1
|
Sabale V, Girhepunje M, Ingole A, Warokar A, Sawarkar K, Sabale P. Acyl chitosan based self-nanoemulsifying drug delivery system of lipophilic drug with enhanced oral bioavailability and mucoadhesion: Formulation development, optimization and in vitro/in vivo characterization. Int J Biol Macromol 2025; 306:141257. [PMID: 39986527 DOI: 10.1016/j.ijbiomac.2025.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
This study developed a mucoadhesive self-nano emulsifying drug delivery system (SNEDDS) with synthesized acyl chitosan coating for enhancing oral bioavailability and drug retention of Amphotericin B (AB) which is conventionally administered parenterally owing to its poor bioavailability. Acyl chitosan was synthesized and characterized. The AB and acyl chitosan Amphotericin B (ACAB) SNEDDS were prepared using capryol 90, kolliphor RH 40 and propylene glycol and optimized using Box- Behnken Design (BBD). After preliminary evaluation of both the SNEDDS, the optimized formulation underwent compatibility, thermodynamic stability, robustness to dilution, dissolution, permeation, mucoadhesion, SEM, and in vivo pharmacokinetic studies. Both AB and ACAB SNEDDS were transparent with sizes of 70.68 nm and 83 nm, respectively and had spherical morphology. ACAB SNEDDS exhibited controlled release of the drug (85.6 %) over AB SNEDDS (90.5 %) and increased drug permeation (97 % Vs 75 %) over 24 h. For ACAB SNEDDS higher drug plasma concentration (0.254 ± 0.03 μg/mL) over AB SNEDDS (0.194 μg/mL) and AB suspension (0.152 ± 0.03 μg/mL) was observed from in vivo pharmacokinetic studies on rats. The developed ACAB SNEDDS improved the solubility, permeability, oral bioavailability and drug retention through mucoadhesion.
Collapse
Affiliation(s)
- Vidya Sabale
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India.
| | - Mrunali Girhepunje
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Ashwini Ingole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Krutika Sawarkar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
2
|
Savadi P, Casale A, Roggia M, Conte G, Lozano MV, Costabile G, Ungaro F, Cosconati S, Santander-Ortega M, d'Angelo I. Unveiling the role of poly(vinyl alcohol) in the production of mucus-penetrating PLGA nanoparticles. Int J Pharm 2025; 673:125398. [PMID: 39999901 DOI: 10.1016/j.ijpharm.2025.125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Mucosal drug delivery offers a promising non-invasive approach in pharmaceutical sciences but faces challenges from the protective mucus layer on mucosal surfaces, limiting drug absorption. Polymeric nanoparticles (NPs) have emerged as effective carriers, leveraging their small size to enhance mucus penetration and drug absorption. This study investigates polyvinyl alcohol (PVA)'s role in enhancing poly(lactic-co-glycolic acid) (PLGA) NPs for mucosal drug delivery. While PVA is commonly used as an emulsion stabilizer, its impact on NP mucoadhesiveness and mucodiffusivity is often overlooked. We characterized PLGA-based NPs with varying PVA types, employing particle tracking and molecular dynamics to demonstrate PVA's direct interaction with mucin MUC 5B. Our findings show reduced interaction with lower PVA hydrolysis, with particle tracking confirming PVA properties influence mucoadhesion. This study underscores PVA's critical role in optimizing NP efficacy for mucosal drug delivery, offering insights for developing more effective drug delivery systems.
Collapse
Affiliation(s)
- Pouria Savadi
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Andrea Casale
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Michele Roggia
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gemma Conte
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy; Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - M Victoria Lozano
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain; Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete 02008, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | | | - Francesca Ungaro
- Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Sandro Cosconati
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Manuel Santander-Ortega
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain; Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete 02008, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Ivana d'Angelo
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
3
|
Saleem W, Aslam A, Tariq M, Nauwynck H. Intestinal mucus: the unsung hero in the battle against viral gastroenteritis. Gut Pathog 2025; 17:11. [PMID: 39972475 PMCID: PMC11841282 DOI: 10.1186/s13099-025-00684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Intestinal mucus plays a crucial role in defending against enteric infections by protecting the vulnerable intestinal epithelial cells both physically and through its various constituents. Despite this, numerous gastroenteritis-causing viruses, such as rotavirus, coronavirus, adenovirus, astrovirus, calicivirus, and enterovirus, continue to pose significant threats to humans and animals. While several studies have examined the interactions between these viruses and intestinal mucus, significant gaps remain in understanding the full protective potential of intestinal mucus against these pathogens. This review aims to elucidate the protective role of intestinal mucus in viral gastroenteritis. It begins with a comprehensive literature overview of (i) intestinal mucus, (ii) enteric viruses of medical and veterinary importance, and (iii) the known interactions between various enteric viruses and intestinal mucus. Following this, a case study is presented to highlight the age-dependent blocking effect of porcine intestinal mucus against transmissible gastroenteritis virus, a porcine coronavirus. Finally, the review discusses future investigation directions to further explore the potential of intestinal mucus as a defense mechanism against viral gastroenteritis to stimulate further research in this dynamic and critical area.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium.
| | - Ateeqa Aslam
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| | - Mehlayl Tariq
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, 53-114, Poland
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| |
Collapse
|
4
|
Saleem W, Carpentier N, Hinnekens C, Oh D, Van Vlierberghe S, Braeckmans K, Nauwynck H. Porcine ex-vivo intestinal mucus has age-dependent blocking activity against transmissible gastroenteritis virus. Vet Res 2024; 55:113. [PMID: 39304917 DOI: 10.1186/s13567-024-01374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) causes high mortality in young piglets (< 3 days of age). With aging, the susceptibility/morbidity/mortality rates drop. We previously hypothesized that the age-related changes in the intestinal mucus could be responsible for this resistance. Hence, this study investigated the effect of porcine intestinal mucus from 3-day and 3-week-old pigs on the free mobility of the virulent TGEV Miller strain, and on the infection in swine testicle (ST) cells. Single particle tracking (SPT) revealed that TGEV had significantly higher diffusion coefficients in 3-day mucus compared to 3-week mucus. TGEV and charged and uncharged control nanoparticles diffused freely in 3-day mucus but were hindered by 3-week mucus in the diffusion model; TGEV mimicked the diffusion behavior of negatively charged carboxylated particles. Inoculation of ST cells with TGEV in the presence of 3-week mucus resulted in a significantly lower average number of infected cells (30.9 ± 11.9/5 fields) compared with 3-day mucus (84.6 ± 16.4/5 fields). These results show that 3-week mucus has a significant TGEV-blocking activity compared to 3-day mucus in free diffusion and infection of the underlying susceptible cells. Additionally, a label-free proteomics analysis revealed an increased expression of mucin 13, known for negatively regulating the tight junctions in intestinal epithelium, in 3-day-old pigs. In 3-week-old pigs, a higher expression of mucin 2, a type of secreted mucin which is known for inhibiting coronavirus infection, was observed. Concludingly, this study demonstrated a protective effect of 3-week mucus against viral infections.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Charlotte Hinnekens
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
5
|
Lu A, Ebright B, Naik A, Tan HL, Cohen NA, Bouteiller JMC, Lazzi G, Louie SG, Humayun MS, Asante I. Hydroxypropyl-Beta Cyclodextrin Barrier Prevents Respiratory Viral Infections: A Preclinical Study. Int J Mol Sci 2024; 25:2061. [PMID: 38396738 PMCID: PMC10888609 DOI: 10.3390/ijms25042061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.
Collapse
Affiliation(s)
- Angela Lu
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Brandon Ebright
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Aditya Naik
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Hui L. Tan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jean-Marie C. Bouteiller
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
| | - Gianluca Lazzi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Mark S. Humayun
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Isaac Asante
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Stasi D, Wagner B, Barnum S, Pusterla N. Comparison of antibody and antigen response to intranasal and intramuscular EHV-1 modified-live vaccination in healthy adult horses. J Equine Vet Sci 2024; 133:104992. [PMID: 38160702 DOI: 10.1016/j.jevs.2023.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
During neurological EHV-1 outbreaks, modified-live vaccines (MLV) are often administrated intranasally in an off-label fashion to healthy cohort horses in order to achieve rapid mucosal immunity. Thus, the goal of the present study was to determine if a commercially available EHV-1 MLV given intranasally to healthy horses would trigger a measurable systemic and/or mucosal antibody response. Eight healthy adult horses were given the EHV-1 MLV vaccine intranasally, while 8 healthy adult horses received the vaccine intramuscularly. An additional 8 healthy horses served as unvaccinated controls. EHV-1 specific antibodies (total IgG, IgG4/7, IgG1 and IgA) were measured in blood and nasal secretions prior to vaccine administration and 14- and 30-days post-vaccine administration. Further, nasal secretions and whole blood were tested for the presence of EHV-1 DNA by qPCR prior to and 5 days after vaccine administration. EHV-1 was detected by qPCR for the first 48 hours post-intranasal vaccine administration in nasal secretions in a total of three horses. Total EHV-1 IgG and IgG4/7 antibody values in serum increased only in horses receiving the intramuscular MLV. Antibody values at 14- and 30-days post vaccine administration were not different from values prior to vaccine administration in horses receiving the intranasal vaccine. The results support the intramuscular use of the EHV-1 MLV as recommended by the manufacturer. Intranasal vaccination with the study-specific EHV-1 MLV did not induce an increase in systemic or nasal antibodies, therefore, this vaccine route seems suboptimal and should not be used to vaccinate adult horses that have received multiple EHV-1 vaccinations and have pre-existing antibodies against EHV-1.
