1
|
Fernández-Rhodes M, Suárez M, Molet I, Suárez-García S, Arola L, Sze SK, Gallart-Palau X, Serra A. Molecular Imprints of Clinical Comorbidities in Hypothalamic Extracellular Vesicles at the Onset of Obesity. ACS OMEGA 2025; 10:23563-23581. [PMID: 40521556 PMCID: PMC12163634 DOI: 10.1021/acsomega.5c02274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 06/18/2025]
Abstract
The onset of obesity is characterized by early physiological and molecular changes, including leptin resistance and hypothalamic dysfunction, preceding significant weight gain and metabolic complications. Extracellular vesicles (EVs) are key mediators of intercellular communication, reflecting early pathological shifts in metabolic disorders. This study investigates the role of hypothalamic EVs (hEVs) in early obesogenic insult and their potential implications for obesity-related comorbidities. Using a hamster model fed a high fat diet for 30 days, next-generation proteomics revealed altered hEV protein compositions linked to cellular metabolism, neuroinflammation, and metabolic dysfunction, mirroring early obesity-related dysfunction. These findings highlight the adaptive molecular profiles of hEVs during early obesogenic insult and their potential as biomarkers and molecular mediators in obesity progression and its comorbidities. In conclusion, this study provides new insights into the molecular mechanisms underlying the onset of obesity and highlights hEVs as promising targets for early detection and intervention.
Collapse
Affiliation(s)
- María Fernández-Rhodes
- Biomedical
Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)+Pec
Proteomics Research Group (+PPRG)Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), 80 Avenue Rovira Roure, 25198Lleida, Catalonia, Spain
- Department
of Medical Basic Sciences (UdL)Biomedical Research Institute
of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics
Research Group (+PPRG), University of Lleida, 25198Lleida, Catalonia, Spain
| | - Manuel Suárez
- Departament
de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
- Institut
d’Investigació Sanitària Pere Virgili, Nutrigenomics
Research Group, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), Nutrigenomics
Research Group, University Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
| | - Itziar Molet
- Biomedical
Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)+Pec
Proteomics Research Group (+PPRG)Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), 80 Avenue Rovira Roure, 25198Lleida, Catalonia, Spain
- Department
of Medical Basic Sciences (UdL)Biomedical Research Institute
of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics
Research Group (+PPRG), University of Lleida, 25198Lleida, Catalonia, Spain
| | - Susana Suárez-García
- Departament
de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
- Institut
d’Investigació Sanitària Pere Virgili, Nutrigenomics
Research Group, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), Nutrigenomics
Research Group, University Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
| | - Lluís Arola
- Departament
de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
- Institut
d’Investigació Sanitària Pere Virgili, Nutrigenomics
Research Group, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), Nutrigenomics
Research Group, University Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007Tarragona, Spain
| | - Siu Kwan Sze
- Department
of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, OntarioL2S 3A1, Canada
| | - Xavier Gallart-Palau
- Biomedical
Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)+Pec
Proteomics Research Group (+PPRG)Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), 80 Avenue Rovira Roure, 25198Lleida, Catalonia, Spain
- Department
of Medical Basic Sciences (UdL)Biomedical Research Institute
of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics
Research Group (+PPRG), University of Lleida, 25198Lleida, Catalonia, Spain
| | - Aida Serra
- Biomedical
Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)+Pec
Proteomics Research Group (+PPRG)Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), 80 Avenue Rovira Roure, 25198Lleida, Catalonia, Spain
- Department
of Medical Basic Sciences (UdL)Biomedical Research Institute
of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics
Research Group (+PPRG), University of Lleida, 25198Lleida, Catalonia, Spain
| |
Collapse
|
2
|
Chebii VJ, Wade AN, Crowther NJ, Nonterah EA, Agongo G, Simayi Z, Boua PR, Kisiangani I, Ramsay M, Choudhury A, Sengupta D. Genome-wide association study identifying novel risk variants associated with glycaemic traits in the continental African AWI-Gen cohort. Diabetologia 2025; 68:1184-1196. [PMID: 40025146 PMCID: PMC12069158 DOI: 10.1007/s00125-025-06395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/24/2025] [Indexed: 03/04/2025]
Abstract
AIMS/HYPOTHESIS Glycaemic traits such as high fasting glucose levels and insulin resistance are positively associated with the risk of type 2 diabetes and other cardiometabolic diseases. Genetic association studies have identified hundreds of associations for each glycaemic trait, yet very few studies have involved continental African populations. We report the results of genome-wide association studies (GWASs) in a pan-African cohort for four glycaemic traits, namely fasting glucose, fasting insulin, insulin resistance (HOMA-IR) and beta cell function (HOMA-B), which are quantitative variables that affect the risk of developing type 2 diabetes. METHODS GWASs for the four traits were conducted in approximately 10,000 individuals from the Africa Wits-INDEPTH Partnership for Genomics Studies (AWI-Gen) cohort, with participants from Burkina Faso, Ghana, Kenya and South Africa. Association testing was performed using linear mixed models implemented in BOLT-LMM, with age, sex, BMI and principal components as covariates. Replication, fine mapping and functional annotation were performed using standard approaches. RESULTS We identified a novel signal (rs574173815) in the intron of the ankyrin repeat domain 33B (ANKRD33B) gene associated with fasting glucose, and a novel signal (rs114029796) in the intronic region of the WD repeat domain 7 (WDR7) gene associated with fasting insulin. SNPs in WDR7 have been shown to be associated with type 2 diabetes. A variant (rs74806991) in the intron of ADAM metallopeptidase with thrombospondin type 1 motif 16 (ADAMTS16) and another variant (rs6506934) in the β-1,4-galactosyltransferase 6 gene (B4GALT6) are associated with HOMA-IR. Both ADAMTS16 and B4GALT6 are implicated in the development of type 2 diabetes. In addition, our study replicated several well-established fasting glucose signals in the GCK-YTK6, SLC2A2 and THORLNC gene regions. CONCLUSIONS/INTERPRETATION Our findings highlight the importance of performing GWASs for glycaemic traits in under-represented populations, especially continental African populations, to discover novel associated variants and broaden our knowledge of the genetic aetiology of glycaemic traits. The limited replication of well-known signals in this study hints at the possibility of a unique genetic architecture of these traits in African populations. DATA AVAILABILITY The dataset used in this study is available in the European Genome-Phenome Archive (EGA) database ( https://ega-archive.org/ ) under study accession code EGAS00001002482. The phenotype dataset accession code is EGAD00001006425 and the genotype dataset accession code is EGAD00010001996. The availability of these datasets is subject to controlled access by the Data and Biospecimen Access Committee of the H3Africa Consortium. GWAS summary statistics are accessible through the NHGRI-EBI GWAS Catalog ( https://www.ebi.ac.uk/gwas/ ).
Collapse
Affiliation(s)
- Vivien J Chebii
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Alisha N Wade
- Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Research in Metabolism and Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Engelbert A Nonterah
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- Department of Epidemiology, School of Public Health, C.K. Tedam University of Technology and Allied Sciences, Navrongo, Ghana
- Julius Global Health, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Z Simayi
- Department of Pathology, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - Palwende R Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santè, Nanoro, Burkina Faso
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
Kitaba NT, Østergaard TM, Lønnebotn M, Accordini S, Real FG, Malinovschi A, Oudin A, Benediktsdottir B, González FJC, Gómez LP, Holm M, Jõgi NO, Dharmage SC, Skulstad SM, Schlünssen V, Svanes C, Holloway JW. Father's adolescent body silhouette is associated with offspring asthma, lung function and BMI through DNA methylation. Commun Biol 2025; 8:796. [PMID: 40410506 PMCID: PMC12102279 DOI: 10.1038/s42003-025-08121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/23/2025] [Indexed: 05/25/2025] Open
Abstract
Boys' pubertal overweight associates with future offspring's asthma and low lung function. To identify how paternal overweight is associated with offspring's DNA methylation (DNAm), we conducted an epigenome-wide association study of father's body silhouette (FBS) at three timepoints (age 8, voice break and 30) and change in FBS between these times, with offspring DNAm, in the RHINESSA cohort (N = 339). We identified 2005 differentially methylated cytosine-phosphate-guanine (dmCpG) sites (FDR < 0.05), including dmCpGs associated with offspring asthma (119), lung function (178) and BMI (291). Voice break FBS associated with dmCpGs in loci including KCNJ10, FERMT1, NCK2 and WWP1. Change in FBS across sexual maturation associated with DNAm at loci including NOP10, TRRAP, EFHD1, MRPL17 and NORD59A;ATP5B and showed strong correlation in reduced gene expression in loci NAP1L5, ATP5B, ZNF695, ZNF600, VTRNA2-1, SOAT2 and AGPAT2. We identified 24 imprinted genes including: VTRNA2-1, BLCAP, WT1, NAP1L5 and PTPRN2. Identified pathways relate to lipid and glucose metabolism and adipogenesis. Father's overweight at puberty and during reproductive maturation was strongly associated with offspring DNA, suggesting a key role for epigenetic mechanisms in intergenerational transfer from father to offspring in humans. The results support an important vulnerability window in male puberty for future offspring health.
Collapse
Grants
- We thank all the study participants, fieldworkers and scientists in RHINESSA, Co-ordination of the RHINESSA study has received funding from the Research Council of Norway (Grants No. 274767, 214123, 228174, 230827 and 273838), ERC StG project BRuSH #804199, the European Union's Horizon 2020 research and innovation programme under grant agreement No. 633212 (the ALEC Study), the Bergen Medical Research Foundation, and the Western Norwegian Regional Health Authorities (Grants No. 912011, 911892 and 911631). Study centres have further received local funding from the following: Bergen: the above grants for study establishment and co-ordination, and, in addition, World University Network (REF and Sustainability grants), Norwegian Labour Inspection, and the Norwegian Asthma and Allergy Association. Albacete and Huelva: Sociedad Española de Patología Respiratoria (SEPAR) Fondo de Investigación Sanitaria (FIS PS09). Gøteborg, Umeå and Uppsala: the Swedish Heart and Lung Foundation, the Swedish Asthma and Allergy Association. Reykjavik: Iceland University. Melbourne: National Health and Medical Research Council (NHMRC) of Australia (research grants 299901 and 1021275). Tartu: the Estonian Research Council (Grant No. PUT562). Århus: The Danish Wood Foundation (Grant No. 444508795), the Danish Working Environment Authority (Grant No. 20150067134), Aarhus University (PhD scholarship).
Collapse
Affiliation(s)
- Negusse Tadesse Kitaba
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Toril Mørkve Østergaard
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
| | - Marianne Lønnebotn
- Department of Health and Caring Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bryndis Benediktsdottir
- Department of Allergy, Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland Faculty of Medicine, University of Iceland, Landspitali, Iceland
| | | | | | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nils Oskar Jõgi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Svein Magne Skulstad
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment, Work and Health, Danish Ramazzini Centre, Aarhus University Denmark, Aarhus, Denmark
| | - Cecilie Svanes
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway.
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway.
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton, UK
| |
Collapse
|
4
|
Chen Y, Liu P, Sabo A, Guan D. Human genetic variation determines 24-hour rhythmic gene expression and disease risk. Nat Commun 2025; 16:4270. [PMID: 40341583 PMCID: PMC12062405 DOI: 10.1038/s41467-025-59524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
24-hour biological rhythms are essential to maintain physiological homeostasis. Disruption of these rhythms increases the risks of multiple diseases. Biological rhythms are known to have a genetic basis formed by core clock genes, but how individual genetic variation shapes the oscillating transcriptome and contributes to human chronophysiology and disease risk is largely unknown. Here, we mapped interactions between temporal gene expression and genotype to identify quantitative trait loci (QTLs) contributing to rhythmic gene expression. These newly identified QTLs were termed as rhythmic QTLs (rhyQTLs), which determine previously unappreciated rhythmic genes in human subpopulations with specific genotypes. Functionally, rhyQTLs and their associated rhythmic genes contribute extensively to essential chronophysiological processes, including bile acid and lipid metabolism. The identification of rhyQTLs sheds light on the genetic mechanisms of gene rhythmicity, offers mechanistic insights into variations in human disease risk, and enables precision chronotherapeutic approaches for patients.
