1
|
Yukich J, Doum D, McIver DJ, Richardson JH, Sovannanoroth S, Lobo NF, Tatarsky A. Willingness to pay for a mosquito bite prevention 'forest pack' in Cambodia: results of a discrete choice experiment. Malar J 2024; 23:392. [PMID: 39702135 DOI: 10.1186/s12936-024-05224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Progress towards malaria elimination in the Greater Mekong Subregion has left much of the residual malaria transmission concentrated among forest-exposed populations for whom traditional domicile focused malaria vector control is unlikely to be effective. New tools to protect these populations from vector biting outdoors are needed. METHODS Alongside implementation research on the deployment of a "forest pack" consisting of a volatile pyrethroid (transfluthrin)-based spatial repellent (VPSR), a picaridin-based topical repellent and etofenprox treatment of clothing, an assessment was made of participant willingness to pay for the forest packs and variants of the packs using a discrete choice experiment. RESULTS Participants showed willingness to pay for forest packs consistent with full-cost recovery for VPSR devices. The inclusion of a full malaria season's worth of VPSR devices increased the willingness to pay for a forest pack by 15% (p = 0.061). At a price of approximately 10 USD, approximately 50% of participants were willing to pay for a forest pack which included a full season's worth of VPSR. CONCLUSION Forest packs which include VPSR are likely to be acceptable to the target forest-exposed populations, and those which include VPSR products may even have potential for commercial sales or some cost-recovery.
Collapse
Affiliation(s)
- Joshua Yukich
- Tulane University School of Public Health and Tropical Medicine, New Orleans, USA
| | - Dyna Doum
- Health Forefront Organization, Phnom Penh, Cambodia
| | - David J McIver
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, San Francisco, USA.
| | | | - Siv Sovannanoroth
- Cambodia National Centre for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Neil F Lobo
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, San Francisco, USA
- Eck Institute for Global Health, University of Notre Dame, South Bend, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, San Francisco, USA
| |
Collapse
|
2
|
Obaldía N. The human malaria- Aotus monkey model: a historical perspective in antimalarial chemotherapy research at the Gorgas Memorial Laboratory-Panama. Antimicrob Agents Chemother 2024; 68:e0033824. [PMID: 38837364 PMCID: PMC11232403 DOI: 10.1128/aac.00338-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Center for the Evaluation of Antimalarial Drugs and Vaccines, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama, Republic of Panama
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Anwar MN, Hickson RI, Mehra S, Price DJ, McCaw JM, Flegg MB, Flegg JA. Optimal Interruption of P. vivax Malaria Transmission Using Mass Drug Administration. Bull Math Biol 2023; 85:43. [PMID: 37076740 PMCID: PMC10115738 DOI: 10.1007/s11538-023-01153-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
Plasmodium vivax is the most geographically widespread malaria-causing parasite resulting in significant associated global morbidity and mortality. One of the factors driving this widespread phenomenon is the ability of the parasites to remain dormant in the liver. Known as 'hypnozoites', they reside in the liver following an initial exposure, before activating later to cause further infections, referred to as 'relapses'. As around 79-96% of infections are attributed to relapses from activating hypnozoites, we expect it will be highly impactful to apply treatment to target the hypnozoite reservoir (i.e. the collection of dormant parasites) to eliminate P. vivax. Treatment with radical cure, for example tafenoquine or primaquine, to target the hypnozoite reservoir is a potential tool to control and/or eliminate P. vivax. We have developed a deterministic multiscale mathematical model as a system of integro-differential equations that captures the complex dynamics of P. vivax hypnozoites and the effect of hypnozoite relapse on disease transmission. Here, we use our multiscale model to study the anticipated effect of radical cure treatment administered via a mass drug administration (MDA) program. We implement multiple rounds of MDA with a fixed interval between rounds, starting from different steady-state disease prevalences. We then construct an optimisation model with three different objective functions motivated on a public health basis to obtain the optimal MDA interval. We also incorporate mosquito seasonality in our model to study its effect on the optimal treatment regime. We find that the effect of MDA interventions is temporary and depends on the pre-intervention disease prevalence (and choice of model parameters) as well as the number of MDA rounds under consideration. The optimal interval between MDA rounds also depends on the objective (combinations of expected intervention outcomes). We find radical cure alone may not be enough to lead to P. vivax elimination under our mathematical model (and choice of model parameters) since the prevalence of infection eventually returns to pre-MDA levels.
Collapse
Affiliation(s)
- Md Nurul Anwar
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Roslyn I Hickson
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, and College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- CSIRO, Townsville, Australia
| | - Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - David J Price
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Mark B Flegg
- School of Mathematics, Monash University, Melbourne, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
4
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
5
|
Manjoo-Docrat R. A spatio-stochastic model for the spread of infectious diseases. J Theor Biol 2022; 533:110943. [PMID: 34717937 DOI: 10.1016/j.jtbi.2021.110943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022]
Abstract
The spread of infectious diseases is a world-wide problem that has a greater impact on low-income countries. Mathematical modelling is a useful tool to better understand these diseases and to plan prevention and interventions. In this article, discrete-time binomial chain models, which are used for modelling the transmission of infectious diseases, have been extended by the addition of a spatial component. The spatial component is included in the function which represents the number of contacts that an individual makes. The spatio-stochastic model is derived to form three cases to match different modelling scenarios, namely: a model with only local transmission, a model with interaction between spatial units but no migration, and a model with interaction and migration between spatial units. Simulations are then used to compare the different models. The spatio-stochastic model is also demonstrated with an application to measles data. From this study, it can be seen that the type of model and inclusion of a spatial component plays an important role in the transmission of infectious diseases. The importance of choosing a model which best represents the dynamics and circumstances of an infectious disease is highlighted. The models presented in this paper allows flexibility which accommodate for a wide range of modelling cases.
Collapse
Affiliation(s)
- Raeesa Manjoo-Docrat
- University of Witwatersrand, 47 Rifle Range, Ridgeway, Johannesburg, South Africa.
| |
Collapse
|
6
|
Jongdeepaisal M, Ean M, Heng C, Buntau T, Tripura R, Callery JJ, Peto TJ, Conradis-Jansen F, von Seidlein L, Khonputsa P, Pongsoipetch K, Soviet U, Sovannaroth S, Pell C, Maude RJ. Acceptability and feasibility of malaria prophylaxis for forest goers: findings from a qualitative study in Cambodia. Malar J 2021; 20:446. [PMID: 34823527 PMCID: PMC8613728 DOI: 10.1186/s12936-021-03983-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In the Greater Mekong Subregion, adults are at highest risk for malaria, particularly those who visit forests. The absence of effective vector control strategies and limited periods of exposure during forest visits suggest that chemoprophylaxis could be an appropriate strategy to protect forest goers against malaria. METHODS Alongside a clinical trial of anti-malarial chemoprophylaxis in northern Cambodia, qualitative research was conducted, including in-depth interviews and observation, to explore the acceptability of malaria prophylaxis for forest goers, the implementation opportunities, and challenges of this strategy. RESULTS Prophylaxis with artemether-lumefantrine for forest goers was found to be acceptable under trial conditions. Three factors played a major role: the community's awareness and perception of the effectiveness of prophylaxis, their trust in the provider, and malaria as a local health concern. The findings highlight how uptake and adherence to prophylaxis are influenced by the perceived balance between benefits and burden of anti-malarials which are modulated by the seasonality of forest visits and its influence on malaria risk. CONCLUSIONS The implementation of anti-malarial prophylaxis needs to consider how the preventive medication can be incorporated into existing vector-control measures, malaria testing and treatment services. The next step in the roll out of anti-malarial prophylaxis for forest visitors will require support from local health workers.
Collapse
Affiliation(s)
- Monnaphat Jongdeepaisal
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mom Ean
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chhoeun Heng
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thoek Buntau
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rupam Tripura
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James J. Callery
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas J. Peto
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franca Conradis-Jansen
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lorenz von Seidlein
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Panarasri Khonputsa
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kulchada Pongsoipetch
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ung Soviet
- Provincial Health Department, Stung Treng, Stung Treng Cambodia
| | - Siv Sovannaroth
- grid.452707.3National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Christopher Pell
- grid.450091.90000 0004 4655 0462Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands ,grid.509540.d0000 0004 6880 3010Department of Global Health, Amsterdam University Medical Centers - Location Academic Medical Center, Amsterdam, The Netherlands ,grid.7177.60000000084992262Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard J. Maude
- grid.501272.30000 0004 5936 4917Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK ,grid.38142.3c000000041936754XHarvard TH Chan School of Public Health, Harvard University, Boston, USA ,grid.10837.3d0000000096069301The Open University, Milton Keynes, UK
| |
Collapse
|
7
|
Mosha D, Kakolwa MA, Mahende MK, Masanja H, Abdulla S, Drakeley C, Gosling R, Wamoyi J. Safety monitoring experience of single-low dose primaquine co-administered with artemether-lumefantrine among providers and patients in routine healthcare practice: a qualitative study in Eastern Tanzania. Malar J 2021; 20:392. [PMID: 34627236 PMCID: PMC8501629 DOI: 10.1186/s12936-021-03921-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Primaquine is a gametocytocidal drug recommended by the World Health Organization (WHO) in a single-low dose combined with artemisinin-based combination therapy (ACT) for the treatment and prevention of Plasmodium falciparum malaria transmission. Safety monitoring concerns and the lack of a universal validated and approved primaquine pharmacovigilance tool is a challenge for a national rollout in many countries. This study aimed to explore the acceptance, reliability and perceived effectiveness of the primaquine roll out monitoring pharmacovigilance tool (PROMPT). METHODS This study was conducted in three dispensaries in the Coastal region of Eastern Tanzania. The study held six in-depth interviews with healthcare providers and six participatory focus group discussions with malaria patients (3) and parents/guardians of sick children (3). Participants were purposively sampled. Thematic analysis was conducted with the aid of NVivo qualitative analysis software. RESULTS The respondents' general acceptance and perceived effectiveness of the single-low dose primaquine and PROMPT was good. Screening procedure for treatment eligibility and explaining to patients about the possible adverse events was considered very useful for safety reasons. Crushing and dissolving of primaquine tablet to get the appropriate dose, particularly in children, was reported by all providers to be challenging. Transport costs and poor access to the health facility were the main reasons for a patient failing to return to the clinic for a scheduled follow-up visit. Treatment was perceived to be safe by both providers and patients and reported no case of a severe adverse event. Some providers were concerned with the haemoglobin drop observed on day 7. CONCLUSION Single-low dose primaquine was perceived to be safe and acceptable among providers and patients. PROMPT demonstrated to be a reliable and user-friendly tool among providers. Further validation of the tool by involving the National Malaria Control Programme is pivotal to addressing key challenges and facilitating primaquine adoption in the national policy.
Collapse
Affiliation(s)
- Dominic Mosha
- Ifakara Health Institute, Plot 463, Kiko Ave, Mikocheni, P.O Box 78373, Dar es Salaam, Tanzania.
| | - Mwaka A Kakolwa
- Ifakara Health Institute, Plot 463, Kiko Ave, Mikocheni, P.O Box 78373, Dar es Salaam, Tanzania
| | - Muhidin K Mahende
- Ifakara Health Institute, Plot 463, Kiko Ave, Mikocheni, P.O Box 78373, Dar es Salaam, Tanzania
| | - Honorati Masanja
- Ifakara Health Institute, Plot 463, Kiko Ave, Mikocheni, P.O Box 78373, Dar es Salaam, Tanzania
| | - Salim Abdulla
- Ifakara Health Institute, Plot 463, Kiko Ave, Mikocheni, P.O Box 78373, Dar es Salaam, Tanzania
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Roland Gosling
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Joyce Wamoyi
- National Institute for Medical Research, Mwanza, Tanzania
| |
Collapse
|
8
|
Li M, Tuo F, Tan R, Zhang H, Zheng S, Wang Q, Xu Q, Yu X, Lu F, Wu Z, Huang J, Rampao HS, D'almeida CAB, Yan H, Song J, Guo W, Deng C. Mass Drug Administration With Artemisinin-Piperaquine for the Elimination of Residual Foci of Malaria in São Tomé Island. Front Med (Lausanne) 2021; 8:617195. [PMID: 34322498 PMCID: PMC8311023 DOI: 10.3389/fmed.2021.617195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mass drug administration with artemisinin-piperaquine (AP-MDA) is being considered for elimination of residual foci of malaria in Democratic Republic of São Tomé and Principe. Methods: Three monthly rounds of AP-MDA were implemented from July to October 2019. Four zones were selected. A and B were selected as a study site and a control site, respectively. C and D were located within 1.5 and 1.5 km away from the study site, respectively. Parasite prevalence, malaria incidence, and the proportion of the Plasmodium falciparum malaria cases were evaluated. Results: After 3 monthly rounds of AP-MDA, the parasite prevalence and the gametocyte carriage rate of P. falciparum in zone A decreased from 28.29(‰) to 0 and 4.99(‰) to 0, respectively. Compared to zone B, the relative risk for the population with Plasmodium falciparum malaria in zone A was lower (RR = 0.458, 95% CI: 0.146-1.437). Malaria incidence fell from 290.49(‰) (the same period of the previous year) to 15.27(‰) (from the 29th week in 2019 to the 14th week in 2020), a decrease of 94.74% in zone A, and from 31.74 to 5.46(‰), a decline of 82.80% in zone B. Compared to the data of the same period the previous year, the cumulative number of P. falciparum malaria cases were lower, decreasing from 165 to 10 in zone A and from 17 to 4 in zone B. The proportion of the P. falciparum malaria cases on the total malaria cases of the country decreased of 90.16% in zone A and 71.34% in zone C. Conclusion: AP-MDA greatly curbed malaria transmission by reducing malaria incidence in the study site and simultaneously creating a knock-on effect of malaria control within 1.5 km of the study site and within the limited time interval of 38 weeks.