Collapse
Affiliation(s)
- Denise Stasi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Erstling JA, Bag N, Gardinier TC, Kohle FFE, DomNwachukwu N, Butler SD, Kao T, Ma K, Turker MZ, Feuer GB, Lee R, Naguib N, Tallman JF, Malarkey HF, Tsaur L, Moore WL, Chapman DV, Aubert T, Mehta S, Cerione RA, Weiss RS, Baird BA, Wiesner UB. Overcoming Barriers Associated with Oral Delivery of Differently Sized Fluorescent Core-Shell Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305937. [PMID: 37689973 DOI: 10.1002/adma.202305937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Indexed: 09/11/2023]
Abstract
Oral delivery, while a highly desirable form of nanoparticle-drug administration, is limited by challenges associated with overcoming several biological barriers. Here, the authors study how fluorescent and poly(ethylene glycol)-coated (PEGylated) core-shell silica nanoparticles sized 5 to 50 nm interact with major barriers including intestinal mucus, intestinal epithelium, and stomach acid. From imaging fluorescence correlation spectroscopy studies using quasi-total internal reflection fluorescence microscopy, diffusion of nanoparticles through highly scattering mucus is progressively hindered above a critical hydrodynamic size around 20 nm. By studying Caco-2 cell monolayers mimicking the intestinal epithelia, it is observed that ultrasmall nanoparticles below 10 nm diameter (Cornell prime dots, [C' dots]) show permeabilities correlated with high absorption in humans from primarily enhanced passive passage through tight junctions. Particles above 20 nm diameter exclusively show active transport through cells. After establishing C' dot stability in artificial gastric juice, in vivo oral gavage experiments in mice demonstrate successful passage through the body followed by renal clearance without protein corona formation. Results suggest C' dots as viable candidates for oral administration to patients with a proven pathway towards clinical translation and may generate renewed interest in examining silica as a food additive and its effects on nutrition and health.
Collapse
Affiliation(s)
- Jacob A Erstling
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas C Gardinier
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Ferdinand F E Kohle
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Naedum DomNwachukwu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Scott D Butler
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Teresa Kao
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Kai Ma
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Melik Z Turker
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Grant B Feuer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rachel Lee
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nada Naguib
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - James F Tallman
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Henry F Malarkey
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Lieihn Tsaur
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - William L Moore
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dana V Chapman
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Tangi Aubert
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Saurabh Mehta
- Center for Precision Nutrition and Health, Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Sato H, Yamada K, Miyake M, Onoue S. Recent Advancements in the Development of Nanocarriers for Mucosal Drug Delivery Systems to Control Oral Absorption. Pharmaceutics 2023; 15:2708. [PMID: 38140049 PMCID: PMC10747340 DOI: 10.3390/pharmaceutics15122708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane from foreign substances; however, in the absorption process after oral administration, it can also disturb effective drug absorption by trapping it in the biological sieve structured by mucin, a major component of mucus, and eliminating it by mucus turnover. Recently, functional nanocarriers (NCs) have attracted much attention due to their immense potential and effectiveness in the field of oral drug delivery. Among them, NCs with mucopenetrating and mucoadhesive properties are promising dosage options for controlling drug absorption from the GI tracts. Mucopenetrating and mucoadhesive NCs can rapidly deliver encapsulated drugs to the absorption site and/or prolong the residence time of NCs close to the absorption membrane, providing better medications than conventional approaches. The surface characteristics of NCs are important factors that determine their functionality, owing to the formation of various kinds of interactions between the particle surface and mucosal components. Thus, a deeper understanding of surface modifications on the biopharmaceutical characteristics of NCs is necessary to develop the appropriate mucosal drug delivery systems (mDDS) for the treatment of target diseases. This review summarizes the basic information and functions of the mucosal layer, highlights the recent progress in designing functional NCs for mDDS, and discusses their performance in the GI tract.
Collapse
Affiliation(s)
- Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| | - Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| | - Masateru Miyake
- Business Integrity and External Affairs, Otsuka Pharmaceutical Co., Ltd., 2-16-4 Konan, Minato-ku, Tokyo 108-8242, Japan;
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| |
Collapse
|
9
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
10
|
Arrua EC, Hartwig O, Loretz B, Murgia X, Ho DK, Bastiat G, Lehr CM, Salomón CJ. Formulation of benznidazole-lipid nanocapsules: Drug release, permeability, biocompatibility, and stability studies. Int J Pharm 2023:123120. [PMID: 37307960 DOI: 10.1016/j.ijpharm.2023.123120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Benznidazole, a poorly soluble in water drug, is the first-line medication for the treatment of Chagas disease, but long treatment periods at high dosages cause several adverse effects with insufficient activity in the chronic phase. According to these facts, there is a serious need for novel benznidazole formulations for improving the chemotherapy of Chagas disease. Thus, this work aimed to incorporate benznidazole into lipid nanocapsules for improving its solubility, dissolution rate in different media, and permeability. Lipid nanocapsules were prepared by the phase inversion technique and were fully characterized. Three formulations were obtained with a diameter of 30, 50, and 100 nm and monomodal size distribution with a low polydispersity index and almost neutral zeta potential. Drug encapsulation efficiency was between 83 and 92% and the drug loading was between 0.66 and 1.04%. Loaded formulations were stable under storage for one year at 4 °C. Lipid nanocapsules were found to protect benznidazole in simulated gastric fluid and provide a sustained release platform for the drug in a simulated intestinal fluid containing pancreatic enzymes. The small size and the almost neutral surface charge of these lipid nanocarriers improved their penetration through mucus and such formulations showed a reduced chemical interaction with gastric mucin glycoproteins. LNCs. The incorporation of benznidazole in lipid nanocapsules improved the drug permeability across intestinal epithelium by 10-fold compared with the non-encapsulated drug while the exposure of the cell monolayers to these nanoformulations did not affect the integrity of the epithelium.
Collapse
Affiliation(s)
- Eva C Arrua
- Institute of Chemistry, IQUIR-CONICET, National Council Research, Suipacha 531, 2000 Rosario, Argentina
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany; Pharmacy Department, Faculty of Pharmaceutical and Biochemical Sciences, National University of Rosario, Suipacha, 531, 2000 Rosario, Argentina
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany
| | - Guillaume Bastiat
- LUNAM Université, Micro et Nanomédecines Biomimétiques, F-49933, Angers, France and Inserm, U1066 IBS-CHU, 4 rue Larrey, F-49933 Angers Cédex 9, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbruecken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Claudio J Salomón
- Institute of Chemistry, IQUIR-CONICET, National Council Research, Suipacha 531, 2000 Rosario, Argentina; Pharmacy Department, Faculty of Pharmaceutical and Biochemical Sciences, National University of Rosario, Suipacha, 531, 2000 Rosario, Argentina.
