we analyze the transcriptome profiles of in vivo FL13-infected parenchymal MNP subpopulations and of in vitro FL13- and Lena-infected parenchymal MNP. The cell-specific expression profiles of in vivo sorted cells correlated with their murine counterparts (AM, cDC1, cDC2, moDC) with the exception of PIM. Both in vivo and in vitro, FL13 infection altered the expression of a low number of host genes, and in vitro infection with Lena confirmed the higher ability of this strain to modulate host response. Machine learning (ML) and gene set enrichment analysis (GSEA) unraveled additional relevant genes and pathways modulated by FL13 infection that were not identified by conventional analyses. GSEA increased the cellular pathways enriched in the FL13 data set, but ML allowed a more complete comprehension of functional profiles during FL13 in vitro infection. Data indicates that cellular reprogramming differs upon Lena and FL13 infection and that the latter might keep antiviral and inflammatory macrophage/DC functions silent. Although the slow replication kinetics of FL13 likely contribute to differences in cellular gene expression, the data suggest distinct mechanisms of interaction of the two viruses with the innate immune system during early infection.
Collapse
Affiliation(s)
- Elisa Crisci
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Marco Moroldo
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Ammara Mohammad
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Celine Urien
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elise Bordet
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Mickael Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jérémy Pezant
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Alexis Pléau
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Olivier Boulesteix
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Isabelle Schwartz
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabetta Giuffra
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
7
|
Speir M, Lawlor KE. RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin Cell Dev Biol 2020; 109:114-124. [PMID: 32771377 DOI: 10.1016/j.semcdb.2020.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/05/2023]
Abstract
Autoinflammatory syndromes comprise a spectrum of clinical disorders characterised by recurrent, inflammatory episodes, many of which result from the release of the pro-inflammatory cytokine, interleukin-1β (IL-1β). Inflammation and programmed cell death are tightly linked, and lytic forms of cell death, such as necroptosis and pyroptosis, are considered to be inflammatory due to the release of damage-associated molecular patterns (DAMPs). In contrast, apoptosis is traditionally regarded as immunologically silent. Recent studies, however, have uncovered a high degree of crosstalk between cell death and inflammatory signalling pathways, and effectively consolidated them into one interconnected network that converges on NLRP3 inflammasome-mediated activation of IL-1β. The receptor-interacting protein kinases (RIPK) 1 and 3 are central to this network, as highlighted by the fact that mutations in genes encoding repressors of RIPK1 and/or RIPK3 activity can lead to heightened inflammation, particularly via NLRP3 inflammasome activation. In this review, we give an overview of extrinsic cell death and inflammatory signalling pathways, and then highlight the growing number of autoinflammatory diseases that are associated with aberrant cell death and inflammasome activation.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia.
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Crosstalk between Dendritic Cells and Immune Modulatory Agents against Sepsis. Genes (Basel) 2020; 11:genes11030323. [PMID: 32197507 PMCID: PMC7140865 DOI: 10.3390/genes11030323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.
Collapse
|
9
|
Khaliullin TO, Yanamala N, Newman MS, Kisin ER, Fatkhutdinova LM, Shvedova AA. Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes. Toxicol Appl Pharmacol 2020; 390:114898. [PMID: 31978390 DOI: 10.1016/j.taap.2020.114898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) causes inflammation, fibroproliferation, immunotoxicity, and systemic responses in rodents. However, the search for representative biomarkers of exposure is an ongoing endeavor. Whole blood gene expression profiling is a promising new approach for the identification of novel disease biomarkers. We asked if the whole blood transcriptome reflects pathology-specific changes in lung gene expression caused by MWCNT. To answer this question, we performed mRNA sequencing analysis of the whole blood and lung in mice administered MWCNT or vehicle solution via pharyngeal aspiration and sacrificed 56 days later. The pattern of lung mRNA expression as determined using Ingenuity Pathway Analysis (IPA) was indicative of continued inflammation, immune cell trafficking, phagocytosis, and adaptive immune responses. Simultaneously, innate immunity-related transcripts (Plunc, Bpifb1, Reg3g) and cancer-related pathways were downregulated. IPA analysis of the differentially expressed genes in the whole blood suggested increased hematopoiesis, predicted activation of cancer/tumor development pathways, and atopy. There were several common upregulated genes between whole blood and lungs, important for adaptive immune responses: Cxcr1, Cd72, Sharpin, and Slc11a1. Trim24, important for TH2 cell effector function, was downregulated in both datasets. Hla-dqa1 mRNA was upregulated in the lungs and downregulated in the blood, as was Lilrb4, which controls the reactivity of immune response. "Cancer" disease category had opposing activation status in the two datasets, while the only commonality was "Hypersensitivity". Transcriptome changes occurring in the lungs did not produce a completely replicable pattern in whole blood; however, specific systemic responses may be shared between transcriptomic profiles.