Collapse
Affiliation(s)
- Ying Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Panpan Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Downie CG, Shrestha P, Okello S, Yaser M, Lee HH, Wang Y, Krishnan M, Chen HH, Justice AE, Chittoor G, Josyula NS, Gahagan S, Blanco E, Burrows R, Correa-Burrows P, Albala C, Santos JL, Angel B, Lozoff B, Hartwig FP, Horta B, Brina KR, Isasi CR, Qi Q, Gallo LC, Perreira KM, Thyagarajan B, Daviglus M, Van Horn L, Gonzalez F, Bradfield JP, Hakonarson H, Grant SFA, Below JE, Felix J, Graff M, Divaris K, North KE. Trans-ancestry genome-wide association study of childhood body mass index identifies novel loci and age-specific effects. HGG ADVANCES 2025; 6:100411. [PMID: 39885687 PMCID: PMC11875162 DOI: 10.1016/j.xhgg.2025.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025] Open
Abstract
Over the past 30 years, obesity prevalence has markedly increased globally, including among children. Although genome-wide association studies (GWASs) have identified over 1,000 genetic loci associated with obesity-related traits in adults, the genetic architecture of childhood obesity is less well characterized. Moreover, most childhood obesity GWASs have been restricted to severely obese children, in relatively small sample sizes, and in primarily European-ancestry populations. To identify genetic loci associated with early-childhood body mass index (BMI), we performed GWAS of BMI Z scores in eight ancestrally diverse cohorts: ZOE 2.0 cohort, the Santiago Longitudinal Study (SLS), the Vanderbilt University BioVU biobank, the Geisinger MyCode Health Initiative biobank, Study of Latino (SOL) Youth, Pelotas (Brazil) Birth Cohort, Cameron County Hispanic Cohort (CCHC), and Viva La Familia cohort. We subsequently performed inverse-variance-weighted fixed-effect meta-analysis of these results with previously published GWAS summary statistics of BMI Z scores of children in the Early Growth Genetics (EGG) Consortium and the Norwegian Mother and Child Cohort (MoBa), constituting a final total of 84,804 individuals. We identified 39 genome-wide significant loci associated with childhood BMI, including three putatively novel loci (EFNA5 and DTWD2, RP11-2N5.1 on chromosome 5, and LSM14A on chromosome 19). We also observed a dynamic nature of genetic loci-BMI associations across the life course, with distinct effects across childhood and adulthood, highlighting possible critical periods for early-childhood interventions. These findings strengthen calls for larger population-based studies of children across age strata and across diverse populations.
Collapse
Affiliation(s)
- Carolina G Downie
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Poojan Shrestha
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA; Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samson Okello
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA
| | - Mohammad Yaser
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA
| | - Harold H Lee
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Yujie Wang
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA
| | - Mohanraj Krishnan
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA; Carolina Population Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | - Geetha Chittoor
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of San Diego, La Jolla, CA 92093, USA
| | - Estela Blanco
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - Raquel Burrows
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - Paulina Correa-Burrows
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - Cecilia Albala
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism. School of Medicine. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara Angel
- Public Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics, Medical School, and Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Bernardo Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Karisa Roxo Brina
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Linda C Gallo
- Department of Psychology, San Diego State University, Chula Vista, CA 91910, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bharat Thyagarajan
- Department of Epidemiology, University of Minnesota Medical Center, Minneapolis, MN 55454, USA
| | - Martha Daviglus
- Department of Preventive Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Linda Van Horn
- Department of Preventive Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Franklyn Gonzalez
- Collaborative Studies Coordinating Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Janine Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kimon Divaris
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA; Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
6
|
Nair JM, Chauhan G, Prasad G, Bandesh K, Giri AK, Chakraborty S, Marwaha RK, Mathur S, Choudhury D, Tandon N, Basu A, Bharadwaj D. Mapping the landscape of childhood obesity: genomic insights and socioeconomic status in Indian school-going children. Obesity (Silver Spring) 2025; 33:754-765. [PMID: 40000390 DOI: 10.1002/oby.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 02/27/2025]
Abstract
OBJECTIVE Childhood obesity (OB) is influenced by complex gene-environmental interaction. While genetics of adult OB have been extensively studied, polygenic childhood OB in non-European populations is still underexplored. Furthermore, in a developing nation such as India, how the environmental component strongly modulated by the socioeconomic status (SES) shapes the genetic susceptibility is crucial to understand. METHODS A two-staged genome-wide association study (GWAS; N = 5673) and an independent exome-wide association study (ExWAS; N = 4963) were performed using a generalized linear model assuming additive effect to identify the common and rare genetic variants respectively associated with childhood OB. Rare-variant burden testing was also performed. We used the gene expression profiles and regulatory data from public databases to explain the novel associations. The implications of SES as a potential modifier of genetic susceptibility were evaluated. RESULTS GWAS identified novel associations in TCF7L2, IMMP2L, IPMK, CDC5L, SNTG1, and MX1, whereas ExWAS uncovered CNTN4, COQ4, TNFRSF10D, FLG-AS1, and BMP3. Both GWAS and ExWAS validated known associations in FTO and MC4R. Furthermore, rare-variant testing highlighted the role of 101 genes. We also observed that SES can modulate the inherent susceptibility to OB. CONCLUSIONS Our study identified genetic variants associated with childhood OB and highlighted the gene-environmental interaction in childhood OB.
Collapse
Affiliation(s)
- Janaki M Nair
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ganesh Chauhan
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gauri Prasad
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Khushdeep Bandesh
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil K Giri
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shraddha Chakraborty
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raman K Marwaha
- International Life Sciences Institute (ILSI), New Delhi, India
| | - Sandeep Mathur
- Department of Endocrinology, SMS Medical College and Hospital, Jaipur, India
| | | | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Analabha Basu
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics, Kalyani, India
| | | |
Collapse
|
7
|
Yang J, Bernard L, Chen J, Sullivan VK, Deal JA, Kim H, Yu B, Steffen LM, Rebholz CM. Plasma Proteins Associated with the Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) Diet and Incident Dementia. J Nutr 2025:S0022-3166(25)00167-1. [PMID: 40118346 DOI: 10.1016/j.tjnut.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/22/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND The Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet slows cognitive decline and protects brain health, but the mechanisms are poorly understood. OBJECTIVES We aimed to determine the plasma proteins associated with the MIND diet score and their ability to predict incident dementia in the Atherosclerosis Risk in Communities study. METHODS We analyzed 10,230 Black and White participants at visit 3 (1993-1995) with food frequency questionnaire and proteomics data and randomly divided them into discovery (n = 6850) and replication (n = 3380) samples. We examined associations between the MIND diet score and 4955 proteins using multivariable linear regression and elastic net regression. C-statistics were calculated to assess if proteins improved the prediction of high MIND diet adherence beyond participant characteristics. Cox proportional hazards models were used to assess associations between significant diet-related proteins and incident dementia over 2 decades. C-statistics assessed the ability of significant proteins to improve dementia prediction beyond known risk factors. RESULTS Of 316 proteins associated with the MIND diet score in the discovery sample at a false discovery rate <0.05, 62 were internally replicated. Of these, 21 proteins selected by the elastic net individually improved MIND diet score prediction. After a median follow-up of 21 y, there were 2311 dementia cases. Five diet-related proteins, thrombospondin-2 [hazard ratio (HR): 1.19; 95% confidence interval (CI): 1.11, 1.29], protein ABHD14A (HR: 1.23; 95% CI: 1.11, 1.37), structural maintenance of chromosomes protein 3 (HR: 1.19; 95% CI: 1.08, 1.31), epidermal growth factor receptor (HR: 0.68; 95% CI: 0.53, 0.86), and interleukin-12 subunit beta (HR: 1.14; 95% CI: 1.05, 1.25) were significantly associated with incident dementia. All 5 proteins individually and together improved the prediction of dementia risk. CONCLUSIONS Using high-throughput proteomics, we identified candidate biomarkers of the MIND diet score and incident dementia, which are implicated in neural signaling, angiogenesis, and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, United States
| | - Lauren Bernard
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, United States; School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, United States
| | - Valerie K Sullivan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Hyunju Kim
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States
| | - Bing Yu
- Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, United States
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, United States
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
8
|
Tarchi L, Merola GP, Maiolini G, D'Areglia E, Ricca V, Castellini G. The metabolic hypothesis for restrictive eating behaviors: A computational and evolutionary approach. Nutr Health 2025; 31:9-14. [PMID: 39692303 DOI: 10.1177/02601060241307104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BackgroundRestrictive eating behaviors, widespread in humans and animals, are often conceptualized as maladaptive, but may serve adaptive purposes under specific circumstances.AimTo investigate the adaptive potential of restrictive eating behaviors.MethodsComputational models explored the relationship between food availability, basal metabolic rate, and restrictive eating behaviors. The evolutionary conservation of genes associated with both basal metabolic rate and restrictive eating behaviors was evaluated.ResultsThe propensity to engage in restrictive eating behaviors protected against negative energy balances at times of food volatility, implying ecological fitness potential. A high degree of conservation across species was observed in retrieved genes, implying selective evolutionary constraints.ConclusionRestrictive eating behaviors may represent a maladaptive outcome of evolutionary constraints on protective metabolic mechanisms. The higher prevalence of restrictive eating in women could stem from a greater reliance on protective strategies, highlighting the need for further exploration of sex-specific genetic and environmental interactions.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Gaia Maiolini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Eleonora D'Areglia
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Chen L, Qu Y, Cui H, Zhang W, Wu X, Zhao X, Xiao J, Tang M, Wang Y, Zou Y, Qiu L, Tan Z, Lei B, Ma X, Zhang D, Liu Y, Fan M, Li J, Zhang B, Jiang X. Genomic correlation, shared loci, and causal association between obesity, periodontitis and tooth loss. Sci Rep 2025; 15:5155. [PMID: 39934647 PMCID: PMC11814315 DOI: 10.1038/s41598-025-89782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Observational studies have reported an association of obesity with periodontitis and tooth loss, yet findings remain inconsistent. We aim to investigate the genetic link underlying obesity-related traits (BMI [body mass index], WHR [waist-to-hip ratio], WHRadjBMI and childhood BMI), periodontitis and tooth loss. Leveraging summary statistics from large-scale genome-wide association studies, we comprehensively investigated the pair-wise genetic correlation using linkage disequilibrium score regression (LDSC) and SUPERGNOVA, identified shared loci using cross-phenotype association analysis (CPASSOC), and estimated causal association using Mendelian randomization. We identified a significant genetic correlation of obesity with tooth loss, but not with periodontitis. Partitioning the genome into LD-independent regions revealed 10 significantly shared local signals across six regions. Genome-wide cross-trait analysis uncovered 14 shared loci, four of which were colocalized: rs2064044 (PP4 = 0.94), rs6000329 (PP4 = 0.86), rs7134628 (PP4 = 0.86), and rs1286769 (PP4 = 0.90). Notably, rs1286769, identified via CPASSOC and validated through colocalization analysis, is located near RARβ, a gene associated with both BMI and denture use. Mendelian randomization revealed a nominally-significant causal association of obesity with periodontitis (P = 0.045) but a robust causal association with tooth loss represented by number of teeth (BMI: beta = [Formula: see text]0.20, 95%CI = [Formula: see text]0.26 to [Formula: see text]0.14, P = 5.27 × 10-11; WHR: beta = [Formula: see text]0.16, 95%CI = [Formula: see text]0.24 to [Formula: see text]0.08, P = 3.71 × 10-5). Results of CAUSE were consistent with main findings. From a genetic perspective, our work highlights an intrinsic link between obesity, periodontitis and tooth loss, which may add new lines of evidence and provide insights for clinical and public oral health applications.
Collapse
Affiliation(s)
- Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Yang Qu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Lingli Qiu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Zhixin Tan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Bowen Lei
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Xiaofeng Ma
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Di Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Mengyu Fan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
- Departments of Cardiology, Neurology, and Oncology, Hainan General Hospital and Hainan Affiliated Hospital, Hainan Medical University, Haikou, China.