| |
Collapse
|
11
|
Haddadzadegan S, Knoll P, Wibel R, Kali G, Bernkop-Schünrch A. Three generations of thiolated cyclodextrins: A direct comparison of their mucus permeating and mucoadhesive properties. Acta Biomater 2023:S1742-7061(23)00315-X. [PMID: 37271247 DOI: 10.1016/j.actbio.2023.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
AIM This study aims to compare the mucus permeating and mucoadhesive properties of three generations of thiolated cyclodextrins (CDs). METHODS Free thiol groups of thiolated γ-CDs (CD-SH) were S-protected with 2-mercaptonicotinic acid (MNA), leading to a second generation of thiolated CDs (CD-SS-MNA) and with 2 kDa polyethylene glycol (PEG) bearing a terminal thiol group leading to a third generation of thiolated CDs (CD-SS-PEG). The structure of these thiolated CDs was confirmed and characterized by FT-IR, 1H NMR and colorimetric assays. Thiolated CDs were evaluated regarding viscosity, mucus diffusion, and mucoadhesion. RESULTS The viscosity of the mixture of CD-SH, CD-SS-MNA, or CD-SS-PEG with mucus increased up to 11-, 16-, and 14.1-fold compared to unmodified CD within 3 hours, respectively. Mucus diffusion increased in the following rank order: unprotected CD-SH < CD-SS-MNA < CD-SS-PEG. The residence time of CD-SH, CD-SS-MNA, and CD-SS-PEG on porcine intestine was up to 9.6-, 12.55-, and 11.2-fold prolonged compared to native CD, respectively. CONCLUSION According to these results, S-protection of thiolated CDs can be a promising approach to improve their mucus permeating and mucoadhesive properties. STATEMENT OF SIGNIFICANCE Three generations of thiolated cyclodextrins (CDs) with different types of thiol ligands have been synthesized to improve mucus interaction. 1st generation of thiolated CDs was synthesized by converting hydroxyl groups into thiols by reaction with Thiourea. For 2nd generation, free thiol groups were S-protected by reaction with 2-mercaptonicotinic acid (MNA), resulting in high reactive disulfide bonds. For 3rd generation, terminally thiolated short PEG chains (2 kDa) were used for S-protection of thiolated CDs. Mucus penetrating properties were found to be increased as follows: 1st generation < 2nd generation < 3rd generation. Furthermore, mucoadhesive properties were improved in the following rank order: 1st generation < 3rd generation < 2nd generation. This study suggests that the S-protection of thiolated CDs can enhance mucus penetrating and mucoadhesive properties.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schünrch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Zheng J, Lin J, Ma Y, Yang C, Zhong Q, Li Y, Yang Q. Establishment of sheep nasal mucosa explant model and its application in antiviral research. Front Microbiol 2023; 14:1124936. [PMID: 37256060 PMCID: PMC10226428 DOI: 10.3389/fmicb.2023.1124936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
The nasal mucosa is the first barrier to pathogen invasion through the respiratory tract. Few studies have focused on nasal resistance to invasion by respiratory pathogens due to the lack of models related to the nasal mucosa. Hence, it is necessary to construct a nasal mucosal model to study host-pathogen interactions. We established a long-term in vitro sheep nasal mucosa explant model (NMEM), which exhibited typical epithelial cilia and epithelial proliferation ability within 11 days. Moreover, to evaluate whether the NMEM was suited for in vitro pathogenic study, we used pseudorabies virus (PRV) and showed that it successfully infected and produced severe lesions in the NMEM, particularly interferon (IFN)-stimulated gene product 15 (ISG15). IFN decreased significantly after the PRV infection. Similarly, we used this NMEM model to screen several antiviral substances, such as probiotics and drugs. A previous study showed that nasal commensal bacteria, particularly Bacillus subtilis, had high antiviral activity. Then, we used the NMEM to evaluate six sheep-derived B. subtilis strains and demonstrated that it significantly induced the production of IFN and expression of ISG15. The sheep-derived B. subtilis was pretreated with the sheep NMEM before the PRV infection to evaluate the antiviral effect. The results showed that NSV2 significantly inhibited infection by PRV and reduced the viral load (p < 0.05). Furthermore, NSV2 may inhibit PRV replication by enhancing ISGylation of cells. In conclusion, we established a reliable in vitro culture model of sheep NMEM, and applied it in antiviral research.
Collapse
|
13
|
Saleem W, Ren X, Van Den Broeck W, Nauwynck H. Changes in intestinal morphology, number of mucus-producing cells and expression of coronavirus receptors APN, DPP4, ACE2 and TMPRSS2 in pigs with aging. Vet Res 2023; 54:34. [PMID: 37055856 PMCID: PMC10100624 DOI: 10.1186/s13567-023-01169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
Porcine enteric viral infections cause high morbidity and mortality in young piglets (<3 weeks). Later, these rates decrease with age. This age-dependent infectivity remains largely unexplored. This study investigated the changes in intestinal morphology, number of mucus-producing cells and expression level of coronavirus receptors in three age groups of pigs. Villus height and crypt depth increased with age from 3 days to 3 months in duodenum and ileum but not in mid-jejunum, where the villus height decreased from 580 µm at 3 days to 430 µm at 3 months. Enterocyte length-to-width ratio increased from 3 days to 3 months in all intestinal regions. The number of mucus-producing cells increased with age in the intestinal villi and crypts. The Brunner's glands of the duodenum contained the highest concentration of mucus-producing cells. The expression of coronavirus receptor APN was highest in the small intestinal villi at all ages. DPP4 expression slightly decreased over time in jejunum and ileum; it was highest in the ileal villi of 3-day-old piglets (70.2% of cells). ACE2 and TMPRSS2 positive cells increased with age in jejunal and ileal crypts and were particularly dominant in the ileal crypts (> 45% of cells). Except for the expression of DPP4 in the jejunum and ileum of young pigs, the expression pattern of the selected coronavirus receptors was very different and not correlated with the age-dependent susceptibility to viral infections. In contrast, the number of mucus-producing cells increased over time and may play an essential role in protecting enteric mucosae against intestinal viruses.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
14
|
Faruque MRJ, Cukkemane N, Fu C, Nazmi K, Laine ML, Bikker FJ. Identification and Characterization of MUC5B Binding Peptides by Phage Display. Arch Oral Biol 2023; 147:105624. [PMID: 36701953 DOI: 10.1016/j.archoralbio.2023.105624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES MUC5B plays a multifactorial role in oral health. As a consequence, decreased MUC5B output leads to impaired salivary functions and xerostomia. Synthetic combinatorial technologies have been used to develop functional peptide libraries by phage display e.g. for therapeutic purposes. In this light, our primary aim was to identify peptide sequences with specific selectivity for salivary MUC5B in vitro using phage display. Our secondary aims were to analyze their effect on salivary spinnbarkeit in situ and their effect on acid-induced demineralization in vitro. METHODS MUC5B binding phages were selected by phage display. Peptide affinity to MUC5B was evaluated using MUC5B coated hydroxyapatite (HA) granules. The MUC5B binding peptides (MBPs) were then examined for their effects on salivary spinnbarkeit and protective effect on acid-induced demineralization in vitro. A competitive ELISA was performed to identify the binding epitope on MUC5B using F2, a MUC5B specific antibody. RESULTS MBP-12 and MBP-14 displayed the highest affinity to MUC5B. MBP-12 mildly stabilized the spinnbarkeit of serous saliva after overnight incubation and of mucous saliva at all timepoints tested. The addition of MBP-12 to a pellicle of unstimulated saliva on HA discs showed no additive protective effect against acid-induced demineralization. Epitope characterization suggested sulfo-Lewisa SO3-3Gal_1-3GlcNAc (galactose residue) as MBP-12 binding site on MUC5B. CONCLUSIONS The use of phage display in generating MBPs was successful. Characterization of the MBPs revealed a mild effect on spinnbarkeit in case of mucous saliva. Possibly, combinatorial peptide libraries might contribute to the development of novel formulations to treat xerostomia.
Collapse
Affiliation(s)
- Mouri R J Faruque
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands.
| | - Nivedita Cukkemane
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Kulkarni R, Fanse S, Burgess DJ. Mucoadhesive drug delivery systems: a promising non-invasive approach to bioavailability enhancement. Part I: biophysical considerations. Expert Opin Drug Deliv 2023; 20:395-412. [PMID: 36803111 DOI: 10.1080/17425247.2023.2181331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, different sites have been explored for mucoadhesion including the nasal, oral, and vaginal cavities, the gastrointestinal tract and ocular tissues. AREAS COVERED The present review aims to provide a comprehensive understanding of different aspects of MDDS development. Part I focuses on the anatomical and biological aspects of mucoadhesion, which include a detailed elucidation of the structure and anatomy of the mucosa, the properties of mucin, the different theories of mucoadhesion and evaluation techniques. EXPERT OPINION The mucosal layer presents a unique opportunity for effective localization as well as systemic drug delivery via MDDS. Formulation of MDDS requires a thorough understanding of the anatomy of mucus tissue, the rate of mucus secretion and turnover, and the physicochemical properties of mucus. Further, the moisture content and the hydration of polymers are crucial for interaction with mucus. A confluence of different theories used to explain the mechanism of mucoadhesion is useful for understanding the mucoadhesion of different MDDS and their evaluation is subject to factors, such as the site of administration, type of dosage form, and duration of action. [Figure: see text].
Collapse
Affiliation(s)
- Radha Kulkarni
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Suraj Fanse
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
16
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
17
|
Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology 2022; 20:362. [PMID: 35933341 PMCID: PMC9356434 DOI: 10.1186/s12951-022-01539-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Oral delivery of therapeutics is the preferred route of administration due to ease of administration which is associated with greater patient medication adherence. One major barrier to oral delivery and intestinal absorption is rapid clearance of the drug and the drug delivery system from the gastrointestinal (GI) tract. To address this issue, researchers have investigated using GI mucus to help maximize the pharmacokinetics of the therapeutic; while mucus can act as a barrier to effective oral delivery, it can also be used as an anchoring mechanism to improve intestinal residence. Nano-drug delivery systems that use materials which can interact with the mucus layers in the GI tract can enable longer residence time, improving the efficacy of oral drug delivery. This review examines the properties and function of mucus in the GI tract, as well as diseases that alter mucus. Three broad classes of mucus-interacting systems are discussed: mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems. For each class of system, the basis for mucus interaction is presented, and examples of materials that inform the development of these systems are discussed and reviewed. Finally, a list of FDA-approved mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems is reviewed. In summary, this review highlights the progress made in developing mucus-interacting systems, both at a research-scale and commercial-scale level, and describes the theoretical basis for each type of system.