Collapse
Affiliation(s)
- Timur O Khaliullin
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Naveena Yanamala
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Mackenzie S Newman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Elena R Kisin
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Liliya M Fatkhutdinova
- Department of Hygiene and Occupational Medicine, Kazan State Medical University, Kazan, Russia
| | - Anna A Shvedova
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| |
Collapse
|
10
|
Kumar S, Jeong Y, Ashraf MU, Bae YS. Dendritic Cell-Mediated Th2 Immunity and Immune Disorders. Int J Mol Sci 2019; 20:ijms20092159. [PMID: 31052382 PMCID: PMC6539046 DOI: 10.3390/ijms20092159] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells that recognize and present antigens to naïve T cells to induce antigen-specific adaptive immunity. Among the T-cell subsets, T helper type 2 (Th2) cells produce the humoral immune responses required for protection against helminthic disease by activating B cells. DCs induce a Th2 immune response at a certain immune environment. Basophil, eosinophil, mast cells, and type 2 innate lymphoid cells also induce Th2 immunity. However, in the case of DCs, controversy remains regarding which subsets of DCs induce Th2 immunity, which genes in DCs are directly or indirectly involved in inducing Th2 immunity, and the detailed mechanisms underlying induction, regulation, or maintenance of the DC-mediated Th2 immunity against allergic environments and parasite infection. A recent study has shown that a genetic defect in DCs causes an enhanced Th2 immunity leading to severe atopic dermatitis. We summarize the Th2 immune-inducing DC subsets, the genetic and environmental factors involved in DC-mediated Th2 immunity, and current therapeutic approaches for Th2-mediated immune disorders. This review is to provide an improved understanding of DC-mediated Th2 immunity and Th1/Th2 immune balancing, leading to control over their adverse consequences.
Collapse
Affiliation(s)
- Sunil Kumar
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yideul Jeong
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Muhammad Umer Ashraf
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yong-Soo Bae
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
11
|
Moghimi B, Barrett D. CAR T Cells for Solid Tumors. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wang X, Xiao Q, Wang Z, Feng WL. CAR-T therapy for leukemia: progress and challenges. Transl Res 2017; 182:135-144. [PMID: 27855281 DOI: 10.1016/j.trsl.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 01/07/2023]
Abstract
Despite the rapid development of therapeutic strategies, leukemia remains a type of difficult-to-treat hematopoietic malignancy that necessitates introduction of more effective treatment options to improve life expectancy and quality of patients. Genetic engineering in adoptively transferred T cells to express antigen-specific chimeric antigen receptors (CARs) has proved highly powerful and efficacious in inducing sustained responses in patients with refractory malignancies, as exemplified by the success of CD19-targeting CAR-T treatment in patients with relapsed acute lymphoblastic leukemia. Recent strategies, including manipulating intracellular activating domains and transducing viral vectors, have resulted in better designed and optimized CAR-T cells. This is further facilitated by the rapid identification of an accumulating number of potential leukemic antigens that may serve as therapeutic targets for CAR-T cells. This review will provide a comprehensive background and scrutinize recent important breakthrough studies on anti-leukemia CAR-T cells, with focus on recently identified antigens for CAR-T therapy design and approaches to overcome critical challenges.
Collapse
Affiliation(s)
- Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhe Wang
- Department of Melanoma Medical Oncology, and the University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Wen-Li Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Zinngrebe J, Walczak H. TLRs Go Linear – On the Ubiquitin Edge. Trends Mol Med 2017; 23:296-309. [DOI: 10.1016/j.molmed.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
|
14
|
HogenEsch H, Sola M, Stearns TM, Silva KA, Kennedy VE, Sundberg JP. Angiogenesis in the skin of SHARPIN-deficient mice with chronic proliferative dermatitis. Exp Mol Pathol 2016; 101:303-307. [PMID: 27794420 DOI: 10.1016/j.yexmp.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 01/16/2023]
Abstract
Angiogenesis is a common feature of pathological processes including wound healing, tumor formation, and chronic inflammation. Chronic inflammation can also be associated with dilation or proliferation of lymph vessels. We examined blood vessels and lymphatics and the expression of pro- and anti-angiogenic genes in the skin of SHARPIN-deficient mice which spontaneously develop a chronic proliferative dermatitis (cpdm). The number of blood vessels in the dermis of cpdm mice increased with age as the inflammation progressed. Lymphatics identified by labeling for LYVE1 and podoplanin were moderately dilated, but they were not increased in number. The expression of proangiogenic Vegfa, Flt1 and anti-angiogenic Sema3a mRNA was increased. VEGFA was primarily localized in keratinocytes of cpdm skin. There was also increased expression of Ece1 and Pdpn mRNA. Podoplanin was restricted to lymphatic endothelial cells in normal skin, but fibroblasts in cpdm skin also reacted with anti-podoplanin antibodies indicating that they were activated. The expression of other angiogenic and lymphangiogenic factors was not altered or decreased. These results indicate that cpdm mice may be a useful model to study the pathogenesis of angiogenesis in chronic inflammation.
Collapse
Affiliation(s)
- Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Immunology, Inflammation and Infectious Diseases, Purdue University, West Lafayette, IN 47907, United States; The Jackson Laboratory, Bar Harbor, ME 04609, United States.
