1
|
Saadh MJ, Bishoyi AK, Ballal S, Singh A, Kareem RA, Devi A, Sharma GC, Naidu KS, Sead FF. MicroRNAs as behind-the-scenes molecules in breast cancer metastasis and their therapeutic role through novel microRNA-based delivery strategies. Gene 2025; 944:149272. [PMID: 39894085 DOI: 10.1016/j.gene.2025.149272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Breast cancer is the primary cause of cancer-related death and the most frequent malignancy among women in Western countries. Although there have been advancements in combination treatments and targeted therapies for the metastatic diseases management, metastatic breast cancer is still the second most common cause of cancer-related deaths among U.S. women. The routes of metastasis encompass invasion, intravasation, circulation, extravasation, infiltration into a remote location to establish a metastatic niche, and the formation of micro-metastases in a new environment. Each of these processes is regulated by changes in gene expression. MicroRNAs (miRNAs) are widely expressed by a variety of organisms and have a key role in cell activities including suppressing or promoting cancer through regulating various pathways. Target gene expression is post-transcriptionally regulated by miRNAs, which contribute to the development, spread, and metastasis of breast cancer. In this study, we comprehensively discussed the role of miRNAs as predictors of breast cancer metastasis, their correlation with the spread of the disease to certain organs, and their potential application as targets for breast cancer treatment. We also provided molecular mechanisms of miRNAs in the progression of breast cancer, as well as current challenges in miRNA-based therapeutic approaches. Furthermore, as one of the primary issues with the treatment of solid malignancies is the efficient delivery of miRNAs, we examined a number of cutting-edge carriers for miRNA-based therapies and CRISPR/Cas9 as a targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Dupas A, Goetz JG, Osmani N. Extravasation of immune and tumor cells from an endothelial perspective. J Cell Sci 2024; 137:jcs262066. [PMID: 39530179 DOI: 10.1242/jcs.262066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Crossing the vascular endothelium is a necessary stage for circulating cells aiming to reach distant organs. Leukocyte passage through the endothelium, known as transmigration, is a multistep process during which immune cells adhere to the vascular wall, migrate and crawl along the endothelium until they reach their exit site. Similarly, circulating tumor cells (CTCs), which originate from the primary tumor or reseed from early metastatic sites, disseminate using the blood circulation and also must cross the endothelial barrier to set new colonies in distant organs. CTCs are thought to mimic arrest and extravasation utilized by leukocytes; however, their extravasation also requires processes that, from an endothelial perspective, are specific to cancer cells. Although leukocyte extravasation relies on maintaining endothelial impermeability, it appears that cancer cells can indoctrinate endothelial cells into promoting their extravasation independently of their normal functions. In this Review, we summarize the common and divergent mechanisms of endothelial responses during extravasation of leukocytes (in inflammation) and CTCs (in metastasis), and highlight how these might be leveraged in the development of anti-metastatic treatments.
Collapse
Affiliation(s)
- Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Jacky G Goetz
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
3
|
Li L, Qin S, Tan H, Zhou J. LGALS3BP is a novel and potential biomarker in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:4033-4051. [PMID: 38393692 PMCID: PMC10929836 DOI: 10.18632/aging.205578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common solid renal tumor. Therefore, it is necessary to explore the related tumor markers. LGALS3BP (galectin 3 binding protein) is a multifunctional glycoprotein implicated in immunity and cancer. Some studies have shown that LGALS3BP promotes the occurrence and development of tumors. However, their exact role in renal tumorigenesis remains unclear. Our study used a webserver to explore the mRNA expression and clinical features of LGALS3BP in ccRCC. Survival analysis showed that patients with high LGALS3BP expression had significantly worse OS and DFS than those with low LGALS3BP expression. LGALS3BP expression is significantly related to B cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Furthermore, we determined that LGALS3BP is significantly associated with angiogenesis, stemness and proliferation in renal cancer. Three phenotypes may be associated with a poor prognosis. Genes related to proliferation, angiogenesis and stemness were derived from a Venn diagram of FGF2. FGF2 is negatively correlated with proliferation and positively correlated with angiogenesis. Finally, we screened for drugs that may have potential therapeutic value for ccRCC. The PCR results showed that the expression of LGALS3BP in the normal cell line was lower than that in the tumor cell lines. After LGALS3BP knockdown, the proliferation of 769-P and 786-O cells decreased. The present findings show that LGALS3BP is critical for ccRCC cell proliferation and may be a potential target and biomarker for ccRCC.
Collapse
Affiliation(s)
- Lei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Sen Qin
- Department of Orthopedics, The First People’s Hospital of Jingzhou, Jingzhou, Hubei, People’s Republic of China
| | - Hongwei Tan
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Jiexue Zhou
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Lopez-Cavestany M, Wright OA, Cassidy AM, Carter AT, King MR. Dual Affinity Nanoparticles for the Transport of Therapeutics from Carrier Cells to Target Cells under Physiological Flow Conditions. ACS OMEGA 2023; 8:42748-42761. [PMID: 38024679 PMCID: PMC10652824 DOI: 10.1021/acsomega.3c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this study, a novel two-stage nanoparticle delivery platform was developed based on the dual functionalization of a liposome with moieties that have fundamentally different strengths of adhesion and binding kinetics. The essential concept of this system is that the nanoparticles are designed to loosely bind to the carrier cell until they come into contact with the target cell, to which they bind with greater strength. This allows the nanoparticle to be transferred from one cell to another, circulating for longer periods of time in the blood and delivering the therapeutic agent to the target circulating tumor cell. Liposomes were prepared using the lipid cake and extrusion technique, then functionalized with E-selectin (ES), anti-cell surface vimentin antibody fragments, and TRAIL via click chemistry. The binding of dual affinity (DA) liposomes was confirmed with the neutrophil-like cell line PLB985, the colorectal cancer cell line HCT116, and healthy granulocytes isolated from peripheral whole blood under physiologically relevant fluid shear stress (FSS) in a cone-and-plate viscometer. Transfer of the DA liposomes from PLB985 to HCT116 cells under FSS was greater compared to all of the control liposome formulations. Additionally, DA liposomes demonstrated enhanced apoptotic effects on HCT116 cells in whole blood under FSS, surpassing the efficacy of the ES/TRAIL liposomes previously developed by the King Lab.
Collapse
Affiliation(s)
- Maria Lopez-Cavestany
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Olivia A. Wright
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ava M. Cassidy
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexandria T. Carter
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Michael R. King
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Cazzola A, Calzón Lozano D, Menne DH, Dávila Pedrera R, Liu J, Peña-Jiménez D, Fontenete S, Halin C, Perez-Moreno M. Lymph Vessels Associate with Cancer Stem Cells from Initiation to Malignant Stages of Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:13615. [PMID: 37686421 PMCID: PMC10488284 DOI: 10.3390/ijms241713615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor-associated lymph vessels and lymph node involvement are critical staging criteria in several cancers. In skin squamous cell carcinoma, lymph vessels play a role in cancer development and metastatic spread. However, their relationship with the cancer stem cell niche at early tumor stages remains unclear. To address this gap, we studied the lymph vessel localization at the cancer stem cell niche and observed an association from benign skin lesions to malignant stages of skin squamous cell carcinoma. By co-culturing lymphatic endothelial cells with cancer cell lines representing the initiation and promotion stages, and conducting RNA profiling, we observed a reciprocal induction of cell adhesion, immunity regulation, and vessel remodeling genes, suggesting dynamic interactions between lymphatic and cancer cells. Additionally, imaging analyses of the cultured cells revealed the establishment of heterotypic contacts between cancer cells and lymph endothelial cells, potentially contributing to the observed distribution and maintenance at the cancer stem cell niche, inducing downstream cellular responses. Our data provide evidence for an association of lymph vessels from the early stages of skin squamous cell carcinoma development, opening new avenues for better comprehending their involvement in cancer progression.
Collapse
Affiliation(s)
- Anna Cazzola
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David Calzón Lozano
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dennis Hirsch Menne
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Raquel Dávila Pedrera
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jingcheng Liu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Silvia Fontenete
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Shirure VS, Yechikov S, Shergill BS, Dehghani T, Block AV, Sodhi H, Panitch A, George SC. Mitigating neutrophil trafficking and cardiotoxicity with DS-IkL in a microphysiological system of a cytokine storm. LAB ON A CHIP 2023; 23:3050-3061. [PMID: 37278194 PMCID: PMC10330849 DOI: 10.1039/d2lc01070d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A feature of severe COVID-19 is the onset of an acute and intense systemic inflammatory response referred to as the "cytokine storm". The cytokine storm is characterized by high serum levels of inflammatory cytokines and the subsequent transport of inflammatory cells to damaging levels in vital organs (e.g., myocarditis). Immune trafficking and its effect on underlying tissues (e.g., myocardium) are challenging to observe at a high spatial and temporal resolution in mouse models. In this study, we created a vascularized organ-on-a-chip system to mimic cytokine storm-like conditions and tested the effectiveness of a novel multivalent selectin-targeting carbohydrate conjugate (composed of DS - dermatan sulfate and IkL - a selectin-binding peptide, termed DS-IkL) in blocking infiltration of polymorphonuclear leukocytes (PMN). Our data shows that cytokine storm-like conditions induce endothelial cells to produce additional inflammatory cytokines and facilitate infiltration of PMNs into tissue. Treatment of tissues with DS-IkL (60 μM) reduced PMN accumulation in the tissue by >50%. We then created cytokine storm-like conditions in a vascularized cardiac tissue-chip and found that PMN infiltration increases the spontaneous beating rate of the cardiac tissue, and this effect is eliminated by treatment with DS-IkL (60 μM). In summary, we demonstrate the utility of an organ-on-a-chip platform to mimic COVID-19 related cytokine storm and that blocking leukocyte infiltration with DS-IkL could be a viable strategy to mitigate associated cardiac complications.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Sergey Yechikov
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Bhupinder S Shergill
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Tima Dehghani
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Anton V Block
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Harkanwalpreet Sodhi
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Masuda M, Asuka T, Terao N, Nishino S, Ikeda S, Takamatsu S, Kondo J, Miyoshi E. Establishment of a novel 70K Mac-2 binding protein antibody through screening of fucosylation-related antibodies. J Biochem 2023; 173:487-495. [PMID: 36760066 DOI: 10.1093/jb/mvad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Mac-2 binding protein (Mac-2bp) is a serum glycoprotein that contains seven N-glycans, and Mac-2bp serum levels are increased in patients with several types of cancer and liver disease. Mac-2bp glycosylation isomer has been applied as a clinical biomarker of several diseases, including liver fibrosis. In the present study, we identified fucosylated Mac-2bp in the conditioned medium of cancer cells resistant to anticancer therapies using glycoproteomic analyses. Fucosylation is one of the most important types of glycosylation involved in carcinogenesis and cancer stemness. To establish a next-generation glycan antibody for fucosylated Mac-2bp, we used fucosylation-deficient HEK293T cells to prepare reference Mac-2bp antigens and performed antibody screening. Unexpectedly, the 19-8H mAb obtained with our screen recognized 70K Mac-2bp, which is C-terminus-truncated product, rather than specifically recognizing fucosylated Mac-2bp. We performed immunocytochemistry using our novel 19-8H mAb, which resulted in strong cell surface staining of anticancer drug-resistant cancer cells. Therefore, our novel 19-8H mAb represents a valuable tool for cancer biology research that can help elucidate the biological function of 70K Mac-2bp.