Collapse
Affiliation(s)
- Deepak A Subramanian
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Bacterial Toxins from Staphylococcus aureus and Bordetella bronchiseptica Predispose the Horse's Respiratory Tract to Equine Herpesvirus Type 1 Infection. Viruses 2022; 14:v14010149. [PMID: 35062352 PMCID: PMC8778808 DOI: 10.3390/v14010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Respiratory disease in horses is caused by a multifactorial complex of infectious agents and environmental factors. An important pathogen in horses is equine herpesvirus type 1 (EHV-1). During co-evolution with this ancient alphaherpesvirus, the horse’s respiratory tract has developed multiple antiviral barriers. However, these barriers can become compromised by environmental threats. Pollens and mycotoxins enhance mucosal susceptibility to EHV-1 by interrupting cell junctions, allowing the virus to reach its basolateral receptor. Whether bacterial toxins also play a role in this impairment has not been studied yet. Here, we evaluated the role of α-hemolysin (Hla) and adenylate cyclase (ACT), toxins derived from the facultative pathogenic bacterium Staphylococcus aureus (S. aureus) and the primary pathogen Bordetella bronchiseptica (B. bronchiseptica), respectively. Equine respiratory mucosal explants were cultured at an air–liquid interface and pretreated with these toxins, prior to EHV-1 inoculation. Morphological analysis of hematoxylin–eosin (HE)-stained sections of the explants revealed a decreased epithelial thickness upon treatment with both toxins. Additionally, the Hla toxin induced detachment of epithelial cells and a partial loss of cilia. These morphological changes were correlated with increased EHV-1 replication in the epithelium, as assessed by immunofluorescent stainings and confocal microscopy. In view of these results, we argue that the ACT and Hla toxins increase the susceptibility of the epithelium to EHV-1 by disrupting the epithelial barrier function. In conclusion, this study is the first to report that bacterial exotoxins increase the horse’s sensitivity to EHV-1 infection. Therefore, we propose that horses suffering from infection by S. aureus or B. bronchiseptica may be more susceptible to EHV-1 infection.
Collapse
|
19
|
Burhan AM, Klahan B, Cummins W, Andrés-Guerrero V, Byrne ME, O’Reilly NJ, Chauhan A, Fitzhenry L, Hughes H. Posterior Segment Ophthalmic Drug Delivery: Role of Muco-Adhesion with a Special Focus on Chitosan. Pharmaceutics 2021; 13:1685. [PMID: 34683978 PMCID: PMC8539343 DOI: 10.3390/pharmaceutics13101685] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
Posterior segment eye diseases (PSEDs) including age macular degeneration (AMD) and diabetic retinopathy (DR) are amongst the major causes of irreversible blindness worldwide. Due to the numerous barriers encountered, highly invasive intravitreal (IVT) injections represent the primary route to deliver drugs to the posterior eye tissues. Thus, the potential of a more patient friendly topical route has been widely investigated. Mucoadhesive formulations can decrease precorneal clearance while prolonging precorneal residence. Thus, they are expected to enhance the chances of adherence to corneal and conjunctival surfaces and as such, enable increased delivery to the posterior eye segment. Among the mucoadhesive polymers available, chitosan is the most widely explored due to its outstanding mucoadhesive characteristics. In this review, the major PSEDs, their treatments, barriers to topical delivery, and routes of topical drug absorption to the posterior eye are presented. To enable the successful design of mucoadhesive ophthalmic drug delivery systems (DDSs), an overview of mucoadhesion, its theory, characterization, and considerations for ocular mucoadhesion is given. Furthermore, chitosan-based DDs that have been explored to promote topical drug delivery to the posterior eye segment are reviewed. Finally, challenges of successful preclinical to clinical translation of these DDSs for posterior eye drug delivery are discussed.
Collapse
Affiliation(s)
- Ayah Mohammad Burhan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Butsabarat Klahan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Wayne Cummins
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain;
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Niall J. O’Reilly
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA;
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Helen Hughes
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| |
Collapse
|
20
|
Wallace LE, Liu M, van Kuppeveld FJM, de Vries E, de Haan CAM. Respiratory mucus as a virus-host range determinant. Trends Microbiol 2021; 29:983-992. [PMID: 33875348 PMCID: PMC8503944 DOI: 10.1016/j.tim.2021.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Efficient penetration of the mucus layer is needed for respiratory viruses to avoid mucociliary clearance prior to infection. Many respiratory viruses bind to glycans on the heavily glycosylated mucins that give mucus its gel-like characteristics. Influenza viruses, some paramyxoviruses, and coronaviruses avoid becoming trapped in the mucus by releasing themselves by means of their envelope-embedded enzymes that destroy glycan receptors. For efficient infection, receptor binding and destruction need to be in balance with the host receptor repertoire. Establishment in a novel host species requires resetting of the balance to adapt to the different glycan repertoire encountered. Growing understanding of species-specific mucosal glycosylation patterns and the dynamic interaction with respiratory viruses identifies the mucus layer as a major host-range determinant and barrier for zoonotic transfer.
Collapse
Affiliation(s)
- Louisa E Wallace
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Mengying Liu
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery. Eur J Pharm Biopharm 2021; 163:109-119. [PMID: 33775852 DOI: 10.1016/j.ejpb.2021.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022]
Abstract
We aim to prepare a size-shifting nanocarrier for site-targeting mucosal drug delivery that can penetrate through mucus gel layer and remain close to the absorption membrane. As nanocarriers can be engineered to penetrate mucus but they can also back diffuse into outer mucus regions, a size shifting to micron range once they have reached the absorption membrane would prevent back-diffusion effect and extend drug release over a long period of time. For this purpose, we loaded solid lipid nanoparticles (SLN) with a phosphate ester surfactant and octadecylamine. Alkaline phosphatase (AP), a membrane bound enzyme was for the first time utilized as an in situ partner for triggering the size conversion at epithelial cell surface. Having the size of ~120 nm, SLN with hydrophilic and phosphate-decorated shells were shown to penetrate through mucus gel and form aggregates above cell layer surface. Aggregates of 5-8 µm were formed due to interparticle interactions induced by enzymatic phosphate removal after ~30 min in contact with isolated AP. The developed SLN system could be a potential tool for mucosal drug delivery to AP-expressing tissues like colon, lung, cervix, vagina and some mucus-secreting tumors.
Collapse
|
22
|
Vinke J, Oude Elberink M, Stokman MA, Kroese FGM, Nazmi K, Bikker FJ, van der Mei HC, Vissink A, Sharma PK. Lubricating properties of chewing stimulated whole saliva from patients suffering from xerostomia. Clin Oral Investig 2021; 25:4459-4469. [PMID: 33661446 PMCID: PMC8310523 DOI: 10.1007/s00784-020-03758-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The study aimed to quantify the lubricating properties of chewing stimulated whole saliva from healthy controls (n = 22), from patients suffering from primary Sjögren's syndrome (n = 37) and from patients undergoing head-and-neck radiotherapy (n = 34). MATERIALS AND METHODS All participants had to complete the Xerostomia Inventory questionnaire to score dry mouth sensation. Lubrication was measured using an ex vivo tongue-enamel friction system in terms of Relief and Relief period. MUC5b and total protein concentrations of the saliva samples were measured by an enzyme-linked immunosorbent assay and a bicinchoninic acid assay, respectively. RESULTS Relief of Sjögren's patients' saliva and post-irradiation patients' saliva was similar compared with healthy controls, but saliva from post-irradiation patients lubricated significantly better than saliva from Sjögren's patients. The Relief period was similar between the three groups. The Relief and Relief period were higher for saliva samples post-irradiation compared to pre-irradiation. MUC5b and total protein concentrations were comparable in all groups. MUC5b and total protein output were significantly lower in patients subjected to radiotherapy compared to saliva from healthy controls and pre-irradiation patients. MUC5b concentrations positively correlated with lubricating properties of post-irradiation patient saliva. CONCLUSIONS The lubricating properties of patient saliva were not any worse than healthy controls. Lower flow rate leads to lower availability of saliva in the oral cavity and decreases the overall output of protein and MUC5b, which might result in an insufficient replenishing of the mucosal salivary film. CLINICAL RELEVANCE An insufficient replenishing might underlie the sensation of a dry mouth and loss of oral function.