| | - Mario Sola
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | | | | | | | - John P Sundberg
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States; The Jackson Laboratory, Bar Harbor, ME 04609, United States
| |
Collapse
|
15
|
Du J, Han JC, Zhang YJ, Qi GB, Li HB, Zhang YJ, Cai S. Single-Nucleotide Polymorphisms of IL-17 Gene Are Associated with Asthma Susceptibility in an Asian Population. Med Sci Monit 2016; 22:780-7. [PMID: 26954344 PMCID: PMC4793684 DOI: 10.12659/msm.895494] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The aim of this study was to examine the associations between the single-nucleotide polymorphisms (SNPs) of interleukin-17 (IL-17), including rs763780 (7488A/G), rs2275913 (-197G/A), and rs8193036 (-737C/T), and asthma susceptibility in an Asian population. MATERIAL/METHODS From Oct 2013 to Dec 2014, 125 asthma patients enrolled in our hospital were selected as the case group. Another 132 healthy controls undergoing physical examinations in our hospital were enrolled as the control group. The genotype frequencies of IL-17 rs763780, rs2275913 and rs8193036 SNPs were detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Comprehensive Meta-analysis 2.0 (CMA 2.0) software was applied for meta-analysis. RESULTS Our results demonstrated that asthma patients presented with higher frequencies of GA genotype in rs2275913 and TT genotype in rs8193036 of IL-17 than healthy controls (both P<0.001). The genotype frequencies of IL-17 rs763780 between the asthma patients and healthy controls exhibited no significant differences (P>0.05). The comparisons on the rs2275913 and rs8193036 frequencies between the asthma patients and healthy controls were statistically significant in both allele and addictive models (all P<0.05). The frequency of IL-17 rs763780 between the asthma patients and healthy controls were statistically different in allele models (P<0.05), but not in addictive models (P>0.05). The overall results of our case-control study were further confirmed by meta-analysis. CONCLUSIONS Our results revealed that, in an Asian population, IL-17 rs763780, rs2275913, and rs8193036 SNPs may be associated with asthma susceptibility, and GA genotype in rs2275913 and TT genotype in rs8193036 of IL-17 may contribute to increased risk of asthma in Asians.
Collapse
Affiliation(s)
- Jin Du
- Department of Respiratory Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Ji-Chang Han
- Department of Respiratory Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Ya-Jun Zhang
- Department of Respiratory Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Guan-Bin Qi
- Department of Respiratory Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Hong-Bing Li
- Department of Respiratory Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Yi-Jie Zhang
- Department of Respiratory Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Shao Cai
- Department of Respiratory Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| |
Collapse
|
16
|
Sundberg JP, Pratt CH, Silva KA, Kennedy VE, Stearns TM, Sundberg BA, King LE, HogenEsch H. Dermal lymphatic dilation in a mouse model of alopecia areata. Exp Mol Pathol 2016; 100:332-6. [PMID: 26960166 DOI: 10.1016/j.yexmp.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/23/2023]
Abstract
Mouse models of various types of inflammatory skin disease are often accompanied by increased dermal angiogenesis. The C3H/HeJ inbred strain spontaneously develops alopecia areata (AA), a cell mediated autoimmune disorder that can be controllably expanded using full thickness skin grafts to young unaffected mice. This provides a reproducible and progressive model for AA in which the vascularization of the skin can be examined. Mice receiving skin grafts from AA or normal mice were evaluated at 5, 10, 15, and 20 weeks after engraftment. Lymphatics are often overlooked as they are small slit-like structures above the hair follicle that resemble artifact-like separation of collagen bundles with some fixatives. Lymphatics are easily detected using lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) by immunohistochemistry to label their endothelial cells. Using LYVE1, there were no changes in distribution or numbers of lymphatics although they were more prominent (dilated) in the mice with AA. Lyve1 transcripts were not significantly upregulated except at 10 weeks after skin grafting when clinical signs of AA first become apparent. Other genes involved with vascular growth and dilation or movement of immune cells were dysregulated, mostly upregulated. These findings emphasize aspects of AA not commonly considered and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA; Division of Dermatology, Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | - Lloyd E King
- Division of Dermatology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Park Y, Jin HS, Lopez J, Lee J, Liao L, Elly C, Liu YC. SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex. Nat Immunol 2016; 17:286-96. [PMID: 26829767 PMCID: PMC4919114 DOI: 10.1038/ni.3352] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
SHARPIN forms a linear-ubiquitin-chain-assembly complex that promotes signaling via the transcription factor NF-κB. SHARPIN deficiency leads to progressive multi-organ inflammation and immune system malfunction, but how SHARPIN regulates T cell responses is unclear. Here we found that SHARPIN deficiency resulted in a substantial reduction in the number of and defective function of regulatory T cells (Treg cells). Transfer of SHARPIN-sufficient Treg cells into SHARPIN-deficient mice considerably alleviated their systemic inflammation. SHARPIN-deficient T cells displayed enhanced proximal signaling via the T cell antigen receptor (TCR) without an effect on the activation of NF-κB. SHARPIN conjugated with Lys63 (K63)-linked ubiquitin chains, which led to inhibition of the association of TCRζ with the signaling kinase Zap70; this affected the generation of Treg cells. Our study therefore identifies a role for SHARPIN in TCR signaling whereby it maintains immunological homeostasis and tolerance by regulating Treg cells.