Collapse
Key Words
- 70K Mac-2bp. Abbreviations: AAL, Aleuria aurantia lectin; Mac-2bp, Mac-2 binding protein; Mac-2bp OE, Mac-2bp over expression; 19-8H mAb, 19-8H monoclonal antibody; Mac-2bp pAb, Mac-2bp polyclonal antibody; CA19-9, carbohydrate antigen 19-9; GMDS, GDP-mannose 4,6-dehydratase; ELISA, enzyme-linked immunosorbent assay; Mac-2bp OE cells, Mac-2bp over-expressing HEK293T; Mac-2bp OE and GMDS KO cells, Mac-2bp overexpressing HEK293T with GMDS knockout cells
- Mac-2 binding protein
- fucosylation
- glycan antibody
- pancreatic cancer
Collapse
Affiliation(s)
- Mika Masuda
- Department of Molecular Biochemistry and Clinical Investigation,Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Tatsuya Asuka
- Department of Molecular Biochemistry and Clinical Investigation,Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Naoko Terao
- Department of Molecular Biochemistry and Clinical Investigation,Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Shinsuke Nishino
- Department of Molecular Biochemistry and Clinical Investigation,Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Shun Ikeda
- Department of Molecular Biochemistry and Clinical Investigation,Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation,Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation,Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation,Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
8
|
Du R, Li L, Ji J, Fan Y. Receptor-Ligand Binding: Effect of Mechanical Factors. Int J Mol Sci 2023; 24:ijms24109062. [PMID: 37240408 DOI: 10.3390/ijms24109062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gaining insight into the in situ receptor-ligand binding is pivotal for revealing the molecular mechanisms underlying the physiological and pathological processes and will contribute to drug discovery and biomedical application. An important issue involved is how the receptor-ligand binding responds to mechanical stimuli. This review aims to provide an overview of the current understanding of the effect of several representative mechanical factors, such as tension, shear stress, stretch, compression, and substrate stiffness on receptor-ligand binding, wherein the biomedical implications are focused. In addition, we highlight the importance of synergistic development of experimental and computational methods for fully understanding the in situ receptor-ligand binding, and further studies should focus on the coupling effects of these mechanical factors.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
9
|
Toyoda H, Yasuda S, Shiota S, Sone Y, Maeda A, Kaneoka Y, Kumada T, Tanaka J. Identification of the suitable candidates for EOB-MRI with the high risk of the presence of non-hypervascular hypointense nodules in patients with HCV infection. Eur Radiol 2022; 32:5016-5023. [PMID: 35142900 DOI: 10.1007/s00330-022-08570-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Non-hypervascular hypointense nodules (NHHNs) depicted by gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) have a high likelihood of progressing to hepatocellular carcinoma (HCC). The presence of NHHNs is a strong risk factor for HCC development in patients with chronic hepatitis C virus (HCV) infection after the achievement of sustained virologic response (SVR). However, it is difficult for all patients with HCV infection to undergo EOB-MRI for NHHN detection. We therefore explored serum markers that potentially indicate the presence of NHHNs. METHODS Three serum markers, alpha-fetoprotein (AFP), FIB-4 index, and Wisteria floribunda agglutinin-positive Mac-2 binding protein glycan isomer (M2BPGi), were measured in 481 patients with HCV infection and no history of HCC who underwent EOB-MRI. The associations between these serum marker levels and the presence of NHHNs were investigated. RESULTS All three markers were associated with the presence of NHHNs. M2BPGi predicted the presence of NHHNs more accurately than AFP and FBB-4 index; M2BPGi had the highest area under the receiver operating characteristic curve. Multivariate analysis identified male gender and high M2BPGi as factors associated with the presence of NHHNs. When patients were stratified by the degree of liver fibrosis, M2BPGi increased with the progression of fibrosis. In addition, NHHNs were more prevalently detected in patients with higher M2BPGi (COI > 3.46) in patients with similar fibrosis degree. CONCLUSIONS M2BPGi is a serum marker that potentially identifies HCV patients with high risk of the presence of NHHNs, for whom EOB-MRI should be considered. KEY POINTS • Non-hypervascular hypointense nodule on EOB-DTPA-enhanced MRI is pre-HCC nodule with high likelihood of progressing to HCC, which is a strong predictor for HCC that develops after the eradication of HCV in patients with HCV infection. • It is difficult for all patients with HCV infection to undergo EOB-MRI for NHHN detection due to limited access, limited availability of MRI equipment, and high costs. • Serum Wisteria floribunda agglutinin-positive Mac-2 binding protein glycan isomer (M2BPGi) levels effectively indicate the presence of NHHNs and can be used to identify patients with high risk of their presence, for whom EOB-DTPA-enhanced MRI should be considered.
Collapse
Affiliation(s)
- Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, 4-86 Minaminokawa, Ogaki, Gifu, 503-8502, Japan.
| | - Satoshi Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, 4-86 Minaminokawa, Ogaki, Gifu, 503-8502, Japan
| | - Shohei Shiota
- Department of Gastroenterology, Ogaki Municipal Hospital, 4-86 Minaminokawa, Ogaki, Gifu, 503-8502, Japan
| | - Yasuhiro Sone
- Department of Radiology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Atsuyuki Maeda
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuji Kaneoka
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| | - Takashi Kumada
- Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
10
|
Construction and Validation of a Newly Prognostic Signature for CRISPR-Cas9-Based Cancer Dependency Map Genes in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4566577. [PMID: 35096059 PMCID: PMC8791742 DOI: 10.1155/2022/4566577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Cancer Dependency Map (CDM) genes comprise an extensive series of genome-scale RNAi-based loss-of-function tests; hence, it served as a method based on the CRISPR-Cas9 technique that could assist scientists in investigating potential gene functions. These CDM genes have a role in tumor cell survival and proliferation, suggesting that they may be used as new therapeutic targets for some malignant tumors. So far, there have been less research on the involvement of CDM genes in breast cancer, and only a tiny percentage of CDM genes have been studied. In this study, information of patients with breast cancer was extracted from The Cancer Genome Atlas (TCGA), from which differentially expressed CDM genes in breast cancer were determined. A variety of bioinformatics techniques were used to assess the functions and prognostic relevance of these confirmed CDM genes. In all, 290 CDM genes were found differentially expressed. Six CDM genes (SRF, RAD51, PMF1, EXOSC3, EXOC1, and TSEN54) were found to be associated with the prognosis of breast cancer samples. Based on the expression of the identified CDM genes and their coefficients, a prognosis model was constructed for prediction, according to which patients with breast cancer were separated into two risk groups. Those with high risk had substantially poorer overall survival (OS) than patients in the other risk group in the TCGA training set, TCGA testing set, and an external cohort from Gene Expression Omnibus (GEO) database. The area under the receiver operating characteristic (ROC) curve for this prognostic signature was, respectively, 0.717 and 0.635 for TCGA training and testing sets, demonstrating its reliability in predicting the prognosis of patients with breast cancer. We next created a nomogram using the six CDM genes discovered to create a therapeutically useful model. The Human Protein Atlas database was used to acquire all immunohistochemistry staining images of the discovered CDM genes. The proportions of tumor-infiltrating immune cells, as well as the expression levels of checkpoint genes, varied substantially between the two risk groups, according to the analyses of immune response. In conclusion, the findings of this research may aid in the understanding of the prognostic value and biological roles of CDM genes in breast cancer.
Collapse
|
11
|
Capone E, Iacobelli S, Sala G. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J Transl Med 2021; 19:405. [PMID: 34565385 PMCID: PMC8474792 DOI: 10.1186/s12967-021-03085-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
The lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a secreted, hyperglycosylated protein expressed by the majority of human cells. It was first identified as cancer and metastasis associated protein, while its role in innate immune response upon viral infection remains still to be clarified. Since its discovery dated in early 90 s, a large body of literature has been accumulating highlighting both a prognostic and functional role for LGALS3BP in cancer. Moreover, data from our group and other have strongly suggested that this protein is enriched in cancer-associated extracellular vesicles and may be considered a promising candidate for a targeted therapy in LGALS3BP positive cancers. Here, we extensively reviewed the literature relative to LGALS3BP role in cancer and its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Emily Capone
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100, Chieti, Italy
| | | | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
12
|
Park H, Jun DW, Park HK, Park KY, Hwang HS. New sequential algorithm using Mac-2 binding protein glycosylation isomer to detect advanced carotid artery atherosclerosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:566. [PMID: 33987264 DOI: 10.21037/atm-20-7219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Although carotid artery sonography is widely performed, most guidelines do not recommend this procedure in the general population. Appropriate indications and effective algorithms are needed to detect advanced carotid artery atherosclerosis in a community setting. Methods This study was designed as cross-sectional study. Adult subjects (n=228) who underwent a health check-up at our healthcare centre were included in the final analysis. Mac-2 binding protein glycosylation isomer (M2BPGi) quantification was based on a lectin antibody sandwich immunoassay. Subclinical atherosclerosis was diagnosed by carotid ultrasonography. Results The prevalence of subclinical atherosclerosis and advanced atherosclerosis was 37.2% (85/228) and 11.8% (27/228), respectively, in a community-based setting. Serum M2BPGi level was significantly higher in subjects with calcified plaque (0.6317) and luminal stenosis (0.6373) than in control groups (0.4913, all P<0.05). Pearson correlation analysis between M2BPGi and atherosclerotic cardiovascular disease (ASCVD) risk index (R=0.410, P<0.001) showed a positive relationship. The AUROC of serum M2BPGi for identifying calcified plaque or luminal stenosis was 0.679. The sequential algorithm using ASCVD and M2BPGi showed good negative predictive value (NPV) (93.6%) and reasonable positive predictive value (PPV) (53.8%) for identifying calcified plaque or luminal stenosis. When the sequential algorithm was used as an indicator for carotid ultrasonography, 35.0% (14/40) of subjects with intermediate-risk by ASCVD (≥7.5%) could avoid unnecessary carotid ultrasonography. Conclusions The sequential algorithm using ASCVD (≥7.5) and M2BPGi (≥0.525) provided reasonable indication for carotid artery sonography in a community-based setting.