Collapse
Affiliation(s)
- Jeroen Vinke
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Marijn Oude Elberink
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Monique A Stokman
- Department of Radiation Oncology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
23
|
Meziu E, Koch M, Fleddermann J, Schwarzkopf K, Schneider M, Kraegeloh A. Visualization of the structure of native human pulmonary mucus. Int J Pharm 2021; 597:120238. [PMID: 33540010 DOI: 10.1016/j.ijpharm.2021.120238] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022]
Abstract
Human respiratory mucus lining the airway epithelium forms a challenging barrier to inhalation therapeutics. Therefore, structural elucidation of hydrated mucus is essential for an efficient drug delivery development. The structure of mucus has been primarily investigated by conventional electron microscopy techniques, which operate under vacuum conditions and require sample preparation steps that might alter the structure of mucus. In this study we investigated the impact of dehydration on mucus and analyzed the structure of mucus in its hydrated state. Cryo-scanning electron microscopy (Cryo-SEM) analysis of mucus showed, that during the process of sublimation, non-porous structure of mucus is transformed into a porous network. Similarly, images acquired by environmental scanning electron microscopy (ESEM), revealed a non-porous structure of hydrated mucus, while further observation at decreasing pressure demonstrated the strong influence of dehydration on mucus structure. We could successfully visualize the structural organization of the major gel forming mucin MUC5B in its hydrated state by employing stimulated emission depletion (STED) microscopy, which allowed resolving the nano-scale patterns of mucin macromolecules within the essentially pore-free mucus structure. The general structural organization of mucus components was addressed by confocal laser scanning microscopy (CLSM), which revealed the heterogeneous and composite structure of mucus. These results provide a novel view on the native structure of mucus and will affect drug delivery development.
Collapse
Affiliation(s)
- E Meziu
- INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - M Koch
- INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - J Fleddermann
- INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - K Schwarzkopf
- Department of Anesthesia and Intensive Care, Clinics Saarbrücken, Winterberg 1, 66119 Saarbrücken, Germany
| | - M Schneider
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| | - A Kraegeloh
- INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany.
| |
Collapse
|
24
|
Kydd JH, Hannant D, Robinson RS, Bryant N, Osterrieder N. Vaccination of foals with a modified live, equid herpesvirus-1 gM deletion mutant (RacHΔgM) confers partial protection against infection. Vaccine 2019; 38:388-398. [PMID: 31629571 DOI: 10.1016/j.vaccine.2019.09.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Equid herpesvirus-1 (EHV-1) causes respiratory and neurological disease and late gestation abortion in pregnant mares. Current vaccines contain either inactivated or live EHV-1, but fail to provide complete clinical or virological protection, namely prevention of nasopharyngeal shedding and cell-associated viraemia. Thus, the development of novel products, such as modified live virus (MLV) vaccines which stimulate virus-specific, humoral and cell mediated immune responses more effectively remains a priority. Two groups of weaned foals (n = 6 each group) were used in a longitudinal, prospective, experimental study to evaluate immune responses elicited by two vaccinations with a glycoprotein M (gM) deletion mutant of EHV-1 (RacHdeltagM). Following two concurrent intranasal and intramuscular inoculations six weeks apart, vaccinated (8.4 ± 0.2 months old) and control foals (6.2 ± 0.4 months) were challenge infected intranasally with EHV-1 Ab4/8 four weeks after the second vaccination and clinical signs and virological replication measured. Vaccination caused no adverse events, but did stimulate significantly higher complement fixing and virus neutralizing antibodies in serum compared with control foals at either equivalent or pre-vaccination time points. Virus-specific nasopharyngeal antibody levels and cytotoxic T lymphocyte responses were not significantly different between the groups. Following challenge infection, these immune responses were associated with a reduction in clinical signs and virological replication in the vaccinated foals, including a reduction in duration and magnitude of pyrexia, nasopharyngeal shedding and cell-associated viraemia. We conclude that the RacHΔgM MLV primed EHV-1-specific humoral immune responses in weaned foals. However, complete virological protection by vaccination against EHV-1 requires further research.
Collapse
Affiliation(s)
- Julia H Kydd
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom
| | - Duncan Hannant
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom
| | - Robert S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Neil Bryant
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Robert von Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
25
|
Hansing J, Netz RR. Particle Trapping Mechanisms Are Different in Spatially Ordered and Disordered Interacting Gels. Biophys J 2019; 114:2653-2664. [PMID: 29874615 DOI: 10.1016/j.bpj.2018.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/09/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
Using stochastic simulations, we study the influence of spatial disorder on the diffusion of a single particle through a gel that consists of rigid, straight fibers. The interaction between the particle and the gel fibers consists of an invariant short-range repulsion, the steric part, and an interaction part that can be attractive or repulsive and of varying range. The effect that spatial disorder of the gel structure has on the particle diffusivity depends crucially on the presence of nonsteric interactions. For attractive interactions, disorder slows down diffusion, because in disordered gels, the particle becomes strongly trapped in regions of locally increased fiber density. For repulsive interactions, the diffusivity is minimal for intermediate disorder strength, because highly disordered lattices exhibit abundant passageways of locally low fiber density. The comparison with experimental data on protein and fluorophore diffusion through various hydrogels is favorable. Our findings shed light on particle-diffusion mechanisms in biogels and thus on biological barrier properties, which can be helpful for the optimal design of synthetic diffusors as well as synthetic mucus constructs.
Collapse
Affiliation(s)
- Johann Hansing
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Nathan L, Daniel S. Single Virion Tracking Microscopy for the Study of Virus Entry Processes in Live Cells and Biomimetic Platforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:13-43. [PMID: 31317494 PMCID: PMC7122913 DOI: 10.1007/978-3-030-14741-9_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The most widely-used assays for studying viral entry, including infectivity, cofloatation, and cell-cell fusion assays, yield functional information but provide low resolution of individual entry steps. Structural characterization provides high-resolution conformational information, but on its own is unable to address the functional significance of these conformations. Single virion tracking microscopy techniques provide more detail on the intermediate entry steps than infection assays and more functional information than structural methods, bridging the gap between these methods. In addition, single virion approaches also provide dynamic information about the kinetics of entry processes. This chapter reviews single virion tracking techniques and describes how they can be applied to study specific virus entry steps. These techniques provide information complementary to traditional ensemble approaches. Single virion techniques may either probe virion behavior in live cells or in biomimetic platforms. Synthesizing information from ensemble, structural, and single virion techniques ultimately yields a more complete understanding of the viral entry process than can be achieved by any single method alone.
Collapse
Affiliation(s)
- Lakshmi Nathan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
27
|
Poelaert KCK, Van Cleemput J, Laval K, Favoreel HW, Soboll Hussey G, Maes RK, Nauwynck HJ. Abortigenic but Not Neurotropic Equine Herpes Virus 1 Modulates the Interferon Antiviral Defense. Front Cell Infect Microbiol 2018; 8:312. [PMID: 30258819 PMCID: PMC6144955 DOI: 10.3389/fcimb.2018.00312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
Equine herpesvirus 1 (EHV1) is considered as a major pathogen of Equidae, causing symptoms from mild respiratory disease to late-term abortion and neurological disorders. Different EHV1 strains circulating in the field have been characterized to be of abortigenic or neurovirulent phenotype. Both variants replicate in a plaque-wise manner in the epithelium of the upper respiratory tract (URT), where the abortigenic strains induce more prominent viral plaques, compared to the neurovirulent strains. Considering the differences in replication at the URT, we hypothesized that abortigenic strains may show an increased ability to modulate the type I IFN secretion/signaling pathway, compared to strains that display the neurovirulent phenotype. Here, we analyze IFN levels induced by abortigenic and neurovirulent EHV1 using primary respiratory epithelial cells (EREC) and respiratory mucosa ex vivo explants. Similar levels of IFNα (~70 U/ml) were detected in explants inoculated with both types of EHV1 strains from 48 to 72 hpi. Second, EREC and mucosa explants were treated with recombinant equine IFNα (rEqIFNα) or Ruxolitinib (Rux), an IFN signaling inhibitor, prior to and during inoculation with abortigenic or neurovirulent EHV1. Replication of both EHV1 variants was suppressed by rEqIFNα. Further, addition of Rux increased replication in a concentration-dependent manner, indicating an IFN-susceptibility for both variants. However, in two out of three horses, at a physiological concentration of 100 U/ml of rEqIFNα, an increase in abortigenic EHV1 replication was observed compared to 10 U/ml of rEqIFNα, which was not observed for the neurovirulent strains. Moreover, in the presence of Rux, the plaque size of the abortigenic variants remained unaltered, whereas the typically smaller viral plaques induced by the neurovirulent variants became larger. Overall, our results demonstrate the importance of IFNα in the control of EHV1 replication in the URT for both abortigenic and neurovirulent variants. In addition, our findings support the speculation that abortigenic variants of EHV1 may have developed anti-IFN mechanisms that appear to be absent or less pronounced in neurovirulent EHV1 strains.