- Department of Occupational and Environmental Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
10
|
Nair JM, Bandesh K, Giri AK, Chakraborty S, Marwaha RK, Basu A, Tandon N, Bharadwaj D. Genetic insights into CRP levels in Indian adolescents: confirming adult genetic associations. Mol Genet Genomics 2025; 300:17. [PMID: 39843866 DOI: 10.1007/s00438-024-02213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
CRP is a biomarker of acute inflammation linked to metabolic complications. Given the rising prevalence of these conditions in India, we investigated the genetic basis of CRP levels in Indian adolescents, an underrepresented group in genetic studies, to identify early markers of metabolic risk. We performed a two-phased genome-wide association study (GWAS; N = 5052) and an independent Exome-wide association study (ExWAS; N = 4547), to identify both common and rare genetic variants associated with CRP levels. The study identified intergenic variants near CRP and CRPP1 genes, and APOC1 gene as the key regulators of CRP levels establishing the universality of these associations. The GWAS identified the variant rs4247360 (PITPNC1) to be associated at a suggestive significance. The ExWAS single variant association identified novel associations in genes FGL1 (rs35431851), C19orf45 (rs608144, rs475923, rs484870), TRAPPC12 (rs11686212) and KIAA0087 (rs17153822). The SKATO analysis of the rare variants highlighted the role of loss of function and missense variants in genes EPS15, CCDC15, ZNF286A, ELF1, B3GNT8, ZNF850, MAP2, and PSG2. The GWAS and ExWAS in the present study validated the association of 56 variants previously reported for CRP levels. The meta-analysis with the CRP GWAS earlier reported in Indian adults revealed the shared genetic architecture of CRP levels across age groups. The gene-set enrichment analysis highlighted the role of CRP-associated genes in inflammatory and cardiometabolic pathways. The study enhances understanding of genetic predispositions to inflammation and metabolic disorders confirming known associations, identifying novel loci, and validating shared genetic architecture across age-groups, guiding targeted prevention for at-risk youth.
Collapse
Affiliation(s)
- Janaki M Nair
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushdeep Bandesh
- CSIR-Institute of Genomics and Integrative Biology, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil K Giri
- CSIR-Institute of Genomics and Integrative Biology, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shraddha Chakraborty
- CSIR-Institute of Genomics and Integrative Biology, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Raman K Marwaha
- International Life Sciences Institute (ILSI), New Delhi, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Zhang X, Wang J, Su H, Liu X. Integrative analysis of single-cell and transcriptome sequencing with experimental validation reveals PKHD1L1 as a novel biomarker in lung adenocarcinoma. Sci Rep 2025; 15:2795. [PMID: 39843484 PMCID: PMC11754870 DOI: 10.1038/s41598-025-85981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is predicted to encode a large type I transmembrane protein involved in hearing transmission and mediating cellular immunity under physiological conditions. However, its role in cancer progression, especially in lung adenocarcinoma (LUAD), has not been fully elucidated. In this study, we observed significantly lower expression of PKHD1L1 in LUAD tissues than in normal lung tissues on the basis of the integration of public datasets from the TCGA and GEO cohorts. Furthermore, we found that low PKHD1L1 expression was a strong predictor of poor prognosis in patients with LUAD. Pathway enrichment analyses revealed that PKHD1L1 is associated primarily with asthma and multiple immune processes. Through meticulous analysis of immune cell infiltrates and single-cell datasets, we discerned a notable correlation between the expression of PKHD1L1 and the presence of B cells, with a particularly strong association observed in plasma cells. This finding led us to believe that the role of PKHD1L1 may extend beyond its previously reported involvement in cellular immunity, potentially impacting humoral immunity as well. In vitro experiments revealed that the over-expression of PKHD1L1 significantly inhibited the proliferation and migration ability of LUAD cell lines. These findings suggest that PKHD1L1 is an important prognostic indicator and a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiangqian Zhang
- Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Wang
- Department of Gastroenterology & National Clinical Research Centerfor Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hanyang Su
- Department of Respiratory Medicine & Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojin Liu
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Ma G, Tan X, Yan Y, Zhang T, Wang J, Chen X, Xu J. A genome-wide association study identified candidate regions and genes for commercial traits in a Landrace population. Front Genet 2025; 15:1505197. [PMID: 39834545 PMCID: PMC11743953 DOI: 10.3389/fgene.2024.1505197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Backfat thickness (BFT) and feed conversion ratio (FCR) are important commercial traits in the pig industry. With the increasing demand for human health and meat production, identifying functional genomic regions and genes associated with these commercial traits is critical for enhancing production efficiency. In this research, we conducted a genome-wide association study (GWAS) on a Landrace population comprising 4,295 individuals with chip data for BFT and FCR. Our analysis revealed a total of 118 genome-wide significant signals located on chromosomes SSC1, SSC2, SSC7, SSC12, and SSC13, respectively. Furthermore, we identified 10 potential regions associated with the two traits and annotated the genes within these regions. In addition, enrichment analysis was also performed. Notably, candidate genes such as SHANK2, KCNQ1, and ABL1 were found to be associated with BFT, whereas NAP1L4, LSP1, and PPFIA1 genes were related to the FCR. Our findings provide valuable insights into the genetic architecture of these two traits and offer guidance for future pig breeding efforts.
Collapse
Affiliation(s)
- Guojian Ma
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xihong Tan
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Ying Yan
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Tianyang Zhang
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jianhua Wang
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xiaoling Chen
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jingya Xu
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| |
Collapse
|
13
|
Maguolo A, Jönsson J, Perfilyev A, Maziarz M, Vaag A, Malchau Carlsen E, Nørgaard K, Franks PW, Renault KM, Ling C. DNA methylation in cord blood partially mediates the effects of prepregnancy BMI on early childhood offspring BMI. Obesity (Silver Spring) 2025; 33:177-189. [PMID: 39663190 DOI: 10.1002/oby.24174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE We investigated whether prepregnancy BMI (prePregBMI) in women with obesity was associated with differential DNA methylation (DNAm) in cord blood (CB) and whether DNAm may mediate the association of prePregBMI and early childhood BMI z score (BMIz). METHODS From the Treatment of Obese Pregnant Women (TOP) study, 232 mother-child pairs were included. We conducted an epigenome-wide association study on prePregBMI and CB DNAm (450k array), followed by causal mediation analyses to test whether DNAm may mediate effects of prePregBMI on BMIz at age 36 months (BMIz36). RESULTS DNAm at 5345 CpG sites annotated to 2842 genes, which were overrepresented in biological processes linked to carbohydrate metabolism and plasma lipoprotein particle clearance, was associated with prePregBMI (false discovery rate < 10%). Causal mediation analyses of 168 methylation sites associated with BMIz36 (p < 0.05) and overlapping with the 5345 prePregBMI-associated sites identified two sites on SYT7 and DEAF1, partially mediating the effect of prePregBMI on BMIz36 (p ≤ 0.01). After cross-validation, a methylation risk score including these two sites could predict the highest quartile of BMIz36 and fat mass (in grams) with area under the curve = 0.72 (95% CI: 0.58-0.85) and area under the curve = 0.71 (95% CI: 0.58-0.85), respectively. CONCLUSIONS CB DNAm at birth may partially mediate effects of prePregBMI on early childhood BMIz36, supporting its plausible role in influencing individual future obesity risk.
Collapse
Affiliation(s)
- Alice Maguolo
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Marlena Maziarz
- Bioinformatics Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Center, Malmö, Sweden
| | - Allan Vaag
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Emma Malchau Carlsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Neonatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Nørgaard
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul W Franks
- Department of Clinical Science, Lund University, Helsingborg Hospital, Helsingborg, Sweden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kristina M Renault
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Gynecology, Fertility and Obstetrics, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
Shi R, Chang X, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot17, MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Holz N, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J, IMAGEN Consortium. Gene-environment interactions in the influence of maternal education on adolescent neurodevelopment using ABCD study. SCIENCE ADVANCES 2024; 10:eadp3751. [PMID: 39546599 PMCID: PMC11567010 DOI: 10.1126/sciadv.adp3751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Maternal education was strongly correlated with adolescent brain morphology, cognitive performances, and mental health. However, the molecular basis for the effects of maternal education on the structural neurodevelopment remains unknown. Here, we conducted gene-environment-wide interaction study using the Adolescent Brain Cognitive Development cohort. Seven genomic loci with significant gene-environment interactions (G×E) on regional gray matter volumes were identified, with enriched biological functions related to metabolic process, inflammatory process, and synaptic plasticity. Additionally, genetic overlapping results with behavioral and disease-related phenotypes indicated shared biological mechanism between maternal education modified neurodevelopment and related behavioral traits. Finally, by decomposing the multidimensional components of maternal education, we found that socioeconomic status, rather than family environment, played a more important role in modifying the genetic effects on neurodevelopment. In summary, our study provided analytical evidence for G×E effects regarding adolescent neurodevelopment and explored potential biological mechanisms as well as social mechanisms through which maternal education could modify the genetic effects on regional brain development.
Collapse
Affiliation(s)
- Runye Shi
- School of Data Science, Fudan University, Shanghai, China
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité–Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | | | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité–Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xiaolei Lin
- School of Data Science, Fudan University, Shanghai, China
| | - Jianfeng Feng
- School of Data Science, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | | |
Collapse
|
15
|
Sarnowski C, Ma J, Nguyen NQH, Hoogeveen RC, Ballantyne CM, Coresh J, Morrison AC, Chatterjee N, Boerwinkle E, Yu B. Ancestrally diverse genome-wide association analysis highlights ancestry-specific differences in genetic regulation of plasma protein levels. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.27.24314500. [PMID: 39399032 PMCID: PMC11469718 DOI: 10.1101/2024.09.27.24314500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Fully characterizing the genetic architecture of circulating proteins in multi-ancestry populations provides an unprecedented opportunity to gain insights into the etiology of complex diseases. We characterized and contrasted the genetic associations of plasma proteomes in 9,455 participants of European and African (19.8%) ancestry from the Atherosclerosis Risk in Communities Study. Of 4,651 proteins, 1,408 and 2,565 proteins had protein-quantitative trait loci (pQTLs) identified in African and European ancestry respectively, and twelve unreported potentially causal protein-disease relationships were identified. Shared pQTLs across the two ancestries were detected in 1,113 aptamer-region pairs pQTLs, where 53 of them were not previously reported (all trans pQTLs). Sixteen unique protein-cardiovascular trait pairs were colocalized in both European and African ancestry with the same candidate causal variants. Our systematic cross-ancestry comparison provided a reliable set of pQTLs, highlighted the shared and distinct genetic architecture of proteome in two ancestries, and demonstrated possible biological mechanisms underlying complex diseases.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Jianzhong Ma
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Ngoc Quynh H. Nguyen
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Ron C Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | - Josef Coresh
- Optimal Aging Institute, New York University Grossman School of Medicine, New York, NY
- Department of Population Health, New York University Grossman School of Medicine, New York, NY
| | - Alanna C Morrison
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric Boerwinkle
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Bing Yu
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| |
Collapse
|
16
|
Yang R, Han Z, Zhou W, Li X, Zhang X, Zhu L, Wang J, Li X, Zhang CL, Han Y, Li L, Liu S. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip. PeerJ 2024; 12:e17980. [PMID: 39308831 PMCID: PMC11416764 DOI: 10.7717/peerj.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objective By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment. Methods This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions. Results The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3). Conclusion Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Xuejiao Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xuechen Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-long Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Lianrui Li
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| |
Collapse
|
17
|
Bai H, Xian N, Zhao F, Zhou Y, Qin S. The dual role of SUSD2 in cancer development. Eur J Pharmacol 2024; 977:176754. [PMID: 38897441 DOI: 10.1016/j.ejphar.2024.176754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Sushi domain-containing protein 2 (SUSD2, also known as the complement control protein domain) is a representative and vital protein in the SUSD protein family involved in many physiological and pathological processes beyond complement regulation. Cancer is one of the leading causes of death worldwide. The complex role of SUSD2 in tumorigenesis and cancer progression has raised increasing concerns. Studies suggest that SUSD2 has different regulatory tendencies among different tumors and exerts its biological effects in a cancer type-specific manner; for instance, it has oncogenic effects on breast cancer, gastric cancer, and glioma and has tumor-suppression effects on lung cancer, bladder cancer, and colon cancer. Moreover, SUSD2 can be regulated by noncoding RNAs, its promoter methylation and other molecules, such as Galectin-1 (Gal-1), tropomyosin alpha-4 chain (TPM4), and p63. The therapeutic implications of targeting SUSD2 have already been preliminarily revealed in some malignancies, including melanoma, colon cancer, and breast cancer. This article reviews the role and regulatory mechanisms of SUSD2 in cancer development, as well as its structure and distribution. We hope that this review will advance the understanding of SUSD2 as a diagnostic and/or prognostic biomarker and provide new avenues for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Ningyi Xian
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengyu Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yikun Zhou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Sida Qin
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
18
|
Guan D, Chen Y, Liu P, Sabo A. Human genetic variation determines 24-hour rhythmic gene expression and disease risk. RESEARCH SQUARE 2024:rs.3.rs-4790200. [PMID: 39149455 PMCID: PMC11326361 DOI: 10.21203/rs.3.rs-4790200/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
24-hour biological rhythms are essential to maintain physiological homeostasis. Disruption of these rhythms increases the risks of multiple diseases. The biological rhythms are known to have a genetic basis formed by core clock genes, but how individual genetic variation shapes the oscillating transcriptome and contributes to human chronophysiology and disease risk is largely unknown. Here, we mapped interactions between temporal gene expression and genotype to identify quantitative trait loci (QTLs) contributing to rhythmic gene expression. These newly identified QTLs were termed as rhythmic QTLs (rhyQTLs), which determine previously unappreciated rhythmic genes in human subpopulations with specific genotypes. Functionally, rhyQTLs and their associated rhythmic genes contribute extensively to essential chronophysiological processes, including bile acid and lipid metabolism. The identification of rhyQTLs sheds light on the genetic mechanisms of gene rhythmicity, offers mechanistic insights into variations in human disease risk, and enables precision chronotherapeutic approaches for patients.