Collapse
Affiliation(s)
- Yoon Park
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-Seung Jin
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Justine Lopez
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Lujian Liao
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Chris Elly
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Zhang C, Zeng X, Li Z, Wang Z, Li S. Immunoglobulin A nephropathy: current progress and future directions. Transl Res 2015; 166:134-44. [PMID: 25797891 DOI: 10.1016/j.trsl.2015.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/10/2023]
Abstract
Immunoglobulin A (IgA) nephropathy is the most prevalent form of primary glomerulonephritis that often leads to end-stage kidney failure, thereby representing a major health challenge worldwide. Tremendous effort has been dedicated to the diagnosis, monitoring, and treatment of the disease, and the past several years have witnessed exciting advances that have enriched our understanding of the biology, etiology, and pathology of IgA nephropathy. The disease is characterized by predominant deposition of IgA immune complexes that progressively causes activation of mesangial cells, glomerular inflammation, and ultimately renal injury. Multiple recent independent high-throughput studies in cohorts have identified key susceptibility alleles, such as the major histocompatibility complex loci that are significantly associated with the risk of disease occurrence. Notably, a fraction of these risk loci encode proteins that participate in immune defense against mucosal pathogens, particularly intestinal nematodes, indicating a linkage between IgA-mediated antihelminth immunity and the pathogenesis of IgA nephropathy. The emerging "omics" technology also allows for systemic analysis of urinary and serum samples as a noninvasive procedure for diagnosis and prognosis, as demonstrated by several studies implicating the proteomic signature and microRNA profile as promising diagnostic and prognostic parameters. In the clinic, the current treatment protocol relies on suppression of the renin-angiotensin system to control blood pressure and proteinuria. This review scrutinizes and summarizes recent relevant findings that aim to translate researchers' benchside knowledge of disease initiation and development into patients' bedside diagnosis and therapy.
Collapse
Affiliation(s)
- Chunlei Zhang
- Laboratory of Science Department, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Xuehui Zeng
- Laboratory of Science Department, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Zhongxin Li
- Laboratory of Science Department, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Zhe Wang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Shunmin Li
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China.
| |
Collapse
|
19
|
Hu Y, Chen G. Pathogenic mechanisms of lung adenocarcinoma in smokers and non-smokers determined by gene expression interrogation. Oncol Lett 2015; 10:1350-1370. [PMID: 26622675 DOI: 10.3892/ol.2015.3462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/19/2015] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoking is the leading risk factor for lung cancer, which accounts for the highest number of cancer-related mortalities worldwide in men and women. Individuals with a history of smoking are 15-30 times more likely to develop lung cancer compared with those who do not smoke. However, our understanding of the underlying molecular mechanisms that contribute to lung tumorigenesis in smokers versus non-smokers remains incomplete. In order to investigate such mechanisms, the present study aimed to systemically interrogate microarray datasets from tumor biopsies and matching normal tissues from stage I and II lung adenocarcinoma patients who had never smoked or were current smokers. The gene expression analysis identified 422 (99 upregulated and 323 downregulated) and 534 (174 upregulated and 360 downregulated) differentially-expressed genes from the never-smokers and current smokers, respectively, and the two groups shared 277 genes that exhibited similar trends of alteration. These genes encode regulators that are involved in a variety of cellular functions, including collagen metabolism and homeostasis of caveolae plasma membranes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes characterization indicated that biological pathways, including extracellular matrix-receptor interaction and cell migration and proliferation, were all affected in the lung cancer patients regardless of the smoking status. However, smoking induced a unique gene expression pattern characterized by upregulation of cell cycle regulators (CDK1, CCNB1 and CDC20), as well as significantly affected biological networks, including p53 signaling pathways. Taken together, these findings suggest novel mechanistic insights, and provide an improved understanding of the smoking-induced molecular alterations that contribute to the pathogenesis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yunqian Hu
- Department of Respiration, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Guohan Chen
- Department of Thoracic Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
20
|
De Melo J, Tang D. Elevation of SIPL1 (SHARPIN) Increases Breast Cancer Risk. PLoS One 2015; 10:e0127546. [PMID: 25992689 PMCID: PMC4438068 DOI: 10.1371/journal.pone.0127546] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
SIPL1 (Sharpin) or Sharpin plays a role in tumorigenesis. However, its involvement in breast cancer tumorigenesis remains largely unknown. To investigate this issue, we have systemically analyzed SIPL1 gene amplification and expression data available from Oncomine datasets, which were derived from 17 studies and contained approximately 20,000 genes, 3438 breast cancer cases, and 228 normal individuals. We found a SIPL1 gene amplification in invasive ductal breast cancers compared to normal breast tissues and a significant elevation of SIPL1 mRNA in breast cancers in comparison to non-tumor breast tissues. These results collectively reveal that increases in SIPL1 expression occur during breast cancer tumorigenesis. To further investigate this association, we observed increases in the SIPL1 gene and mRNA in the breast cancer subtypes of estrogen receptor (ER)+, progesterone receptor (PR)+, HER2+, or triple negative. Additionally, a gain of the SIPL1 gene correlated with breast cancer grade and the levels of SIPL1 mRNA associated with both breast cancer stages and grades. Elevation of SIPL1 gene copy and mRNA is linked to a decrease in patient survival, especially for those with PR+, ER+, or HER2- breast cancers. These results are supported by our analysis of SIPL1 protein expression using a tissue microarray containing 224 breast cancer cases, in which higher levels of SIPL1 relate to ER+ and PR+ tumors and AKT activation. Furthermore, we were able to show that progesterone significantly reduced SIPL1 mRNA and protein expression in MCF7 cells. As progesterone enhances breast cancer tumorigenesis in a context dependent manner, inhibition of SIPL1 expression may contribute to progesterone's non-tumorigenic function which might be countered by SIPL1 upregulation. Taken together, we demonstrate a positive correlation of SIPL1 with BC tumorigenesis.