Collapse
Affiliation(s)
- Katrien C K Poelaert
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jolien Van Cleemput
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathlyn Laval
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Herman W Favoreel
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Roger K Maes
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Hans J Nauwynck
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
28
|
Self-Assembled Mucin-Containing Microcarriers via Hard Templating on CaCO₃ Crystals. MICROMACHINES 2018; 9:mi9060307. [PMID: 30424240 PMCID: PMC6187553 DOI: 10.3390/mi9060307] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Porous vaterite crystals of CaCO3 are extensively used for the fabrication of self-assembled polymer-based microparticles (capsules, beads, etc.) utilized for drug delivery and controlled release. The nature of the polymer used plays a crucial role and discovery of new perspective biopolymers is essential to assemble microparticles with desired characteristics, such as biocompatibility, drug loading efficiency/capacity, release rate, and stability. Glycoprotein mucin is tested here as a good candidate to assemble the microparticles because of high charge due to sialic acids, mucoadhesive properties, and a tendency to self-assemble, forming gels. Mucin loading into the crystals via co-synthesis is twice as effective as via adsorption into preformed crystals. Desialylated mucin has weaker binding to the crystals most probably due to electrostatic interactions between sialic acids and calcium ions on the crystal surface. Improved loading of low-molecular-weight inhibitor aprotinin into the mucin-containing crystals is demonstrated. Multilayer capsules (mucin/protamine)3 have been made by the layer-by-layer self-assembly. Interestingly, the deposition of single mucin layers (mucin/water)3 has also been proven, however, the capsules were unstable, most probably due to additional (to hydrogen bonding) electrostatic interactions in the case of the two polymers used. Finally, approaches to load biologically-active compounds (BACs) into the mucin-containing microparticles are discussed.
Collapse
|
29
|
Rodriguez‐Otormin F, Duro‐Castano A, Conejos‐Sánchez I, Vicent MJ. Envisioning the future of polymer therapeutics for brain disorders. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1532. [DOI: 10.1002/wnan.1532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Aroa Duro‐Castano
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| | | | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
30
|
Tomasetti L, Breunig M. Preventing Obstructions of Nanosized Drug Delivery Systems by the Extracellular Matrix. Adv Healthc Mater 2018; 7. [PMID: 29121453 DOI: 10.1002/adhm.201700739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/25/2017] [Indexed: 12/13/2022]
Abstract
Although nanosized drug delivery systems are promising tools for the treatment of severe diseases, the extracellular matrix (ECM) constitutes a major obstacle that endangers therapeutic success. Mobility of diffusing species is restricted not only by small pore size (down to as low as 3 nm) but also by electrostatic interactions with the network. This article evaluates commonly used in vitro models of ECM, analytical methods, and particle types with respect to their similarity to native conditions in the target tissue. In this cross-study evaluation, results from a wide variety of mobility studies are analyzed to discern general principles of particle-ECM interactions. For instance, cross-linked networks and a negative network charge are essential to reliably recapitulate key features of the native ECM. Commonly used ECM mimics comprised of one or two components can lead to mobility calculations which have low fidelity to in vivo results. In addition, analytical methods must be tailored to the properties of both the matrix and the diffusing species to deliver accurate results. Finally, nanoparticles must be sufficiently small to penetrate the matrix pores (ideally Rd/p < 0.5; d = particle diameter, p = pore size) and carry a neutral surface charge to avoid obstructions. Larger (Rd/p >> 1) or positively charged particles are trapped.
Collapse
Affiliation(s)
- Luise Tomasetti
- Department of Pharmaceutical Technology; University of Regensburg; Universitaetsstrasse 31 93040 Regensburg Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology; University of Regensburg; Universitaetsstrasse 31 93040 Regensburg Germany
| |
Collapse
|
31
|
Van Cleemput J, Poelaert KCK, Laval K, Maes R, Hussey GS, Van den Broeck W, Nauwynck HJ. Access to a main alphaherpesvirus receptor, located basolaterally in the respiratory epithelium, is masked by intercellular junctions. Sci Rep 2017; 7:16656. [PMID: 29192251 PMCID: PMC5709510 DOI: 10.1038/s41598-017-16804-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium of humans and animals is frequently exposed to alphaherpesviruses, originating from either external exposure or reactivation from latency. To date, the polarity of alphaherpesvirus infection in the respiratory epithelium and the role of respiratory epithelial integrity herein has not been studied. Equine herpesvirus type 1 (EHV1), a well-known member of the alphaherpesvirus family, was used to infect equine respiratory mucosal explants and primary equine respiratory epithelial cells (EREC), grown at the air-liquid interface. EHV1 binding to and infection of mucosal explants was greatly enhanced upon destruction of the respiratory epithelium integrity with EGTA or N-acetylcysteine. EHV1 preferentially bound to and entered EREC at basolateral cell surfaces. Restriction of infection via apical inoculation was overcome by disruption of intercellular junctions. Finally, basolateral but not apical EHV1 infection of EREC was dependent on cellular N-linked glycans. Overall, our findings demonstrate that integrity of the respiratory epithelium is crucial in the host’s innate defence against primary alphaherpesvirus infections. In addition, by targeting a basolaterally located receptor in the respiratory epithelium, alphaherpesviruses have generated a strategy to efficiently escape from host defence mechanisms during reactivation from latency.
Collapse
Affiliation(s)
- Jolien Van Cleemput
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien C K Poelaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kathlyn Laval
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, 08544, USA
| | - Roger Maes
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824, USA
| | - Gisela S Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824, USA
| | - Wim Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
32
|
Verpoest S, Redant V, Cay AB, Favoreel H, De Regge N. Reduced virulence of a pseudorabies virus isolate from wild boar origin in domestic pigs correlates with hampered visceral spread and age-dependent reduced neuroinvasive capacity. Virulence 2017; 9:149-162. [PMID: 28873002 PMCID: PMC5955469 DOI: 10.1080/21505594.2017.1368941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Morbidity and mortality associated with pseudorabies virus (PRV) infection are dependent on the age of the pig and the virulence of the strain. PRV strains circulating in wild boar are considered to be low virulent, but no mechanistic explanation for their reduced virulence is available. Here infection of 2- and 15-week-old domestic pigs with the PRV wild boar strain BEL24043 did not induce clinical symptoms in 15-week-old pigs, but resulted in important neurological and respiratory disease in 2-week-old piglets. A detailed study of the (neuro) pathogenesis and associated cytokine mRNA expression showed that the reduced virulence of the wild boar strain, compared to what was previously reported for the virulent domestic NIA3 strain, is due to a severely hampered spread to visceral organs in pigs of both age categories and to an efficient suppression of viral replication at primary replication sites of 15-week-old pigs and to a lesser extent in those of 2-week-old piglets. The age-dependent difference in induced symptoms seems to be due to an immature development state of the immune and/or nervous system in 2-week-old pigs. An extensive viral replication associated with a robust expression of cytokine-related mRNA was found in the olfactory bulb of 2-week-old piglets, correlating with observed neurological disease. Neuroinvasion also occurred via the trigeminal route in 2-week-old pigs, but viral replication was efficiently suppressed in the trigeminal ganglion in the presence of a moderate induction of cytokine-related mRNA. Viral replication in the peripheral and central nervous system of 15-week-old pigs was limited and efficiently suppressed.
Collapse
Affiliation(s)
- Sara Verpoest
- a Operational Direction Viral Diseases, CODA-CERVA , Ukkel , Belgium
| | - Valerie Redant
- a Operational Direction Viral Diseases, CODA-CERVA , Ukkel , Belgium
| | - Ann Brigitte Cay
- a Operational Direction Viral Diseases, CODA-CERVA , Ukkel , Belgium
| | - Herman Favoreel
- b Department of Virology, Immunology and Parasitology , Faculty of Veterinary Medicine, Ghent University , Merelbeke , Belgium
| | - Nick De Regge
- a Operational Direction Viral Diseases, CODA-CERVA , Ukkel , Belgium.,b Department of Virology, Immunology and Parasitology , Faculty of Veterinary Medicine, Ghent University , Merelbeke , Belgium
| |
Collapse
|
33
|
Murgia X, Yasar H, Carvalho-Wodarz C, Loretz B, Gordon S, Schwarzkopf K, Schaefer U, Lehr CM. Modelling the bronchial barrier in pulmonary drug delivery: A human bronchial epithelial cell line supplemented with human tracheal mucus. Eur J Pharm Biopharm 2017; 118:79-88. [DOI: 10.1016/j.ejpb.2017.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
|
34
|
Quistad SD, Grasis JA, Barr JJ, Rohwer FL. Viruses and the origin of microbiome selection and immunity. ISME JOURNAL 2016; 11:835-840. [PMID: 27983723 DOI: 10.1038/ismej.2016.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/15/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
The last common metazoan ancestor (LCMA) emerged over half a billion years ago. These complex metazoans provided newly available niche space for viruses and microbes. Modern day contemporaries, such as cnidarians, suggest that the LCMA consisted of two cell layers: a basal endoderm and a mucus-secreting ectoderm, which formed a surface mucus layer (SML). Here we propose a model for the origin of metazoan immunity based on external and internal microbial selection mechanisms. In this model, the SML concentrated bacteria and their associated viruses (phage) through physical dynamics (that is, the slower flow fields near a diffusive boundary layer), which selected for mucin-binding capabilities. The concentration of phage within the SML provided the LCMA with an external microbial selective described by the bacteriophage adherence to mucus (BAM) model. In the BAM model, phage adhere to mucus protecting the metazoan host against invading, potentially pathogenic bacteria. The same fluid dynamics that concentrated phage and bacteria in the SML also concentrated eukaryotic viruses. As eukaryotic viruses competed for host intracellular niche space, those viruses that provided the LCMA with immune protection were maintained. If a resident virus became pathogenic or if a non-beneficial infection occurred, we propose that tumor necrosis factor (TNF)-mediated programmed cell death, as well as other apoptosis mechanisms, were utilized to remove virally infected cells. The ubiquity of the mucosal environment across metazoan phyla suggest that both BAM and TNF-induced apoptosis emerged during the Precambrian era and continue to drive the evolution of metazoan immunity.