Collapse
Affiliation(s)
- Huiyul Park
- Department of Family Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hoon-Ki Park
- Department of Family Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Kye-Yeung Park
- Department of Family Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hwan-Sik Hwang
- Department of Family Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Salminen AT, Allahyari Z, Gholizadeh S, McCloskey MC, Ajalik R, Cottle RN, Gaborski TR, McGrath JL. In vitro Studies of Transendothelial Migration for Biological and Drug Discovery. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:600616. [PMID: 35047883 PMCID: PMC8757899 DOI: 10.3389/fmedt.2020.600616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory diseases and cancer metastases lack concrete pharmaceuticals for their effective treatment despite great strides in advancing our understanding of disease progression. One feature of these disease pathogeneses that remains to be fully explored, both biologically and pharmaceutically, is the passage of cancer and immune cells from the blood to the underlying tissue in the process of extravasation. Regardless of migratory cell type, all steps in extravasation involve molecular interactions that serve as a rich landscape of targets for pharmaceutical inhibition or promotion. Transendothelial migration (TEM), or the migration of the cell through the vascular endothelium, is a particularly promising area of interest as it constitutes the final and most involved step in the extravasation cascade. While in vivo models of cancer metastasis and inflammatory diseases have contributed to our current understanding of TEM, the knowledge surrounding this phenomenon would be significantly lacking without the use of in vitro platforms. In addition to the ease of use, low cost, and high controllability, in vitro platforms permit the use of human cell lines to represent certain features of disease pathology better, as seen in the clinic. These benefits over traditional pre-clinical models for efficacy and toxicity testing are especially important in the modern pursuit of novel drug candidates. Here, we review the cellular and molecular events involved in leukocyte and cancer cell extravasation, with a keen focus on TEM, as discovered by seminal and progressive in vitro platforms. In vitro studies of TEM, specifically, showcase the great experimental progress at the lab bench and highlight the historical success of in vitro platforms for biological discovery. This success shows the potential for applying these platforms for pharmaceutical compound screening. In addition to immune and cancer cell TEM, we discuss the promise of hepatocyte transplantation, a process in which systemically delivered hepatocytes must transmigrate across the liver sinusoidal endothelium to successfully engraft and restore liver function. Lastly, we concisely summarize the evolving field of porous membranes for the study of TEM.
Collapse
Affiliation(s)
- Alec T. Salminen
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Zahra Allahyari
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Shayan Gholizadeh
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Molly C. McCloskey
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Raquel Ajalik
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Renee N. Cottle
- Bioengineering, Clemson University, Clemson, SC, United States
| | - Thomas R. Gaborski
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - James L. McGrath
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
14
|
Kheradmandi M, Ackers I, Burdick MM, Malgor R, Farnoud AM. Targeting Dysfunctional Vascular Endothelial Cells Using Immunoliposomes Under Flow Conditions. Cell Mol Bioeng 2020; 13:189-199. [PMID: 32426057 DOI: 10.1007/s12195-020-00616-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/24/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Atherosclerosis (ATH), the build up of fat in the arteries, is a principal cause of heart attack and stroke. Drug instability and lack of target specificity are major drawbacks of current clinical therapeutics. These undesirable effects can be eliminated by site-specific drug delivery. The endothelial surface over ATH lesions has been shown to overexpress vascular cell adhesion molecule1 (VCAM1), which can be used for targeted therapy. Methods Here, we report the synthesis, characterization, and development of anti VCAM1-functionalized liposomes to target cells overexpressing VCAM1 under static and flow conditions. Liposomes were composed of dioleoyl-phosphatidylcholine, sphingomyelin, cholesterol, and distearoyl-phosphatidylethanolamine-polyethylene glycol-cyanur (31.67:31.67:31.67:5 mol%). VCAM1 expression in endothelial cells was induced by lipopolysaccharide (LPS) treatment. Results Characterization study revealed that liposomes were negatively charged (- 7.7 ± 2.6 mV) with an average diameter of 201.3 ± 3.3 nm. Liposomes showed no toxicity toward THP-1 derived macrophages and endothelial cells. Liposomes were able to target both fixed and non-fixed endothelial cells, in vitro, with significantly higher localization observed in non-fixed conditions. To mimic biological and physiologically-relevant conditions, liposome targeting was also examined under flow (4 dyn/cm2) with or without erythrocytes (40% v/v hematocrit). Liposomes were able to target LPS-treated endothelial cells under dynamic culture, in the presence or absence of erythrocytes, although targeting efficiency was five-fold lower in flow compared to static conditions. Conclusions This liposomal delivery system showed a significant improvement in localization on dysfunctional endothelium after surface functionalization. We conclude that VCAM1-functionalized liposomes can target and potentially deliver therapeutic compounds to ATH regions.
Collapse
Affiliation(s)
- Mahsa Kheradmandi
- Department of Chemical and Biomolecular Engineering, Ohio University, 161 Stocker Center, Athens, OH 45701 USA
| | - Ian Ackers
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA.,Translational Biomedical Science Program, Ohio University, Athens, OH 45701 USA
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, 161 Stocker Center, Athens, OH 45701 USA.,Translational Biomedical Science Program, Ohio University, Athens, OH 45701 USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA.,Translational Biomedical Science Program, Ohio University, Athens, OH 45701 USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, 161 Stocker Center, Athens, OH 45701 USA.,Translational Biomedical Science Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
15
|
Sugiura T, Dohi Y, Takase H, Yamashita S, Tsuzuki Y, Ogawa S, Tanaka Y, Ohte N. Factors associated with longitudinal changes in serum concentrations of Mac-2 binding protein: A prospective 3-year observational study. Nutr Metab Cardiovasc Dis 2019; 29:1337-1344. [PMID: 31653515 DOI: 10.1016/j.numecd.2019.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/15/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS Mac-2 binding protein (M2BP) plays an important role in cell adhesion. In a recent cross-sectional study we reported that serum M2BP concentrations may reflect silent atherosclerosis. The aim of the present prospective follow-up study was to investigate possible relationships between changes in concentrations of M2BP and other factors over a >3-year period. METHODS AND RESULTS The present study enrolled subjects who visited Enshu hospital from 2014 to 2015 for a periodic physical check-up and then attended for another physical check-up after >3 years (n = 174). Factors affecting changes in M2BP concentrations were investigated at both baseline and follow-up. Subjects with liver dysfunction, a history of hepatic disease, malignant neoplasm, or cardiovascular events at baseline were excluded. Univariate and multivariate regression analyses showed that changes in serum M2BP concentrations during the follow-up period were significantly associated with changes in low-density lipoprotein cholesterol (LDL-C), triglyceride, and oxidative stress marker derivatives of reactive oxygen metabolites (d-ROM) concentrations. Moreover, the increase in LDL-C was significantly greater in subjects in whom M2BP concentrations increased during the follow-up period. Logistic regression analysis with an endpoint of increased M2BP revealed that increased LDL-C was an independent determinant of an increase in M2BP during the follow-up period. CONCLUSION During the observation period of >3 years, serum M2BP concentrations were increased in subjects who also exhibited increases in levels of metabolic parameters, especially LDL-C, and the oxidative stress marker d-ROM. These results support that serum M2BP reflects one of the contributors to the progression of silent atherosclerosis.
Collapse
Affiliation(s)
- Tomonori Sugiura
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Yasuaki Dohi
- Department of Internal Medicine, Faculty of Rehabilitation Science, Nagoya Gakuin University, Nagoya, Japan
| | - Hiroyuki Takase
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Japan
| | - Sumiyo Yamashita
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Tsuzuki
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shintaro Ogawa
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuyuki Ohte
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
16
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
17
|
Martin EW, Malgor R, Resto VA, Goetz DJ, Burdick MM. Dynamic biochemical tissue analysis detects functional selectin ligands on human cancer tissues. Sci Rep 2019; 9:8511. [PMID: 31186472 PMCID: PMC6560120 DOI: 10.1038/s41598-019-44838-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cell adhesion mediated by selectins (expressed by activated endothelium, activated platelets, and leukocytes) binding to their resepective selectin ligands (expressed by cancer cells) may be involved in metastasis. Therefore, methods of characterizing selectin ligands expressed on human tissue may serve as valuable assays. Presented herein is an innovative method for detecting functional selectin ligands expressed on human tissue that uses a dynamic approach, which allows for control over the force applied to the bonds between the probe and target molecules. This new method of tissue interrogation, known as dynamic biochemical tissue analysis (DBTA), involves the perfusion of molecular probe-coated microspheres over tissues. DBTA using selectin-coated probes is able to detect functional selectin ligands expressed on tissue from multiple cancer types at both primary and metastatic sites.
Collapse
Affiliation(s)
- Eric W Martin
- Biomedical Engineering Program, Russ College of Engineering and Technology, Athens, USA
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Athens, USA
| | - Ramiro Malgor
- Biomedical Engineering Program, Russ College of Engineering and Technology, Athens, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, USA
| | - Vicente A Resto
- Department of Otolaryngology, University of Texas-Medical Branch, Galveston, TX, 77555, USA
| | - Douglas J Goetz
- Biomedical Engineering Program, Russ College of Engineering and Technology, Athens, USA
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Athens, USA
| | - Monica M Burdick
- Biomedical Engineering Program, Russ College of Engineering and Technology, Athens, USA.
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Athens, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
18
|
Fafińska J, Czech A, Sitz T, Ignatova Z, Hahn U. DNA Aptamers for the Malignant Transformation Marker CD24. Nucleic Acid Ther 2018; 28:326-334. [PMID: 30407110 DOI: 10.1089/nat.2018.0748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cluster of differentiation 24 (CD24) is a cell surface glycoprotein, which is largely present on hematopoietic cells and many types of solid tumor cells. CD24 is known to be involved in a wide range of downstream signaling pathways and neural development, yet the underlying mechanisms are poorly understood. Moreover, its production correlates with poor cancer prognosis, and targeting of CD24 with different antibodies has been shown to inhibit disease progression. Nucleic acid aptamers are oligonucleotides that are selected from random DNA or RNA libraries for high affinity and specific binding to a certain target. Thus, they can be used as an alternative to antibodies. To gain an insight on CD24 role and its interaction partners, we performed several SELEX (systematic evolution of ligands by exponential enrichment) experiments to select CD24-specfiic DNA aptamers. We found that the cell-SELEX approach was the most useful and that using HT-29 cell line presenting CD24 along with CD24 knockdown HT-29 cells has selected six aptamers. For the selected aptamers, we determined dissociation constants in the nanomolar range (18-709 nM) using flow cytometry. These aptamers can be applied as diagnostic tools to track cancer progression and bear a potential for therapeutic use for inhibiting signaling pathways that promote the metastatic process.