Collapse
Affiliation(s)
- Jason De Melo
- Division of Nephrology, Department of Medicine, McMaster University, Ontario, Canada
- Father Sean O’Sullivan Research Institute, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph’s Hospital, Hamilton, Ontario, Canada
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Ontario, Canada
- Father Sean O’Sullivan Research Institute, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph’s Hospital, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Zhang Y, Huang H, Zhou H, Du T, Zeng L, Cao Y, Chen J, Lai Y, Li J, Wang G, Guo Z. Activation of nuclear factor κB pathway and downstream targets survivin and livin by SHARPIN contributes to the progression and metastasis of prostate cancer. Cancer 2014; 120:3208-18. [PMID: 24925528 DOI: 10.1002/cncr.28796] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Nuclear factor κB (NFκB) signaling is strongly associated with tumor progression, and studies have shown that SHANK-associated RH domain interacting protein (SHARPIN) is crucial for NFκB pathway activation. However, the expression and functions of SHARPIN in prostate cancer (PCa) have not yet been defined. METHODS The expression of SHARPIN in PCa cell lines and tissues was evaluated with western blotting, quantitative real-time polymerase chain reaction, and immunohistochemistry. After SHARPIN was silenced in the PCa cell lines, western blots were used to confirm that SHARPIN physically associated with components of the NFκB pathway and the downstream targets (survivin and livin). The functions of SHARPIN in cell proliferation, migration, and invasion in vitro were measured with 5-(3-carboxymethoxyphenyl)-2-(4,5-dimenthylthiazoly)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS), Transwell, and invasion assays, respectively. Flow cytometry was employed to evaluate cell apoptosis. Furthermore, tumorigenesis in vivo was examined with tumorigenicity assays. RESULTS SHARPIN expression was upregulated in PCa cell lines and tissues. The knockdown of SHARPIN or incubation with Bay 11-7082 (an NFκB inhibitor) led to dramatically decreased levels of phosphorylated IκBα and phosphorylated p65 in comparison with the control group. Downregulation of survivin and livin due to SHARPIN inhibition was attributable to transcriptional repression (P < .05). Decreases in cell viability, migration, invasion, and survival with a higher sensitivity to docetaxel in vitro and with repressed tumorigenesis in vivo were observed upon SHARPIN silencing, and this was consistent with the results from inhibition of the NFκB pathway and its downstream targets. CONCLUSION The current study demonstrates that overexpression of SHARPIN promotes activation of the NFκB pathway and downstream targets survivin and livin, which potentially contributes to PCa development.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tamiya H, Terao M, Takiuchi T, Nakahara M, Sasaki Y, Katayama I, Yoshikawa H, Iwai K. IFN-γ or IFN-α ameliorates chronic proliferative dermatitis by inducing expression of linear ubiquitin chain assembly complex. THE JOURNAL OF IMMUNOLOGY 2014; 192:3793-804. [PMID: 24634492 DOI: 10.4049/jimmunol.1302308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The linear ubiquitin chain assembly complex (LUBAC) ubiquitin ligase complex, composed of HOIL-1L-interacting protein (HOIP), heme-oxidized IRP2 ubiquitin ligase-1L (HOIL-1L), and SHANK-associated RH domain protein, specifically generates linear polyubiquitin chains and is involved in NF-κB activation. Lack of SHANK-associated RH domain protein, which drastically reduces the amount of HOIP and HOIL-1L, causes chronic proliferative dermatitis (cpdm) in mice. Impaired NF-κB activation and augmented apoptosis have been implicated in the pathogenesis of cpdm in mice. In this study, we found that IFN-γ increased the amount of LUBAC by inducing HOIP and HOIL-1L mRNA transcription and enhanced the signal-induced NF-κB activation in embryonic fibroblasts, keratinocytes, and bone marrow-derived macrophages from wild-type and/or cpdm mice; however, IFN-γ failed to augment NF-κB activation in mouse embryonic fibroblasts lacking linear polyubiquitination activity of LUBAC. Moreover, s.c. injection of IFN-γ for 3 wk into the skin of cpdm mice increased the amount of HOIP, suppressed apoptosis, and ameliorated the dermatitis. Inhibition of keratinocyte apoptosis by IFN-γ injection suppressed neutrophil, macrophage, and mast cell infiltration and the amount of TNF-α in the skin of cpdm mice. Similarly, IFN-α also enhanced the amount of HOIP as well as NF-κB activation, inhibited apoptosis, and ameliorated cpdm dermatitis. These results indicate that the IFNs enhance NF-κB activation and ameliorate cpdm dermatitis by augmenting expression of HOIP and HOIL-1L and linear polyubiquitination activity of LUBAC.