Collapse
|
19
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
20
|
Yan Q, Blue NR, Truong B, Zhang Y, Guerrero RF, Liu N, Honigberg MC, Parry S, McNeil RB, Simhan HN, Chung J, Mercer BM, Grobman WA, Silver R, Greenland P, Saade GR, Reddy UM, Wapner RJ, Haas DM. Genetic Associations with Placental Proteins in Maternal Serum Identify Biomarkers for Hypertension in Pregnancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.25.23290460. [PMID: 37398343 PMCID: PMC10312829 DOI: 10.1101/2023.05.25.23290460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Preeclampsia is a complex syndrome that accounts for considerable maternal and perinatal morbidity and mortality. Despite its prevalence, no effective disease-modifying therapies are available. Maternal serum placenta-derived proteins have been in longstanding use as markers of risk for aneuploidy and placental dysfunction, but whether they have a causal contribution to preeclampsia is unknown. Objective We aimed to investigate the genetic regulation of serum placental proteins in early pregnancy and their potential causal links with preeclampsia and gestational hypertension. Study design This study used a nested case-control design with nulliparous women enrolled in the nuMoM2b study from eight clinical sites across the United States between 2010 and 2013. The first- and second-trimester serum samples were collected, and nine proteins were measured, including vascular endothelial growth factor (VEGF), placental growth factor, endoglin, soluble fms-like tyrosine kinase-1 (sFlt-1), a disintegrin and metalloproteinase domain-containing protein 12 (ADAM-12), pregnancy-associated plasma protein A, free beta-human chorionic gonadotropin, inhibin A, and alpha-fetoprotein. This study used genome-wide association studies to discern genetic influences on these protein levels, treating proteins as outcomes. Furthermore, Mendelian randomization was used to evaluate the causal effects of these proteins on preeclampsia and gestational hypertension, and their further causal relationship with long-term hypertension, treating proteins as exposures. Results A total of 2,352 participants were analyzed. We discovered significant associations between the pregnancy zone protein locus and concentrations of ADAM-12 (rs6487735, P= 3.03×10 -22 ), as well as between the vascular endothelial growth factor A locus and concentrations of both VEGF (rs6921438, P= 7.94×10 -30 ) and sFlt-1 (rs4349809, P= 2.89×10 -12 ). Our Mendelian randomization analyses suggested a potential causal association between first-trimester ADAM-12 levels and gestational hypertension (odds ratio=0.78, P= 8.6×10 -4 ). We also found evidence for a potential causal effect of preeclampsia (odds ratio=1.75, P =8.3×10 -3 ) and gestational hypertension (odds ratio=1.84, P =4.7×10 -3 ) during the index pregnancy on the onset of hypertension 2-7 years later. The additional mediation analysis indicated that the impact of ADAM-12 on postpartum hypertension could be explained in part by its indirect effect through gestational hypertension (mediated effect=-0.15, P= 0.03). Conclusions Our study discovered significant genetic associations with placental proteins ADAM-12, VEGF, and sFlt-1, offering insights into their regulation during pregnancy. Mendelian randomization analyses demonstrated evidence of potential causal relationships between the serum levels of placental proteins, particularly ADAM-12, and gestational hypertension, potentially informing future prevention and treatment investigations.
Collapse
|
21
|
Jung JH, Lee SM, Oh SH. A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods. Anim Biosci 2024; 37:807-816. [PMID: 38637973 PMCID: PMC11065719 DOI: 10.5713/ab.23.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVE This study aims to identify the significant regions and candidate genes of growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) populations. METHODS A genome-wide association study (GWAS) was performed using single-nucleotide polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method was applied to calculate thresholds for the significance of SNP markers. The identified windows were considered significant if they explained ≥1% genetic variance. RESULTS A total of 28 window regions were related to genetic growth effects. Bayesian GWAS revealed 28 significant genetic regions including 52 informative SNPs associated with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous functional validation were identified for these traits. CONCLUSION The identified SNPs within these regions hold potential value for future markerassisted or genomic selection in pig breeding programs. Consequently, they contribute to an improved understanding of genetic architecture and our ability to genetically enhance pigs. SNPs within the identified regions could prove valuable for future marker-assisted or genomic selection in pig breeding programs.
Collapse
Affiliation(s)
| | - Sang Min Lee
- National Institute of Animal Science, RDA, Cheonan, 31000,
Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| |
Collapse
|
22
|
Enduru N, Fernandes BS, Zhao Z. Dissecting the shared genetic architecture between Alzheimer's disease and frailty: a cross-trait meta-analyses of genome-wide association studies. Front Genet 2024; 15:1376050. [PMID: 38706793 PMCID: PMC11069310 DOI: 10.3389/fgene.2024.1376050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: Frailty is the most common medical condition affecting the aging population, and its prevalence increases in the population aged 65 or more. Frailty is commonly diagnosed using the frailty index (FI) or frailty phenotype (FP) assessments. Observational studies have indicated the association of frailty with Alzheimer's disease (AD). However, the shared genetic and biological mechanism of these comorbidity has not been studied. Methods: To assess the genetic relationship between AD and frailty, we examined it at single nucleotide polymorphism (SNP), gene, and pathway levels. Results: Overall, 16 genome-wide significant loci (15 unique loci) (p meta-analysis < 5 × 10-8) and 22 genes (21 unique genes) were identified between AD and frailty using cross-trait meta-analysis. The 8 shared loci implicated 11 genes: CLRN1-AS1, CRHR1, FERMT2, GRK4, LINC01929, LRFN2, MADD, RP11-368P15.1, RP11-166N6.2, RNA5SP459, and ZNF652 between AD and FI, and 8 shared loci between AD and FFS implicated 11 genes: AFF3, C1QTNF4, CLEC16A, FAM180B, FBXL19, GRK4, LINC01104, MAD1L1, RGS12, ZDHHC5, and ZNF521. The loci 4p16.3 (GRK4) was identified in both meta-analyses. The colocalization analysis supported the results of our meta-analysis in these loci. The gene-based analysis revealed 80 genes between AD and frailty, and 4 genes were initially identified in our meta-analyses: C1QTNF4, CRHR1, MAD1L1, and RGS12. The pathway analysis showed enrichment for lipoprotein particle plasma, amyloid fibril formation, protein kinase regulator, and tau protein binding. Conclusion: Overall, our results provide new insights into the genetics of AD and frailty, suggesting the existence of non-causal shared genetic mechanisms between these conditions.
Collapse
Affiliation(s)
- Nitesh Enduru
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Brisa S. Fernandes
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
23
|
Sajic T, Ferreira Gomes CK, Gasser M, Caputo T, Bararpour N, Landaluce-Iturriria E, Augsburger M, Walter N, Hainard A, Lopez-Mejia IC, Fracasso T, Thomas A, Gilardi F. SMYD3: a new regulator of adipocyte precursor proliferation at the early steps of differentiation. Int J Obes (Lond) 2024; 48:557-566. [PMID: 38148333 PMCID: PMC10978492 DOI: 10.1038/s41366-023-01450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND In obesity, adipose tissue undergoes a remodeling process characterized by increased adipocyte size (hypertrophia) and number (hyperplasia). The ability to tip the balance toward the hyperplastic growth, with recruitment of new fat cells through adipogenesis, seems to be critical for a healthy adipose tissue expansion, as opposed to a hypertrophic growth that is accompanied by the development of inflammation and metabolic dysfunction. However, the molecular mechanisms underlying the fine-tuned regulation of adipose tissue expansion are far from being understood. METHODS We analyzed by mass spectrometry-based proteomics visceral white adipose tissue (vWAT) samples collected from C57BL6 mice fed with a HFD for 8 weeks. A subset of these mice, called low inflammation (Low-INFL), showed reduced adipose tissue inflammation, as opposed to those developing the expected inflammatory response (Hi-INFL). We identified the discriminants between Low-INFL and Hi-INFL vWAT samples and explored their function in Adipose-Derived human Mesenchymal Stem Cells (AD-hMSCs) differentiated to adipocytes. RESULTS vWAT proteomics allowed us to quantify 6051 proteins. Among the candidates that most differentiate Low-INFL from Hi-INFL vWAT, we found proteins involved in adipocyte function, including adiponectin and hormone sensitive lipase, suggesting that adipocyte differentiation is enhanced in Low-INFL, as compared to Hi-INFL. The chromatin modifier SET and MYND Domain Containing 3 (SMYD3), whose function in adipose tissue was so far unknown, was another top-scored hit. SMYD3 expression was significantly higher in Low-INFL vWAT, as confirmed by western blot analysis. Using AD-hMSCs in culture, we found that SMYD3 mRNA and protein levels decrease rapidly during the adipocyte differentiation. Moreover, SMYD3 knock-down before adipocyte differentiation resulted in reduced H3K4me3 and decreased cell proliferation, thus limiting the number of cells available for adipogenesis. CONCLUSIONS Our study describes an important role of SMYD3 as a newly discovered regulator of adipocyte precursor proliferation during the early steps of adipogenesis.
Collapse
Affiliation(s)
- Tatjana Sajic
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Marie Gasser
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nasim Bararpour
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Marc Augsburger
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Nadia Walter
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Hainard
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Tony Fracasso
- Unit of Forensic Medicine, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland.
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
24
|
Izquierdo-Villalba I, Mirra S, Manso Y, Parcerisas A, Rubio J, Del Valle J, Gil-Bea FJ, Ulloa F, Herrero-Lorenzo M, Verdaguer E, Benincá C, Castro-Torres RD, Rebollo E, Marfany G, Auladell C, Navarro X, Enríquez JA, López de Munain A, Soriano E, Aragay AM. A mammalian-specific Alex3/Gα q protein complex regulates mitochondrial trafficking, dendritic complexity, and neuronal survival. Sci Signal 2024; 17:eabq1007. [PMID: 38320000 DOI: 10.1126/scisignal.abq1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCβ pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.