Collapse
Affiliation(s)
- Joanna Fafińska
- Hamburg University, MIN Faculty, Chemistry Department, Institute for Biochemistry & Molecular Biology, Hamburg, Germany
| | - Andreas Czech
- Hamburg University, MIN Faculty, Chemistry Department, Institute for Biochemistry & Molecular Biology, Hamburg, Germany
| | - Tobias Sitz
- Hamburg University, MIN Faculty, Chemistry Department, Institute for Biochemistry & Molecular Biology, Hamburg, Germany
| | - Zoya Ignatova
- Hamburg University, MIN Faculty, Chemistry Department, Institute for Biochemistry & Molecular Biology, Hamburg, Germany
| | - Ulrich Hahn
- Hamburg University, MIN Faculty, Chemistry Department, Institute for Biochemistry & Molecular Biology, Hamburg, Germany
| |
Collapse
|
19
|
Loimaranta V, Hepojoki J, Laaksoaho O, Pulliainen AT. Galectin-3-binding protein: A multitask glycoprotein with innate immunity functions in viral and bacterial infections. J Leukoc Biol 2018; 104:777-786. [PMID: 29882603 DOI: 10.1002/jlb.3vmr0118-036r] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3-binding protein (Gal-3BP) is a ubiquitous and multifunctional secreted glycoprotein originally identified and mainly studied in the context of neoplastic transformation and cancer progression. However, Gal-3BP expression is induced in viral infection and by a multitude of molecules that either mimic or are characteristic for an ongoing inflammation and microbial infection, such as IFN-α, IFN-β, IFN-γ, TNF-α, poly(I:C), dsRNA, and dsDNA. Furthermore, Gal-3BP belongs to the scavenger receptor cysteine-rich (SRCR) domain-containing protein family, by virtue of its N-terminal SRCR domain. The SRCR domain is found in soluble or membrane-associated innate immunity-related proteins and is implicated in self-nonself discrimination. This review summarizes the current knowledge of structural features of Gal-3BP and its proposed intracellular and extracellular innate immunity functions with special emphasis on viral and bacterial infections.
Collapse
Affiliation(s)
- Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Turku, Finland.,Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland.,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Olli Laaksoaho
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Carrascal MA, Silva M, Ferreira JA, Azevedo R, Ferreira D, Silva AMN, Ligeiro D, Santos LL, Sackstein R, Videira PA. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer. Biochim Biophys Acta Gen Subj 2018; 1862:2069-2080. [PMID: 29777742 DOI: 10.1016/j.bbagen.2018.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The glycan moieties sialyl-Lewis-X and/or -A (sLeX/A) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. METHODS We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. RESULTS We observed that the CF1_T cell line expressed sLeX, but not sLeA and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLeX-CD44 and sLeX-CD13 was confirmed in clinical breast cancer tissue samples. CONCLUSIONS Both CD44 and CD13 glycoforms display sLeX in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. GENERAL SIGNIFICANCE While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target.
Collapse
Affiliation(s)
- M A Carrascal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - M Silva
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Departments of Dermatology and Medicine, Brigham & Women's Hospital, and Program of Excellence in Glycosciences, Harvard Medical School, USA
| | - J A Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; International Iberian Nanotechnology Laboratory, Braga, Portugal; Department of Pathology and Immunology, ICBAS-UP, Porto, Portugal
| | - R Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - D Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - A M N Silva
- REQUIMTE-LAQV/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - D Ligeiro
- Centro de Sangue e Transplantação de Lisboa, Instituto Português de Sangue e Transplantação, IP, Lisboa, Portugal
| | - L L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - R Sackstein
- Departments of Dermatology and Medicine, Brigham & Women's Hospital, and Program of Excellence in Glycosciences, Harvard Medical School, USA
| | - P A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
21
|
Wei B, Feng S, Chen E, Li D, Wang T, Gou Y, Yang T, Zhang D, Tao C, Tang H. M2BPGi as a potential diagnostic tool of cirrhosis in Chinese patients with Hepatitis B virus infection. J Clin Lab Anal 2018; 32:e22261. [PMID: 28544156 PMCID: PMC6817288 DOI: 10.1002/jcla.22261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/18/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND M2BPGi is a novel serum glycobiomarker of liver fibrosis. In this study, we aimed to evaluate the efficacy of M2BPGi for predicting liver fibrosis and disease progression in Chinese hepatitis B virus (HBV) infected patients. METHODS We enrolled 228 HBV infected patients with different status of liver fibrosis diagnosed using FibroScan. We analyzed the diagnostic accuracy of M2BPGi, and compared it with AST-to-platelet ratio (APRI), FIB-4 index, AST to ALT ratio (AAR), and RDW to platelet ratio (RPR). We performed receiver operating characteristics curve (ROC) to evaluate the diagnostic performance of M2BPGi for significant fibrosis and cirrhosis. RESULTS Median M2BPGi values in each fibrosis stage were: 0.88 cut-off index (COI) in F0-1, 1.165 in F2-3, and 1.92 in F4 (P<.01), respectively. For F≥2, the sensitivity, specificity, accuracy of M2BPGi were 72.28%, 73.23%, 66.67%, while 55.07%, 93.71%, 82.02% for F≥4. For predicting significant fibrosis (≥F2), M2BPGi showed comparable performance to FIB4 index (P<.01), APRI (P<.01) and RPR (P<.01) with area under the ROC curve (AUC) of 0.788. M2BPGi was superior to other surrogate markers for diagnosing cirrhosis (F4) with the highest AUC of 0.811 (P<.01). CONCLUSIONS M2BPGi levels increased with the progression of liver fibrosis in HBV infected patients. M2BPGi can be served as a potential glycobiomarker to assess the stage of liver fibrosis, especially for the diagnosis of cirrhosis.
Collapse
Affiliation(s)
- Bin Wei
- Department of Laboratory Medicine/Clinical Research Center of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Shu Feng
- Department of Laboratory Medicine/Clinical Research Center of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Enqiang Chen
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Dongdong Li
- Department of Laboratory Medicine/Clinical Research Center of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tingting Wang
- Department of Laboratory Medicine/Clinical Research Center of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yu Gou
- Department of Laboratory Medicine/Clinical Research Center of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tingting Yang
- Department of Laboratory Medicine/Clinical Research Center of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Dongmei Zhang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Chuanmin Tao
- Department of Laboratory Medicine/Clinical Research Center of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
22
|
Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH, Olivere L, Comatas K, Magnani J, Kim Lyerly H, Cheng Q, McCall CM, Sipkins DA. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med 2017; 8:340ra73. [PMID: 27225183 DOI: 10.1126/scitranslmed.aad4059] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/22/2016] [Indexed: 11/02/2022]
Abstract
Breast cancer metastatic relapse can occur years after therapy, indicating that disseminated breast cancer cells (BCCs) have a prolonged dormant phase before becoming proliferative. A major site of disease dissemination and relapse is bone, although the critical signals that allow circulating BCCs to identify bone microvasculature, enter tissue, and tether to the microenvironment are poorly understood. Using real-time in vivo microscopy of bone marrow (BM) in a breast cancer xenograft model, we show that dormant and proliferating BCCs occupy distinct areas, with dormant BCCs predominantly found in E-selectin- and stromal cell-derived factor 1 (SDF-1)-rich perisinusoidal vascular regions. We use highly specific inhibitors of E-selectin and C-X-C chemokine receptor type 4 (CXCR4) (SDF-1 receptor) to demonstrate that E-selectin and SDF-1 orchestrate opposing roles in BCC trafficking. Whereas E-selectin interactions are critical for allowing BCC entry into the BM, the SDF-1/CXCR4 interaction anchors BCCs to the microenvironment, and its inhibition induces mobilization of dormant micrometastases into circulation. Homing studies with primary BCCs also demonstrate that E-selectin regulates their entry into bone through the sinusoidal niche, and immunohistochemical staining of patient BMs shows dormant micrometastatic disease adjacent to SDF-1(+) vasculature. These findings shed light on how BCCs traffic within the host, and suggest that simultaneous blockade of CXCR4 and E-selectin in patients could molecularly excise dormant micrometastases from the protective BM environment, preventing their emergence as relapsed disease.
Collapse
Affiliation(s)
- Trevor T Price
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Monika L Burness
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayelet Sivan
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J Warner
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Renee Cheng
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Clara H Lee
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Lindsey Olivere
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA
| | - Karrie Comatas
- Department of Surgery, Duke University, Durham, NC 27707, USA
| | | | - H Kim Lyerly
- Department of Surgery, Duke University, Durham, NC 27707, USA
| | - Qing Cheng
- Department of Surgery, Duke University, Durham, NC 27707, USA
| | - Chad M McCall
- Department of Pathology, Duke University, Durham, NC 27707, USA
| | - Dorothy A Sipkins
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC 27707, USA.
| |
Collapse
|
23
|
Galectin-1 Influences Breast Cancer Cell Adhesion to E-selectin Via Ligand Intermediaries. Cell Mol Bioeng 2017; 11:37-52. [PMID: 31719877 DOI: 10.1007/s12195-017-0512-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/09/2017] [Indexed: 12/24/2022] Open
Abstract
Introduction Invasion of other tissues during bloodborne metastasis in part requires adhesion of cancer cells to vascular endothelium by specific fluid shear-dependent receptor-ligand interactions. This study investigates the hypothesis that the adhesion is mediated by ligands shared between endothelial E-selectin and Galectin-1 (Gal-1), both of which are upregulated during inflammation and cancer. Methods Flow chamber adhesion and dynamic biochemical tissue analysis (DBTA) assays were used to evaluate whether Gal-1 modulates E-selectin adhesive interactions of breast cancer cells and tissues under dynamic flow conditions, while immunocytochemistry, immunohistochemistry, western blotting, and fluorescence anisotropy were used to study molecular interactions under static conditions. Results Dynamic adhesion assays revealed a shear-dependent binding interaction between Gal-1hFc treated breast cancer cells and tissues and E-selectin-coated beads, causing ~ 300% binding increase of the beads compared to negative controls. Immunocyto- and immunohistochemical analyses showed that Gal-1 and E-selectin fluorescent signals colocalized on cells and tissues at ~ 75% for each assay. Immunoprecipitation and Western blotting of Mac-2BP from breast cancer cell lysates revealed that Gal-1 and E-selectin share Mac-2BP as a ligand, while fluorescence anisotropy and circulating tumor cell model systems exhibited competitive or antagonistic binding between Gal-1 and E-selectin for shared ligands, including Mac-2BP. Furthermore, Mac-2BP functional blockade inhibited the effects of Gal-1 on E-selectin binding. Conclusions In summary, this investigation reveals a shear-dependent interaction between E-selectin and Gal-1 that may be due to intermediation by a similar or shared ligand(s), including Mac-2BP, which may provide a rational basis for development of novel diagnostics or therapeutics for breast cancer.
Collapse
|
24
|
Yang EH, Rode J, Howlader MA, Eckermann M, Santos JT, Hernandez Armada D, Zheng R, Zou C, Cairo CW. Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors. PLoS One 2017; 12:e0184378. [PMID: 29016609 PMCID: PMC5634555 DOI: 10.1371/journal.pone.0184378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023] Open
Abstract
Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3-integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins.