Collapse
Affiliation(s)
- Steven D Quistad
- Department of Biology, San Diego State University, San Diego, CA, USA.,Laboratoire de Colloïdes et Matériaux Divisés (LCMD), Institute of Chemistry, Biology, and Innovation, ESPCI ParisTech/CNRS UMR 8231/PSL Research University, Paris, France.,Laboratoire de Colloïdes et Matériaux Divisés (LCMD), Institute of Chemistry, Biology, and Innovation, ESPCI ParisTech/CNRS UMR 8231/PSL Research University, Paris, France
| | - Juris A Grasis
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Jeremy J Barr
- Department of Biology, San Diego State University, San Diego, CA, USA.,School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Forest L Rohwer
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
35
|
Reddy VRAP, Trus I, Nauwynck HJ. Presence of DNA extracellular traps but not MUC5AC and MUC5B mucin in mucoid plugs/casts of infectious laryngotracheitis virus (ILTV) infected tracheas of chickens. Virus Res 2016; 227:135-142. [PMID: 27756631 DOI: 10.1016/j.virusres.2016.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 01/21/2023]
Abstract
Although it has been speculated that the tracheal obstructions and asphyxiation during acute infectious laryngotracheitis (ILT) are due to mucoid plugs/casts formed by mucus hypersecretion, there are no reports demonstrating this. Hence, in the present study, we first examined if the main respiratory mucins, MUC5AC and MUC5B, are expressed in the mucosae of larynx, trachea and bronchi of mock-inoculated and ILTV infected chickens. Second, the tracheas with plugs/casts were stained for mucins (MUC5AC and MUC5B) and nuclear material (traps). MUC5AC and MUC5B were produced by the mucosae of larynx, trachea and bronchi of mock-inoculated chickens. Interestingly, MUC5AC and MUC5B were exclusively present in the dorsal tracheal region of the cranial and middle part of trachea of mock-inoculated chickens. In ILTV infected chickens, the tracheal lumen diameter was almost 40% reduced and was associated with a strongly increased tracheal mucosal thickness. MUC5AC and MUC5B were scarcely observed in larynx, trachea and bronchi, and in tracheal plugs/casts of ILTV infected birds. Surprisingly, DNA fibrous structures were observed in connection with nuclei of 10.0±7.3% cells, present in tracheal plugs/casts. Upon inoculation of isolated blood heterophils with ILTV, DNA fibrous structures were observed in 2.0±0.1% nuclei of ILTV inoculated blood heterophils at 24hours post inoculation (hpi). In conclusion, the tracheal obstructions and suffocation of ILTV infected chickens are due to a strong thickening of the mucosa (inflammation) resulting in a reduced tracheal lumen diameter and the presence of mucoid plugs/casts containing stretched long DNA-fibrous structures (traps) but not MUC5AC and MUC5B mucins.
Collapse
Affiliation(s)
- Vishwanatha R A P Reddy
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Ivan Trus
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
36
|
Nekolla K, Kick K, Sellner S, Mildner K, Zahler S, Zeuschner D, Krombach F, Rehberg M. Influence of Surface Modifications on the Spatiotemporal Microdistribution of Quantum Dots In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2641-2651. [PMID: 27028603 DOI: 10.1002/smll.201600071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/20/2016] [Indexed: 06/05/2023]
Abstract
For biomedical applications of nanoconstructs, it is a general prerequisite to efficiently reach the desired target site. In this regard, it is crucial to determine the spatiotemporal distribution of nanomaterials at the microscopic tissue level. Therefore, the effect of different surface modifications on the distribution of microinjected quantum dots (QDs) in mouse skeletal muscle tissue has been investigated. In vivo real-time fluorescence microscopy and particle tracking reveal that carboxyl QDs preferentially attach to components of the extracellular matrix (ECM), whereas QDs coated with polyethylene glycol (PEG) show little interaction with tissue constituents. Transmission electron microscopy elucidates that carboxyl QDs adhere to collagen fibers as well as basement membranes, a type of ECM located on the basolateral side of blood vessel walls. Moreover, carboxyl QDs have been found in endothelial junctions as well as in caveolae of endothelial cells, enabling them to translocate into the vessel lumen. The in vivo QD distribution is confirmed by in vitro experiments. The data suggest that ECM components act as a selective barrier depending on QD surface modification. For future biomedical applications, such as targeting of blood vessel walls, the findings of this study offer design criteria for nanoconstructs that meet the requirements of the respective application.
Collapse
Affiliation(s)
- Katharina Nekolla
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Kerstin Kick
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Sabine Sellner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Karina Mildner
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| |
Collapse
|
37
|
Hansing J, Ciemer C, Kim WK, Zhang X, DeRouchey JE, Netz RR. Nanoparticle filtering in charged hydrogels: Effects of particle size, charge asymmetry and salt concentration. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:53. [PMID: 27167077 DOI: 10.1140/epje/i2016-16053-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The understanding of particle transport mechanisms in biological and synthetic hydrogels is crucial for the development of advanced drug delivery methods. We propose a simple model for the diffusion of charged nanoparticles in cross-linked, charged hydrogels based on a cubic periodic environment and an electrostatic interaction potential of varying range and strength, encompassing attractive and repulsive scenarios. The long-time diffusive properties are investigated by use of Brownian dynamics simulations and analytical methods. A number of experimentally observed phenomena attributed to nonsteric interactions between hydrogel polymers and diffusing particle are naturally reproduced by our model. Charged particles diffuse slower than uncharged particles, regardless of the sign of the surface charge, but with a stronger hindrance effect for attractive electrostatic interactions. This is explained in terms of charged particles sticking to the polymer network in regions of strong opposite charge and their exclusion from similarly charged regions. In the case of attractive interactions between hydrogel polymers and the diffusing particle, smaller charged particles diffuse slower than larger ones. This stands in contrast to a size filtering scenario but is in agreement with experimental findings. In the case of repulsive interactions, a range of differently sized particles diffuse equally fast. We compare our model predictions with published experiments on charged particle diffusion in hydrogels and confirm that electrostatic interactions are a key factor influencing the diffusivity of charged nanoparticles and that oppositely charged gels are much more effective in slowing down a charged particle than similarly charged gels.
Collapse
Affiliation(s)
- Johann Hansing
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Catrin Ciemer
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Won Kyu Kim
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Xiaolu Zhang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| |
Collapse
|
38
|
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016. [DOI: '10.1016/j.addr.2015.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
39
|
PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99:28-51. [PMID: 26456916 DOI: 10.1016/j.addr.2015.09.012] [Citation(s) in RCA: 2690] [Impact Index Per Article: 298.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 12/12/2022]
Abstract
Coating the surface of nanoparticles with polyethylene glycol (PEG), or "PEGylation", is a commonly used approach for improving the efficiency of drug and gene delivery to target cells and tissues. Building from the success of PEGylating proteins to improve systemic circulation time and decrease immunogenicity, the impact of PEG coatings on the fate of systemically administered nanoparticle formulations has, and continues to be, widely studied. PEG coatings on nanoparticles shield the surface from aggregation, opsonization, and phagocytosis, prolonging systemic circulation time. Here, we briefly describe the history of the development of PEGylated nanoparticle formulations for systemic administration, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time. A less frequently discussed topic, we then describe how PEG coatings on nanoparticles have also been utilized for overcoming various biological barriers to efficient drug and gene delivery associated with other modes of administration, ranging from gastrointestinal to ocular. Finally, we describe both methods for PEGylating nanoparticles and methods for characterizing PEG surface density, a key factor in the effectiveness of the PEG surface coating for improving drug and gene delivery.
Collapse
|
40
|
Erickson AM, Henry BI, Murray JM, Klasse PJ, Angstmann CN. Predicting first traversal times for virions and nanoparticles in mucus with slowed diffusion. Biophys J 2016; 109:164-72. [PMID: 26153713 DOI: 10.1016/j.bpj.2015.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 02/01/2023] Open
Abstract
Particle-tracking experiments focusing on virions or nanoparticles in mucus have measured mean-square displacements and reported diffusion coefficients that are orders of magnitude smaller than the diffusion coefficients of such particles in water. Accurate description of this subdiffusion is important to properly estimate the likelihood of virions traversing the mucus boundary layer and infecting cells in the epithelium. However, there are several candidate models for diffusion that can fit experimental measurements of mean-square displacements. We show that these models yield very different estimates for the time taken for subdiffusive virions to traverse through a mucus layer. We explain why fits of subdiffusive mean-square displacements to standard diffusion models may be misleading. Relevant to human immunodeficiency virus infection, using computational methods for fractional subdiffusion, we show that subdiffusion in normal acidic mucus provides a more effective barrier against infection than previously thought. By contrast, the neutralization of the mucus by alkaline semen, after sexual intercourse, allows virions to cross the mucus layer and reach the epithelium in a short timeframe. The computed barrier protection from fractional subdiffusion is some orders of magnitude greater than that derived by fitting standard models of diffusion to subdiffusive data.