Collapse
Affiliation(s)
- Hironari Tamiya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Potter CS, Wang Z, Silva KA, Kennedy VE, Stearns TM, Burzenski L, Shultz LD, HogenEsch H, Sundberg JP. Chronic proliferative dermatitis in Sharpin null mice: development of an autoinflammatory disease in the absence of B and T lymphocytes and IL4/IL13 signaling. PLoS One 2014; 9:e85666. [PMID: 24465642 PMCID: PMC3897490 DOI: 10.1371/journal.pone.0085666] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/01/2013] [Indexed: 12/30/2022] Open
Abstract
SHARPIN is a key regulator of NFKB and integrin signaling. Mice lacking Sharpin develop a phenotype known as chronic proliferative dermatitis (CPDM), typified by progressive epidermal hyperplasia, apoptosis of keratinocytes, cutaneous and systemic eosinophilic inflammation, and hypoplasia of secondary lymphoid organs. Rag1(-/-) mice, which lack mature B and T cells, were crossed with Sharpin(-/-) mice to examine the role of lymphocytes in CDPM. Although inflammation in the lungs, liver, and joints was reduced in these double mutant mice, dermatitis was not reduced in the absence of functional lymphocytes, suggesting that lymphocytes are not primary drivers of the inflammation in the skin. Type 2 cytokine expression is increased in CPDM. In an attempt to reduce this aspect of the phenotype, Il4ra(-/-) mice, unresponsive to both IL4 and IL13, were crossed with Sharpin(-/-) mice. Double homozygous Sharpin(-/-) , Il4ra(-/-) mice developed an exacerbated granulocytic dermatitis, acute system inflammation, as well as hepatic necrosis and mineralization. High expression of CHI3L4, normally seen in CPDM skin, was abolished in Sharpin(-/-) , Il4ra(-/-) double mutant mice indicating the crucial role of IL4 and IL13 in the expression of this protein. Cutaneous eosinophilia persisted in Sharpin(-/-) , Il4ra(-/-) mice, although expression of Il5 mRNA was reduced and the expression of Ccl11 and Ccl24 was completely abolished. TSLP and IL33 were both increased in the skin of Sharpin(-/-) mice and this was maintained in Sharpin(-/-) , Il4ra(-/-) mice suggesting a role for TSLP and IL33 in the eosinophilic dermatitis in SHARPIN-deficient mice. These studies indicate that cutaneous inflammation in SHARPIN-deficient mice is autoinflammatory in nature developing independently of B and T lymphocytes, while the systemic inflammation seen in CPDM has a strong lymphocyte-dependent component. Both the cutaneous and systemic inflammation is enhanced by loss of IL4 and IL13 signaling indicating that these cytokines normally play an anti-inflammatory role in SHARPIN-deficient mice.
Collapse
Affiliation(s)
| | - Zhe Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | | | | | | | - Lisa Burzenski
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
24
|
Pouwels J, De Franceschi N, Rantakari P, Auvinen K, Karikoski M, Mattila E, Potter C, Sundberg JP, Hogg N, Gahmberg CG, Salmi M, Ivaska J. SHARPIN regulates uropod detachment in migrating lymphocytes. Cell Rep 2013; 5:619-28. [PMID: 24210817 DOI: 10.1016/j.celrep.2013.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/08/2013] [Accepted: 10/06/2013] [Indexed: 01/13/2023] Open
Abstract
SHARPIN-deficient mice display a multiorgan chronic inflammatory phenotype suggestive of altered leukocyte migration. We therefore studied the role of SHARPIN in lymphocyte adhesion, polarization, and migration. We found that SHARPIN localizes to the trailing edges (uropods) of both mouse and human chemokine-activated lymphocytes migrating on intercellular adhesion molecule-1 (ICAM-1), which is one of the major endothelial ligands for migrating leukocytes. SHARPIN-deficient cells adhere better to ICAM-1 and show highly elongated tails when migrating. The increased tail lifetime in SHARPIN-deficient lymphocytes decreases the migration velocity. The adhesion, migration, and uropod defects in SHARPIN-deficient lymphocytes were rescued by reintroducing SHARPIN into the cells. Mechanistically, we show that SHARPIN interacts directly with lymphocyte-function-associated antigen-1 (LFA-1), a leukocyte counterreceptor for ICAM-1, and inhibits the expression of intermediate and high-affinity forms of LFA-1. Thus, SHARPIN controls lymphocyte migration by endogenously maintaining LFA-1 inactive to allow adjustable detachment of the uropods in polarized cells.
Collapse
Affiliation(s)
- Jeroen Pouwels
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland.,Turku Centre for Biotechnology, University of Turku, 20521 Turku, Finland
| | - Nicola De Franceschi
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland.,Turku Centre for Biotechnology, University of Turku, 20521 Turku, Finland
| | - Pia Rantakari
- Medicity Research Laboratory, University of Turku, 20521 Turku, Finland
| | - Kaisa Auvinen
- Medicity Research Laboratory, University of Turku, 20521 Turku, Finland.,National Institute for Health and Welfare, Inflammatory Mechanisms unit, 20521 Turku, Finland
| | - Marika Karikoski
- Medicity Research Laboratory, University of Turku, 20521 Turku, Finland
| | - Elina Mattila
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland
| | | | | | - Nancy Hogg
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Carl G Gahmberg
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marko Salmi
- Medicity Research Laboratory, University of Turku, 20521 Turku, Finland.,Department of Medical Biochemistry and Genetics, University of Turku, 20521 Turku, Finland.,National Institute for Health and Welfare, Inflammatory Mechanisms unit, 20521 Turku, Finland
| | - Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland.,Turku Centre for Biotechnology, University of Turku, 20521 Turku, Finland.,Department of Biochemistry and Food Chemistry, University of Turku, 20521 Turku, Finland
| |
Collapse
|
25
|
Soboleva A, Sobolev V, Bruskin S, Mezentsev A. Three-dimensional model of mouse epidermis for experimental studies of psoriasis. Acta Naturae 2013; 5:110-7. [PMID: 24455190 PMCID: PMC3890996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Three-dimensional models of skin and epidermis imitate the structure of real tissues and provide accurate information about certain skin conditions, such as psoriasis. A three-dimensional model of mouse epidermis was generated from the epidermal keratinocytes of newborn mice and treated with cytokines. The aim of this study was to evaluate this model as an experimental model of psoriasis and to assess the changes occurring in its structure and gene expression after the exposure to proinflammatory cytokines. Treatment of the three-dimensional model with either interleukin 17 or a combination of tumor necrosis factor and interferon γ was shown to produce morphological changes, which were similar to acanthosis in psoriatic skin. The observed changes in gene expression of metalloproteinases and certain psoriasis biomarkers, such as mki67, krt16 and fosl1, were similar to the changes in patients' skin. Notably, changes caused by interleukin 17 were less evident than those caused by the combination of interferon γ and tumor necrosis factor. On the contrary, HaCaT cells exhibited no significant changes in the expression of fosl1 and had decreased levels of mki67 after being treated with a combination of TNF and IFNG. Moreover, treatment with IL17 had no significant effect on krt16 and mki67 expression and even reduced the fosl1 levels. The findings suggest that artificially generated three-dimensional models of murine skin can be used to study psoriasis.