Collapse
Affiliation(s)
- Esther H. Yang
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Julia Rode
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Md. Amran Howlader
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Marina Eckermann
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Jobette T. Santos
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Daniel Hernandez Armada
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Chunxia Zou
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
- * E-mail:
| |
Collapse
|
25
|
Huang CI, Huang CF, Yeh ML, Lin YH, Liang PC, Hsieh MH, Dai CY, Hsieh MY, Lin ZY, Chen SC, Huang JF, Yu ML, Chuang WL. Serum Wisteria floribunda agglutinin-positive Mac-2-binding protein expression predicts disease severity in chronic hepatitis C patients. Kaohsiung J Med Sci 2017; 33:394-399. [PMID: 28811008 DOI: 10.1016/j.kjms.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 12/26/2022] Open
Abstract
Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+-M2BP) has recently been developed as a promising liver fibrosis glyco biomarker. We assessed its efficacy in evaluating liver disease severity in chronic hepatitis C (CHC) in Taiwan. The association between WFA+-M2BP and histological features was evaluated among those CHC patients underwent liver biopsy. We also aimed to clarify the factors determining the performance of WFA+-M2BP in CHC. A total of 229 CHC patients were consecutively recruited. The mean value of WFA+-M2BP in patients from F0 to F4 was 1.68, 2.23, 3.45, 3.48, 3.77 respectively (linear trend P = 0.008). Linear regression analysis revealed that alanine aminotransferase (odds ratio [OR]: 0.03, 95% confidence intervals [CI]: 0.02-0.05, P < 0.001), AST (OR: -0.1, 95% CI: -0.02 to -0.01, P < 0.001), and liver fibrosis (OR: 0.30, 95% CI: 0.01-0.59, P = 0.043) were the independent factors correlated to serum WFA+-M2BP level. The optimal cutoff values of WFA+-M2BP for fibrosis stages F1, F2, F3, and F4 were 1.42, 1.61, 1.42, and 2.67, respectively. Multivariate analysis revealed that the platelet count (OR/CI: -0.009/0.986-0.996, P = <0.001), r-glutamyl transferase (OR/CI: 0.007/1.000-1.013, P = 0.036), and WFA+-M2BP (OR/CI: 0.187/1.057-1.374, P = 0.005). We concluded that WFA+-M2BP is a competent noninvasive marker for liver fibrosis assessment in CHC patients.
Collapse
Affiliation(s)
- Ching-I Huang
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hung Lin
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Cheng Liang
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Yen Hsieh
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Cherng Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Lung Yu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
The Interaction of Selectins and PSGL-1 as a Key Component in Thrombus Formation and Cancer Progression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6138145. [PMID: 28680883 PMCID: PMC5478826 DOI: 10.1155/2017/6138145] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
Cellular interaction is inevitable in the pathomechanism of human disease. Formation of heterotypic cellular aggregates, between distinct cells of hematopoietic and nonhematopoietic origin, may be involved in events leading to inflammation and the complex process of cancer progression. Among adhesion receptors, the family of selectins with their ligands have been considered as one of the major contributors to cell-cell interactions. Consequently, the inhibition of the interplay between selectins and their ligands may have potential therapeutic benefits. In this review, we focus on the current evidence on the selectins as crucial modulators of inflammatory, thrombotic, and malignant disorders. Knowing that there is promiscuity in selectin binding, we outline the importance of a key protein that serves as a ligand for all selectins. This dimeric mucin, the P-selectin glycoprotein ligand 1 (PSGL-1), has emerged as a major player in inflammation, thrombus, and cancer development. We discuss the interaction of PSGL-1 with various selectins in physiological and pathological processes with particular emphasis on mechanisms that lead to severe disease.
Collapse
|
27
|
Galectin-3 binding protein, coronary artery disease and cardiovascular mortality: Insights from the LURIC study. Atherosclerosis 2017; 260:121-129. [PMID: 28390290 DOI: 10.1016/j.atherosclerosis.2017.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Galectin-3 binding protein (Gal-3BP) has been associated with inflammation and cancer, however, its role in coronary artery disease (CAD) and cardiovascular outcome remains unclear. METHODS Gal-3BP plasma levels were measured by ELISA in 2922 individuals from the LURIC study (62.7 ± 10.6 years, 62.7% male). All-cause and cardiovascular mortality was assessed by Kaplan-Meier analysis and Cox proportional hazards regression. Causal involvement of Gal-3BP was tested for by Mendelian randomization. Gal-3BP effects on human monocyte-derived macrophages were assessed in vitro. RESULTS During 8.8 ± 3.0 years, 866 individuals died, 654 of cardiovascular causes. There was a significant increase in all-cause and cardiovascular mortality with increasing Gal-3BP quintiles. After thorough adjustment, all-cause mortality remained significantly increased in the fifth Gal-3BP quintile (HRQ5 1.292 (1.030-1.620), p = 0.027); cardiovascular mortality remained increased in Gal-3BP quintiles two to five (HRQ51.433 (1.061-1.935, p = 0.019). Gal-3BP levels were not associated with diagnosis and extent of coronary artery disease. In addition, Mendelian randomization did not show a direct causal relationship between Gal-3BP levels and mortality. Gal-3BP levels were, however, independently associated with markers of metabolic and inflammatory distress. In vitro, Gal-3BP induced a pro-inflammatory response in human monocyte-derived macrophages. Adding Gal-3BP levels to the ESC score improved risk assessment in patients with ESC SCORE-based risk >5% (p = 0.010). CONCLUSIONS In a large clinical cohort of CAD patients, Gal-3BP levels are independently associated with all-cause and cardiovascular mortality. The underlying mechanisms may likely involve metabolic and inflammatory distress. To further evaluate the potential clinical value of Gal-3BP, prospective studies are needed.
Collapse
|
28
|
Carlson GE, Martin EW, Shirure VS, Malgor R, Resto VA, Goetz DJ, Burdick MM. Dynamic biochemical tissue analysis detects functional L-selectin ligands on colon cancer tissues. PLoS One 2017; 12:e0173747. [PMID: 28282455 PMCID: PMC5345883 DOI: 10.1371/journal.pone.0173747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
A growing body of evidence suggests that L-selectin ligands presented on circulating tumor cells facilitate metastasis by binding L-selectin presented on leukocytes. Commonly used methods for detecting L-selectin ligands on tissues, e.g., immunostaining, are performed under static, no-flow conditions. However, such analysis does not assay for functional L-selectin ligands, specifically those ligands that promote adhesion under shear flow conditions. Recently our lab developed a method, termed dynamic biochemical tissue analysis (DBTA), to detect functional selectin ligands in situ by probing tissues with L-selectin-coated microspheres under hemodynamic flow conditions. In this investigation, DBTA was used to probe human colon tissues for L-selectin ligand activity. The detection of L-selectin ligands using DBTA was highly specific. Furthermore, DBTA reproducibly detected functional L-selectin ligands on diseased, e.g., cancerous or inflamed, tissues but not on noncancerous tissues. In addition, DBTA revealed a heterogeneous distribution of functional L-selectin ligands on colon cancer tissues. Most notably, detection of L-selectin ligands by immunostaining using HECA-452 antibody only partially correlated with functional L-selectin ligands detected by DBTA. In summation, the results of this study demonstrate that DBTA detects functional selectin ligands to provide a unique characterization of pathological tissue.
Collapse
Affiliation(s)
- Grady E. Carlson
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
| | - Eric W. Martin
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
| | - Venktesh S. Shirure
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
| | - Ramiro Malgor
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| | - Vicente A. Resto
- Department of Otolaryngology, University of Texas-Medical Branch, Galveston, Texas, United States of America
| | - Douglas J. Goetz
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
| | - Monica M. Burdick
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ding D, Yao Y, Zhang S, Su C, Zhang Y. C-type lectins facilitate tumor metastasis. Oncol Lett 2016; 13:13-21. [PMID: 28123516 PMCID: PMC5245148 DOI: 10.3892/ol.2016.5431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Metastasis, a life-threatening complication of cancer, leads to the majority of cases of cancer-associated mortality. Unfortunately, the underlying molecular and cellular mechanisms of cancer metastasis remain to be fully elucidated. C-type lectins are a large group of proteins, which share structurally homologous carbohydrate-recognition domains (CRDs) and possess diverse physiological functions, including inflammation and antimicrobial immunity. Accumulating evidence has demonstrated the contribution of C-type lectins in different steps of the metastatic spread of cancer. Notably, a substantial proportion of C-type lectins, including selectins, mannose receptor (MR) and liver and lymph node sinusoidal endothelial cell C-type lectin, are important molecular targets for the formation of metastases in vitro and in vivo. The present review summarizes what has been found regarding C-type lectins in the lymphatic and hematogenous metastasis of cancer. An improved understanding the role of C-type lectins in cancer metastasis provides a comprehensive perspective for further clarifying the molecular mechanisms of cancer metastasis and supports the development of novel C-type lectins-based therapies the for prevention of metastasis in certain types of cancer.
Collapse
Affiliation(s)
- Dongbing Ding
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yao Yao
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Songbai Zhang
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Chunjie Su
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yonglian Zhang
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
30
|
Sugiura T, Dohi Y, Takase H, Yamashita S, Murai S, Tsuzuki Y, Ogawa S, Tanaka Y, Ohte N. Serum levels of Mac-2 binding protein increase with cardiovascular risk and reflect silent atherosclerosis. Atherosclerosis 2016; 251:192-196. [PMID: 27344370 DOI: 10.1016/j.atherosclerosis.2016.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Mac-2 binding protein (M2BP) was reported to be a useful biomarker for liver fibrosis and malignant tumors. We hypothesized that expression of M2BP might also change in the process of atherosclerosis. METHODS This study included subjects who visited our hospital for a physical checkup. RESULTS The M2BP levels in subjects with hypertension, dyslipidemia, or abnormal glucose metabolism were higher than those in subjects without such risk factors. Moreover, the M2BP levels were associated with severity of cardiovascular risk. Subdivision of M2BP levels into quartiles revealed that M2BP was significantly associated with reactive oxygen metabolites, central systolic blood pressure, and radial augmentation index (AI). Logistic regression analysis with the endpoint of high radial AI (above mean value) showed that high radial AI was independently associated with high M2BP. CONCLUSIONS Although the spectrum was narrow as compared to that in cases of hepatic fibrosis, serum M2BP may reflect silent atherosclerosis in apparently healthy subjects.