Collapse
Affiliation(s)
- Mingqiang Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Tuo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruixiang Tan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Zhang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoqin Zheng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhibing Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Huang
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | | | | | - Hong Yan
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Kunkel A, White M, Piola P. Novel anti-malarial drug strategies to prevent artemisinin partner drug resistance: A model-based analysis. PLoS Comput Biol 2021; 17:e1008850. [PMID: 33764971 PMCID: PMC8023453 DOI: 10.1371/journal.pcbi.1008850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/06/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Emergence of resistance to artemisinin and partner drugs in the Greater Mekong Subregion has made elimination of malaria from this region a global priority; it also complicates its achievement. Novel drug strategies such as triple artemisinin combination therapies (ACTs) and chemoprophylaxis have been proposed to help limit resistance and accelerate elimination. The objective of this study was to better understand the potential impacts of triple ACTs and chemoprophylaxis, using a mathematical model parameterized using data from Cambodia. We used a simple compartmental model to predict trends in malaria incidence and resistance in Cambodia from 2020-2025 assuming no changes in transmission since 2018. We assessed three scenarios: a status quo scenario with artesunate-mefloquine (ASMQ) as treatment; a triple ACT scenario with dihydroartemisinin-piperaquine (DP) plus mefloquine (MQ) as treatment; and a chemoprophylaxis scenario with ASMQ as treatment plus DP as chemoprophylaxis. We predicted MQ resistance to increase under the status quo scenario. Triple ACT treatment reversed the spread of MQ resistance, but had no impact on overall malaria incidence. Joint MQ-PPQ resistance declined under the status quo scenario for the baseline parameter set and most sensitivity analyses. Compared to the status quo, triple ACT treatment limited spread of MQ resistance but also slowed declines in PPQ resistance in some sensitivity analyses. The chemoprophylaxis scenario decreased malaria incidence, but increased the spread of strains resistant to both MQ and PPQ; both effects began to reverse after the intervention was removed. We conclude that triple ACTs may limit spread of MQ resistance in the Cambodia, but would have limited impact on malaria incidence and might slow declines in PPQ resistance. Chemoprophylaxis could have greater impact on incidence but also carries higher risks of resistance. Aggressive strategies to limit transmission the GMS are needed to achieve elimination goals, but any intervention should be accompanied by monitoring for drug resistance.
Collapse
Affiliation(s)
- Amber Kunkel
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
- * E-mail:
| | - Michael White
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris, France
| | - Patrice Piola
- Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
10
|
Challenger JD, Olivera Mesa D, Da DF, Yerbanga RS, Lefèvre T, Cohuet A, Churcher TS. Predicting the public health impact of a malaria transmission-blocking vaccine. Nat Commun 2021; 12:1494. [PMID: 33686061 PMCID: PMC7940395 DOI: 10.1038/s41467-021-21775-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Transmission-blocking vaccines that interrupt malaria transmission from humans to mosquitoes are being tested in early clinical trials. The activity of such a vaccine is commonly evaluated using membrane-feeding assays. Understanding the field efficacy of such a vaccine requires knowledge of how heavily infected wild, naturally blood-fed mosquitoes are, as this indicates how difficult it will be to block transmission. Here we use data on naturally infected mosquitoes collected in Burkina Faso to translate the laboratory-estimated activity into an estimated activity in the field. A transmission dynamics model is then utilised to predict a transmission-blocking vaccine's public health impact alongside existing interventions. The model suggests that school-aged children are an attractive population to target for vaccination. Benefits of vaccination are distributed across the population, averting the greatest number of cases in younger children. Utilising a transmission-blocking vaccine alongside existing interventions could have a substantial impact against malaria.
Collapse
Affiliation(s)
- Joseph D Challenger
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.
| | - Daniela Olivera Mesa
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - R Serge Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Anna Cohuet
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Thomas S Churcher
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Twins from different fathers: A heteropaternal superfecundation case report in Colombia. ACTA ACUST UNITED AC 2020; 40:604-608. [PMID: 33275339 PMCID: PMC7808779 DOI: 10.7705/biomedica.5100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 11/21/2022]
Abstract
Heteropaternal superfecundation is an extremely rare phenomenon that occurs when a second ova released during the same menstrual cycle is additionally fertilized by the sperm cells of a different man in separate sexual intercourse. In August, 2018, the Grupo de Genética de Poblaciones e Identificación at Universidad Nacional de Colombia received a request to establish the paternity of a pair of male twins with genetic markers. The following analyses were performed: amelogenin gene, autosomal short tandem repeat (STR), and Y-STR analyses by means of human identification commercial kits, paternity index, and the probability of paternity calculation and interpretation. A paternity index of 2.5134E+7 and a probability of paternity of 99.9999% for twin 2 were obtained while 14 out of 17 Y-chromosome markers and 14 out of 21 autosomal short tandem repeats were excluded for twin 1. The results indicated that the twins have different biological fathers. Although heteropaternal superfecundation is rarely observed among humans given its low frequency, in paternity disputes for dizygotic twins it is mandatory to demand the presence of the two twins in the testing to avoid wrong conclusions.
Collapse
|
12
|
Monnier N, Barth-Jaeggi T, Knopp S, Steinmann P. Core components, concepts and strategies for parasitic and vector-borne disease elimination with a focus on schistosomiasis: A landscape analysis. PLoS Negl Trop Dis 2020; 14:e0008837. [PMID: 33125375 PMCID: PMC7598467 DOI: 10.1371/journal.pntd.0008837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Efforts to control and eliminate human schistosomiasis have accelerated over the past decade. In a number of endemic countries and settings, interruption of schistosome transmission has been achieved. In others, Schistosoma infections continue to challenge program managers at different levels, from the complexity of the transmission cycle, over limited treatment options and lack of field-friendly accurate diagnostics, to controversy around adequate intervention strategies. We conducted a landscape analysis on parasitic and vector-borne disease elimination approaches with the aim to identify evidence-based strategies, core components and key concepts for achieving and sustaining schistosomiasis control and for progressing elimination efforts towards interruption of transmission in sub-Saharan Africa. A total of 118 relevant publications were identified from Web of Science, Pubmed and the grey literature and reviewed for their content. In addition, we conducted in-depth interviews with 23 epidemiologists, program managers, policymakers, donors and field researchers. Available evidence emphasizes the need for comprehensive, multipronged and long-term strategies consisting of multiple complementary interventions that must be sustained over time by political commitment and adequate funding in order to reach interruption of transmission. Based on the findings of this landscape analysis, we propose a comprehensive set of intervention strategies for schistosomiasis control and elimination. Before deployment, the proposed interventions will require review, evaluation and validation in the frame of an expert consultation as a step towards adaptation to specific contexts, conditions and settings. Field testing to ensure local relevance and effectiveness is paramount given the diversity of socio-ecological and epidemiological contexts. This landscape analysis explored successful concepts, approaches and interventions of past and ongoing parasitic and vector-borne disease elimination efforts and programs with regard to relevance for progress in the elimination of human schistosome infections. Schistosomiasis is a disabling, water borne parasitic disease of public health concern with an estimated 250 million people infected worldwide. The long-term morbidity of this neglected tropical disease significantly impacts growth, cognition and socioeconomic development at all ages. Despite increased global efforts to control morbidity and advance elimination, challenges in view of the complex life cycle which involves freshwater sources, intermediate snail hosts and humans, remain. This calls for targeted interventions and concerted programs. According to the evidence from the literature and as proposed by a wide range of key informants, comprehensive, multipronged and long-term strategies supported by strong political commitment and adequate funding are required in order to achieve and sustain the set goals. Based on the findings, we propose here a comprehensive set of intervention strategies for schistosomiasis control and elimination for review and evaluation to inform implementation research needs and elimination program design.
Collapse
Affiliation(s)
- Nora Monnier
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Tanja Barth-Jaeggi
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Steinmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Peto TJ, Tripura R, Maude RJ. Strengthen Village Malaria Reporting to Better Target Reservoirs of Persistent Infections in Southeast Asia. Clin Infect Dis 2020; 68:1066-1067. [PMID: 30219841 PMCID: PMC6399432 DOI: 10.1093/cid/ciy793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
14
|
Gao B, Saralamba S, Lubell Y, White LJ, Dondorp AM, Aguas R. Determinants of MDA impact and designing MDAs towards malaria elimination. eLife 2020; 9:e51773. [PMID: 32293559 PMCID: PMC7185997 DOI: 10.7554/elife.51773] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/12/2020] [Indexed: 11/13/2022] Open
Abstract
Malaria remains at the forefront of scientific research and global political and funding agendas. Malaria models have consistently oversimplified how mass interventions are implemented. Here, we present an individual based, spatially explicit model of P. falciparum malaria transmission that includes all the programmatic implementation details of mass drug administration (MDA) campaigns. We uncover how the impact of MDA campaigns is determined by the interaction between implementation logistics, patterns of human mobility and how transmission risk is distributed over space. Our results indicate that malaria elimination is only realistically achievable in settings with very low prevalence and can be hindered by spatial heterogeneities in risk. In highly mobile populations, accelerating MDA implementation increases likelihood of elimination; if populations are more static, deploying less teams would be cost optimal. We conclude that mass drug interventions can be an invaluable tool towards malaria elimination in low endemicity areas, specifically when paired with effective vector control.
Collapse
Affiliation(s)
- Bo Gao
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Sompob Saralamba
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Yoel Lubell
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Lisa J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Ricardo Aguas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| |
Collapse
|
15
|
Runge M, Snow RW, Molteni F, Thawer S, Mohamed A, Mandike R, Giorgi E, Macharia PM, Smith TA, Lengeler C, Pothin E. Simulating the council-specific impact of anti-malaria interventions: A tool to support malaria strategic planning in Tanzania. PLoS One 2020; 15:e0228469. [PMID: 32074112 PMCID: PMC7029840 DOI: 10.1371/journal.pone.0228469] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The decision-making process for malaria control and elimination strategies has become more challenging. Interventions need to be targeted at council level to allow for changing malaria epidemiology and an increase in the number of possible interventions. Models of malaria dynamics can support this process by simulating potential impacts of multiple interventions in different settings and determining appropriate packages of interventions for meeting specific expected targets. METHODS The OpenMalaria model of malaria dynamics was calibrated for all 184 councils in mainland Tanzania using data from malaria indicator surveys, school parasitaemia surveys, entomological surveillance, and vector control deployment data. The simulations were run for different transmission intensities per region and five interventions, currently or potentially included in the National Malaria Strategic Plan, individually and in combination. The simulated prevalences were fitted to council specific prevalences derived from geostatistical models to obtain council specific predictions of the prevalence and number of cases between 2017 and 2020. The predictions were used to evaluate in silico the feasibility of the national target of reaching a prevalence of below 1% by 2020, and to suggest alternative intervention stratifications for the country. RESULTS The historical prevalence trend was fitted for each council with an agreement of 87% in 2016 (95%CI: 0.84-0.90) and an agreement of 90% for the historical trend (2003-2016) (95%CI: 0.87-0.93) The current national malaria strategy was expected to reduce the malaria prevalence between 2016 and 2020 on average by 23.8% (95% CI: 19.7%-27.9%) if current case management levels were maintained, and by 52.1% (95% CI: 48.8%-55.3%) if the case management were improved. Insecticide treated nets and case management were the most cost-effective interventions, expected to reduce the prevalence by 25.0% (95% CI: 19.7%-30.2) and to avert 37 million cases between 2017 and 2020. Mass drug administration was included in most councils in the stratification selected for meeting the national target at minimal costs, expected to reduce the prevalence by 77.5% (95%CI: 70.5%-84.5%) and to avert 102 million cases, with almost twice higher costs than those of the current national strategy. In summary, the model suggested that current interventions are not sufficient to reach the national aim of a prevalence of less than 1% by 2020 and a revised strategic plan needs to consider additional, more effective interventions, especially in high transmission areas and that the targets need to be revisited. CONCLUSION The methodology reported here is based on intensive interactions with the NMCP and provides a helpful tool for assessing the feasibility of country specific targets and for determining which intervention stratifications at sub-national level will have most impact. This country-led application could support strategic planning of malaria control in many other malaria endemic countries.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Robert W. Snow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, England, United Kingodm
- Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Sumaiyya Thawer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Ally Mohamed
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Renata Mandike
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Emanuele Giorgi
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, England, United Kingodm
| | - Peter M. Macharia
- Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Ethics and Antimalarial Drug Resistance. ETHICS AND DRUG RESISTANCE: COLLECTIVE RESPONSIBILITY FOR GLOBAL PUBLIC HEALTH 2020. [PMCID: PMC7586435 DOI: 10.1007/978-3-030-27874-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There has been impressive progress in malaria control and treatment over the past two decades. One of the most important factors in the decline of malaria-related mortality has been the development and deployment of highly effective treatment in the form of artemisinin-based combination therapies (ACTs). However, recent reports suggest that these gains stand the risk of being reversed due to the emergence of ACT resistance in the Greater Mekong Subregion and the threat of this resistance spreading to Africa, where the majority of the world’s malaria cases occur, with catastrophic consequences. This chapter provides an overview of strategies proposed by malaria experts to tackle artemisinin-resistant malaria, and some of the most important practical ethical issues presented by each of these interventions. The proposed strategies include mass antimalarial drug administrations in selected populations, and mandatory screening of possibly infected individuals prior to entering an area free of artemisinin-resistant malaria. We discuss ethical issues such as tensions between the wishes of individuals versus the broader goal of malaria elimination, and the risks of harm to interventional populations, and conclude by proposing a set of recommendations.