Collapse
Affiliation(s)
- A.G. Soboleva
- Federal Non-profit Research Institute of Russian Academy of Sciences, N.I. Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - V.V. Sobolev
- Federal Non-profit Research Institute of Russian Academy of Sciences, N.I. Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - S.A. Bruskin
- Federal Non-profit Research Institute of Russian Academy of Sciences, N.I. Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - A.V. Mezentsev
- Federal Non-profit Research Institute of Russian Academy of Sciences, N.I. Vavilov Institute of General Genetics, Moscow 119991, Russia
| |
Collapse
|
26
|
Valetto A, Bertini V, Toschi B, Simi P. A 47,XX,+der(21)t(8;21)(q24.2;q21.1) karyotype in a patient with mild intellectual disability, cleft lip, Hashimoto thyroiditis and hirsutism. Am J Med Genet A 2013; 161A:2389-92. [PMID: 23897865 DOI: 10.1002/ajmg.a.36039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/19/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Angelo Valetto
- Medical Genetic Unit, A.O.U. Pisana, Ospedale S. Chiara, Pisa, Italy.
| | | | | | | |
Collapse
|
27
|
Yin W, Ouyang S, Li Y, Xiao B, Yang H. Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation 2013; 36:232-40. [PMID: 22956173 DOI: 10.1007/s10753-012-9539-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exosomes, 60-90-nm-sized vesicles, are produced by a large number of cell types, including tumor cells, neurons, astrocytes, hemocytes, intestinal epithelial cells, and so on. Dendritic cell (DC), the most potent professional antigen-presenting cell in the immune system, produces exosomes in the course of maturation. Mature DCs produce exosomes with the ability to elicit potent immunoactivation, resulting in tumor eradication and bacterial or virus elimination. Given the notion that exosomes are stable and easy to be modified artificially, autologous mature DC-derived exosomes have been vaccinated into patients with malignant diseases. In clinical trials utilizing exosomes as therapeutic approaches, researchers observed considerable curative effect with little side effect. However, immature or suppressive DC-derived exosomes harbor anti-inflammatory properties distinct from mature DC-derived exosomes. In murine models of autoimmune disease and transplantation, immature DC-derived exosomes reduced T cell-dependent immunoactivation, relieved clinical manifestation of autoimmune disease, and prolonged survival time of transplantation. Although the exact mechanism of how immature DC-derived exosomes function in vivo is still unclear, and there are no clinical trials regarding application of exosome vaccine into patients with autoimmune disease, we will analyze the promise of immature DC-derived exosomes as a subcellular vaccine in autoimmunity in this review.
Collapse
Affiliation(s)
- Weifan Yin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | | | | | | | | |
Collapse
|
28
|
Kono T, Korenaga H. Cytokine Gene Expression in CD4 Positive Cells of the Japanese Pufferfish, Takifugu rubripes. PLoS One 2013; 8:e66364. [PMID: 23823320 PMCID: PMC3688880 DOI: 10.1371/journal.pone.0066364] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
CD4+ T (Th) cells are a central component of the adaptive immune response and are divided into distinct sets based on their specific cytokine production pattern. Several reports have suggested that fish possess Th subset activity similar to that of mammals. The aim of the present study was to isolate CD4+ T cells from the blood of Japanese pufferfish, Fugu rubripes, and to characterize their cytokine expression profile. We produced a specific antibody against Fugu CD4 and performed cell sorting with the magnetic activated cell sorting system. Sorted Fugu CD4+ cells were characterized by morphology and expression analysis of cell marker genes. Fugu CD4+ cells expressed T-cell marker genes but not macrophage or B-cell marker genes. In addition, peripheral blood lymphocytes were stimulated with lipopolysaccharide (LPS), polycytidylic acid (polyI:C), concanavalin A (ConA) prior to sorting, and then Multiplex RT-PCR was used to examine the expression of Th cytokines by the stimulated Fugu CD4+ cells. LPS and polyI:C stimulation upregulated the expression of Th1, Th17 and Treg cytokines and downregulated the expression of Th2 cytokines. ConA stimulation upregulated the expression of all Th cytokines. These results suggest that fish exhibit the same upregulation of Th-specific cytokine expression as in mammals.