Collapse
Affiliation(s)
- Tomonori Sugiura
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Yasuaki Dohi
- Department of Internal Medicine, Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Hiroyuki Takase
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Japan
| | - Sumiyo Yamashita
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shunsuke Murai
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Tsuzuki
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shintaro Ogawa
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuyuki Ohte
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
31
|
Serial measurement of Wisteria floribunda agglutinin positive Mac-2-binding protein is useful for predicting liver fibrosis and the development of hepatocellular carcinoma in chronic hepatitis C patients treated with IFN-based and IFN-free therapy. Hepatol Int 2016; 10:956-964. [DOI: 10.1007/s12072-016-9754-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/24/2016] [Indexed: 01/17/2023]
|
32
|
Serum Galectin-9 and Galectin-3-Binding Protein in Acute Dengue Virus Infection. Int J Mol Sci 2016; 17:ijms17060832. [PMID: 27240351 PMCID: PMC4926366 DOI: 10.3390/ijms17060832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022] Open
Abstract
Dengue fever is a serious threat for public health and induces various inflammatory cytokines and mediators, including galectins and glycoproteins. Diverse immune responses and immunological pathways are induced in different phases of dengue fever progression. However, the status of serum galectins and glycoproteins is not fully determined. The aim of this study was to investigate the serum concentration and potential interaction of soluble galectin-1, galectin-3, galectin-9, galectin-3 binding protein (galectin-3BP), glycoprotein 130 (gp130), and E-, L-, and P-selectin in patients with dengue fever in acute febrile phase. In this study, 317 febrile patients (187 dengue patients, 150 non-dengue patients that included 48 patients with bacterial infection and 102 patients with other febrile illness) who presented to the emergency department and 20 healthy controls were enrolled. Our results showed the levels of galectin-9 and galectin-3BP were significantly higher in dengue patients than those in healthy controls. Lower serum levels of galectin-1, galectin-3, and E-, L-, and P-selectin in dengue patients were detected compared to bacteria-infected patients, but not to healthy controls. In addition, strong correlation between galectin-9 and galectin-3BP was observed in dengue patients. In summary, our study suggested galectin-9 and galectin-3BP might be critical inflammatory mediators in acute dengue virus infection.
Collapse
|
33
|
The effect of soluble E-selectin on tumor progression and metastasis. BMC Cancer 2016; 16:331. [PMID: 27220365 PMCID: PMC4879723 DOI: 10.1186/s12885-016-2366-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
Background Distant metastasis resulting from vascular dissemination of cancer cells is the primary cause of mortality from breast cancer. We have previously reported that E-selectin expression on the endothelial cell surface mediates shear-resistant adhesion and migration of circulating cancer cells via interaction with CD44. As a result of shedding, soluble E-selectin (sE-selectin) from the activated endothelium is present in the serum. In this study, we aimed to understand the role of sE-selectin in tumor progression and metastasis. Methods We investigated the effect of sE-selectin on shear-resistant adhesion and migration of metastatic breast cancer cells and leukocytes in vitro and in vivo. Results We found that sE-selectin promoted migration and shear-resistant adhesion of CD44+/high breast cancer cell lines (MDA-MB-231 and MDA-MB-468) to non-activated human microvessel endothelial cells (ES-HMVECs), but not of CD44-/low breast cancer cell lines (MCF-7 and T-47D). This endothelial E-selectin independent, sE-selectin-mediated shear-resistant adhesion was also observed in a leukocyte cell line (HL-60) as well as human peripheral blood mononuclear cells (PBMCs). Additionally, the incubation of MDA-MB-231 cells with sE-selectin triggered FAK phosphorylation and shear-resistant adhesion of sE-selectin-treated cells resulted in increased endothelial permeabilization. However, CD44 knockdown in MDA-MB-231 and HL-60 cells resulted in a significant reduction of sE-selectin-mediated shear-resistant adhesion to non-activated HMVECs, suggesting the involvement of CD44/FAK. Moreover, functional blockade of ICAM-1 in non-activated HMVECs resulted in a marked reduction of sE-selectin-mediated shear-resistant adhesion. Finally, the pre-incubation of CD44+ 4 T1 murine breast cancer cells with sE-selectin augmented infiltration into the lung in E-selectin K/O mice and infusion of human PBMCs pre-incubated with sE-selectin stimulated MDA-MB-231 xenografted breast tumor growth in NSG mice. Conclusions Our data suggest that circulating sE-selectin stimulates a broad range of circulating cells via CD44 and mediates pleiotropic effects that promote migration and shear-resistant adhesion in an endothelial E-selectin independent fashion, in turn accelerating tissue infiltration of leukocytes and cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2366-2) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Woodman N, Pinder SE, Tajadura V, Le Bourhis X, Gillett C, Delannoy P, Burchell JM, Julien S. Two E-selectin ligands, BST-2 and LGALS3BP, predict metastasis and poor survival of ER-negative breast cancer. Int J Oncol 2016; 49:265-75. [PMID: 27176937 DOI: 10.3892/ijo.2016.3521] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Distant metastases account for the majority of cancer-related deaths in breast cancer. The rate and site of metastasis differ between estrogen receptor (ER)-negative and ER-positive tumours, and metastatic fate can be very diverse even within the ER-negative group. Characterisation of new pro-metastatic markers may help to identify patients with higher risk and improve their care accordingly. Selectin ligands aberrantly expressed by cancer cells promote metastasis by enabling interaction between circulating tumour cells and endothelial cells in distant organs. These ligands consist in carbohydrate molecules, such as sialyl-Lewis x antigen (sLex), borne by glycoproteins or glycolipids on the cancer cell surface. We have previously demonstrated that the molecular scaffold presenting sLex to selectins (e.g. glycolipid vs. glycoproteins) was crucial for these interactions to occur. Moreover, we reported that detection of sLex alone in breast carcinomas was only of limited prognostic value. However, since sLex was found to be carried by several glycoproteins in cancer cells, we hypothesized that the combination of the carbohydrate with its carriers could be more relevant than each marker independently. In this study, we addressed this question by analysing sLex expression together with two glycoproteins (BST-2 and LGALS3BP), shown to interact with E-selectin in a carbohydrate-dependent manner, in a cohort of 249 invasive breast cancers. We found both glycoproteins to be associated with distant metastasis risk and poorer survival. Importantly, concomitant high expression of BST-2 with sLex defined a sub-group of patients with ER-negative tumours displaying higher risks of liver and brain metastasis and a 3-fold decreased survival rate.
Collapse
Affiliation(s)
- Natalie Woodman
- Breast Research Pathology, King's College London, Guy's Hospital, London, UK
| | - Sarah E Pinder
- Breast Research Pathology, King's College London, Guy's Hospital, London, UK
| | - Virginia Tajadura
- Breast Cancer Biology, Research Oncology, King's College London, Guy's Hospital, London, UK
| | - Xuefen Le Bourhis
- University of Lille, INSERM, U908 - CPAC, Cell Plasticity and Cancer, Lille, Villeneuve d'Ascq, France
| | - Cheryl Gillett
- Breast Research Pathology, King's College London, Guy's Hospital, London, UK
| | - Philippe Delannoy
- University of Lille, CNRS, UMR 8576 - UGSF, Unit of Structural and Functional Glycobiology, Lille, Villeneuve d'Ascq, France
| | - Joy M Burchell
- Breast Cancer Biology, Research Oncology, King's College London, Guy's Hospital, London, UK
| | - Sylvain Julien
- University of Lille, INSERM, U908 - CPAC, Cell Plasticity and Cancer, Lille, Villeneuve d'Ascq, France
| |
Collapse
|
35
|
Toyoda H, Kumada T, Tada T, Kaneoka Y, Maeda A, Korenaga M, Mizokami M, Narimatsu H. Serum WFA+ -M2BP levels as a prognostic factor in patients with early hepatocellular carcinoma undergoing curative resection. Liver Int 2016; 36:293-301. [PMID: 26134114 DOI: 10.1111/liv.12907] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/27/2015] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Serum tumour markers for hepatocellular carcinoma (HCC) have less prognostic significance in early stage. Serum Wisteria floribunda agglutinin-positive Mac-2-binding protein (WFA(+) -M2BP) levels are reportedly associated with hepatocarcinogenic potential in patients with chronic liver diseases. We investigated the prognostic significance of pretreatment serum WFA(+) -M2BP levels in patients with early-stage HCC. METHODS A total of 240 patients who underwent hepatic resection for naïve Barcelona Clinic Liver Cancer (BCLC) class 0 or A HCC were analysed. WFA(+) -M2BP and tumour markers for HCC were measured from serum obtained just prior to treatment. Post-operative recurrence and survival rates were compared according to these serum markers, tumour stage and Child-Pugh class. RESULTS There was an association between serum WFA(+) -M2BP levels and the fibrosis grade of resected noncancerous liver tissue, whereas no association was found between WFA(+) -M2BP levels and tumour progression or liver function. In a multivariate analysis, pretreatment serum WFA(+) -M2BP level was associated with recurrence and survival, respectively, independent of HCC progression or fibrosis grade of resected noncancerous liver tissue. Recurrence rates after hepatic resection were significantly higher in patients with a pretreatment serum WFA(+) -M2BP ≥ 3.00 than those with a pretreatment serum WFA(+) -M2BP < 3.00 (P = 0.0038). Survival rates were lower in patients with a pretreatment serum WFA(+) -M2BP ≥ 3.00 than those with a pretreatment serum WFA(+) -M2BP < 3.00 (P = 0.0187). CONCLUSIONS Serum WFA(+) -M2BP level is a prognostic factor for recurrence and survival, in addition to tumour progression and liver function, in patients with early-stage HCC treated with curative hepatic resection.