Collapse
Affiliation(s)
- Austen M Erickson
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - Bruce I Henry
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - John M Murray
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York
| | | |
Collapse
|
41
|
Santos RS, Dakwar GR, Xiong R, Forier K, Remaut K, Stremersch S, Guimarães N, Fontenete S, Wengel J, Leite M, Figueiredo C, De Smedt SC, Braeckmans K, Azevedo NF. Effect of Native Gastric Mucus on in vivo Hybridization Therapies Directed at Helicobacter pylori. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e269. [PMID: 26645765 PMCID: PMC5014538 DOI: 10.1038/mtna.2015.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori infects more than 50% of the worldwide population. It is mostly found deep in the gastric mucus lining of the stomach, being a major cause of peptic ulcers and gastric adenocarcinoma. To face the increasing resistance of H. pylori to antibiotics, antimicrobial nucleic acid mimics are a promising alternative. In particular, locked nucleic acids (LNA)/2'-OMethyl RNA (2'OMe) have shown to specifically target H. pylori, as evidenced by in situ hybridization. The success of in vivo hybridization depends on the ability of these nucleic acids to penetrate the major physical barriers-the highly viscoelastic gastric mucus and the bacterial cell envelope. We found that LNA/2'OMe is capable of diffusing rapidly through native, undiluted, gastric mucus isolated from porcine stomachs, without degradation. Moreover, although LNA/2'OMe hybridization was still successful without permeabilization and fixation of the bacteria, which is normally part of in vitro studies, the ability of LNA/2'OMe to efficiently hybridize with H. pylori was hampered by the presence of mucus. Future research should focus on developing nanocarriers that shield LNA/2'OMe from components in the gastric mucus, while remaining capable of diffusing through the mucus and delivering these nucleic acid mimics directly into the bacteria.
Collapse
Affiliation(s)
- Rita S Santos
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - George R Dakwar
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ranhua Xiong
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Katrien Forier
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Stephan Stremersch
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nuno Guimarães
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Sílvia Fontenete
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Marina Leite
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| |
Collapse
|
42
|
Schuster BS, Ensign LM, Allan DB, Suk JS, Hanes J. Particle tracking in drug and gene delivery research: State-of-the-art applications and methods. Adv Drug Deliv Rev 2015; 91:70-91. [PMID: 25858664 DOI: 10.1016/j.addr.2015.03.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/17/2023]
Abstract
Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel B Allan
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218 USA
| | - Jung Soo Suk
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
43
|
Li Y, Van Cleemput J, Qiu Y, Reddy VRAP, Mateusen B, Nauwynck HJ. Ex vivo modeling of feline herpesvirus replication in ocular and respiratory mucosae, the primary targets of infection. Virus Res 2015; 210:227-31. [PMID: 26277778 DOI: 10.1016/j.virusres.2015.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/24/2023]
Abstract
Feline herpesvirus 1 (FeHV-1) is a major cause of rhinotracheitis and ocular diseases in cats. In the present study, the viral replication at the primary infection sites was studied using feline respiratory and ocular mucosa explants. The explants of three cats were maintained in an air-liquid culture up to 96 hours without loss of viability. After inoculation with FeHV-1 (C27), no evidence of infection was noted in corneal epithelium, while plaque-wise replication was observed in conjunctival and tracheal mucosae beginning from 24 h post inoculation (hpi). The viral plaque diameters increased over time in trachea and conjunctiva and were larger in tracheal explants than in conjunctival explants at 48 hpi. FeHV-1 penetrated the basement membrane in conjunctival and tracheal explants between 24 and 48 hpi. At 48 and 72 hpi, viral invasion was going deeper in tracheal explants than in conjunctival explants. Our study indicates that FeHV-1 has a better capacity to invade the respiratory mucosa than the conjunctival mucosa, and prefers the conjunctiva, but not the cornea as a portal of entry during ocular infection.
Collapse
Affiliation(s)
- Yewei Li
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Jolien Van Cleemput
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Yu Qiu
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Vishwanatha R A P Reddy
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Bart Mateusen
- Dierenartsencentrum Vaccavet, Gravin Madeleine d'Alcantaralaan 41, 9971 Lembeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
44
|
A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus. PLoS One 2014; 9:e110026. [PMID: 25333824 PMCID: PMC4198190 DOI: 10.1371/journal.pone.0110026] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/08/2014] [Indexed: 12/24/2022] Open
Abstract
Swine influenza virus (SIV) has a strong tropism for pig respiratory mucosa, which consists of a mucus layer, epithelium, basement membrane and lamina propria. Sialic acids present on the epithelial surface have long been considered to be determinants of influenza virus tropism. However, mucus which is also rich in sialic acids may serve as the first barrier of selection. It was investigated how influenza virus interacts with the mucus to infect epithelial cells. Two techniques were applied to track SIV H1N1 in porcine mucus. The microscopic diffusion of SIV particles in the mucus was analyzed by single particle tracking (SPT), and the macroscopic penetration of SIV through mucus was studied by a virus in-capsule-mucus penetration system, followed by visualizing the translocation of the virions with time by immunofluorescence staining. Furthermore, the effects of neuraminidase on SIV getting through or binding to the mucus were studied by using zanamivir, a neuraminidase inhibitor (NAI), and Arthrobacter ureafaciens neuraminidase. The distribution of the diffusion coefficient shows that 70% of SIV particles were entrapped, while the rest diffused freely in the mucus. Additionally, SIV penetrated the porcine mucus with time, reaching a depth of 65 µm at 30 min post virus addition, 2 fold of that at 2 min. Both the microscopic diffusion and macroscopic penetration were largely diminished by NAI, while were clearly increased by the effect of exogenous neuraminidase. Moreover, the exogenous neuraminidase sufficiently prevented the binding of SIV to mucus which was reversely enhanced by effect of NAI. These findings clearly show that the neuraminidase helps SIV move through the mucus, which is important for the virus to reach and infect epithelial cells and eventually become shed into the lumen of the respiratory tract.
Collapse
|
45
|
Nordgård CT, Nonstad U, Olderøy MØ, Espevik T, Draget KI. Alterations in mucus barrier function and matrix structure induced by guluronate oligomers. Biomacromolecules 2014; 15:2294-300. [PMID: 24827030 DOI: 10.1021/bm500464b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of guluronate oligomers on the barrier properties of mucous matrices was investigated in terms of the mobility of nanoparticles in mucous matrices by fluorescence recovery after photobleaching (FRAP), cellular uptake of nanoparticles in mucus secreting cells (HT29-MTX), and mucin matrix architecture by scanning electron microscopy (SEM). Guluronate oligomers improved nanoparticle mobility in both native and highly purified mucus matrices and improved cellular uptake of nanoparticles through a mucus layer. Addition of guluronate oligomers to mucin matrices resulted in a decrease in the density of network cross-links and an increase in matrix pore size. Based on these data, we conclude that guluronate oligomers are able to improve nanoparticle mobility in several mucus matrices and alter network architecture in mucin matrices in a manner that suggests a reduction in barrier function. As such, there may be a potential application for guluronate oligomers in mucosal delivery of nanomedicines.
Collapse
Affiliation(s)
- Catherine Taylor Nordgård
- Departments of †Biotechnology, ‡Cancer Research and Molecular Medicine, and §Physics, The Norwegian University of Science and Technology , NTNU, NO-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
46
|
Abstract
I pictured myself as a virus…and tried to sense what it would be like. --Jonas Salk. Ecology as a science evolved from natural history, the observational study of the interactions of plants and animals with each other and their environments. As natural history matured, it became increasingly quantitative, experimental, and taxonomically broad. Focus diversified beyond the Eukarya to include the hidden world of microbial life. Microbes, particularly viruses, were shown to exist in unfathomable numbers, affecting every living organism. Slowly viruses came to be viewed in an ecological context rather than as abstract, disease-causing agents. This shift is exemplified by an increasing tendency to refer to viruses as living organisms instead of inert particles. In recent years, researchers have recognized the critical contributions of viruses to fundamental ecological processes such as biogeochemical cycling, competition, community structuring, and horizontal gene transfer. This review describes virus ecology from a virus's perspective. If we are, like Jonas Salk, to imagine ourselves as a virus, what kind of world would we experience?
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College and the Graduate Center of the City University of New York, Queens, New York 11367;
| |
Collapse
|