Collapse
Affiliation(s)
| | - Serena Mirra
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Yasmina Manso
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic, Central University of Catalonia (UVic-UCC); and Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 08500 Vic, Spain
| | - Javier Rubio
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francisco J Gil-Bea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Marina Herrero-Lorenzo
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Cristiane Benincá
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rubén D Castro-Torres
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Elena Rebollo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - José A Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBER-CIBERFES), Madrid 28031, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
- Neurology Department, Donostia University Hospital, San Sebastián 20014, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Anna M Aragay
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
25
|
Wit M, Belykh A, Sumara G. Protein kinase D (PKD) on the crossroad of lipid absorption, synthesis and utilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119653. [PMID: 38104800 DOI: 10.1016/j.bbamcr.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Inappropriate lipid levels in the blood, as well as its content and composition in different organs, underlie multiple metabolic disorders including obesity, non-alcoholic fatty liver disease, type 2 diabetes, and atherosclerosis. Multiple processes contribute to the complex metabolism of triglycerides (TGs), fatty acids (FAs), and other lipid species. These consist of digestion and absorption of dietary lipids, de novo FAs synthesis (lipogenesis), uptake of TGs and FAs by peripheral tissues, TGs storage in the intracellular depots as well as lipid utilization for β-oxidation and their conversion to lipid-derivatives. A majority of the enzymatic reactions linked to lipogenesis, TGs synthesis, lipid absorption, and transport are happening at the endoplasmic reticulum, while β-oxidation takes place in mitochondria and peroxisomes. The Golgi apparatus is a central sorting, protein- and lipid-modifying organelle and hence is involved in lipid metabolism as well. However, the impact of the processes taking part in the Golgi apparatus are often overseen. The protein kinase D (PKD) family (composed of three members, PKD1, 2, and 3) is the master regulator of Golgi dynamics. PKDs are also a sensor of different lipid species in distinct cellular compartments. In this review, we discuss the roles of PKD family members in the regulation of lipid metabolism including the processes executed by PKDs at the Golgi apparatus. We also discuss the role of PKDs-dependent signaling in different cellular compartments and organs in the context of the development of metabolic disorders.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland.
| |
Collapse
|
26
|
Rowan TN, Schnabel RD, Decker JE. Uncovering the architecture of selection in two Bos taurus cattle breeds. Evol Appl 2024; 17:e13666. [PMID: 38405336 PMCID: PMC10883790 DOI: 10.1111/eva.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Directional selection alters the genome via hard sweeps, soft sweeps, and polygenic selection. However, mapping polygenic selection is difficult because it does not leave clear signatures on the genome like a selective sweep. In populations with temporally stratified genotypes, the Generation Proxy Selection Mapping (GPSM) method identifies variants associated with generation number (or appropriate proxy) and thus variants undergoing directional allele frequency changes. Here, we use GPSM on two large datasets of beef cattle to detect associations between an animal's generation and 11 million imputed SNPs. Using these datasets with high power and dense mapping resolution, GPSM detected a total of 294 unique loci actively under selection in two cattle breeds. We observed that GPSM has a high power to detect selection in the very recent past (<10 years), even when allele frequency changes are small. Variants identified by GPSM reside in genomic regions associated with known breed-specific selection objectives, such as fertility and maternal ability in Red Angus, and carcass merit and coat color in Simmental. Over 60% of the selected loci reside in or near (<50 kb) annotated genes. Using haplotype-based and composite selective sweep statistics, we identify hundreds of putative selective sweeps that likely occurred earlier in the evolution of these breeds; however, these sweeps have little overlap with recent polygenic selection. This makes GPSM a complementary approach to sweep detection methods when temporal genotype data are available. The selected loci that we identify across methods demonstrate the complex architecture of selection in domesticated cattle.
Collapse
Affiliation(s)
- Troy N. Rowan
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
- Genetics Area ProgramUniversity of MissouriColumbiaMissouriUSA
- Department of Animal ScienceUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
- Department of Large Animal Clinical Sciences, College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Robert D. Schnabel
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
- Genetics Area ProgramUniversity of MissouriColumbiaMissouriUSA
- Institute for Data Science and InformaticsUniversity of MissouriColumbiaMissouriUSA
| | - Jared E. Decker
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
- Genetics Area ProgramUniversity of MissouriColumbiaMissouriUSA
- Institute for Data Science and InformaticsUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
27
|
Miles LA, Bai H, Chakrabarty S, Baik N, Zhang Y, Parmer RJ, Samad F. Overexpression of Plg-R KT protects against adipose dysfunction and dysregulation of glucose homeostasis in diet-induced obese mice. Adipocyte 2023; 12:2252729. [PMID: 37642146 PMCID: PMC10481882 DOI: 10.1080/21623945.2023.2252729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
The plasminogen receptor, Plg-RKT, is a unique cell surface receptor that is broadly expressed in cells and tissues throughout the body. Plg-RKT localizes plasminogen on cell surfaces and promotes its activation to the broad-spectrum serine protease, plasmin. In this study, we show that overexpression of Plg-RKT protects mice from high fat diet (HFD)-induced adipose and metabolic dysfunction. During the first 10 weeks on the HFD, the body weights of mice that overexpressed Plg-RKT (Plg-RKT-OEX) were lower than those of control mice (CagRosaPlgRKT). After 10 weeks on the HFD, CagRosaPlgRKT and Plg-RKT-OEX mice had similar body weights. However, Plg-RKT-OEX mice showed a more metabolically favourable body composition phenotype. Plg-RKT-OEX mice also showed improved glucose tolerance and increased insulin sensitivity. We found that the improved metabolic functions of Plg-RKT-OEX mice were mechanistically associated with increased energy expenditure and activity, decreased proinflammatory adipose macrophages and decreased inflammation, elevated brown fat thermogenesis, and higher expression of adipose PPARγ and adiponectin. These findings suggest that Plg-RKT signalling promotes healthy adipose function via multiple mechanisms to defend against obesity-associated adverse metabolic phenotypes.
Collapse
Affiliation(s)
- Lindsey A. Miles
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Hongdong Bai
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Sagarika Chakrabarty
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Nagyung Baik
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Yuqing Zhang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fahumiya Samad
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
28
|
Zhou F, Tian G, Cui Y, He S, Yan Y. Development of genome-wide association studies on childhood obesity and its indicators: A scoping review and enrichment analysis. Pediatr Obes 2023; 18:e13077. [PMID: 37800454 DOI: 10.1111/ijpo.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The progress of genome-wide association studies (GWAS) in childhood obesity and its indicators is challenging and there are differences in genetic studies in children and adults. OBJECTIVE To illustrate the history of the development of GWAS in childhood obesity and its indicators and summarize the GWAS loci. METHODS PubMed, Web of Science, Embase and GWAS Catalog databases were systematically searched from 1 January 2005 to 19 October 2022 for literature related to GWAS of childhood BMI, body fatness and obesity. The nearest genes were used as positional genes to perform gene set analyses including the enrichment of pathways, tissues and diseases. RESULTS Twenty articles published between 2007 and 2021 were included in this scoping review, which identified 116 SNPs reaching genome-wide significance with childhood BMI (n = 50), body fatness (n = 31) and obesity (n = 35). The study populations were European in 16 studies, non-European in three studies (1 East Asian; 1 American; 1 Mexican) and trans-ancestry in one study. Several enriched pathways, tissues and diseases were identified through enrichment analysis of genes associated with childhood obesity and its indicators. CONCLUSIONS The innovations in tools and methods enable GWAS to better explore the genetic characteristics of obesity in children and adolescents. However, the number of GWAS in American, Asian and African populations is limited compared to the European population.
Collapse
Affiliation(s)
- Feixiang Zhou
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Gang Tian
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yiran Cui
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Simin He
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yan Yan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
29
|
Rashid M, Al Qarni A, Al Mahri S, Mohammad S, Khan A, Abdullah ML, Lehe C, Al Amoudi R, Aldibasi O, Bouchama A. Transcriptome Changes and Metabolic Outcomes After Bariatric Surgery in Adults With Obesity and Type 2 Diabetes. J Endocr Soc 2023; 8:bvad159. [PMID: 38162016 PMCID: PMC10755185 DOI: 10.1210/jendso/bvad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 01/03/2024] Open
Abstract
Context Bariatric surgery has been shown to be effective in inducing complete remission of type 2 diabetes in adults with obesity. However, its efficacy in achieving complete diabetes remission remains variable and difficult to predict before surgery. Objective We aimed to characterize bariatric surgery-induced transcriptome changes associated with diabetes remission and the predictive role of the baseline transcriptome. Methods We performed a whole-genome microarray in peripheral mononuclear cells at baseline (before surgery) and 2 and 12 months after bariatric surgery in a prospective cohort of 26 adults with obesity and type 2 diabetes. We applied machine learning to the baseline transcriptome to identify genes that predict metabolic outcomes. We validated the microarray expression profile using a real-time polymerase chain reaction. Results Sixteen patients entered diabetes remission at 12 months and 10 did not. The gene-expression analysis showed similarities and differences between responders and nonresponders. The difference included the expression of critical genes (SKT4, SIRT1, and TNF superfamily), metabolic and signaling pathways (Hippo, Sirtuin, ARE-mediated messenger RNA degradation, MSP-RON, and Huntington), and predicted biological functions (β-cell growth and proliferation, insulin and glucose metabolism, energy balance, inflammation, and neurodegeneration). Modeling the baseline transcriptome identified 10 genes that could hypothetically predict the metabolic outcome before bariatric surgery. Conclusion The changes in the transcriptome after bariatric surgery distinguish patients in whom diabetes enters complete remission from those who do not. The baseline transcriptome can contribute to the prediction of bariatric surgery-induced diabetes remission preoperatively.
Collapse
Affiliation(s)
- Mamoon Rashid
- Department of AI and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ali Al Qarni
- Endocrinology and Metabolism, Department of Medicine, King Abdulaziz Hospital, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia
| | - Saeed Al Mahri
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Altaf Khan
- Department of Biostatistics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mashan L Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Cynthia Lehe
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Reem Al Amoudi
- Endocrinology and Metabolism, Department of Medicine, King Abdulaziz Hospital, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia
| | - Omar Aldibasi
- Department of Biostatistics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| |
Collapse
|
30
|
Xue F, He Z, Zhuang DZ, Lin F. The influence of gut microbiota on circulating inflammatory cytokines and host: A Mendelian randomization study with meta-analysis. Life Sci 2023; 332:122105. [PMID: 37739166 DOI: 10.1016/j.lfs.2023.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
AIMS The gut microbiota has been found to be altered in different inflammatory disorders, but its involvement in the regulation of inflammatory cytokines remains unclear. Therefore, this study aimed to investigate the impacts of gut microbiota on circulating inflammatory cytokines and their potential roles in host diseases. MAIN METHODS Two-sample Mendelian randomization (MR) analyses were conducted using summary-level data from genome-wide association studies (GWAS) to identify significant causal associations between 196 gut microbiota and 41 inflammatory cytokines. Meta-analysis was applied to test the robustness of the results. Enrichment analyses of identified cytokines were further utilized to infer the effects of gut microbiota on the host. KEY FINDINGS The MR analyses and meta-analyses identified the following significant causal associations: phylum Euryarchaeota on interleukin-2 (IL-2) (βIVW = 0.085, P = 1.5 × 10-2) and interleukin-8 (IL-8) (βIVW = 0.065, P = 4.1 × 10-2), phylum Tenericutes and class Mollicutes on macrophage inflammatory protein 1a (MIP1a) (βIVW = -0.142, P = 7.0 × 10-3), class Bacilli on hepatocyte growth factor (HGF) (βIVW = -0.106, P = 2.5 × 10-2), order Enterobacteriales on monocyte chemoattractant protein-1 (MCP1) (βIVW = 0.182, P = 1.8 × 10-2), and genus Lachnospiraceae NC2004 group on TNF-related apoptosis-inducing ligand (TRAIL) (βIVW = -0.207, P = 6.0 × 10-4). Enrichment analyses suggested that phylum Euryarchaeota and order Enterobacteriales might be risk factors for certain autoimmune diseases and neoplasms, while the phylum Tenericutes may have a protective effect. SIGNIFICANCE This study represents the first evidence confirming the causal effect of specific gut microbial taxa on circulating inflammatory cytokines and sheds light on their potential roles in the development and progression of various host diseases.