Collapse
Affiliation(s)
- Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Takashi Kumada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Toshifumi Tada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuji Kaneoka
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| | - Atsuyuki Maeda
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| | - Masaaki Korenaga
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
36
|
Taga M, Hoshino H, Low S, Imamura Y, Ito H, Yokoyama O, Kobayashi M. A potential role for 6-sulfo sialyl Lewis X in metastasis of bladder urothelial carcinoma. Urol Oncol 2015; 33:496.e1-9. [PMID: 26137907 DOI: 10.1016/j.urolonc.2015.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/12/2015] [Accepted: 05/24/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVES It is widely accepted that sialyl Lewis X (sLeX) and sialyl Lewis A (sLeA, also known as CA 19-9) glycans expressed on cancer cells function in E-selectin-mediated metastasis. Recently, it was reported that 6-sulfo sLeX glycans detected by the MECA-79 monoclonal antibody are expressed in roughly a quarter of gastric adenocarcinoma cases, and that these cases show a poorer prognosis than MECA-79-negative cases do. The present study was undertaken to assess expression of 6-sulfo sLeX glycans in bladder urothelial carcinoma and evaluate potential clinical implications. MATERIALS AND METHODS We analyzed 78 specimens representing bladder urothelial carcinoma, as well as 4 bladder urothelial carcinoma cell lines, by immunostaining with a battery of anticarbohydrate antibodies. We also undertook an E-selectin·IgM chimera binding assay to assess E-selectin binding to 6-sulfo sLeX expressed on bladder urothelial carcinoma cells and performed reverse transcription polymerase chain reaction and complementary DNA transfection to determine which N-acetylglucosamine-6-O-sulfotransferases function in 6-sulfo sLeX biosynthesis in those cells. Finally, we performed double-immunofluorescence staining for MECA-79 and either CD3 or CD8 to evaluate potential association between high endothelial venule (HEV)-like vessels and tumor-infiltrating T lymphocytes. RESULTS 6-Sulfo sLeX glycans were expressed in ~20% of bladder urothelial carcinoma cases, particularly in plasmacytoid and micropapillary variants. Positive cells were also bound by E-selectin·IgM chimeras in a calcium-dependent manner. Transcripts encoding N-acetylglucosamine-6-O-sulfotransferase-2 were detected preferentially in HT-1197 bladder urothelial carcinoma cells expressing 6-sulfo sLeX, and transfection of the enzyme complementary DNA into HT-1376 cells, which do not express 6-sulfo sLeX glycans, resulted in cell surface expression of 6-sulfo sLeX. Furthermore, 6-sulfo sLeX glycans were expressed in HEV-like vessels induced in and around lymphocyte aggregates formed near carcinoma cell nests. These HEV-like vessel-associated tumor-infiltrating lymphocytes were composed primarily of CD3(+) T cells, with a fraction of CD8(+) cytotoxic T cells. CONCLUSIONS Our findings indicate that 6-sulfo sLeX glycans likely play 2 roles in bladder urothelial carcinoma progression: one in lymphocyte recruitment to enhance antitumor immune responses, and the other in E-selectin-mediated tumor cell adhesion to vascular endothelial cells, which is potentially associated with metastasis.
Collapse
Affiliation(s)
- Minekatsu Taga
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan; Division of Urology, Department of Surgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Hitomi Hoshino
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Shulin Low
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Yoshiaki Imamura
- Division of Surgical Pathology, University of Fukui Hospital, Eiheiji, Japan
| | - Hideaki Ito
- Division of Urology, Department of Surgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Osamu Yokoyama
- Division of Urology, Department of Surgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Motohiro Kobayashi
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan.
| |
Collapse
|
37
|
Sun G, Liu K, Wang X, Liu X, He Q, Hsiao CD. Identification and Expression Analysis of Zebrafish (Danio rerio) E-Selectin during Embryonic Development. Molecules 2015; 20:18539-50. [PMID: 26473817 PMCID: PMC6331844 DOI: 10.3390/molecules201018539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, we cloned the full-length cDNA of E-selectin of zebrafish (Danio rerio), analyzed its expression pattern and preliminarily explored its biological function. Zebrafish E-selectin cDNA is 3146 bp and encodes a putative 871 amino acid protein. All structural domains involved in E-selectin function are conserved in the putative protein. Whole-mount in situ hybridization of zebrafish at 24 and 48 h post-fertilization (hpf) revealed E-selectin expression mainly in vascular/endothelial progenitor cells in the posterior trunk and blood cells in the intermediate cell mass and posterior cardinal vein regions. Real-time quantitative RT-PCR analysis detected E-selectin expression at 0.2, 24 and 48 hpf and significantly decreased from 48 to 72 hpf. The expression of E-selectin, tumor necrosis factor-α and interleukin-1β was significantly upregulated at 22 to 72 h after induction with bacterial lipopolysaccharide. Thus, the structure of E-selectin protein is highly conserved among species, and E-selectin may be involved in embryonic development and essential for hematopoiesis and angiogenesis during embryonic development in zebrafish. Furthermore, we provide the first evidence of inflammatory mediators inducing E-selectin expression in non-mammalian vertebrates, which suggests that zebrafish E-selectin may be involved in inflammation and probably has similar biological function to mammalian E-selectin.
Collapse
Affiliation(s)
- Guijin Sun
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250014, China.
| | - Kechun Liu
- Biology Institute, Shandong Academy of Sciences, Jinan 250014, China.
| | - Xue Wang
- Biology Institute, Shandong Academy of Sciences, Jinan 250014, China.
| | - Xiuhe Liu
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250014, China.
| | - Qiuxia He
- Biology Institute, Shandong Academy of Sciences, Jinan 250014, China.
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
38
|
Azevedo AS, Follain G, Patthabhiraman S, Harlepp S, Goetz JG. Metastasis of circulating tumor cells: favorable soil or suitable biomechanics, or both? Cell Adh Migr 2015; 9:345-56. [PMID: 26312653 DOI: 10.1080/19336918.2015.1059563] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the end product of a multistep process where cancer cells disseminate and home themselves in distant organs. Tumor cell extravasation is a rare, inefficient and transient event in nature and makes its studies very difficult. Noteworthy, little is known about how cancer cells arrest, adhere and pass through the endothelium of capillaries. Moreover, the key events driving metastatic growth in specific organs are not well understood. Thus, although metastasis is the leading cause of cancer-related death, how cancer cells acquire their abilities to colonize distant organs and why they do so in specific locations remain central questions in the understanding of this deadly disease. In this review, we would like to confront 2 concepts explaining the efficiency and location of metastatic secondary tumors. While the "seed and soil" hypothesis states that metastasis occurs at sites where the local microenvironment is favorable, the "mechanical" concept argues that metastatic seeding occurs at sites of optimal flow patterns. In addition, recent evidence suggests that the primary event driving tumor cell arrest before extravasation is mostly controlled by blood circulation patterns as well as mechanical cues during the process of extravasation. In conclusion, the organ tropism displayed by cancer cells during metastatic colonization is a multi-step process, which is regulated by the delivery and survival of circulating tumor cells (CTCs) through blood circulation, the ability of these CTCs to adhere and cross the physical barrier imposed by the endothelium and finally by the suitability of the soil to favor growth of secondary tumors.
Collapse
Affiliation(s)
- Ana Sofia Azevedo
- a Inserm U1109; MN3T ; Strasbourg , France.,b Université de Strasbourg ; Strasbourg , France.,c LabEx Medalis; Université de Strasbourg ; Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) ; Strasbourg , France
| | - Gautier Follain
- a Inserm U1109; MN3T ; Strasbourg , France.,b Université de Strasbourg ; Strasbourg , France.,c LabEx Medalis; Université de Strasbourg ; Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) ; Strasbourg , France
| | - Shankar Patthabhiraman
- a Inserm U1109; MN3T ; Strasbourg , France.,b Université de Strasbourg ; Strasbourg , France.,c LabEx Medalis; Université de Strasbourg ; Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) ; Strasbourg , France
| | - Sébastien Harlepp
- b Université de Strasbourg ; Strasbourg , France.,e IPCMS UMR7504 ; Strasbourg , France.,f LabEx NIE; Université de Strasbourg ; Strasbourg , France
| | - Jacky G Goetz
- a Inserm U1109; MN3T ; Strasbourg , France.,b Université de Strasbourg ; Strasbourg , France.,c LabEx Medalis; Université de Strasbourg ; Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) ; Strasbourg , France
| |
Collapse
|
39
|
Lin TW, Chang HT, Chen CH, Chen CH, Lin SW, Hsu TL, Wong CH. Galectin-3 Binding Protein and Galectin-1 Interaction in Breast Cancer Cell Aggregation and Metastasis. J Am Chem Soc 2015; 137:9685-93. [PMID: 26168351 DOI: 10.1021/jacs.5b04744] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Galectin-3 binding protein (Gal-3BP) is a large hyperglycosylated protein that acts as a ligand for several galectins through glycan-dependent interactions. Gal-3BP can induce galectin-mediated tumor cell aggregation to increase the survival of cancer cells in the bloodstream during the metastatic process. However, the galectin interacting with Gal-3BP and its binding specificity has not been identified and structurally elucidated, mainly due to the limitation of mass spectrometry in glycan sequencing. To understand the role of Gal-3BP, we here used liquid chromatography-mass spectrometry combined with specific exoglycosidase reactions to determine the sequences of N-glycans on Gal-3BP from MCF-7 and MDA-MB-231 cells, especially the sequences with terminal sialylation and fucosylation, and addition of LacNAc repeat structures. The N-glycans from both strains are complex type with terminal α2,3-sialidic acid and core fucose linkages, with additional α1,2- and α1,3 fucose linkages found in MCF-7 cells. Compared with that from MCF-7, the Gal-3BP from MDA-MB-231 cells had fewer tetra-antennary structures, only α1,6-linked core fucoses, and more LacNAc repeat structures; the MDA-MB-231 cells had no surface galectin-3 but used surface galectin-1 for interaction with Gal-3BP to form large oligomers and cell aggregates. This study elucidates the specificity of Gal-3BP interacting with galectin-1 and the role of Gal-3BP in cancer cell aggregation and metastasis.
Collapse
Affiliation(s)
| | - Hui-Tzu Chang
- §Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
AbuSamra DB, Al-Kilani A, Hamdan SM, Sakashita K, Gadhoum SZ, Merzaban JS. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay. J Biol Chem 2015; 290:21213-30. [PMID: 26124272 DOI: 10.1074/jbc.m114.629451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/30/2022] Open
Abstract
Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow on- and off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling.
Collapse
Affiliation(s)
- Dina B AbuSamra
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alia Al-Kilani
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samir M Hamdan
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Kosuke Sakashita
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samah Z Gadhoum
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jasmeen S Merzaban
- From the Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
41
|
Kang SA, Hasan N, Mann AP, Zheng W, Zhao L, Morris L, Zhu W, Zhao YD, Suh KS, Dooley WC, Volk D, Gorenstein DG, Cristofanilli M, Rui H, Tanaka T. Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis. Mol Ther 2015; 23:1044-1054. [PMID: 25815697 PMCID: PMC4817749 DOI: 10.1038/mt.2015.45] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/08/2015] [Indexed: 02/08/2023] Open
Abstract
Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.