Collapse
|
17
|
Deng C, Huang B, Wang Q, Wu W, Zheng S, Zhang H, Li D, Feng D, Li G, Xue L, Yang T, Tuo F, Mohadji F, Su XZ, Xu Q, Wu Z, Lin L, Zhou J, Yan H, Bacar A, Said Abdallah K, Kéké RA, Msa Mliva A, Mohamed M, Wang X, Huang S, Oithik F, Li XB, Lu F, Fay MP, Liu XH, Wellems TE, Song J. Large-scale Artemisinin-Piperaquine Mass Drug Administration With or Without Primaquine Dramatically Reduces Malaria in a Highly Endemic Region of Africa. Clin Infect Dis 2019; 67:1670-1676. [PMID: 29846536 DOI: 10.1093/cid/ciy364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mass drug administration (MDA), with or without low-dose primaquine (PMQLD), is being considered for malaria elimination programs. The potential of PMQLD to block malaria transmission by mosquitoes must be balanced against liabilities of its use. Methods Artemisinin-piperaquine (AP), with or without PMQLD, was administered in 3 monthly rounds across Anjouan Island, Union of Comoros. Plasmodium falciparum malaria rates, mortality, parasitemias, adverse events, and PfK13 Kelch-propeller gene polymorphisms were evaluated. Results Coverage of 85 to 93% of the Anjouan population was achieved with AP plus PMQLD (AP+PMQLD) in 2 districts (population 97164) and with AP alone in 5 districts (224471). Between the months of April-September in both 2012 and 2013, average monthly malaria hospital rates per 100000 people fell from 310.8 to 2.06 in the AP+PMQLD population (ratio 2.06/310.8 = 0.66%; 95% CI: 0.02%, 3.62%; P = .00007) and from 412.1 to 2.60 in the AP population (ratio 0.63%; 95% CI: 0.11%, 1.93%; P < .00001). Effectiveness of AP+PMQLD was 0.9908 (95% CI: 0.9053, 0.9991), while effectiveness of AP alone was 0.9913 (95% CI: 0.9657, 0.9978). Both regimens were well tolerated, without severe adverse events. Analysis of 52 malaria samples after MDA showed no evidence for selection of PfK13 Kelch-propeller mutations. Conclusions Steep reductions of malaria cases were achieved by 3 monthly rounds of either AP+PMQLD or AP alone, suggesting potential for highly successful MDA without PMQLD in epidemiological settings such as those on Anjouan. A major challenge is to sustain and expand the public health benefits of malaria reductions by MDA.
Collapse
Affiliation(s)
| | - Bo Huang
- Institute of Tropical Medicine, People's Republic of China
| | - Qi Wang
- Institute of Tropical Medicine, People's Republic of China.,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Wanting Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Hongying Zhang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Di Li
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Danghong Feng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Guoming Li
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Linlu Xue
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Tao Yang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Fei Tuo
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Fouad Mohadji
- Ministry of Health Comoros, Moroni, Union of Comoros, Bethesda, Maryland
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Qin Xu
- Institute of Tropical Medicine, People's Republic of China
| | - Zhibing Wu
- First Affiliated Hospital, People's Republic of China
| | - Li Lin
- First Affiliated Hospital, People's Republic of China
| | - Jiuyao Zhou
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Hong Yan
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Affane Bacar
- National Malaria Control Programme, Moroni, Union of Comoros, People's Republic of China
| | - Kamal Said Abdallah
- National Malaria Control Programme, Moroni, Union of Comoros, People's Republic of China
| | - Rachadi A Kéké
- National Malaria Control Programme, Moroni, Union of Comoros, People's Republic of China
| | - Ahamada Msa Mliva
- Ministry of Health Comoros, Moroni, Union of Comoros, Bethesda, Maryland
| | - Moussa Mohamed
- Ministry of Health Comoros, Moroni, Union of Comoros, Bethesda, Maryland
| | - Xinhua Wang
- Guangzhou Medical University, People's Republic of China
| | - Shiguang Huang
- School of Stomatology, Jinan University, People's Republic of China
| | - Fatihou Oithik
- Ministry of Health Comoros, Moroni, Union of Comoros, Bethesda, Maryland
| | - Xiao-Bo Li
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, People's Republic of China.,Key Laboratory of Tropical Disease Control in Ministry of Education, Sun Yat-sen University, Guangdong, People's Republic of China
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Xiao-Hong Liu
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianping Song
- Institute of Tropical Medicine, People's Republic of China.,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Tripura R, Peto TJ, Chea N, Chan D, Mukaka M, Sirithiranont P, Dhorda M, Promnarate C, Imwong M, von Seidlein L, Duanguppama J, Patumrat K, Huy R, Grobusch MP, Day NPJ, White NJ, Dondorp AM. A Controlled Trial of Mass Drug Administration to Interrupt Transmission of Multidrug-Resistant Falciparum Malaria in Cambodian Villages. Clin Infect Dis 2019. [PMID: 29522113 PMCID: PMC6117448 DOI: 10.1093/cid/ciy196] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The increase in multidrug-resistant Plasmodium falciparum in Southeast Asia suggests a need for acceleration of malaria elimination. We evaluated the effectiveness and safety of mass drug administration (MDA) to interrupt malaria transmission. Methods Four malaria-endemic villages in western Cambodia were randomized to 3 rounds of MDA (a 3-day course of dihydroartemisinin with piperaquine-phosphate), administered either early in or at the end of the study period. Comprehensive malaria treatment records were collected during 2014-2017. Subclinical parasite prevalence was estimated by ultrasensitive quantitative polymerase chain reaction quarterly over 12 months. Results MDA coverage with at least 1 complete round was 88% (1999/2268), ≥2 rounds 73% (1645/2268), and all 3 rounds 58% (1310/2268). Plasmodium falciparum incidence in intervention and control villages was similar over the 12 months prior to the study: 39 per 1000 person-years (PY) vs 45 per 1000 PY (P = .50). The primary outcome, P. falciparum incidence in the 12 months after MDA, was lower in intervention villages (1.5/1000 PY vs 37.1/1000 PY; incidence rate ratio, 24.5 [95% confidence interval], 3.4-177; P = .002). Following MDA in 2016, there were no clinical falciparum malaria cases over 12 months (0/2044 PY) in all 4 villages. Plasmodium vivax prevalence decreased markedly in intervention villages following MDA but returned to approximately half the baseline prevalence by 12 months. No severe adverse events were attributed to treatment. Conclusions Mass drug administrations achieved high coverage, were safe, and associated with the absence of clinical P. falciparum cases for at least 1 year. Clinical Trials Registration NCT01872702.
Collapse
Affiliation(s)
- Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.,Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Nguon Chea
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh
| | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Pasathorn Sirithiranont
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.,World-Wide Antimalarial Resistance Network, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Cholrawee Promnarate
- World-Wide Antimalarial Resistance Network, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Jureeporn Duanguppama
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Krittaya Patumrat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|
19
|
Silal SP, Shretta R, Celhay OJ, Gran Mercado CE, Saralamba S, Maude RJ, White LJ. Malaria elimination transmission and costing in the Asia-Pacific: a multi-species dynamic transmission model. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.14771.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The Asia-Pacific region has made significant progress in combatting malaria since 2000 and a regional goal for a malaria-free Asia Pacific by 2030 has been recognised at the highest levels. External financing has recently plateaued and with competing health risks, countries face the risk of withdrawal of funding as malaria is perceived as less of a threat. An investment case was developed to provide economic evidence to inform policy and increase sustainable financing. Methods: A dynamic epidemiological-economic model was developed to project rates of decline to elimination by 2030 and determine the costs for elimination in the Asia-Pacific region. The compartmental model was used to capture the dynamics of Plasmodium falciparum and Plasmodium vivax malaria for the 22 countries in the region in a metapopulation framework. This paper presents the model development and epidemiological results of the simulation exercise. Results: The model predicted that all 22 countries could achieve Plasmodium falciparum and Plasmodium vivax elimination by 2030, with the People’s Democratic Republic of China, Sri Lanka and the Republic of Korea predicted to do so without scaling up current interventions. Elimination was predicted to be possible in Bangladesh, Bhutan, Malaysia, Nepal, Philippines, Timor-Leste and Vietnam through an increase in long-lasting insecticidal nets (and/or indoor residual spraying) and health system strengthening, and in the Democratic People’s Republic of Korea, India and Thailand with the addition of innovations in drug therapy and vector control. Elimination was predicted to occur by 2030 in all other countries only through the addition of mass drug administration to scale-up and/or innovative activities. Conclusions: This study predicts that it is possible to have a malaria-free region by 2030. When computed into benefits and costs, the investment case can be used to advocate for sustained financing to realise the goal of malaria elimination in Asia-Pacific by 2030.
Collapse
|
20
|
Niewiadomska AM, Jayabalasingham B, Seidman JC, Willem L, Grenfell B, Spiro D, Viboud C. Population-level mathematical modeling of antimicrobial resistance: a systematic review. BMC Med 2019; 17:81. [PMID: 31014341 PMCID: PMC6480522 DOI: 10.1186/s12916-019-1314-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mathematical transmission models are increasingly used to guide public health interventions for infectious diseases, particularly in the context of emerging pathogens; however, the contribution of modeling to the growing issue of antimicrobial resistance (AMR) remains unclear. Here, we systematically evaluate publications on population-level transmission models of AMR over a recent period (2006-2016) to gauge the state of research and identify gaps warranting further work. METHODS We performed a systematic literature search of relevant databases to identify transmission studies of AMR in viral, bacterial, and parasitic disease systems. We analyzed the temporal, geographic, and subject matter trends, described the predominant medical and behavioral interventions studied, and identified central findings relating to key pathogens. RESULTS We identified 273 modeling studies; the majority of which (> 70%) focused on 5 infectious diseases (human immunodeficiency virus (HIV), influenza virus, Plasmodium falciparum (malaria), Mycobacterium tuberculosis (TB), and methicillin-resistant Staphylococcus aureus (MRSA)). AMR studies of influenza and nosocomial pathogens were mainly set in industrialized nations, while HIV, TB, and malaria studies were heavily skewed towards developing countries. The majority of articles focused on AMR exclusively in humans (89%), either in community (58%) or healthcare (27%) settings. Model systems were largely compartmental (76%) and deterministic (66%). Only 43% of models were calibrated against epidemiological data, and few were validated against out-of-sample datasets (14%). The interventions considered were primarily the impact of different drug regimens, hygiene and infection control measures, screening, and diagnostics, while few studies addressed de novo resistance, vaccination strategies, economic, or behavioral changes to reduce antibiotic use in humans and animals. CONCLUSIONS The AMR modeling literature concentrates on disease systems where resistance has been long-established, while few studies pro-actively address recent rise in resistance in new pathogens or explore upstream strategies to reduce overall antibiotic consumption. Notable gaps include research on emerging resistance in Enterobacteriaceae and Neisseria gonorrhoeae; AMR transmission at the animal-human interface, particularly in agricultural and veterinary settings; transmission between hospitals and the community; the role of environmental factors in AMR transmission; and the potential of vaccines to combat AMR.
Collapse
Affiliation(s)
- Anna Maria Niewiadomska
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, USA
| | - Bamini Jayabalasingham
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, USA.,Present Address: Elsevier Inc., 230 Park Ave, Suite B00, New York, NY, 10169, USA
| | - Jessica C Seidman
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, USA
| | | | - Bryan Grenfell
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, USA.,Princeton University, Princeton, NJ, USA
| | - David Spiro
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, USA
| | - Cecile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
21
|
Saita S, Silawan T, Parker DM, Sriwichai P, Phuanukoonnon S, Sudathip P, Maude RJ, White LJ, Pan-Ngum W. Spatial Heterogeneity and Temporal Trends in Malaria on the Thai⁻Myanmar Border (2012⁻2017): A Retrospective Observational Study. Trop Med Infect Dis 2019; 4:tropicalmed4020062. [PMID: 31013690 PMCID: PMC6630951 DOI: 10.3390/tropicalmed4020062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 11/16/2022] Open
Abstract
Malaria infections remain an important public health problem for the Thai-Myanmar border population, despite a plan for the elimination by the end of 2026 (Thailand) and 2030 (Myanmar). This study aimed to explore spatiotemporal patterns in Plasmodium falciparum and Plasmodium vivax incidence along the Thai-Myanmar border. Malaria cases among Thai citizens in 161 sub-districts in Thailand's Kanchanaburi and Tak Provinces (2012-2017) were analyzed to assess the cluster areas and temporal trends. Based on reported incidence, 65.22% and 40.99% of the areas studied were seen to be at elimination levels for P. falciparum and P. vivax already, respectively. There were two clear clusters of malaria in the region: One in the northern part (Cluster I), and the other in the central part (Cluster II). In Cluster I, the malaria season exhibited two peaks, while there was only one peak seen for Cluster II. Malaria incidence decreased at a faster rate in Cluster I, with 5% and 4% reductions compared with 4% and 3% reductions in P. falciparum and P. vivax incidence per month, respectively, in Cluster II. The decreasing trends reflect the achievements of malaria control efforts on both sides of the Thai-Myanmar border. However, these clusters could act as reservoirs. Perhaps one of the main challenges facing elimination programs in this low transmission setting is maintaining a strong system for early diagnosis and treatment, even when malaria cases are very close to zero, whilst preventing re-importation of cases.
Collapse
Affiliation(s)
- Sayambhu Saita
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Tassanee Silawan
- Department of Community Health, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand.
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, CA 92697, USA.