Collapse
Affiliation(s)
- Fan Xue
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Zheng He
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China.
| | - De-Zheng Zhuang
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Feng Lin
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China.
| |
Collapse
|
31
|
He D, Liu H, Wei W, Zhao Y, Cai Q, Shi S, Chu X, Qin X, Zhang N, Xu P, Zhang F. A longitudinal genome-wide association study of bone mineral density mean and variability in the UK Biobank. Osteoporos Int 2023; 34:1907-1916. [PMID: 37500982 DOI: 10.1007/s00198-023-06852-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Bone mineral density (BMD) is an essential predictor of osteoporosis and fracture. We conducted a genome-wide trajectory analysis of BMD and analyzed the BMD change. PURPOSE This study aimed to identify the genetic architecture and potential biomarkers of BMD. METHODS Our analysis included 141,261 white participants from the UK Biobank with heel BMD phenotype data. We used a genome-wide trajectory analysis tool, TrajGWAS, to conduct a genome-wide association study (GWAS) of BMD. Then, we validated our findings in previously reported BMD genetic associations and performed replication analysis in the Asian participants. Finally, gene-set enrichment analysis (GSEA) of the identified candidate genes was conducted using the FUMA platform. RESULTS A total of 52 genes associated with BMD trajectory mean were identified, of which the top three significant genes were WNT16 (P = 1.31 × 10-126), FAM3C (P = 4.18 × 10-108), and CPED1 (P = 8.48 × 10-106). In addition, 114 genes associated with BMD within-subject variability were also identified, such as AC092079.1 (P = 2.72 × 10-13) and RGS7 (P = 4.72 × 10-10). The associations for these candidate genes were confirmed in the previous GWASs and replicated successfully in the Asian participants. GSEA results of BMD change identified multiple GO terms related to skeletal development, such as SKELETAL SYSTEM DEVELOPMENT (Padjusted = 2.45 × 10-3) and REGULATION OF OSSIFICATION (Padjusted = 2.45 × 10-3). KEGG enrichment analysis showed that these genes were mainly enriched in WNT SIGNALING PATHWAY. CONCLUSIONS Our findings indicated that the CPED1-WNT16-FAM3C locus plays a significant role in BMD mean trajectories and identified several novel candidate genes contributing to BMD within-subject variability, facilitating the understanding of the genetic architecture of BMD.
Collapse
Affiliation(s)
- Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China.
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, China.
| |
Collapse
|
32
|
Hendrix S, Zelcer N. A new SPRING in lipid metabolism. Curr Opin Lipidol 2023; 34:201-207. [PMID: 37548386 DOI: 10.1097/mol.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW The SREBP transcription factors are master regulators of lipid homeostasis owing to their role in controlling cholesterol and fatty acid metabolism. The core machinery required to promote their trafficking and proteolytic activation has been established close to 20 years ago. In this review, we summarize the current understanding of a newly identified regulator of SREBP signaling, SPRING (formerly C12ORF49), its proposed mechanism of action, and its role in lipid metabolism. RECENT FINDINGS Using whole-genome functional genetic screens we, and others, have recently identified SPRING as a novel regulator of SREBP signaling. SPRING is a Golgi-resident single-pass transmembrane protein that is required for proteolytic activation of SREBPs in this compartment. Mechanistic studies identified regulation of S1P, the protease that cleaves SREBPs, and control of retrograde trafficking of the SREBP chaperone SCAP from the Golgi to the ER as processes requiring SPRING. Emerging studies suggest an important role for SPRING in regulating circulating and hepatic lipid levels in mice and potentially in humans. SUMMARY Current studies support the notion that SPRING is a novel component of the core SREBP-activating machinery. Additional studies are warranted to elucidate its role in cellular and systemic lipid metabolism.
Collapse
Affiliation(s)
- Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 15, Amsterdam, the Netherlands
| | | |
Collapse
|
33
|
Yu J, Ashraf R, Mahajan A, Hogan JL, Darlington G, Buchholz AC, Duncan AM, Haines J, Ma DW, on behalf of the Guelph Family Health Study. Dietary Sugar Research in Preschoolers: Methodological, Genetic, and Cardiometabolic Considerations. Rev Cardiovasc Med 2023; 24:259. [PMID: 39076398 PMCID: PMC11262449 DOI: 10.31083/j.rcm2409259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/31/2024] Open
Abstract
Excess dietary sugar intake increases the risk of unhealthy weight gain, an important cardiometabolic risk factor in children. To further our understanding of this relationship, we performed a narrative review using two approaches. First, research examining dietary sugar intake, its associations with cardiometabolic health, impact of genetics on sweet taste perception and intake, and how genetics moderates the association of dietary sugar intake and cardiometabolic risk factors in preschool-aged children 1.5-5 years old is reviewed. Second, methodological considerations for collecting and analyzing dietary intake of sugar, genetic information, and markers of cardiometabolic health among young children are provided. Our key recommendations include the following for researchers: (1) Further longitudinal research on sugar intake and cardiometabolic risk factors is warranted to inform policy decisions and guidelines for healthy eating in preschool-aged children. (2) Consistency in sugar definitions is needed across research studies to aid with comparisons of results. (3) Select dietary collection tools specific to each study's aim and sugar definition(s). (4) Limit subjectivity of dietary assessment tools as this impacts interpretation of study results. (5) Choose non-invasive biomarkers of cardiometabolic disease until the strengths and limitations of available biomarkers in preschool-aged children are clarified. (6) Select approaches that account for the polygenic nature of cardiometabolic disease such as genome risk scores and genome wide association studies to assess how genetics moderates the relationship between dietary sugar intake and cardiometabolic risk. This review highlights potential recommendations that will support a research environment to help inform policy decisions and healthy eating policies to reduce cardiometabolic risk in young children.
Collapse
Affiliation(s)
- Jessica Yu
- Department of Human Health and Nutritional Sciences, University of Guelph,
Guelph, ON N1G 2W1, Canada
| | - Rahbika Ashraf
- Department of Human Health and Nutritional Sciences, University of Guelph,
Guelph, ON N1G 2W1, Canada
| | - Anisha Mahajan
- Department of Human Health and Nutritional Sciences, University of Guelph,
Guelph, ON N1G 2W1, Canada
| | - Jaimie L. Hogan
- Department of Human Health and Nutritional Sciences, University of Guelph,
Guelph, ON N1G 2W1, Canada
| | - Gerarda Darlington
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON
N1G 2W1, Canada
| | - Andrea C. Buchholz
- Department of Family Relations and Applied Nutrition, University of
Guelph, Guelph, ON N1G 2W1, Canada
| | - Alison M. Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph,
Guelph, ON N1G 2W1, Canada
| | - Jess Haines
- Department of Family Relations and Applied Nutrition, University of
Guelph, Guelph, ON N1G 2W1, Canada
| | - David W.L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph,
Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
34
|
Yin C, Wang Y, Zhou P, Shi H, Ma X, Yin Z, Liu Y. Genomic Scan for Runs of Homozygosity and Selective Signature Analysis to Identify Candidate Genes in Large White Pigs. Int J Mol Sci 2023; 24:12914. [PMID: 37629094 PMCID: PMC10454931 DOI: 10.3390/ijms241612914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Large White pigs are extensively utilized in China for their remarkable characteristics of rapid growth and the high proportion of lean meat. The economic traits of pigs, comprising reproductive and meat quality traits, play a vital role in swine production. In this study, 2295 individuals, representing three different genetic backgrounds Large White pig populations were used: 500 from the Canadian line, 295 from the Danish line, and 1500 from the American line. The GeneSeek 50K GGP porcine HD array was employed to genotype the three pig populations. Firstly, genomic selective signature regions were identified using the pairwise fixation index (FST) and locus-specific branch length (LSBL). By applying a top 1% threshold for both parameters, a total of 888 candidate selective windows were identified, harbouring 1571 genes. Secondly, the investigation of regions of homozygosity (ROH) was performed utilizing the PLINK software. In total, 25 genomic regions exhibiting a high frequency of ROHs were detected, leading to the identification of 1216 genes. Finally, the identified potential functional genes from candidate genomic regions were annotated, and several important candidate genes associated with reproductive traits (ADCYAP1, U2, U6, CETN1, Thoc1, Usp14, GREB1L, FGF12) and meat quality traits (MiR-133, PLEKHO1, LPIN2, SHANK2, FLVCR1, MYL4, SFRP1, miR-486, MYH3, STYX) were identified. The findings of this study provide valuable insights into the genetic basis of economic traits in Large White pigs and may have potential use in future pig breeding programs.
Collapse
Affiliation(s)
- Chang Yin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Yuwei Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Peng Zhou
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Haoran Shi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Xinyu Ma
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Yang Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| |
Collapse
|
35
|
Yang K, Wang Q, Wu L, Gao QC, Tang S. Development and verification of a combined diagnostic model for primary Sjögren's syndrome by integrated bioinformatics analysis and machine learning. Sci Rep 2023; 13:8641. [PMID: 37244954 DOI: 10.1038/s41598-023-35864-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease mostly affecting the exocrine glands. This debilitating condition is complex and specific treatments remain unavailable. There is a need for the development of novel diagnostic models for early screening. Four gene profiling datasets were downloaded from the Gene Expression Omnibus database. The 'limma' software package was used to identify differentially expressed genes (DEGs). A random forest-supervised classification algorithm was used to screen disease-specific genes, and three machine learning algorithms, including artificial neural networks (ANN), random forest (RF), and support vector machines (SVM), were used to build a pSS diagnostic model. The performance of the model was measured using its area under the receiver operating characteristic curve. Immune cell infiltration was investigated using the CIBERSORT algorithm. A total of 96 DEGs were identified. By utilizing a RF classifier, a set of 14 signature genes that are pivotal in transcription regulation and disease progression in pSS were identified. Through the utilization of training and testing datasets, diagnostic models for pSS were successfully designed using ANN, RF, and SVM, resulting in AUCs of 0.972, 1.00, and 0.9742, respectively. The validation set yielded AUCs of 0.766, 0.8321, and 0.8223. It was the RF model that produced the best prediction performance out of the three models tested. As a result, an early predictive model for pSS was successfully developed with high diagnostic performance, providing a valuable resource for the screening and early diagnosis of pSS.
Collapse
Affiliation(s)
- Kun Yang
- School of Humanities and Social Sciences, Shanxi Medical University, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Shan Tang
- The First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
36
|
Alemany-Navarro M, Tubío-Fungueiriño M, Diz-de Almeida S, Cruz R, Lombroso A, Real E, Soria V, Bertolín S, Fernández-Prieto M, Alonso P, Menchón JM, Carracedo A, Segalàs C. The genomics of visuospatial neurocognition in obsessive-compulsive disorder: A preliminary GWAS. J Affect Disord 2023; 333:365-376. [PMID: 37094658 DOI: 10.1016/j.jad.2023.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND The study of Obsessive-Compulsive Disorder (OCD) genomics has primarily been tackled by Genome-wide association studies (GWAS), which have encountered troubles in identifying replicable single nucleotide polymorphisms (SNPs). Endophenotypes have emerged as a promising avenue of study in trying to elucidate the genomic bases of complex traits such as OCD. METHODS We analyzed the association of SNPs across the whole genome with the construction of visuospatial information and executive performance through four neurocognitive variables assessed by the Rey-Osterrieth Complex Figure Test (ROCFT) in a sample of 133 OCD probands. Analyses were performed at SNP- and gene-level. RESULTS No SNP reached genome-wide significance, although there was one SNP almost reaching significant association with copy organization (rs60360940; P = 9.98E-08). Suggestive signals were found for the four variables at both SNP- (P < 1E-05) and gene-levels (P < 1E-04). Most of the suggestive signals pointed to genes and genomic regions previously associated with neurological function and neuropsychological traits. LIMITATIONS Our main limitations were the sample size, which was limited to identify associated signals at a genome-wide level, and the composition of the sample, more representative of rather severe OCD cases than a population-based OCD sample with a broad severity spectrum. CONCLUSIONS Our results suggest that studying neurocognitive variables in GWAS would be more informative on the genetic basis of OCD than the classical case/control GWAS, facilitating the genetic characterization of OCD and its different clinical profiles, the development of individualized treatment approaches, and the improvement of prognosis and treatment response.