Collapse
Affiliation(s)
- Shin-Ae Kang
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nafis Hasan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aman P Mann
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Wei Zheng
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lichao Zhao
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lynsie Morris
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Weizhu Zhu
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yan D Zhao
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - K Stephen Suh
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersy, USA
| | - William C Dooley
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - David Volk
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David G Gorenstein
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Massimo Cristofanilli
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hallgeir Rui
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Takemi Tanaka
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
42
|
Toshima T, Shirabe K, Ikegami T, Yoshizumi T, Kuno A, Togayachi A, Gotoh M, Narimatsu H, Korenaga M, Mizokami M, Nishie A, Aishima S, Maehara Y. A novel serum marker, glycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA(+)-M2BP), for assessing liver fibrosis. J Gastroenterol 2015; 50:76-84. [PMID: 24603981 DOI: 10.1007/s00535-014-0946-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/07/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recently, a novel marker, hyperglycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA(+)-M2BP), was developed for liver fibrosis using the glycan "sugar chain"-based immunoassay; however, the feasibility of WFA(+)-M2BP for assessing liver fibrosis has not been proven with clinical samples of hepatitis. METHODS Serum WFA(+)-M2BP values were evaluated in 200 patients with chronic liver disease who underwent histological examination of liver fibrosis. The diagnostic accuracy of WFA(+)-M2BP values was compared with various fibrosis markers, such as ultrasound based-virtual touch tissue quantification (VTTQ), magnetic resonance imaging based-liver-to-major psoas muscle intensity ratio (LMR), and serum markers, including hyaluronic acid, type 4 collagen, and aspartate transaminase to platelet ratio index (APRI). RESULTS Serum WFA(+)-M2BP levels in patients with fibrosis grades F0, F1, F2, F3, and F4 had cutoff indices 1.62, 1.82, 3.02, 3.32, and 3.67, respectively, and there were significant differences between fibrosis stages F1 and F2, and between F2 and F3 (P < 0.01). The area under the receiver operating characteristic curves for the diagnosis of fibrosis (F ≥ 3) using serum WFA(+)-M2BP values (0.812) was almost comparable to that using VTTQ examination (0.814), but was superior to the other surrogate markers, including LMR index (0.766), APRI (0.694), hyaluronic acid (0.683), and type 4 collagen (0.625) (P < 0.01 each). CONCLUSIONS Serum WFA(+)-M2BP values based on a glycan-based immunoassay is an accurate, reliable, and reproducible method for the assessment of liver fibrosis. This approach could be clinically feasible for evaluation of beneficial therapy through the quantification of liver fibrosis in hepatitis patients if this measurement application is commercially realized.
Collapse
Affiliation(s)
- Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shirure VS, Liu T, Delgadillo LF, Cuckler CM, Tees DFJ, Benencia F, Goetz DJ, Burdick MM. CD44 variant isoforms expressed by breast cancer cells are functional E-selectin ligands under flow conditions. Am J Physiol Cell Physiol 2014; 308:C68-78. [PMID: 25339657 DOI: 10.1152/ajpcell.00094.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adhesion of circulating tumor cells to vascular endothelium is mediated by specialized molecules that are functional under shear forces exerted by hematogenous flow. Endothelial E-selectin binding to glycoforms of CD44 mediates shear-resistant cell adhesion in numerous physiological and pathological conditions. However, this pathway is poorly understood in breast cancer and is the focus of the present investigation. All breast cancer cell lines used in this study strongly expressed CD44. In particular, BT-20 cells expressed CD44s and multiple CD44v isoforms, whereas MDA-MB-231 cells predominantly expressed CD44s but weakly expressed CD44v isoforms. CD44 expressed by BT-20, but not MDA-MB-231, cells possessed E-selectin ligand activity as detected by Western blotting and antigen capture assays. Importantly, CD44 expressed by intact BT-20 cells were functional E-selectin ligands, regulating cell rolling and adhesion under physiological flow conditions, as found by shRNA-targeted silencing of CD44. Antigen capture assays strongly suggest greater shear-resistant E-selectin ligand activity of BT-20 cell CD44v isoforms than CD44s. Surprisingly, CD44 was not recognized by the HECA-452 MAb, which detects sialofucosylated epitopes traditionally expressed by selectin ligands, suggesting that BT-20 cells express a novel glycoform of CD44v as an E-selectin ligand. The activity of this glycoform was predominantly attributed to N-linked glycans. Furthermore, expression of CD44v as an E-selectin ligand correlated with high levels of fucosyltransferase-3 and -6 and epithelial, rather than mesenchymal, cell phenotype. Together, these data demonstrate that expression of CD44 as a functional E-selectin ligand may be important in breast cancer metastasis.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Tiantian Liu
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Luis F Delgadillo
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Chaz M Cuckler
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - David F J Tees
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Department of Physics and Astronomy, College of Arts and Sciences, Ohio University, Athens, Ohio; and
| | - Fabian Benencia
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio;
| |
Collapse
|
44
|
Nikolaisen J, Nilsson LIH, Pettersen IKN, Willems PHGM, Lorens JB, Koopman WJH, Tronstad KJ. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties. PLoS One 2014; 9:e101365. [PMID: 24988307 PMCID: PMC4079598 DOI: 10.1371/journal.pone.0101365] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/05/2014] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells.
Collapse
Affiliation(s)
| | | | | | - Peter H. G. M. Willems
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - James B. Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Werner J. H. Koopman
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Karl J. Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
45
|
Smith AM, Prabhakarpandian B, Pant K. Generation of shear adhesion map using SynVivo synthetic microvascular networks. J Vis Exp 2014. [PMID: 24893648 DOI: 10.3791/51025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cell/particle adhesion assays are critical to understanding the biochemical interactions involved in disease pathophysiology and have important applications in the quest for the development of novel therapeutics. Assays using static conditions fail to capture the dependence of adhesion on shear, limiting their correlation with in vivo environment. Parallel plate flow chambers that quantify adhesion under physiological fluid flow need multiple experiments for the generation of a shear adhesion map. In addition, they do not represent the in vivo scale and morphology and require large volumes (~ml) of reagents for experiments. In this study, we demonstrate the generation of shear adhesion map from a single experiment using a microvascular network based microfluidic device, SynVivo-SMN. This device recreates the complex in vivo vasculature including geometric scale, morphological elements, flow features and cellular interactions in an in vitro format, thereby providing a biologically realistic environment for basic and applied research in cellular behavior, drug delivery, and drug discovery. The assay was demonstrated by studying the interaction of the 2 µm biotin-coated particles with avidin-coated surfaces of the microchip. The entire range of shear observed in the microvasculature is obtained in a single assay enabling adhesion vs. shear map for the particles under physiological conditions.
Collapse
Affiliation(s)
| | | | - Kapil Pant
- Biomedical Technology, CFD Research Corporation
| |
Collapse
|
46
|
Maryáš J, Faktor J, Dvořáková M, Struhárová I, Grell P, Bouchal P. Proteomics in investigation of cancer metastasis: Functional and clinical consequences and methodological challenges. Proteomics 2014; 14:426-40. [DOI: 10.1002/pmic.201300264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Josef Maryáš
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Jakub Faktor
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Monika Dvořáková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Iva Struhárová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| |
Collapse
|
47
|
Abstract
During metastasis, cancer cells disseminate to other parts of the body by entering the bloodstream in a process that is called intravasation. They then extravasate at metastatic sites by attaching to endothelial cells that line blood vessels and crossing the vessel walls of tissues or organs. This Review describes how cancer cells cross the endothelial barrier during extravasation and how different receptors, signalling pathways and circulating cells such as leukocytes and platelets contribute to this process. Identification of the mechanisms that underlie cancer cell extravasation could lead to the development of new therapies to reduce metastasis.
Collapse
Affiliation(s)
- Nicolas Reymond
- 1] Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK. [2] Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS) - UMR5237, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France. [3]
| | | | | |
Collapse
|
48
|
Carlson GE, Martin EW, Burdick MM. Simultaneously capturing real-time images in two emission channels using a dual camera emission splitting system: applications to cell adhesion. J Vis Exp 2013. [PMID: 24056855 DOI: 10.3791/50604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Multi-color immunofluorescence microscopy to detect specific molecules in the cell membrane can be coupled with parallel plate flow chamber assays to investigate mechanisms governing cell adhesion under dynamic flow conditions. For instance, cancer cells labeled with multiple fluorophores can be perfused over a potentially reactive substrate to model mechanisms of cancer metastasis. However, multi-channel single camera systems and color cameras exhibit shortcomings in image acquisition for real-time live cell analysis. To overcome these limitations, we used a dual camera emission splitting system to simultaneously capture real-time image sequences of fluorescently labeled cells in the flow chamber. Dual camera emission splitting systems filter defined wavelength ranges into two monochrome CCD cameras, thereby simultaneously capturing two spatially identical but fluorophore-specific images. Subsequently, psuedocolored one-channel images are combined into a single real-time merged sequence that can reveal multiple target molecules on cells moving rapidly across a region of interest.
Collapse
Affiliation(s)
- Grady E Carlson
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University
| | | | | |
Collapse
|
49
|
Targeting Underglycosylated MUC1 for the Selective Capture of Highly Metastatic Breast Cancer Cells Under Flow. Cell Mol Bioeng 2013; 6:148-159. [PMID: 23805168 PMCID: PMC3689911 DOI: 10.1007/s12195-013-0282-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/15/2013] [Indexed: 12/26/2022] Open
Abstract
The underglycosylated form of the MUC1 glycoprotein, uMUC1, has been identified as a ligand for both E-selectin and ICAM-1 and can play multiple potential roles during rolling and firm adhesion events in the metastatic cascade. Using flow cytometry and confocal microscopy, the T47D and ZR-75-1 cell lines were verified to highly express uMUC1, however it was found that only ZR-75-1 cells expressed the E-selectin binding moiety sialyl Lewis x (sLex). Furthermore, perfusing T47D cells through E-selectin coated microtubes resulted in fast rolling velocities and low numbers of interacting cells and blocking uMUC1 with the SM3 antibody had no effect. ZR-75-1 cells, on the other hand, were highly dependent on the E-selectin:uMUC1 interaction as exemplified by significant increases in cell rolling velocities and decreases in the number of interacting cells when blocking with SM3 or when uMUC1 expression was knocked down via siRNA transfection. Whereas uMUC1 interactions with E-selectin supported cell rolling, P-selectin: uMUC1 interactions exclusively facilitated cell tethering, while L-selectin surfaces supported no cell adhesive interactions. These experimental observations are consistent with molecular dynamics simulations of uMUC1 bound to E-, P-, and L-selectin where the degree of residue contact correlated with the differential adhesion of uMUC1 to each selectin. Finally, an E-selectin and SM3 combined surface coating captured approximately 30% of the total number of interacting cancer cells comparable to the number of adhered cells when utilizing E-selectin and ICAM-1 combined surfaces. The E-selectin/SM3 surface strategy offers a viable method to selectively capture cancer cells from whole blood samples.
Collapse
|
50
|
Mitchell MJ, King MR. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol 2013; 3:44. [PMID: 23467856 PMCID: PMC3587800 DOI: 10.3389/fonc.2013.00044] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/18/2013] [Indexed: 11/14/2022] Open
Abstract
It has become evident that mechanical forces play a key role in cancer metastasis, a complex series of steps that is responsible for the majority of cancer-related deaths. One such force is fluid shear stress, exerted on circulating tumor cells by blood flow in the vascular microenvironment, and also on tumor cells exposed to slow interstitial flows in the tumor microenvironment. Computational and experimental models have the potential to elucidate metastatic behavior of cells exposed to such forces. Here, we review the fluid-generated forces that tumor cells are exposed to in the vascular and tumor microenvironments, and discuss recent computational and experimental models that have revealed mechanotransduction phenomena that may play a role in the metastatic process.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | |
Collapse
|