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Suparat Phuanukoonnon
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Prayuth Sudathip
- Bureau of Vector-borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand.
| | - Richard J Maude
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.
| | - Lisa J White
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Wirichada Pan-Ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
22
|
Silal SP, Shretta R, Celhay OJ, Gran Mercado CE, Saralamba S, Maude RJ, White LJ. Malaria elimination transmission and costing in the Asia-Pacific: a multi-species dynamic transmission model. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.14771.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The Asia-Pacific region has made significant progress in combatting malaria since 2000 and a regional goal for a malaria-free Asia Pacific by 2030 has been recognised at the highest levels. External financing has recently plateaued and with competing health risks, countries face the risk of withdrawal of funding as malaria is perceived as less of a threat. An investment case was developed to provide economic evidence to inform policy and increase sustainable financing. Methods: A dynamic epidemiological-economic model was developed to project rates of decline to elimination by 2030 and determine the costs for elimination in the Asia-Pacific region. The compartmental model was used to capture the dynamics of Plasmodium falciparum and Plasmodium vivax malaria for the 22 countries in the region in a metapopulation framework. This paper presents the model development and epidemiological results of the simulation exercise. Results: The model predicted that all 22 countries could achieve Plasmodium falciparum and Plasmodium vivax elimination by 2030, with the People’s Democratic Republic of China, Sri Lanka and the Republic of Korea predicted to do so without scaling up current interventions. Elimination was predicted to be possible in Bangladesh, Bhutan, Malaysia, Nepal, Philippines, Timor-Leste and Vietnam through an increase in long-lasting insecticidal nets (and/or indoor residual spraying) and health system strengthening, and in the Democratic People’s Republic of Korea, India and Thailand with the addition of innovations in drug therapy and vector control. Elimination was predicted to occur by 2030 in all other countries only through the addition of mass drug administration to scale-up and/or innovative activities. Conclusions: This study predicts that it is possible to have a malaria-free region by 2030. When computed into benefits and costs, the investment case can be used to advocate for sustained financing to realise the goal of malaria elimination in Asia-Pacific by 2030.
Collapse
|
23
|
Gerardin J, Bertozzi-Villa A, Eckhoff PA, Wenger EA. Impact of mass drug administration campaigns depends on interaction with seasonal human movement. Int Health 2019; 10:252-257. [PMID: 29635471 PMCID: PMC6031018 DOI: 10.1093/inthealth/ihy025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/06/2018] [Indexed: 11/19/2022] Open
Abstract
Background Mass drug administration (MDA) is a control and elimination tool for treating infectious diseases. For malaria, it is widely accepted that conducting MDA during the dry season results in the best outcomes. However, seasonal movement of populations into and out of MDA target areas is common in many places and could potentially fundamentally limit the ability of MDA campaigns to achieve elimination. Methods A mathematical model was used to simulate malaria transmission in two villages connected to a high-risk area into and out of which 10% of villagers traveled seasonally. MDA was given only in the villages. Prevalence reduction under various possible timings of MDA and seasonal travel was predicted. Results MDA is most successful when distributed outside the traveling season and during the village low-transmission season. MDA is least successful when distributed during the traveling season and when traveling overlaps with the peak transmission season in the high-risk area. Mistiming MDA relative to seasonal travel resulted in much poorer outcomes than mistiming MDA relative to the peak transmission season within the villages. Conclusions Seasonal movement patterns of high-risk groups should be taken into consideration when selecting the optimum timing of MDA campaigns.
Collapse
|
24
|
Morris U, Msellem MI, Mkali H, Islam A, Aydin-Schmidt B, Jovel I, Shija SJ, Khamis M, Ali SM, Hodzic L, Magnusson E, Poirot E, Bennett A, Sachs MC, Tarning J, Mårtensson A, Ali AS, Björkman A. A cluster randomised controlled trial of two rounds of mass drug administration in Zanzibar, a malaria pre-elimination setting-high coverage and safety, but no significant impact on transmission. BMC Med 2018; 16:215. [PMID: 30526588 PMCID: PMC6287359 DOI: 10.1186/s12916-018-1202-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Mass drug administration (MDA) has the potential to interrupt malaria transmission and has been suggested as a tool for malaria elimination in low-endemic settings. This study aimed to determine the effectiveness and safety of two rounds of MDA in Zanzibar, a pre-elimination setting. METHODS A cluster randomised controlled trial was conducted in 16 areas considered as malaria hotspots, with an annual parasite index of > 0.8%. The areas were randomised to eight intervention and eight control clusters. The intervention included two rounds of MDA with dihydroartemisinin-piperaquine and single low-dose primaquine 4 weeks apart in May-June 2016. Primary and secondary outcomes were cumulative confirmed malaria case incidences 6 months post-MDA and parasite prevalences determined by PCR 3 months post-MDA. Additional outcomes included intervention coverage, treatment adherence, occurrence of adverse events, and cumulative incidences 3, 12, and 16 months post-MDA. RESULTS Intervention coverage was 91.0% (9959/10944) and 87.7% (9355/10666) in the first and second rounds, respectively; self-reported adherence was 82.0% (881/1136) and 93.7% (985/1196). Adverse events were reported in 11.6% (147/1268) and 3.2% (37/1143) of post-MDA survey respondents after both rounds respectively. No serious adverse event was reported. No difference in cumulative malaria case incidence was observed between the control and intervention arms 6 months post-MDA (4.2 and 3.9 per 1000 population; p = 0.94). Neither was there a difference in PCR-determined parasite prevalences 3 months post-MDA (1.4% and 1.7%; OR = 1.0, p = 0.94), although having received at least the first MDA was associated with reduced odds of malaria infection (aOR = 0.35; p = 0.02). Among confirmed malaria cases at health facilities, 26.0% and 26.3% reported recent travel outside Zanzibar in the intervention and control shehias (aOR ≥ 85; p ≤ 0.001). CONCLUSIONS MDA was implemented with high coverage, adherence, and tolerability. Despite this, no significant impact on transmission was observed. The findings suggest that two rounds of MDA in a single year may not be sufficient for a sustained impact on transmission in a pre-elimination setting, especially when the MDA impact is restricted by imported malaria. Importantly, this study adds to the limited evidence for the use of MDA in low transmission settings in sub-Saharan Africa. TRIAL REGISTRATION ClinicalTrials.gov, NCT02721186 (registration date: March 29, 2016).
Collapse
Affiliation(s)
- Ulrika Morris
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mwinyi I. Msellem
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Humphrey Mkali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Atiqul Islam
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Aydin-Schmidt
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Irina Jovel
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shija Joseph Shija
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Mwinyi Khamis
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Safia Mohammed Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Lamija Hodzic
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Magnusson
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eugenie Poirot
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, USA
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, USA
| | - Michael C. Sachs
- Biostatistics Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Bangkok, Thailand
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | - Andreas Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Abdullah S. Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Anders Björkman
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Predicting the Outcomes of New Short-Course Regimens for Multidrug-Resistant Tuberculosis Using Intrahost and Pharmacokinetic-Pharmacodynamic Modeling. Antimicrob Agents Chemother 2018; 62:AAC.01487-18. [PMID: 30249697 DOI: 10.1128/aac.01487-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
Short-course regimens for multidrug-resistant tuberculosis (MDR-TB) are urgently needed. Limited data suggest that the new drug bedaquiline (BDQ) may have the potential to shorten MDR-TB treatment to less than 6 months when used in conjunction with standard anti-TB drugs. However, the feasibility of BDQ in shortening MDR-TB treatment duration remains to be established. Mathematical modeling provides a platform to investigate different treatment regimens and predict their efficacy. We developed a mathematical model to capture the immune response to TB inside a human host environment. This model was then combined with a pharmacokinetic-pharmacodynamic model to simulate various short-course BDQ-containing regimens. Our modeling suggests that BDQ could reduce MDR-TB treatment duration to just 18 weeks (4 months) while still maintaining a very high treatment success rate (100% for daily BDQ for 2 weeks, or 95% for daily BDQ for 1 week during the intensive phase). The estimated time to bacterial clearance of these regimens ranges from 27 to 33 days. Our findings provide the justification for empirical evaluation of short-course BDQ-containing regimens. If short-course BDQ-containing regimens are found to improve outcomes, then we anticipate clear cost savings and a subsequent improvement in the efficiency of national TB programs.
Collapse
|
26
|
Garira W. A primer on multiscale modelling of infectious disease systems. Infect Dis Model 2018; 3:176-191. [PMID: 30839905 PMCID: PMC6326222 DOI: 10.1016/j.idm.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/13/2018] [Accepted: 09/16/2018] [Indexed: 12/22/2022] Open
Abstract
The development of multiscale models of infectious disease systems is a scientific endeavour whose progress depends on advances on three main frontiers: (a) the conceptual framework frontier, (b) the mathematical technology or technical frontier, and (c) the scientific applications frontier. The objective of this primer is to introduce foundational concepts in multiscale modelling of infectious disease systems focused on these three main frontiers. On the conceptual framework frontier we propose a three-level hierarchical framework as a foundational idea which enables the discussion of the structure of multiscale models of infectious disease systems in a general way. On the scientific applications frontier we suggest ways in which the different structures of multiscale models can serve as infrastructure to provide new knowledge on the control, elimination and even eradication of infectious disease systems, while on the mathematical technology or technical frontier we present some challenges that modelers face in developing appropriate multiscale models of infectious disease systems. We anticipate that the foundational concepts presented in this primer will be central in articulating an integrated and more refined disease control theory based on multiscale modelling - the all-encompassing quantitative representation of an infectious disease system.
Collapse
|
27
|
Operational Performance of a Plasmodium falciparum Ultrasensitive Rapid Diagnostic Test for Detection of Asymptomatic Infections in Eastern Myanmar. J Clin Microbiol 2018; 56:JCM.00565-18. [PMID: 29898998 PMCID: PMC6062819 DOI: 10.1128/jcm.00565-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
In the Greater Mekong Subregion in Southeast Asia, malaria elimination strategies need to target all Plasmodium falciparum parasites, including those carried asymptomatically. More than 70% of asymptomatic carriers are not detected by current rapid diagnostic tests (RDTs) or microscopy. In the Greater Mekong Subregion in Southeast Asia, malaria elimination strategies need to target all Plasmodium falciparum parasites, including those carried asymptomatically. More than 70% of asymptomatic carriers are not detected by current rapid diagnostic tests (RDTs) or microscopy. An HRP2-based ultrasensitive RDT (uRDT) developed to improve the detection of low-density infections was evaluated during prevalence surveys within a malaria elimination program in a low-transmission area of eastern Myanmar. Surveys were conducted to identify high-prevalence villages. Two-milliliter venous blood samples were collected from asymptomatic adult volunteers and transported to the laboratory. Plasmodium parasites were detected by RDT, uRDT, microscopy, ultrasensitive qPCR (uPCR), and multiplex enzyme-linked immunosorbent assay (ELISA). The sensitivity, specificity, and predictive positive and negative values of RDT and uRDT were calculated compared to uPCR and ELISA. Parasite and antigen concentrations detected by each test were defined using uPCR and ELISA, respectively. A total of 1,509 samples, including 208 P. falciparum-positive samples were analyzed with all tests. The sensitivity of the uRDT was twofold higher than that of RDT, 51.4% versus 25.2%, with minor specificity loss, 99.5% versus 99.9%, against the combined reference (uPCR plus ELISA). The geometric mean parasitemia detected by uRDT in P. falciparum monospecific infections was 3,019 parasites per ml (95% confidence interval [95% CI], 1,790 to 5,094; n = 79) compared to 11,352 parasites per ml (95% CI, 5,643 to 22,837; n = 38) by RDT. The sensitivities of uRDT and RDT dropped to 34.6% and 15.1%, respectively, for the matched tests performed in the field. The uRDT performed consistently better than RDT and microscopy at low parasitemias. It shows promising characteristics for the identification of high-prevalence communities and warrants further evaluation in mass screening and treatment interventions.
Collapse
|
28
|
Goldlust SM, Thuan PD, Giang DDH, Thang ND, Thwaites GE, Farrar J, Thanh NV, Nguyen TD, Grenfell BT, Boni MF, Hien TT. The decline of malaria in Vietnam, 1991-2014. Malar J 2018; 17:226. [PMID: 29880051 PMCID: PMC5992833 DOI: 10.1186/s12936-018-2372-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/28/2018] [Indexed: 02/04/2023] Open
Abstract
Background Despite the well-documented clinical efficacy of artemisinin-based combination therapy (ACT) against malaria, the population-level effects of ACT have not been studied thoroughly until recently. An ideal case study for these population-level effects can be found in Vietnam’s gradual adoption of artemisinin in the 1990s. Methods and results Analysis of Vietnam’s national annual malaria reports (1991–2014) revealed that a 10% increase in artemisinin procurement corresponded to a 32.8% (95% CI 27.7–37.5%) decline in estimated malaria cases. There was no consistent national or regional effect of vector control on malaria. The association between urbanization and malaria was generally negative and sometimes statistically significant. Conclusions The decline of malaria in Vietnam can largely be attributed to the adoption of artemisinin-based case management. Recent analyses from Africa showed that insecticide-treated nets had the greatest effect on lowering malaria prevalence, suggesting that the success of interventions is region-specific. Continuing malaria elimination efforts should focus on both vector control and increased access to ACT. Electronic supplementary material The online version of this article (10.1186/s12936-018-2372-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra M Goldlust
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Department of Biology, Georgetown University, Washington, DC, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Phung Duc Thuan
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Dang Duy Hoang Giang
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Ngo Duc Thang
- National Institutes for Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,The Wellcome Trust, London, UK
| | - Ngo Viet Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran Dang Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Maciej F Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Roth JM, Sawa P, Omweri G, Osoti V, Makio N, Bradley J, Bousema T, Schallig HDFH, Mens PF. Plasmodium falciparum gametocyte dynamics after pyronaridine-artesunate or artemether-lumefantrine treatment. Malar J 2018; 17:223. [PMID: 29866116 PMCID: PMC5987563 DOI: 10.1186/s12936-018-2373-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Artemisinin-based combinations differ in their impact on gametocyte prevalence and density. This study assessed female and male gametocyte dynamics after treating children with uncomplicated Plasmodium falciparum malaria with either pyronaridine-artesunate (PA) or artemether-lumefantrine (AL). METHODS Kenyan children with uncomplicated Plasmodium falciparum malaria were included and randomly assigned to PA or AL treatment. Filter paper blood samples were collected as a source of RNA for quantitative reverse-transcription PCR (qRT-PCR) and nucleic acid sequence based amplification (QT-NASBA) to detect female gametocytes (targeting Pfs25 mRNA). Male gametocytes were detected by qRT-PCR (targeting PfMGET mRNA). Duration of gametocyte carriage, the female and male gametocyte response and the agreement between qRT-PCR and QT-NASBA were determined. RESULTS The mean duration of female gametocyte carriage was significantly longer for PA (4.9 days) than for AL (3.8 days) as estimated by QT-NASBA (P = 0.036), but this difference was less clear when determined by Pfs25 qRT-PCR (4.5 days for PA and 3.7 for AL, P = 0.166). qRT-PCR based female gametocyte prevalence decreased from 100% (75/75) at baseline to 6.06% (4/66) at day 14 in the AL group and from 97.7% (83/85) to 13.9% (11/79) in the PA group. Male gametocyte prevalence decreased from 41.3% (31/75) at baseline to 19.7% (13/66) at day 14 in the AL group and from 35.3% (30/85) to 22.8% (18/79) in the PA group. There was good agreement between Pfs25 qRT-PCR and QT-NASBA female gametocyte prevalence (0.85, 95% CI 0.82-0.87). CONCLUSIONS This study indicates that female gametocyte clearance may be slightly faster after AL compared to PA. Male gametocytes showed similar post-treatment clearance between study arms. Future studies should further address potential differences between the post-treatment transmission potential after PA compared to AL. Trial registration This study is registered at clinicaltrials.gov under NCT02411994. Registration date: 8 April 2015. https://clinicaltrials.gov/ct2/show/NCT02411994?term=pyronaridine-artesunate&cond=Malaria&cntry=KE&rank=1.