Collapse
Affiliation(s)
- M Alemany-Navarro
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; IBIS (Universidad de Sevilla, HUVR, Junta de Andalucia, CSIC) Sevilla, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain.
| | - M Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - S Diz-de Almeida
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - R Cruz
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - A Lombroso
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - E Real
- Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - V Soria
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - S Bertolín
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - P Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - J M Menchón
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - C Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| |
Collapse
|
37
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
38
|
Mansour A, Mousa M, Abdelmannan D, Tay G, Hassoun A, Alsafar H. Microvascular and macrovascular complications of type 2 diabetes mellitus: Exome wide association analyses. Front Endocrinol (Lausanne) 2023; 14:1143067. [PMID: 37033211 PMCID: PMC10076756 DOI: 10.3389/fendo.2023.1143067] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic, metabolic disorder in which concomitant insulin resistance and β-cell impairment lead to hyperglycemia, influenced by genetic and environmental factors. T2DM is associated with long-term complications that have contributed to the burden of morbidity and mortality worldwide. The objective of this manuscript is to conduct an Exome-Wide Association Study (EWAS) on T2DM Emirati individuals to improve our understanding on diabetes-related complications to improve early diagnostic methods and treatment strategies. Methods This cross-sectional study recruited 310 Emirati participants that were stratified according to their medically diagnosed diabetes-related complications: diabetic retinopathy, diabetic neuropathy, diabetic nephropathy, and cardiovascular complications. The Illumina's Infinium Exome-24 array was used and 39,840 SNPs remained for analysis after quality control. Findings The analysis revealed the associations of various genes with each complication category: 1) diabetic retinopathy was associated to SHANK3 gene in locus 22q13.33 (SNP rs9616915; p=5.18 x10-4), ZSCAN5A gene in locus 19q13.43 (SNP rs7252603; p=7.55 x10-4), and DCP1B gene in locus 12p13.33 (SNPs rs715146, rs1044950, rs113147414, rs34730825; p=7.62 x10-4); 2) diabetic neuropathy was associated to ADH4 gene in locus 4q23 (SNP rs4148883; p=1.23 x10-4), SLC11A1 gene in locus 2q35 (SNP rs17235409; p=1.85 x10-4), and MATN4 gene in locus 20q13.12 (SNP rs2072788; p=2.68 x10-4); 3) diabetic nephropathy was associated to PPP1R3A gene in locus 7q31.1 (SNP rs1799999; p=1.91 x10-4), ZNF136 gene in locus 19p13.2 (SNP rs140861589; p=2.80 x10-4), and HSPA12B gene in locus 20p13 (SNP rs6076550; p=2.86 x10-4); and 4) cardiovascular complications was associated to PCNT gene in locus 21q22.3 (SNPs rs7279204, rs6518289, rs2839227, rs2839223; p=2.18 x10-4,3.04 x10-4,4.51 x10-4,5.22 x10-4 respectively), SEPT14 gene in locus 7p11.2 (SNP rs146350220; p=2.77 x10-4), and WDR73 gene in locus 15q25.2 (SNP rs72750868; p=4.47 x10-4). Interpretation We have identified susceptibility loci associated with each category of T2DM-related complications in the Emirati population. Given that only 16% of the markers from the Illumina's Infinium Exome chip passed quality control assessment, this demonstrates that multiple variants were, either, monomorphic in the Arab population or were not genotyped due to the use of a Euro-centric EWAS array that limits the possibility of including targeted ethnic-specific SNPs. Our results suggest the alarming possibility that lack of representation in reference panels could inhibit discovery of functionally important loci associated to T2DM complications. Further effort must be conducted to improve the representation of diverse populations in genotyping and sequencing studies.
Collapse
Affiliation(s)
- Afnan Mansour
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dima Abdelmannan
- Dubai Health Authority, Dubai Diabetes Center, Dubai, United Arab Emirates
| | - Guan Tay
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ahmed Hassoun
- Fakeeh University Hospital, Dubai, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
39
|
Osman W, Mousa M, Albreiki M, Baalfaqih Z, Daggag H, Hill C, McKnight AJ, Maxwell AP, Al Safar H. A genome-wide association study identifies a possible role for cannabinoid signalling in the pathogenesis of diabetic kidney disease. Sci Rep 2023; 13:4661. [PMID: 36949158 PMCID: PMC10033677 DOI: 10.1038/s41598-023-31701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Diabetic kidney disease (DKD), also known as diabetic nephropathy, is the leading cause of renal impairment and end-stage renal disease. Patients with diabetes are at risk for DKD because of poor control of their blood glucose, as well as nonmodifiable risk factors including age, ethnicity, and genetics. This genome-wide association study (GWAS) was conducted for the first time in the Emirati population to investigate possible genetic factors associated with the development and progression of DKD. We included data on 7,921,925 single nucleotide polymorphism (SNPs) in 258 cases of type 2 diabetes mellitus (T2DM) who developed DKD and 938 control subjects with T2DM who did not develop DKD. GWAS suggestive results (P < 1 × 10-5) were further replicated using summary statistics from three cohorts with T2DM-induced DKD (Bio Bank Japan data, UK Biobank, and FinnGen Project data) and T1DM-induced DKD (UK-ROI cohort data from Belfast, UK). When conducting a multiple linear regression model for gene-set analyses, the CNR2 gene demonstrated genome-wide significance at 1.46 × 10-6. SNPs in CNR2 gene, encodes cannabinoid receptor 2 or CB2, were replicated in Japanese samples with the leading SNP rs2501391 showing a Pcombined = 9.3 × 10-7, and odds ratio = 0.67 in association with DKD associated with T2DM, but not with T1DM, without any significant association with T2DM itself. The allele frequencies of our cohort and those of the replication cohorts were in most cases markedly different. In addition, we replicated the association between rs1564939 in the GLRA3 gene and DKD in T2DM (P = 0.016, odds ratio = 0.54 per allele C). Our findings suggest evidence that cannabinoid signalling may be involved in the development of DKD through CB2, which is expressed in different kidney regions and known to be involved in insulin resistance, inflammation, and the development of kidney fibrosis.
Collapse
Affiliation(s)
- Wael Osman
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammed Albreiki
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Zahrah Baalfaqih
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hinda Daggag
- Imperial College of London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Claire Hill
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | | | | | - Habiba Al Safar
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
40
|
Tudor L, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Uzun S, Kozumplik O, Mimica N, Lauc G, Svob Strac D, Pivac N. The Association of the Polymorphisms in the FUT8-Related Locus with the Plasma Glycosylation in Post-Traumatic Stress Disorder. Int J Mol Sci 2023; 24:ijms24065706. [PMID: 36982780 PMCID: PMC10056189 DOI: 10.3390/ijms24065706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The molecular underpinnings of post-traumatic stress disorder (PTSD) are still unclear due to the complex interactions of genetic, psychological, and environmental factors. Glycosylation is a common post-translational modification of proteins, and different pathophysiological states, such as inflammation, autoimmune diseases, and mental disorders including PTSD, show altered N-glycome. Fucosyltransferase 8 (FUT8) is the enzyme that catalyzes the addition of core fucose on glycoproteins, and mutations in the FUT8 gene are associated with defects in glycosylation and functional abnormalities. This is the first study that investigated the associations of plasma N-glycan levels with FUT8-related rs6573604, rs11621121, rs10483776, and rs4073416 polymorphisms and their haplotypes in 541 PTSD patients and control participants. The results demonstrated that the rs6573604 T allele was more frequent in the PTSD than in the control participants. Significant associations of plasma N-glycan levels with PTSD and FUT8-related polymorphisms were observed. We also detected associations of rs11621121 and rs10483776 polymorphisms and their haplotypes with plasma levels of specific N-glycan species in both the control and PTSD groups. In carriers of different rs6573604 and rs4073416 genotypes and alleles, differences in plasma N-glycan levels were only found in the control group. These molecular findings suggest a possible regulatory role of FUT8-related polymorphisms in glycosylation, the alternations of which could partially explain the development and clinical manifestation of PTSD.
Collapse
Affiliation(s)
- Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Glycobiology Laboratory, Genos Ltd., 10000 Zagreb, Croatia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- Correspondence: (D.S.S.); (N.P.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
- Correspondence: (D.S.S.); (N.P.)
| |
Collapse
|
41
|
Lavoie O, Michael NJ, Caron A. A critical update on the leptin-melanocortin system. J Neurochem 2023; 165:467-486. [PMID: 36648204 DOI: 10.1111/jnc.15765] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada.,Montreal Diabetes Research Center, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Voruganti VS. Precision Nutrition: Recent Advances in Obesity. Physiology (Bethesda) 2023; 38:0. [PMID: 36125787 PMCID: PMC9705019 DOI: 10.1152/physiol.00014.2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
"Precision nutrition" is an emerging area of nutrition research that focuses on understanding metabolic variability within and between individuals and helps develop customized dietary plans and interventions to maintain optimal individual health. It encompasses nutritional genomic (gene-nutrient interactions), epigenetic, microbiome, and environmental factors. Obesity is a complex disease that is affected by genetic and environmental factors and thus a relevant target of precision nutrition-based approaches. Recent studies have shown significant associations between obesity phenotypes (body weight, body mass index, waist circumference, and central and regional adiposity) and genetic variants, epigenetic factors (DNA methylation and noncoding RNA), microbial species, and environment (sociodemographics and physical activity). Additionally, studies have also shown that the interactions between genetic variants, microbial metabolites, and epigenetic factors affect energy balance and adiposity. These include variants in FTO, MC4R, PPAR, APOA, and FADS genes, DNA methylation in CpG island regions, and specific miRNAs and microbial species such as Firmicutes, Bacteriodes, Clostridiales, etc. Similarly, studies have shown that microbial metabolites, folate, B-vitamins, and short-chain fatty acids interact with miRNAs to influence obesity phenotypes. With the advent of next-generation sequencing and analytical approaches, the advances in precision nutrition have the potential to lead to new paradigms, which can further lead to interventions or customized treatments specific to individuals or susceptible groups of individuals. This review highlights the recent advances in precision nutrition as applied to obesity and projects the importance of precision nutrition in obesity and weight management.
Collapse
Affiliation(s)
- V Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| |
Collapse
|
43
|
Abramova M, Churnosova M, Efremova O, Aristova I, Reshetnikov E, Polonikov A, Churnosov M, Ponomarenko I. Effects of Pre-Pregnancy Overweight/Obesity on the Pattern of Association of Hypertension Susceptibility Genes with Preeclampsia. Life (Basel) 2022; 12:2018. [PMID: 36556383 PMCID: PMC9784908 DOI: 10.3390/life12122018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to explore the effects of pre-pregnancy overweight/obesity on the pattern of association of hypertension susceptibility genes with preeclampsia (PE). Ten single-nucleotide polymorphisms (SNPs) of the 10 genome-wide association studies (GWAS)-significant hypertension/blood pressure (BP) candidate genes were genotyped in 950 pregnant women divided into two cohorts according to their pre-pregnancy body mass index (preBMI): preBMI ≥ 25 (162 with PE and 159 control) and preBMI < 25 (290 with PE and 339 control). The PLINK software package was utilized to study the association (analyzed four genetic models using logistic regression). The functionality of PE-correlated loci was analyzed by performing an in silico database analysis. Two SNP hypertension/BP genes, rs805303 BAG6 (OR: 0.36−0.66) and rs167479 RGL3 (OR: 1.86), in subjects with preBMI ≥ 25 were associated with PE. No association between the studied SNPs and PE in the preBMI < 25 group was determined. Further analysis showed that two PE-associated SNPs are functional (have weighty eQTL, sQTL, regulatory, and missense values) and could be potentially implicated in PE development. In conclusion, this study was the first to discover the modifying influence of overweight/obesity on the pattern of association of GWAS-significant hypertension/BP susceptibility genes with PE: these genes are linked with PE in preBMI ≥ 25 pregnant women and are not PE-involved in the preBMI < 25 group.