Collapse
Affiliation(s)
- Tomoya Kono
- Interdisciplinary Research Organization, University of Miyazaki, Miyazaki, Japan
- * E-mail:
| | - Hiroki Korenaga
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
29
|
Wang Z, Potter CS, Sundberg JP, Hogenesch H. SHARPIN is a key regulator of immune and inflammatory responses. J Cell Mol Med 2013; 16:2271-9. [PMID: 22452937 PMCID: PMC3402681 DOI: 10.1111/j.1582-4934.2012.01574.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mice with spontaneous mutations in the Sharpin gene develop chronic proliferative dermatitis that is characterized by eosinophilic inflammation of the skin and other organs with increased expression of type 2 cytokines and dysregulated development of lymphoid tissues. The mutant mice share phenotypic features with human hypereosinophilic syndromes. The biological function of SHARPIN and how its absence leads to such a complex inflammatory phenotype in mice are poorly understood. However, recent studies identified SHARPIN as a novel modulator of immune and inflammatory responses. The emerging mechanistic model suggests that SHARPIN functions as an important adaptor component of the linear ubiquitin chain assembly complex that modulates activation of NF-κB signalling pathway, thereby regulating cell survival and apoptosis, cytokine production and development of lymphoid tissues. In this review, we will summarize the current understanding of the ubiquitin-dependent regulatory mechanisms involved in NF-κB signalling, and incorporate the recently obtained molecular insights of SHARPIN into this pathway. Recent studies identified SHARPIN as an inhibitor of β1-integrin activation and signalling, and this may be another mechanism by which SHARPIN regulates inflammation. Furthermore, the disrupted lymphoid organogenesis in SHARPIN-deficient mice suggests that SHARPIN-mediated NF-κB regulation is important for de novo development of lymphoid tissues.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907-1243, USA
| | | | | | | |
Collapse
|
30
|
Warner N, Burberry A, Franchi L, Kim YG, McDonald C, Sartor MA, Núñez G. A genome-wide siRNA screen reveals positive and negative regulators of the NOD2 and NF-κB signaling pathways. Sci Signal 2013; 6:rs3. [PMID: 23322906 DOI: 10.1126/scisignal.2003305] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cytoplasmic receptor NOD2 (nucleotide-binding oligomerization domain 2) senses peptidoglycan fragments and triggers host defense pathways, including activation of nuclear factor κB (NF-κB) signaling, which lead to inflammatory immune responses. Dysregulation of NOD2 signaling is associated with inflammatory diseases, such as Crohn's disease and Blau syndrome. We used a genome-wide small interfering RNA screen to identify regulators of the NOD2 signaling pathway. Several genes associated with Crohn's disease risk were identified in the screen. A comparison of candidates from this screen with other "omics" data sets revealed interconnected networks of genes implicated in NF-κB signaling, thus supporting a role for NOD2 and NF-κB pathways in the pathogenesis of Crohn's disease. Many of these regulators were validated in secondary assays, such as measurement of interleukin-8 secretion, which is partially dependent on NF-κB. Knockdown of putative regulators in human embryonic kidney 293 cells followed by stimulation with tumor necrosis factor-α revealed that most of the genes identified were general regulators of NF-κB signaling. Overall, the genes identified here provide a resource to facilitate the elucidation of the molecular mechanisms that regulate NOD2- and NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Neil Warner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Liechtenstein T, Dufait I, Lanna A, Breckpot K, Escors D. MODULATING CO-STIMULATION DURING ANTIGEN PRESENTATION TO ENHANCE CANCER IMMUNOTHERAPY. IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2012; 12:224-235. [PMID: 22945252 PMCID: PMC3428911 DOI: 10.2174/187152212802001875] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the key roles of the immune system is the identification of potentially dangerous pathogens or tumour cells, and raising a wide range of mechanisms to eliminate them from the organism. One of these mechanisms is activation and expansion of antigen-specific cytotoxic T cells, after recognition of antigenic peptides on the surface of antigen presenting cells such as dendritic cells (DCs). However, DCs also process and present autoantigens. Therefore, antigen presentation has to occur in the appropriate context to either trigger immune responses or establishing immunological tolerance. This is achieved by co-stimulation of T cells during antigen presentation. Co-stimulation consists on the simultaneous binding of ligand-receptor molecules at the immunological synapse which will determine the type and extent of T cell responses. In addition, the type of cytokines/chemokines present during antigen presentation will influence the polarisation of T cell responses, whether they lead to tolerance, antibody responses or cytotoxicity. In this review, we will focus on approaches manipulating co-stimulation during antigen presentation, and the role of cytokine stimulation on effective T cell responses. More specifically, we will address the experimental strategies to interfere with negative co-stimulation such as that mediated by PD-L1 (Programmed cell death 1 ligand 1)/PD-1 (Programmed death 1) to enhance anti-tumour immunity.
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| | - Ines Dufait
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
- Department of Physiology-Immunology. Medical School. Free University of Brussels. Laarbeeklaan 103. 1090 Jette. Belgium
| | - Alessio Lanna
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| | - Karine Breckpot
- Department of Physiology-Immunology. Medical School. Free University of Brussels. Laarbeeklaan 103. 1090 Jette. Belgium
| | - David Escors
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| |
Collapse
|