Collapse
Affiliation(s)
- Johanna M Roth
- Department of Medical Microbiology, Laboratory for Clinical Parasitology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Patrick Sawa
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - George Omweri
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Victor Osoti
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Nicodemus Makio
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - John Bradley
- Medical Research Council Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henk D F H Schallig
- Department of Medical Microbiology, Laboratory for Clinical Parasitology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Pètra F Mens
- Department of Medical Microbiology, Laboratory for Clinical Parasitology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Landier J, Parker DM, Thu AM, Lwin KM, Delmas G, Nosten FH. Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: an observational study of a regional elimination programme. Lancet 2018; 391:1916-1926. [PMID: 29703425 PMCID: PMC5946089 DOI: 10.1016/s0140-6736(18)30792-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Potentially untreatable Plasmodium falciparum malaria threatens the Greater Mekong subregion. A previous series of pilot projects in Myanmar, Laos, Cambodia, and Vietnam suggested that mass drug administration was safe, and when added to provision of early diagnosis and treatment, could reduce the reservoir of P falciparum and interrupts transmission. We examined the effects of a scaled-up programme of this strategy in four townships of eastern Myanmar on the incidence of P falciparum malaria. METHODS The programme was implemented in the four townships of Myawaddy, Kawkareik, Hlaingbwe, and Hpapun in Kayin state, Myanmar. Increased access to early diagnosis and treatment of malaria was provided to all villages through community-based malaria posts equipped with rapid diagnostic tests, and treatment with artemether-lumefantrine plus single low-dose primaquine. Villages were identified as malarial hotspots (operationally defined as >40% malaria, of which 20% was P falciparum) with surveys using ultrasensitive quantitative PCR either randomly or targeted at villages where the incidence of clinical cases of P falciparum malaria remained high (ie, >100 cases per 1000 individuals per year) despite a functioning malaria post. During each survey, a 2 mL sample of venous blood was obtained from randomly selected adults. Hotspots received targeted mass drug administration with dihydroartemisinin-piperaquine plus single-dose primaquine once per month for 3 consecutive months in addition to the malaria posts. The main outcome was the change in village incidence of clinical P falciparum malaria, quantified using a multivariate, generalised, additive multilevel model. Malaria prevalence was measured in the hotspots 12 months after mass drug administration. FINDINGS Between May 1, 2014, and April 30, 2017, 1222 malarial posts were opened, providing early diagnosis and treatment to an estimated 365 000 individuals. Incidence of P falciparum malaria decreased by 60 to 98% in the four townships. 272 prevalence surveys were undertaken and 69 hotspot villages were identified. By April 2017, 50 hotspots were treated with mass drug administration. Hotspot villages had a three times higher incidence of P falciparum at malarial posts than neighbouring villages (adjusted incidence rate ratio [IRR] 2·7, 95% CI 1·8-4·4). Early diagnosis and treatment was associated with a significant decrease in P falciparum incidence in hotspots (IRR 0·82, 95% CI 0·76-0·88 per quarter) and in other villages (0·75, 0·73-0·78 per quarter). Mass drug administration was associated with a five-times decrease in P falciparum incidence within hotspot villages (IRR 0·19, 95% CI 0·13-0·26). By April, 2017, 965 villages (79%) of 1222 corresponding to 104 village tracts were free from P falciparum malaria for at least 6 months. The prevalence of wild-type genotype for K13 molecular markers of artemisinin resistance was stable over the three years (39%; 249/631). INTERPRETATION Providing early diagnosis and effective treatment substantially decreased village-level incidence of artemisinin-resistant P falciparum malaria in hard-to-reach, politically sensitive regions of eastern Myanmar. Targeted mass drug administration significantly reduced malaria incidence in hotspots. If these activities could proceed in all contiguous endemic areas in addition to standard control programmes already implemented, there is a possibility of subnational elimination of P falciparum. FUNDING The Bill & Melinda Gates Foundation, the Regional Artemisinin Initiative (Global Fund against AIDS, Tuberculosis and Malaria), and the Wellcome Trust.
Collapse
Affiliation(s)
- Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Institut de Recherches pour le Développement, Aix Marseille Univ, INSERM, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France.
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Department of Population Health and Disease Prevention, University of California, Irvine, CA, USA
| | - Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Tun STT, von Seidlein L, Pongvongsa T, Mayxay M, Saralamba S, Kyaw SS, Chanthavilay P, Celhay O, Nguyen TD, Tran TNA, Parker DM, Boni MF, Dondorp AM, White LJ. Towards malaria elimination in Savannakhet, Lao PDR: mathematical modelling driven strategy design. Malar J 2017; 16:483. [PMID: 29183370 PMCID: PMC5706414 DOI: 10.1186/s12936-017-2130-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The number of Plasmodium falciparum malaria cases around the world has decreased substantially over the last 15 years, but with the spread of resistance against anti-malarial drugs and insecticides, this decline may not continue. There is an urgent need to consider alternative, accelerated strategies to eliminate malaria in countries like Lao PDR, where there are a few remaining endemic areas. A deterministic compartmental modelling tool was used to develop an integrated strategy for P. falciparum elimination in the Savannakhet province of Lao PDR. The model was designed to include key aspects of malaria transmission and integrated control measures, along with a user-friendly interface. RESULTS Universal coverage was the foundation of the integrated strategy, which took the form of the deployment of community health workers who provided universal access to early diagnosis, treatment and long-lasting insecticidal nets. Acceleration was included as the deployment of three monthly rounds of mass drug administration targeted towards high prevalence villages, with the addition of three monthly doses of the RTS,S vaccine delivered en masse to the same high prevalence sub-population. A booster dose of vaccine was added 1 year later. The surveillance-as-intervention component of the package involved the screening and treatment of individuals entering the simulated population. CONCLUSIONS In this modelling approach, the sequential introduction of a series of five available interventions in an integrated strategy was predicted to be sufficient to stop malaria transmission within a 3-year period. These interventions comprised universal access to early diagnosis and adequate treatment, improved access to long-lasting insecticidal nets, three monthly rounds of mass drug administration together with RTS,S vaccination followed by a booster dose of vaccine, and screening and treatment of imported cases.
Collapse
Affiliation(s)
- Sai Thein Than Tun
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Health Department, Phonsavangnuea Village, Kaysone-Phomvihan District, Savannakhet, Lao People's Democratic Republic
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK.,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane, Lao People's Democratic Republic.,Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao People's Democratic Republic
| | - Sompob Saralamba
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shwe Sin Kyaw
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phetsavanh Chanthavilay
- Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao People's Democratic Republic.,Institute of Francophonie for Tropical Medicine, Vientiane, Lao People's Democratic Republic
| | - Olivier Celhay
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tran Dang Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Thu Nguyen-Anh Tran
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - Maciej F Boni
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK.,Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK
| | - Lisa J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
32
|
The malERA Refresh Consultative Panel on Combination Interventions and Modelling. malERA: An updated research agenda for combination interventions and modelling in malaria elimination and eradication. PLoS Med 2017; 14:e1002453. [PMID: 29190295 PMCID: PMC5708628 DOI: 10.1371/journal.pmed.1002453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This paper summarises key advances and priorities since the 2011 presentation of the Malaria Eradication Research Agenda (malERA), with a focus on the combinations of intervention tools and strategies for elimination and their evaluation using modelling approaches. With an increasing number of countries embarking on malaria elimination programmes, national and local decisions to select combinations of tools and deployment strategies directed at malaria elimination must address rapidly changing transmission patterns across diverse geographic areas. However, not all of these approaches can be systematically evaluated in the field. Thus, there is potential for modelling to investigate appropriate 'packages' of combined interventions that include various forms of vector control, case management, surveillance, and population-based approaches for different settings, particularly at lower transmission levels. Modelling can help prioritise which intervention packages should be tested in field studies, suggest which intervention package should be used at a particular level or stratum of transmission intensity, estimate the risk of resurgence when scaling down specific interventions after local transmission is interrupted, and evaluate the risk and impact of parasite drug resistance and vector insecticide resistance. However, modelling intervention package deployment against a heterogeneous transmission background is a challenge. Further validation of malaria models should be pursued through an iterative process, whereby field data collected with the deployment of intervention packages is used to refine models and make them progressively more relevant for assessing and predicting elimination outcomes.
Collapse
|
33
|
Brock AR, Gibbs CA, Ross JV, Esterman A. The Impact of Antimalarial Use on the Emergence and Transmission of Plasmodium falciparum Resistance: A Scoping Review of Mathematical Models. Trop Med Infect Dis 2017; 2:E54. [PMID: 30270911 PMCID: PMC6082068 DOI: 10.3390/tropicalmed2040054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
The emergence and transmission of resistance to antimalarial treatments continue to hamper malaria elimination efforts. A scoping review was undertaken regarding the impact of antimalarial treatment in the human population on the emergence and transmission of Plasmodium falciparum resistance, to (i) describe the use of mathematical models used to explore this relationship; (ii) discuss model findings; and (iii) identify factors influencing the emergence and transmission of resistance. Search strategies were developed and deployed in six major databases. Thirty-seven articles met the eligibility criteria and were included in the review: nine articles modeled the emergence of resistance, 19 modeled the transmission of resistance, and nine modeled both the emergence and transmission. The proportion of antimalarial use within the population and the presence of residual drug concentrations were identified to be the main predictors of the emergence and transmission of resistance. Influencing factors pertaining to the human, parasite and mosquito populations are discussed. To ensure the prolonged therapeutic usefulness of antimalarial treatments, the effect of antimalarial drug use on the emergence and transmission of resistance must be understood, and mathematical models are a useful tool for exploring these dynamics.
Collapse
Affiliation(s)
- Aleisha R Brock
- School of Nursing and Midwifery, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Carole A Gibbs
- Library, University of South Australia, Adelaide, SA 5000, Australia.
| | - Joshua V Ross
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Adrian Esterman
- Sansom Institute for Research Health, University of South Australia, Adelaide, SA 5000, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia.
| |
Collapse
|
34
|
Pemberton-Ross P, Chitnis N, Pothin E, Smith TA. A stochastic model for the probability of malaria extinction by mass drug administration. Malar J 2017; 16:376. [PMID: 28923063 PMCID: PMC5604301 DOI: 10.1186/s12936-017-2010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/02/2017] [Indexed: 11/13/2022] Open
Abstract
Background Mass drug administration (MDA) has been proposed as an intervention to achieve local extinction of malaria. Although its effect on the reproduction number is short lived, extinction may subsequently occur in a small population due to stochastic fluctuations. This paper examines how the probability of stochastic extinction depends on population size, MDA coverage and the reproduction number under control, Rc. A simple compartmental model is developed which is used to compute the probability of extinction using probability generating functions. The expected time to extinction in small populations after MDA for various scenarios in this model is calculated analytically. Results The results indicate that mass drug administration (Firstly, Rc must be sustained at Rc < 1.2 to avoid the rapid re-establishment of infections in the population. Secondly, the MDA must produce effective cure rates of >95% to have a non-negligible probability of successful elimination. Stochastic fluctuations only significantly affect the probability of extinction in populations of about 1000 individuals or less. The expected time to extinction via stochastic fluctuation is less than 10 years only in populations less than about 150 individuals. Clustering of secondary infections and of MDA distribution both contribute positively to the potential probability of success, indicating that MDA would most effectively be administered at the household level. Conclusions There are very limited circumstances in which MDA will lead to local malaria elimination with a substantial probability. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2010-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Pemberton-Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland
| | - Emilie Pothin
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland
| | - Thomas A Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland. .,University of Basel, Petersplatz 1, Basel, Switzerland.