Collapse
Affiliation(s)
- Maria Abramova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olesya Efremova
- Department of Medical Genetics, Kharkiv National Medical University, 61022 Kharkov, Ukraine
- Grishchenko Clinic of Reproductive Medicine, 61052 Kharkov, Ukraine
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| |
Collapse
|
44
|
Wu Q, Li J, Zhu J, Sun X, He D, Li J, Cheng Z, Zhang X, Xu Y, Chen Q, Zhu Y, Lai M. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr 2022; 9:936220. [PMID: 36505257 PMCID: PMC9729530 DOI: 10.3389/fnut.2022.936220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Gamma-glutamyl dipeptides are bioactive peptides involved in inflammation, oxidative stress, and glucose regulation. Gamma-glutamyl-leucine (Gamma-Glu-Leu) has been extensively reported to be associated with the risk of cardio-metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. However, the causality remains to be uncovered. The aim of this study was to explore the causal-effect relationships between Gamma-Glu-Leu and metabolic risk. Materials and methods In this study, 1,289 subjects were included from a cross-sectional survey on metabolic syndrome (MetS) in eastern China. Serum Gamma-Glu-Leu levels were measured by untargeted metabolomics. Using linear regressions, a two-stage genome-wide association study (GWAS) for Gamma-Glu-Leu was conducted to seek its instrumental single nucleotide polymorphisms (SNPs). One-sample Mendelian randomization (MR) analyses were performed to evaluate the causality between Gamma-Glu-Leu and the metabolic risk. Results Four SNPs are associated with serum Gamma-Glu-Leu levels, including rs12476238, rs56146133, rs2479714, and rs12229654. Out of them, rs12476238 exhibits the strongest association (Beta = -0.38, S.E. = 0.07 in discovery stage, Beta = -0.29, S.E. = 0.14 in validation stage, combined P-value = 1.04 × 10-8). Each of the four SNPs has a nominal association with at least one metabolic risk factor. Both rs12229654 and rs56146133 are associated with body mass index, waist circumference (WC), the ratio of WC to hip circumference, blood pressure, and triglyceride (5 × 10-5 < P < 0.05). rs56146133 also has nominal associations with fasting insulin, glucose, and insulin resistance index (5 × 10-5 < P < 0.05). Using the four SNPs serving as the instrumental SNPs of Gamma-Glu-Leu, the MR analyses revealed that higher Gamma-Glu-Leu levels are causally associated with elevated risks of multiple cardio-metabolic factors except for high-density lipoprotein cholesterol and low-density lipoprotein cholesterol (P > 0.05). Conclusion Four SNPs (rs12476238, rs56146133, rs2479714, and rs12229654) may regulate the levels of serum Gamma-Glu-Leu. Higher Gamma-Glu-Leu levels are causally linked to cardio-metabolic risks. Future prospective studies on Gamma-Glu-Leu are required to explain its role in metabolic disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Epidemiology and Biostatistics, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jiankang Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Jinghan Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di He
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zongxue Cheng
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China,Affiliated Hangzhou Center of Disease Control and Prevention, School of Public Health, Zhejiang University, Hangzhou, China
| | - Yuying Xu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Chen
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China,*Correspondence: Qing Chen,
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, China,Yimin Zhu,
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China,State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Maode Lai,
| |
Collapse
|
45
|
Igumnova V, Kivrane A, Viksna A, Norvaisa I, Ranka R. Next-Generation Sequencing and Bioinformatics-Based Protocol for the Full-Length CYP2E1 Gene Polymorphism Analysis. Pharmgenomics Pers Med 2022; 15:959-965. [PMID: 36393979 PMCID: PMC9653044 DOI: 10.2147/pgpm.s371709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/07/2022] [Indexed: 04/04/2025] Open
Abstract
INTRODUCTION Pharmacogenetics studies provide clinically relevant information on the identified associations between genetic variants and individual variability in drug response, which, in turn, offers great promise for guiding personalized drug therapy and clinical trial design. However, there is a lack of information concerning the evidence-based clinical annotations of specific CYP2E1 genetic variants. AIM To design and evaluate the next-generation sequencing-based method for full-length CYP2E1 gene polymorphism analysis. MATERIALS AND METHODS Seven gene-specific oligonucleotide primer pairs targeting overlapping CYP2E1 gene fragments spanning all nine gene exons with interleaving introns, untranslated (UTR) and intergenic regions were designed. Human DNA samples (n = 3) were used as a training set to check the primer performance and to optimize the PCR conditions. The effectiveness of the developed target amplification and sequencing protocol was evaluated using the test set comprising human DNA samples (n = 3) obtained from tuberculosis patients. Sequencing data analysis was performed on the Galaxy online-based platform. RESULTS The sequencing data quality was sufficient for the detection of genetic variants dispersed throughout the CYP2E1 gene with a high degree of confidence in fully covered regions achieving optimal reading depth of the targeted fragment with high base call accuracy. CONCLUSION Developed protocol can be applied in subpopulation-level association studies to determine whether single nucleotide variants (SNVs) or variant combinations from multiple regions of the CYP2E1 gene are of clinical significance.
Collapse
Affiliation(s)
- Viktorija Igumnova
- Molecular Microbiology Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Agnija Kivrane
- Molecular Microbiology Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Anda Viksna
- Department of Infectology, Riga Stradins University, Riga, Latvia
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Riga, Latvia
| | - Inga Norvaisa
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Riga, Latvia
| | - Renate Ranka
- Molecular Microbiology Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| |
Collapse
|
46
|
Churnosov M, Abramova M, Reshetnikov E, Lyashenko IV, Efremova O, Churnosova M, Ponomarenko I. Polymorphisms of hypertension susceptibility genes as a risk factors of preeclampsia in the Caucasian population of central Russia. Placenta 2022; 129:51-61. [PMID: 36219912 DOI: 10.1016/j.placenta.2022.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The study was designed to assess the effects of hypertension (HT) susceptibility genes polymorphisms in the development of preeclampsia (PE) in Caucasians from Central Russia. METHODS PE patients (n = 452) and women control group (n = 498) were genotyped for 10 polymorphisms of HT/blood pressure (BP) susceptibility genes (according to the previously published GWAS in Caucasian populations) including AC026703.1 (rs1173771), HFE (rs1799945), BAG6 (rs805303), PLCE1 (rs932764), OBFC1 (rs4387287), ARHGAP42 (rs633185), CERS5 (rs7302981), ATP2B1 (rs2681472), TBX2 (rs8068318) and RGL3 (rs167479). A logistic regression method was applied to search for associations between SNPs and PE. The relationship between SNP-SNP interactions and PE risk was analyzed by performing MB-MDR. RESULTS The rs1799945 gene in HFE significantly independently increased the risk of developing PE (OR = 2.24) and rs805303 in BAG6 was associated with a reduced risk in the occurrence of PE (OR = 0.55-0.78). Among the 10 SNPs examined, nine SNPs were associated with PEs within the 10 most significant SNP-SNP interaction models. Loci rs7302981 CERS5, rs805303 BAG6 and rs932764 PLCE1 contributed to the largest number of epistatic models (50% or more). DISCUSSION The present study is the first to report an association between polymorphisms of HT/BP susceptibility genes important for GWAS and the risk of PE in Caucasians from Central Russia. Our pathway-based functional annotation of the PE risk variants highlights the potential regulatory function (epigenetic/eQTL/sQTL/non-synonymous) that nine genetic risk markers and their 115 highly correlated variants exert on 155 genes. The study shows that these genes may function cooperatively in key signaling pathways in PE biology.
Collapse
Affiliation(s)
- Mikhail Churnosov
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia.
| | - Maria Abramova
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia
| | - Evgeny Reshetnikov
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia
| | - Igor V Lyashenko
- Belgorod State National Research University, Department of English Philology and Cross-cultural Communication, Belgorod, Russia
| | - Olesya Efremova
- Kharkiv National Medical University, Department of Medical Genetics, Kharkov, Ukraine; Grishchenko Clinic of Reproductive Medicine, Kharkov, Ukraine
| | - Maria Churnosova
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia
| | - Irina Ponomarenko
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia
| |
Collapse
|
47
|
Liu M, Zhang Q, Ma S. A tree-based gene-environment interaction analysis with rare features. Stat Anal Data Min 2022; 15:648-674. [PMID: 38046814 PMCID: PMC10691867 DOI: 10.1002/sam.11578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/14/2022] [Indexed: 01/20/2023]
Abstract
Gene-environment (G-E) interaction analysis plays a critical role in understanding and modeling complex diseases. Compared to main-effect-only analysis, it is more seriously challenged by higher dimensionality, weaker signals, and the unique "main effects, interactions" variable selection hierarchy. In joint G-E interaction analysis under which a large number of G factors are analysed in a single model, effort tailored to rare features (e.g., SNPs with low minor allele frequencies) has been limited. Existing investigations on rare features have been mostly focused on marginal analysis, where various data aggregation techniques have been developed, and hypothesis testings have been conducted to identify significant aggregated features. However, such techniques cannot be extended to joint G-E interaction analysis. In this study, building on a very recent tree-based data aggregation technique, which has been developed for main-effect-only analysis, we develop a new G-E interaction analysis approach tailored to rare features. The adopted data aggregation technique allows for more efficient information borrowing from neighboring rare features. Similar to some existing state-of-the-art ones, the proposed approach adopts penalization for variable selection, regularized estimation, and respect of the variable selection hierarchy. Simulation shows that it has more accurate identification of important interactions and main effects than several competing alternatives. In the analysis of NFBC1966 study, the proposed approach leads to findings different from the alternatives and with satisfactory prediction and stability performance.
Collapse
Affiliation(s)
- Mengque Liu
- School of Journalism and New Media, Xi’an Jiaotong Universit0y, Shanxi Xi’an, China
| | - Qingzhao Zhang
- Department of Statistics and Data Science, School of Economics, Wang Yanan Institute for Studies in Economics, and Fujian Key Lab of Statistics, Xiamen University, Fujian Xiamen, China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
48
|
Ballesteros M, Gil-Lluís P, Ejarque M, Diaz-Perdigones C, Martinez-Guasch L, Fernández-Veledo S, Vendrell J, Megía A. DNA Methylation in Gestational Diabetes and its Predictive Value for Postpartum Glucose Disturbances. J Clin Endocrinol Metab 2022; 107:2748-2757. [PMID: 35914803 PMCID: PMC9516049 DOI: 10.1210/clinem/dgac462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 11/21/2022]
Abstract
CONTEXT DNA methylation in the diagnosis of gestational diabetes. OBJECTIVE To assess the value of DNA methylation in the diagnosis of gestational diabetes (GDM) and in the prediction of maternal postpartum glucose disturbances. METHODS Two-stage observational study performed between July 2006 and December 2010, at University Hospital. Forty-eight randomly selected pregnant women formed the discovery cohort (24 with GDM and 24 controls) and 252 pregnant women (94 with GDM and 158 controls) formed the replication cohort. GDM women were re-evaluated 4 years postpartum. The main outcome measures were GDM, type 2 diabetes or prediabetes at 4 years postpartum. RESULTS We identified 3 CpG sites related to LINC00917, TRAPPC9, and LEF1 that were differentially methylated in women with GDM and abnormal glucose tolerance; and sites associated with LINC00917 and TRAPPC9 were independently associated with an abnormal glucose tolerance status 4 years postpartum after controlling for clinical variables. Moreover, the site associated with LINC00917 and the combination of the 3 sites had the highest predictive values. CONCLUSION Our results suggest that some of these sites may be implicated in the development of GDM and postpartum abnormal glucose tolerance.
Collapse
Affiliation(s)
- Mónica Ballesteros
- Mónica Ballesteros, Rovira i Virgili University, 43005, Tarragona, Spain.
| | - Pilar Gil-Lluís
- Department of Endocrinology and Nutrition, University Hospital of Tortosa Verge de la Cinta, Tarragona, Spain
| | - Miriam Ejarque
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Cristina Diaz-Perdigones
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Laia Martinez-Guasch
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Joan Vendrell
- Correspondence: Joan Vendrell, PhD, MD, Hospital Universitari de Tarragona Joan XXIII, Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain.
| | - Ana Megía
- Ana Megia, PhD, MD, Hospital Universitari de Tarragona Joan XXIII, Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain.
| |
Collapse
|
49
|
Qin X, Chiang CWK, Gaggiotti OE. Deciphering signatures of natural selection via deep learning. Brief Bioinform 2022; 23:6686736. [PMID: 36056746 PMCID: PMC9487700 DOI: 10.1093/bib/bbac354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.
Collapse
Affiliation(s)
- Xinghu Qin
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine & Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| |
Collapse
|
50
|
Cristiano L. The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases. Genes Dis 2022; 9:941-958. [PMID: 35685457 PMCID: PMC9170609 DOI: 10.1016/j.gendis.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Luigi Cristiano
- R&D Division, Prestige, 18 via Vecchia, Terranuova Bracciolini, AR 52028, Italy
| |
Collapse
|