| |
Collapse
|
35
|
Bretscher MT, Griffin JT, Ghani AC, Okell LC. Modelling the benefits of long-acting or transmission-blocking drugs for reducing Plasmodium falciparum transmission by case management or by mass treatment. Malar J 2017; 16:341. [PMID: 28814310 PMCID: PMC5559805 DOI: 10.1186/s12936-017-1988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Background Anti-malarial drugs are an important tool for malaria control and elimination. Alongside their direct benefit in the treatment of disease, drug use has a community-level effect, clearing the reservoir of infection and reducing onward transmission of the parasite. Different compounds potentially have different impacts on transmission—with some providing periods of prolonged chemoprophylaxis whilst others have greater transmission-blocking potential. The aim was to quantify the relative benefit of such properties for transmission reduction to inform target product profiles in the drug development process and choice of first-line anti-malarial treatment in different endemic settings. Methods A mathematical model of Plasmodium falciparum epidemiology was used to estimate the transmission reduction that can be achieved by using drugs of varying chemoprophylactic (protection for 3, 30 or 60 days) or transmission-blocking activity (blocking 79, 92 or 100% of total onward transmission). Simulations were conducted at low, medium or high transmission intensity (slide-prevalence in 2–10 year olds being 1, 10 or 40%, respectively), with drugs administered either via case management or mass drug administration (MDA). Results Transmission reductions depend strongly on deployment strategy, treatment coverage and endemicity level. Transmission-blocking was most effective at low endemicity, whereas chemoprophylaxis was most useful at high endemicity levels. Increasing the duration of protection as much as possible was beneficial. Increasing transmission-blocking activity from the level of ACT to a 100% transmission-blocking drug (close to the effect estimated for ACT combined with primaquine) produced moderate impact but was not as effective as increasing the duration of protection in medium-to-high transmission settings (slide prevalence 10–40%). Combining both good transmission-blocking activity (e.g. as achieved by ACT or ACT + primaquine) and a long duration of protection (30 days or more, such as provided by piperaquine or mefloquine) within a drug regimen can substantially increase impact compared with drug regimens with only one of these properties in medium to high transmission areas (slide-prevalence in 2–10 year olds ~10 to 40%). These results applied whether the anti-malarials were used for case management or for MDA. Discussion These results emphasise the importance of increasing access to treatment for routine case management, and the potential value of choosing first-line anti-malarial treatment policies according to local malaria epidemiology to maximise impact on transmission. There is no indication that the optimal drug choice should differ between delivery via case management or MDA. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1988-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael T Bretscher
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jamie T Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Azra C Ghani
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK
| | - Lucy C Okell
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK.
| |
Collapse
|
36
|
Uthman OA, Adedokun ST, Olukade T, Watson S, Adetokunboh O, Adeniran A, Oyetoyan SA, Gidado S, Lawoko S, Wiysonge CS. Children who have received no routine polio vaccines in Nigeria: Who are they and where do they live? Hum Vaccin Immunother 2017; 13:2111-2122. [PMID: 28665749 DOI: 10.1080/21645515.2017.1336590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nigeria has made remarkable progress against polio, but 2 wild polio virus cases were reported in August 2016; putting an end to 2 y without reported cases. We examined the extent of geographical disparities in childhren not vaccinated against polio and examined individual- and community-level predictors of non-vaccination in Nigeria. We applied multilevel logistic regression models to the recent Nigeria Demographic and Health Survey. The percentage of children not routinely vaccinated against polio in Nigeria varied greatly and clustered geographically, mainly in north-eastern states, with a great risk of spread of transmission within these states and potential exportation to neighboring states and countries. Only about one-third had received all recommended 4 routine oral polio vaccine doses. Non-vaccinated children tended to have a mother who had no formal education and who was currently not working, live in poorer households and were from neighborhoods with higher maternal illiteracy rates.
Collapse
Affiliation(s)
- Olalekan A Uthman
- a Warwick-Centre for Applied Health Research and Delivery (WCAHRD), Division of Health Sciences , University of Warwick Medical School , Coventry , UK.,b Centre for Evidence-based Health Care, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Sulaimon T Adedokun
- a Warwick-Centre for Applied Health Research and Delivery (WCAHRD), Division of Health Sciences , University of Warwick Medical School , Coventry , UK.,c Department of Demography and Social Statistics , Obafemi Awolowo University , Ile-Ife , Nigeria
| | - Tawa Olukade
- d Center for Evidence-Based Global Health , Ilorin , Kwara State , Nigeria
| | - Samuel Watson
- a Warwick-Centre for Applied Health Research and Delivery (WCAHRD), Division of Health Sciences , University of Warwick Medical School , Coventry , UK
| | - Olatunji Adetokunboh
- e Department of Global Health , Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town , South Africa
| | - Adeyinka Adeniran
- f Department of Community Health & Primary Healthcare , Lagos State University College of Medicine , Lagos , Nigeria
| | | | - Saheed Gidado
- h Lagos Mainland Local Government, Ebute Meta, Lagos, Nigeria ; Nigeria Field Epidemiology and Laboratory Training Programme , Abuja , Nigeria
| | - Stephen Lawoko
- i Department of Public Health Sciences , Karolinska Institutet , Stockholm , Sweden.,j Faculty of Health Sciences , Victoria University , Kampala , Uganda
| | - Charles S Wiysonge
- b Centre for Evidence-based Health Care, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa.,k Cochrane South Africa , South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
37
|
Gerardin J, Bever CA, Bridenbecker D, Hamainza B, Silumbe K, Miller JM, Eisele TP, Eckhoff PA, Wenger EA. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: a modelling study. Malar J 2017; 16:248. [PMID: 28606143 PMCID: PMC5469005 DOI: 10.1186/s12936-017-1903-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 11/21/2022] Open
Abstract
Background Reactive case detection could be a powerful tool in malaria elimination, as it selectively targets transmission pockets. However, field operations have yet to demonstrate under which conditions, if any, reactive case detection is best poised to push a region to elimination. This study uses mathematical modelling to assess how baseline transmission intensity and local interconnectedness affect the impact of reactive activities in the context of other possible intervention packages. Methods Communities in Southern Province, Zambia, where elimination operations are currently underway, were used as representatives of three archetypes of malaria transmission: low-transmission, high household density; high-transmission, low household density; and high-transmission, high household density. Transmission at the spatially-connected household level was simulated with a dynamical model of malaria transmission, and local variation in vectorial capacity and intervention coverage were parameterized according to data collected from the area. Various potential intervention packages were imposed on each of the archetypical settings and the resulting likelihoods of elimination by the end of 2020 were compared. Results Simulations predict that success of elimination campaigns in both low- and high-transmission areas is strongly dependent on stemming the flow of imported infections, underscoring the need for regional-scale strategies capable of reducing transmission concurrently across many connected areas. In historically low-transmission areas, treatment of clinical malaria should form the cornerstone of elimination operations, as most malaria infections in these areas are symptomatic and onward transmission would be mitigated through health system strengthening; reactive case detection has minimal impact in these settings. In historically high-transmission areas, vector control and case management are crucial for limiting outbreak size, and the asymptomatic reservoir must be addressed through reactive case detection or mass drug campaigns. Conclusions Reactive case detection is recommended only for settings where transmission has recently been reduced rather than all low-transmission settings. This is demonstrated in a modelling framework with strong out-of-sample accuracy across a range of transmission settings while including methodologies for understanding the most resource-effective allocations of health workers. This approach generalizes to providing a platform for planning rational scale-up of health systems based on locally-optimized impact according to simplified stratification. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1903-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Busiku Hamainza
- National Malaria Elimination Centre, Ministry of Health, Lusaka, Zambia
| | - Kafula Silumbe
- PATH Malaria Control and Elimination Partnership in Africa, Lusaka, Zambia
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa, Lusaka, Zambia
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | | |
Collapse
|
38
|
Samuels AM, Awino N, Odongo W, Abong'o B, Gimnig J, Otieno K, Shi YP, Were V, Allen DR, Were F, Sang T, Obor D, Williamson J, Hamel MJ, Patrick Kachur S, Slutsker L, Lindblade KA, Kariuki S, Desai M. Community-based intermittent mass testing and treatment for malaria in an area of high transmission intensity, western Kenya: study design and methodology for a cluster randomized controlled trial. Malar J 2017; 16:240. [PMID: 28592250 PMCID: PMC5463392 DOI: 10.1186/s12936-017-1883-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/29/2017] [Indexed: 01/13/2023] Open
Abstract
Most human Plasmodium infections in western Kenya are asymptomatic and are believed to contribute importantly to malaria transmission. Elimination of asymptomatic infections requires active treatment approaches, such as mass testing and treatment (MTaT) or mass drug administration (MDA), as infected persons do not seek care for their infection. Evaluations of community-based approaches that are designed to reduce malaria transmission require careful attention to study design to ensure that important effects can be measured accurately. This manuscript describes the study design and methodology of a cluster-randomized controlled trial to evaluate a MTaT approach for malaria transmission reduction in an area of high malaria transmission. Ten health facilities in western Kenya were purposively selected for inclusion. The communities within 3 km of each health facility were divided into three clusters of approximately equal population size. Two clusters around each health facility were randomly assigned to the control arm, and one to the intervention arm. Three times per year for 2 years, after the long and short rains, and again before the long rains, teams of community health volunteers visited every household within the intervention arm, tested all consenting individuals with malaria rapid diagnostic tests, and treated all positive individuals with an effective anti-malarial. The effect of mass testing and treatment on malaria transmission was measured through population-based longitudinal cohorts, outpatient visits for clinical malaria, periodic population-based cross-sectional surveys, and entomological indices.
Collapse
Affiliation(s)
- Aaron M Samuels
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA. .,Centers for Disease Control and Prevention, Kisian Campus, Off Busia Road, P O Box 1578, Kisumu, 40100, Kenya.
| | - Nobert Awino
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Wycliffe Odongo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Benard Abong'o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Gimnig
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kephas Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ya Ping Shi
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Vincent Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Denise Roth Allen
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Florence Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Tony Sang
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - David Obor
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Williamson
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Mary J Hamel
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - S Patrick Kachur
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Laurence Slutsker
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kim A Lindblade
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Meghna Desai
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| |
Collapse
|
39
|
Brady OJ, Slater HC, Pemberton-Ross P, Wenger E, Maude RJ, Ghani AC, Penny MA, Gerardin J, White LJ, Chitnis N, Aguas R, Hay SI, Smith DL, Stuckey EM, Okiro EA, Smith TA, Okell LC. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. LANCET GLOBAL HEALTH 2017; 5:e680-e687. [PMID: 28566213 PMCID: PMC5469936 DOI: 10.1016/s2214-109x(17)30220-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 11/28/2022]
Abstract
Background Mass drug administration for elimination of Plasmodium falciparum malaria is recommended by WHO in some settings. We used consensus modelling to understand how to optimise the effects of mass drug administration in areas with low malaria transmission. Methods We collaborated with researchers doing field trials to establish a standard intervention scenario and standard transmission setting, and we input these parameters into four previously published models. We then varied the number of rounds of mass drug administration, coverage, duration, timing, importation of infection, and pre-administration transmission levels. The outcome of interest was the percentage reduction in annual mean prevalence of P falciparum parasite rate as measured by PCR in the third year after the final round of mass drug administration. Findings The models predicted differing magnitude of the effects of mass drug administration, but consensus answers were reached for several factors. Mass drug administration was predicted to reduce transmission over a longer timescale than accounted for by the prophylactic effect alone. Percentage reduction in transmission was predicted to be higher and last longer at lower baseline transmission levels. Reduction in transmission resulting from mass drug administration was predicted to be temporary, and in the absence of scale-up of other interventions, such as vector control, transmission would return to pre-administration levels. The proportion of the population treated in a year was a key determinant of simulated effectiveness, irrespective of whether people are treated through high coverage in a single round or new individuals are reached by implementation of several rounds. Mass drug administration was predicted to be more effective if continued over 2 years rather than 1 year, and if done at the time of year when transmission is lowest. Interpretation Mass drug administration has the potential to reduce transmission for a limited time, but is not an effective replacement for existing vector control. Unless elimination is achieved, mass drug administration has to be repeated regularly for sustained effect. Funding Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Oliver J Brady
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, and Malaria Modelling Consortium, London School of Hygiene & Tropical Medicine, London, UK
| | - Hannah C Slater
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - Peter Pemberton-Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | - Lisa J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ricardo Aguas
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Simon I Hay
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Malaria Modelling Consortium, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Erin M Stuckey
- Malaria Modelling Consortium, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Emelda A Okiro
- Malaria Modelling Consortium, Bill & Melinda Gates Foundation, Seattle, WA, USA; Kemri Wellcome Trust Research Programme, Nairobi, Kenya
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Lucy C Okell
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, UK.
| |
Collapse
|
40
|
Pell C, Tripura R, Nguon C, Cheah P, Davoeung C, Heng C, Dara L, Sareth M, Dondorp A, von Seidlein L, Peto TJ. Mass anti-malarial administration in western Cambodia: a qualitative study of factors affecting coverage. Malar J 2017; 16:206. [PMID: 28526019 PMCID: PMC5438518 DOI: 10.1186/s12936-017-1854-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mass anti-malarial administration has been proposed as a key component of the Plasmodium falciparum malaria elimination strategy in the Greater Mekong sub-Region. Its effectiveness depends on high levels of coverage in the target population. This article explores the factors that influenced mass anti-malarial administration coverage within a clinical trial in Battambang Province, western Cambodia. METHODS Qualitative data were collected through semi-structured interviews and focus group discussions with villagers, in-depth interviews with study staff, trial drop-outs and refusers, and observations in the communities. Interviews were audio-recorded, transcribed and translated from Khmer to English for qualitative content analysis using QSR NVivo. RESULTS Malaria was an important health concern and villagers reported a demand for malaria treatment. This was in spite of a fall in incidence over the previous decade and a lack of familiarity with asymptomatic malaria. Participants generally understood the overall study aim and were familiar with study activities. Comprehension of the study rationale was however limited. After the first mass anti-malarial administration, seasonal health complaints that participants attributed to the anti-malarial as "side effects" contributed to a decrease of coverage in round two. Staff therefore adapted the community engagement approach, bringing to prominence local leaders in village meetings. This contributed to a subsequent increase in coverage. CONCLUSION Future mass anti-malarial administration must consider seasonal disease patterns and the importance of local leaders taking prominent roles in community engagement. Further research is needed to investigate coverage in scenarios that more closely resemble implementation i.e. without participation incentives, blood sampling and free healthcare.
Collapse
Affiliation(s)
- Christopher Pell
- Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Phaikyeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Chan Davoeung
- Battambang Provincial Health Department, Krong Battambang, Cambodia
| | - Chhouen Heng
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lim Dara
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Ma Sareth
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Arjen Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Thomas J. Peto
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Tripura R, Peto TJ, Veugen CC, Nguon C, Davoeung C, James N, Dhorda M, Maude RJ, Duanguppama J, Patumrat K, Imwong M, von Seidlein L, Grobusch MP, White NJ, Dondorp AM. Submicroscopic Plasmodium prevalence in relation to malaria incidence in 20 villages in western Cambodia. Malar J 2017; 16:56. [PMID: 28143518 PMCID: PMC5282880 DOI: 10.1186/s12936-017-1703-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cambodia has seen a marked reduction in the incidence of Plasmodium falciparum over the past decade without a corresponding decline in Plasmodium vivax incidence. It is unknown to what extent local transmission is sustained by a chain of clinical and sub-clinical infections or by continued re-introduction via migration. Using an ultrasensitive molecular technique, 20 villages in western Cambodia were surveyed to detect the low season prevalence of P. falciparum and P. vivax and local treatment records were reviewed. Methods During March to May 2015 cross-sectional surveys were conducted in 20 villages in Battambang, western Cambodia. Demographic and epidemiological data and venous blood samples were collected from 50 randomly selected adult volunteers in each village. Blood was tested for Plasmodium infections by rapid diagnostic test (RDT), microscopy and high volume (0.5 ml packed red blood cell) quantitative polymerase chain reaction (uPCR). Positive samples were analysed by nested PCR to determine the Plasmodium species. Malaria case records were collected from the Provincial Health Department and village malaria workers to determine incidence and migration status. Results Among the 1000 participants, 91 (9.1%) were positive for any Plasmodium infection by uPCR, seven (0.7%) by microscopy, and two (0.2%) by RDT. uPCR P. vivax prevalence was 6.6%, P. falciparum 0.7%, and undetermined Plasmodium species 1.8%. Being male (adjusted OR 2.0; 95% CI 1.2-3.4); being a young adult <30 years (aOR 2.1; 95% CI 1.3–3.4); recent forest travel (aOR 2.8; 95% CI 1.6–4.8); and, a history of malaria (aOR 5.2; 95% CI 2.5–10.7) were independent risk factors for parasitaemia. Of the clinical malaria cases diagnosed by village malaria workers, 43.9% (297/634) and 38.4% (201/523) were among migrants in 2013 and in 2014, respectively. Plasmodium vivax prevalence determined by uPCR significantly correlated with vivax malaria incidences in both 2014 and 2015 (p = 0.001 and 0.002, respectively), whereas no relationship was observed in falciparum malaria (p = 0.36 and p = 0.59, respectively). Discussion There was heterogeneity in the malaria parasite reservoir between villages, and Plasmodium prevalence correlated with subsequent malaria incidence. The association was attributable chiefly to P. vivax infections, which were nine-fold more prevalent than P. falciparum infections. In the absence of a radical cure with 8-aminoquinolines, P. vivax transmission will continue even as P. falciparum prevalence declines. Migration was associated with over a third of incident cases of clinical malaria. Trial registration clinicaltrials.gov (NCT01872702). Registered 4 June 2013 Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1703-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand. .,Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Christianne C Veugen
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Nicola James
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,World-Wide Antimalarial Resistance Network, Mahidol University, Bangkok, Thailand
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, USA
| | - Jureeporn Duanguppama
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Krittaya Patumrat
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Rajthevee, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Nikolov M, Bever CA, Upfill-Brown A, Hamainza B, Miller JM, Eckhoff PA, Wenger EA, Gerardin J. Malaria Elimination Campaigns in the Lake Kariba Region of Zambia: A Spatial Dynamical Model. PLoS Comput Biol 2016; 12:e1005192. [PMID: 27880764 PMCID: PMC5120780 DOI: 10.1371/journal.pcbi.1005192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
As more regions approach malaria elimination, understanding how different interventions interact to reduce transmission becomes critical. The Lake Kariba area of Southern Province, Zambia, is part of a multi-country elimination effort and presents a particular challenge as it is an interconnected region of variable transmission intensities. In 2012-13, six rounds of mass test-and-treat drug campaigns were carried out in the Lake Kariba region. A spatial dynamical model of malaria transmission in the Lake Kariba area, with transmission and climate modeled at the village scale, was calibrated to the 2012-13 prevalence survey data, with case management rates, insecticide-treated net usage, and drug campaign coverage informed by surveillance. The model captured the spatio-temporal trends of decline and rebound in malaria prevalence in 2012-13 at the village scale. Various interventions implemented between 2016-22 were simulated to compare their effects on reducing regional transmission and achieving and maintaining elimination through 2030. Simulations predict that elimination requires sustaining high coverage with vector control over several years. When vector control measures are well-implemented, targeted mass drug campaigns in high-burden areas further increase the likelihood of elimination, although drug campaigns cannot compensate for insufficient vector control. If infections are regularly imported from outside the region into highly receptive areas, vector control must be maintained within the region until importations cease. Elimination in the Lake Kariba region is possible, although human movement both within and from outside the region risk damaging the success of elimination programs.
Collapse
Affiliation(s)
- Milen Nikolov
- Institute for Disease Modeling, Bellevue, WA, United States
| | | | | | | | - John M. Miller
- PATH Malaria Control and Elimination Program in Africa (MACEPA), Lusaka, Zambia
| | | | | | - Jaline Gerardin
- Institute for Disease Modeling, Bellevue, WA, United States
- * E-mail: (JG)
| |
Collapse
|
43
|
Adhikari B, James N, Newby G, von Seidlein L, White NJ, Day NPJ, Dondorp AM, Pell C, Cheah PY. Community engagement and population coverage in mass anti-malarial administrations: a systematic literature review. Malar J 2016; 15:523. [PMID: 27806717 PMCID: PMC5093999 DOI: 10.1186/s12936-016-1593-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Mass anti-malarial administration has been proposed as a key component of the malaria elimination strategy in South East Asia. The success of this approach depends on the local malaria epidemiology, nature of the anti-malarial regimen and population coverage. Community engagement is used to promote population coverage but little research has systematically analysed its impact. This systematic review examines population coverage and community engagement in programmes of mass anti-malarial drug administration. Methods This review builds on a previous review that identified 3049 articles describing mass anti-malarial administrations published between 1913 and 2011. Further search and application of a set of criteria conducted in the current review resulted in 51 articles that were retained for analysis. These 51 papers described the population coverage and/or community engagement in mass anti-malarial administrations. Population coverage was quantitatively assessed and a thematic analysis was conducted on the community engagement activities. Results The studies were conducted in 26 countries: in diverse healthcare and social contexts where various anti-malarial regimens under varied study designs were administered. Twenty-eight articles reported only population coverage; 12 described only community engagement activities; and 11 community engagement and population coverage. Average population coverage was 83% but methods of calculating coverage were frequently unclear or inconsistent. Community engagement activities included providing health education and incentives, using community structures (e.g. existing hierarchies or health infrastructure), mobilizing human resources, and collaborating with government at some level (e.g. ministries of health). Community engagement was often a process involving various activities throughout the duration of the intervention. Conclusion The mean population coverage was over 80% but incomplete reporting of calculation methods limits conclusions and comparisons between studies. Various community engagement activities and approaches were described, but many articles contained limited or no details. Other factors relevant to population coverage, such as the social, cultural and study context were scarcely reported. Further research is needed to understand the factors that influence population coverage and adherence in mass anti-malarial administrations and the role community engagement activities and approaches play in satisfactory participation. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1593-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bipin Adhikari
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Nicola James
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gretchen Newby
- The Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK
| | - Christopher Pell
- Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Phaik Yeong Cheah
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,The Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
44
|
Leang R, Khu NH, Mukaka M, Debackere M, Tripura R, Kheang ST, Chy S, Kak N, Buchy P, Tarantola A, Menard D, Roca-Felterer A, Fairhurst RM, Kheng S, Muth S, Ngak S, Dondorp AM, White NJ, Taylor WRJ. An optimised age-based dosing regimen for single low-dose primaquine for blocking malaria transmission in Cambodia. BMC Med 2016; 14:171. [PMID: 27784313 PMCID: PMC5081959 DOI: 10.1186/s12916-016-0701-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In 2012, the World Health Organization recommended the addition of single low-dose primaquine (SLDPQ, 0.25 mg base/kg body weight) to artemisinin combination therapies to block the transmission of Plasmodium falciparum without testing for glucose-6-phosphate dehydrogenase deficiency. The targeted group was non-pregnant patients aged ≥ 1 year (later changed to ≥ 6 months) with acute uncomplicated falciparum malaria, primarily in countries with artemisinin-resistant P. falciparum (ARPf). No dosing regimen was suggested, leaving malaria control programmes and clinicians in limbo. Therefore, we designed a user-friendly, age-based SLDPQ regimen for Cambodia, the country most affected by ARPf. METHODS By reviewing primaquine's pharmacology, we defined a therapeutic dose range of 0.15-0.38 mg base/kg (9-22.5 mg in a 60-kg adult) for a therapeutic index of 2.5. Primaquine doses (1-20 mg) were tested using a modelled, anthropometric database of 28,138 Cambodian individuals (22,772 healthy, 4119 with malaria and 1247 with other infections); age distributions were: 0.5-4 years (20.0 %, n = 5640), 5-12 years (9.1 %, n = 2559), 13-17 years (9.1 %, n = 2550), and ≥ 18 years (61.8 %, n = 17,389). Optimal age-dosing groups were selected according to calculated mg base/kg doses and proportions of individuals receiving a therapeutic dose. RESULTS Four age-dosing bands were defined: (1) 0.5-4 years, (2) 5-9 years, (3) 10-14 years, and (4) ≥15 years to receive 2.5, 5, 7.5, and 15 mg of primaquine base, resulting in therapeutic doses in 97.4 % (5494/5640), 90.5 % (1511/1669), 97.7 % (1473/1508), and 95.7 % (18,489/19,321) of individuals, respectively. Corresponding median (1st-99th centiles) mg base/kg doses of primaquine were (1) 0.23 (0.15-0.38), (2) 0.29 (0.18-0.45), (3) 0.27 (0.15-0.39), and (4) 0.29 (0.20-0.42). CONCLUSIONS This age-based SLDPQ regimen could contribute substantially to malaria elimination and requires urgent evaluation in Cambodia and other countries with similar anthropometric characteristics. It guides primaquine manufacturers on suitable tablet strengths and doses for paediatric-friendly formulations. Development of similar age-based dosing recommendations for Africa is needed.
Collapse
Affiliation(s)
- Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Naw Htee Khu
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Mark Debackere
- MSF Belgium Cambodia Malaria Program, #19, Street 388, Sangkat Tuol Svay Prey, Khan Chamkarmon, PO Box 1933, Phnom Penh, Cambodia
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Soy Ty Kheang
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Say Chy
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Neeraj Kak
- University Research Co., LLC Washington DC: 7200 Wisconsin Ave, Bethesda, MD, 20814, USA
| | - Philippe Buchy
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Didier Menard
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arantxa Roca-Felterer
- Malaria Consortium, House #91 Street 95, Boeung Trabek, Chamkar Morn, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Song Ngak
- FHI 360 Cambodia Office, #03, Street 330 Boeung Keng Kang III Khan Chamkamon, PO Box: 2586, Phnom Penh, Cambodia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Walter Robert John Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand. .,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Centre de Médecine Humanitaire, Hôpitaux Universitaires de Genève, Genève, Switzerland.
| |
Collapse
|
45
|
Falq G, Van Den Bergh R, De Smet M, Etienne W, Nguon C, Rekol H, Imwong M, Dondorp A, Kindermans JM. Assessing the asymptomatic reservoir and dihydroartemisinin-piperaquine effectiveness in a low transmission setting threatened by artemisinin resistant Plasmodium falciparum. Malar J 2016; 15:446. [PMID: 27585957 PMCID: PMC5009552 DOI: 10.1186/s12936-016-1487-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background In Cambodia, elimination of artemisinin resistance through direct elimination of the Plasmodium falciparum parasite may be the only strategy. Prevalence and incidence at district and village levels were assessed in Chey Saen district, Preah Vihear province, North of Cambodia. Molecular and clinical indicators for artemisinin resistance were documented. Methods A cross sectional prevalence survey was conducted at village level in the district of Chey Saen from September to October 2014. Plasmodium spp. was assessed with high volume quantitative real-time polymerase chain reaction (qPCR). Plasmodium falciparum-positive samples were screened for mutations in the k13-propeller domain gene. Treatment effectiveness was established after 28 days (D28) using the same qPCR technique. Data from the provincial surveillance system targeting symptomatic cases, supported by Médecins Sans Frontières (MSF), were used to assess incidence. Results District P. falciparum prevalence was of 0.74 % [0.41; 1.21]; village prevalence ranged from 0 to 4.6 % [1.4; 10.5]. The annual incidence of P. falciparum was 16.8 cases per 1000 inhabitants in the district; village incidence ranged from 1.3 to 54.9 for 1000 inhabitants. Two geographical clusters with high number of cases were identified by both approaches. The marker for artemisinin resistance was found in six samples out of the 11 tested (55 %). 34.9 % of qPCR blood analysis of symptomatic patients were still positive at D28. Conclusions The overall low prevalence of P. falciparum was confirmed in Chey Saen district in Cambodia, while there were important variations between villages. Symptomatic cases had a different pattern and were likely acquired outside the villages. It illustrates the importance of prevalence surveys in targeting interventions for elimination. Mutations in the k13-propeller domain gene (C580Y), conferring artemisinin resistance, were highly prevalent in both symptomatic and asymptomatic cases (realizing the absolute figures remain low). Asymptomatic individuals could be an additional reservoir for artemisinin resistance. The low effectiveness of dihydroartemisinin–piperaquine (DHA–PPQ) for symptomatic cases indicates that PPQ is no longer able to complement the reduced potency of DHA to treat falciparum malaria and highlights the need for an alternative first-line treatment.
Collapse
Affiliation(s)
- Grégoire Falq
- Médecins Sans Frontières, 46, rue de l'Arbre Bénit, 1050, Brussels, Belgium
| | - Rafael Van Den Bergh
- Médecins Sans Frontières, 68, rue de Gasperich, 1617, Luxembourg City, Luxembourg
| | - Martin De Smet
- Médecins Sans Frontières, 46, rue de l'Arbre Bénit, 1050, Brussels, Belgium
| | - William Etienne
- Médecins Sans Frontières, 46, rue de l'Arbre Bénit, 1050, Brussels, Belgium
| | - Chea Nguon
- Centre for Parasitology, Entomology and Malaria Control, 477 Betong Street, Village Trapangsvay, Sanakat Phnom Penh Thmey, Khan Sen Sok, Phnom Penh, Cambodia
| | - Huy Rekol
- Centre for Parasitology, Entomology and Malaria Control, 477 Betong Street, Village Trapangsvay, Sanakat Phnom Penh Thmey, Khan Sen Sok, Phnom Penh, Cambodia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 3/F, 60th Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Arjen Dondorp
- Mahidol Oxford Tropical Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
46
|
Gonçalves D, Hunziker P. Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malar J 2016; 15:95. [PMID: 26888537 PMCID: PMC4758146 DOI: 10.1186/s12936-016-1163-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
Malaria remains one of the most prevalent tropical and infectious diseases in the world, with an estimated more than 200 million clinical cases every year. In recent years, the mosquito stages of the parasite life cycle have received renewed attention with some progress being made in the development of transmission-blocking strategies. From gametocytes to late ookinetes, some attractive antigenic targets have been found and tested in order to develop a transmission blocking vaccine, and drugs are being currently screened for gametocytocidal activity, and also some new and less conventional approaches are drawing increased attention, such as genetically modified and fungus-infected mosquitoes that become refractory to Plasmodium infection. In this review some of those strategies focusing on the progress made so far will be summarized, but also, the challenges that come from the translation of early promising benchwork resulting in successful applications in the field. To do this, the available literature will be screened and all the pieces of the puzzle must be combined: from molecular biology to epidemiologic and clinical data.
Collapse
Affiliation(s)
- Daniel Gonçalves
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| | - Patrick Hunziker
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
47
|
Gerardin J, Bever CA, Hamainza B, Miller JM, Eckhoff PA, Wenger EA. Optimal Population-Level Infection Detection Strategies for Malaria Control and Elimination in a Spatial Model of Malaria Transmission. PLoS Comput Biol 2016; 12:e1004707. [PMID: 26764905 PMCID: PMC4713231 DOI: 10.1371/journal.pcbi.1004707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Mass campaigns with antimalarial drugs are potentially a powerful tool for local elimination of malaria, yet current diagnostic technologies are insufficiently sensitive to identify all individuals who harbor infections. At the same time, overtreatment of uninfected individuals increases the risk of accelerating emergence of drug resistance and losing community acceptance. Local heterogeneity in transmission intensity may allow campaign strategies that respond to index cases to successfully target subpatent infections while simultaneously limiting overtreatment. While selective targeting of hotspots of transmission has been proposed as a strategy for malaria control, such targeting has not been tested in the context of malaria elimination. Using household locations, demographics, and prevalence data from a survey of four health facility catchment areas in southern Zambia and an agent-based model of malaria transmission and immunity acquisition, a transmission intensity was fit to each household based on neighborhood age-dependent malaria prevalence. A set of individual infection trajectories was constructed for every household in each catchment area, accounting for heterogeneous exposure and immunity. Various campaign strategies—mass drug administration, mass screen and treat, focal mass drug administration, snowball reactive case detection, pooled sampling, and a hypothetical serological diagnostic—were simulated and evaluated for performance at finding infections, minimizing overtreatment, reducing clinical case counts, and interrupting transmission. For malaria control, presumptive treatment leads to substantial overtreatment without additional morbidity reduction under all but the highest transmission conditions. Compared with untargeted approaches, selective targeting of hotspots with drug campaigns is an ineffective tool for elimination due to limited sensitivity of available field diagnostics. Serological diagnosis is potentially an effective tool for malaria elimination but requires higher coverage to achieve similar results to mass distribution of presumptive treatment. Millions of people worldwide live at risk for malaria, a parasitic infectious disease transmitted by mosquitoes. Great progress has been made in reducing malaria burden in recent years, and many regions are now devising strategies for elimination. One way to eliminate malaria is to deplete the reservoir of parasites in human hosts by treating large groups of people with antimalarial drugs. However, current field diagnostics are not sensitive enough to correctly identify all infected individuals. Presumptively administering antimalarial drugs to whole populations will effectively clear infections but can also lead to substantial overtreatment and encourage the evolution of drug resistance in parasites. We might be able to predict which individuals who test negative are actually infected based on whether their household members and neighbors are testing positive. Using a mathematical model of malaria immunity acquisition and a spatial dataset of malaria prevalence in southern Zambia, we simulate strategies of identifying infected individuals and compare each strategy’s ability to deplete the infectious reservoir and avoid overtreatment. We make different recommendations for optimal strategies depending on a region’s malaria prevalence.
Collapse
Affiliation(s)
- Jaline Gerardin
- Institute for Disease Modeling, Bellevue, Washington, United States of America
- * E-mail:
| | - Caitlin A. Bever
- Institute for Disease Modeling, Bellevue, Washington, United States of America
| | | | - John M. Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Philip A. Eckhoff
- Institute for Disease Modeling, Bellevue, Washington, United States of America
| | - Edward A. Wenger
- Institute for Disease Modeling, Bellevue, Washington, United States of America
| |
Collapse
|
48
|
Slater HC, Ross A, Ouédraogo AL, White LJ, Nguon C, Walker PGT, Ngor P, Aguas R, Silal SP, Dondorp AM, La Barre P, Burton R, Sauerwein RW, Drakeley C, Smith TA, Bousema T, Ghani AC. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature 2015; 528:S94-101. [PMID: 26633771 DOI: 10.1038/nature16040] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mass-screen-and-treat and targeted mass-drug-administration strategies are being considered as a means to interrupt transmission of Plasmodium falciparum malaria. However, the effectiveness of such strategies will depend on the extent to which current and future diagnostics are able to detect those individuals who are infectious to mosquitoes. We estimate the relationship between parasite density and onward infectivity using sensitive quantitative parasite diagnostics and mosquito feeding assays from Burkina Faso. We find that a diagnostic with a lower detection limit of 200 parasites per microlitre would detect 55% of the infectious reservoir (the combined infectivity to mosquitoes of the whole population weighted by how often each individual is bitten) whereas a test with a limit of 20 parasites per microlitre would detect 83% and 2 parasites per microlitre would detect 95% of the infectious reservoir. Using mathematical models, we show that increasing the diagnostic sensitivity from 200 parasites per microlitre (equivalent to microscopy or current rapid diagnostic tests) to 2 parasites per microlitre would increase the number of regions where transmission could be interrupted with a mass-screen-and-treat programme from an entomological inoculation rate below 1 to one of up to 4. The higher sensitivity diagnostic could reduce the number of treatment rounds required to interrupt transmission in areas of lower prevalence. We predict that mass-screen-and-treat with a highly sensitive diagnostic is less effective than mass drug administration owing to the prophylactic protection provided to uninfected individuals by the latter approach. In low-transmission settings such as those in Southeast Asia, we find that a diagnostic tool with a sensitivity of 20 parasites per microlitre may be sufficient for targeted mass drug administration because this diagnostic is predicted to identify a similar village population prevalence compared with that currently detected using polymerase chain reaction if treatment levels are high and screening is conducted during the dry season. Along with other factors, such as coverage, choice of drug, timing of the intervention, importation of infections, and seasonality, the sensitivity of the diagnostic can play a part in increasing the chance of interrupting transmission.
Collapse
Affiliation(s)
- Hannah C Slater
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - André Lin Ouédraogo
- Institute for Disease Modelling, Bellevue, Washington 98005, USA.,Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, 01 B.P. 2208, Ouagadougou, Burkina Faso
| | - Lisa J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Chea Nguon
- National Malaria Center, Ministry of Health, Phnom Penh 12302, Cambodia
| | - Patrick G T Walker
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Pengby Ngor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.,National Malaria Center, Ministry of Health, Phnom Penh 12302, Cambodia
| | - Ricardo Aguas
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sheetal P Silal
- Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Paul La Barre
- PATH, 2201 Westlake Avenue, Seattle, Washington 98121, USA
| | - Robert Burton
- PATH, 2201 Westlake Avenue, Seattle, Washington 98121, USA
| | | | - Chris Drakeley
- London School of Hygiene &Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Teun Bousema
- Radboud University Medical Center, 6525 HP Nijmegen, the Netherlands.,London School of Hygiene &Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
49
|
Prevention of Malaria Resurgence in Greece through the Association of Mass Drug Administration (MDA) to Immigrants from Malaria-Endemic Regions and Standard Control Measures. PLoS Negl Trop Dis 2015; 9:e0004215. [PMID: 26583650 PMCID: PMC4652894 DOI: 10.1371/journal.pntd.0004215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/14/2015] [Indexed: 01/27/2023] Open
Abstract
Greece was declared malaria-free in 1974 after a long antimalarial fight. In 2011–2012, an outbreak of P. vivax malaria was reported in Evrotas, an agricultural area in Southern Greece, where a large number of immigrants from endemic countries live and work. A total of 46 locally acquired and 38 imported malaria cases were detected. Despite a significant decrease of the number of malaria cases in 2012, a mass drug administration (MDA) program was considered as an additional measure to prevent reestablishment of the disease in the area. During 2013 and 2014, a combination of 3-day chloroquine and 14-day primaquine treatment was administered under direct observation to immigrants living in the epicenter of the 2011 outbreak in Evrotas. Adverse events were managed and recorded on a daily basis. The control measures implemented since 2011 continued during the period of 2013–2014 as a part of a national integrated malaria control program that included active case detection (ACD), vector control measures and community education. The MDA program was started prior to the transmission periods (from May to December). One thousand ninety four (1094) immigrants successfully completed the treatment, corresponding to 87.3% coverage of the target population. A total of 688 adverse events were recorded in 397 (36.2%, 95% C.I.: 33.4–39.1) persons, the vast majority minor, predominantly dizziness and headache for chloroquine (284 events) and abdominal pain (85 events) for primaquine. A single case of primaquine-induced hemolysis was recorded in a person whose initial G6PD test proved incorrect. No malaria cases were recorded in Evrotas, Laconia, in 2013 and 2014, though three locally acquired malaria cases were recorded in other regions of Greece in 2013. Preventive antimalarial MDA to a high-risk population in a low transmission setting appears to have synergized with the usual antimalarial activities to achieve malaria elimination. This study suggests that judicious use of MDA can be a useful addition to the antimalarial armamentarium in areas threatened with the reintroduction of the disease. Greece was declared malaria-free in the year 1974 after a long antimalarial fight. In 2011–2012, a number of malaria cases reported in Evrotas, Laconia, in Southern Greece, where a large number of immigrants from malaria-endemic countries live and work. A total of 84 malaria cases, both in immigrants (38 cases) and in Greeks (46 cases), were detected. A number of malaria control measures were deployed in the area since 2011. Despite a decrease of the number of malaria cases in 2012, elimination could not be achieved, and thus antimalarial MDA was considered as an additional measure to prevent the reestablishment of the disease. During 2013 and 2014, a combination of two drugs was administered under direct observation to all immigrants in the epicenter of the 2011 Evrotas outbreak. The antimalarial MDA program was started on July-August and was successfully completed by 1094 immigrants (87.3% coverage). No serious adverse events were recorded except one case of primaquine-induced hemolysis due to false G6PD test result. In 2013 and 2014, no malaria cases were recorded in Evrotas, Laconia. This study suggests that careful use of supervised antimalarial MDA is a useful addition to the antimalarial control measures in areas threatened with the reintroduction of the disease.
Collapse
|
50
|
Disease elimination and re-emergence in differential-equation models. J Theor Biol 2015; 387:174-80. [PMID: 26471072 DOI: 10.1016/j.jtbi.2015.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 11/27/2022]
Abstract
Traditional differential equation models of disease transmission are often used to predict disease trajectories and evaluate the effectiveness of alternative intervention strategies. However, such models cannot account explicitly for probabilistic events, such as those that dominate dynamics when disease prevalence is low during the elimination and re-emergence phases of an outbreak. To account for the dynamics at low prevalence, i.e. the elimination and risk of disease re-emergence, without the added analytical and computational complexity of a stochastic model, we develop a novel application of control theory. We apply our approach to analyze historical data of measles elimination and re-emergence in Iceland from 1923 to 1938, predicting the temporal trajectory of local measles elimination and re-emerge as a result of disease migration from Copenhagen, Denmark.
Collapse
|