1
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
van Driel M, Muñoz A, van Leeuwen JP. Overview of vitamin D actions in cancer. FELDMAN AND PIKE'S VITAMIN D 2024:679-718. [DOI: 10.1016/b978-0-323-91338-6.00034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Feng X, Ge J, Fu H, Miao L, Zhao F, Wang J, Sun Y, Li Y, Li Y. Discovery of small molecule β-catenin suppressors that enhance immunotherapy. Bioorg Chem 2023; 139:106754. [PMID: 37536216 DOI: 10.1016/j.bioorg.2023.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Small molecules directly downregulating β-catenin could potentially offer a more effective therapeutic approach for combating against cancer stem cells, as compared to targeting the downstream components of the Wnt/β-catenin pathway. The challenge, however, lies in the fact that very few β-catenin suppressors have proven clinically effective, leaving a significant gap in medical solutions. Given that E-cadherin has a natural affinity for β-catenin, it stands to reason that agents designed to increase E-cadherin expression might provide an alternative method of regulating β-catenin levels. In this study, we report our discovery of DSS-C12 and DSS-B8, specific ester-based drugs derived from Dan-Shen-Su (DSS) extracted from the herb Salvia miltiorrhiza. Remarkably, these compounds display a potent ability to downregulate β-catenin, while also improving overall survival in post-surgery mice. Additionally, when these drugs are used in combination with PD-L1 checkpoint blockade, they stimulate enhanced systemic immune responses leading to significant suppression of primary tumor growth. In-depth mechanistic studies revealed that DSS-B8 functions as a vitamin D receptor agonist without inducing hypercalcemic effects. Collectively, our findings indicate that DSS-derived small molecules have considerable potential as clinically viable therapeutic strategies for β-catenin deactivation.
Collapse
Affiliation(s)
- Xuchen Feng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyu Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Okunola AO, Baatjes KJ, Zemlin AE, Torrorey-Sawe R, Conradie M, Kidd M, Erasmus RT, van der Merwe NC, Kotze MJ. Pathology-supported genetic testing for the application of breast cancer pharmacodiagnostics: family counselling, lifestyle adjustments and change of medication. Expert Rev Mol Diagn 2023; 23:431-443. [PMID: 37060281 DOI: 10.1080/14737159.2023.2203815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Pathology-supported genetic testing (PSGT) enables transitioning of risk stratification from the study population to the individual. RESEARCH DESIGN AND METHODS We provide an overview of the translational research performed in postmenopausal breast cancer patients at increased risk of osteoporosis due to aromatase inhibitor therapy, as the indication for referral. Both tumour histopathology and blood biochemistry levels were assessed to identify actionable disease pathways using whole exome sequencing (WES). RESULTS The causes and consequences of inadequate vitamin D levels as a modifiable risk factor for bone loss were highlighted in 116 patients with hormone receptor-positive breast cancer. Comparison of lifestyle factors and WES data between cases with vitamin D levels at extreme upper and lower ranges identified obesity as a major discriminating factor, with the lowest levels recorded during winter. Functional polymorphisms in the vitamin D receptor gene contributed independently to therapy-related osteoporosis risk. In a patient with invasive lobular carcinoma, genetic counselling facilitated investigation of the potential modifying effect of a rare CDH1 variant co-occurring withBRCA1 c.66dup (p.Glu23ArgfsTer18). CONCLUSION Validation of PSGT as a three-pronged pharmacodiagnostics tool for generation of adaptive reports and data reinterpretation during follow-up represents a new paradigm in personalised medicine, exposing significant limitations to overcome.
Collapse
Affiliation(s)
- Abisola O Okunola
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karin J Baatjes
- Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annalise E Zemlin
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and the National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Rispah Torrorey-Sawe
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Immunology, School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Magda Conradie
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Stellenbosch University, South Africa
| | - Rajiv T Erasmus
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nerina C van der Merwe
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and the National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
5
|
Sheeley MP, Kiesel VA, Andolino C, Lanman NA, Donkin SS, Hursting SD, Wendt MK, Teegarden D. 1α,25-dihydroxyvitamin D reduction of MCF10A-ras cell viability in extracellular matrix detached conditions is dependent on regulation of pyruvate carboxylase. J Nutr Biochem 2022; 109:109116. [DOI: 10.1016/j.jnutbio.2022.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
6
|
Welsh J. Vitamin D and Breast Cancer: Mechanistic Update. JBMR Plus 2021; 5:e10582. [PMID: 34950835 PMCID: PMC8674767 DOI: 10.1002/jbm4.10582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of the vitamin D receptor (VDR) in mammary gland and breast cancer has long been recognized, and multiple preclinical studies have demonstrated that its ligand, 1,25-dihydroxyvitamin D (1,25D), modulates normal mammary gland development and inhibits growth of breast tumors in animal models. Vitamin D deficiency is common in breast cancer patients, and some evidence suggests that low vitamin D status enhances the risk for disease development or progression. Although many 1,25D-responsive targets in normal mammary cells and in breast cancers have been identified, validation of specific targets that regulate cell cycle, apoptosis, autophagy, and differentiation, particularly in vivo, has been challenging. Model systems of carcinogenesis have provided evidence that both VDR expression and 1,25D actions change with transformation, but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, the relevant VDR targets and potential sensitivity to vitamin D repletion or supplementation will likely differ between patient populations. Detailed analysis of VDR actions in specific molecular subtypes of the disease will be necessary to clarify the conflicting data. Genomic, proteomic, and metabolomic analyses of in vitro and in vivo model systems are also warranted to comprehensively understand the network of vitamin D-regulated pathways in the context of breast cancer heterogeneity. This review provides an update on recent studies spanning the spectrum of mechanistic (cell/molecular), preclinical (animal models), and translational work on the role of vitamin D in breast cancer. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- JoEllen Welsh
- Department of Environmental Health SciencesSUNY Albany Cancer Research CenterRensselaerNYUSA
| |
Collapse
|
7
|
Jimenez T, Friedman T, Vadgama J, Singh V, Tucker A, Collazo J, Sinha S, Hikim AS, Singh R, Pervin S. Nicotine Synergizes with High-Fat Diet to Induce an Anti-Inflammatory Microenvironment to Promote Breast Tumor Growth. Mediators Inflamm 2020; 2020:5239419. [PMID: 33414685 PMCID: PMC7752272 DOI: 10.1155/2020/5239419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023] Open
Abstract
Breast cancer results from a complex interplay of genetics and environment that alters immune and inflammatory systems to promote tumorigenesis. Obesity and cigarette smoking are well-known risk factors associated breast cancer development. Nicotine known to decrease inflammatory signals also modulates immune responses that favor breast cancer development. However, the mechanisms by which nicotine and obesity contribute to breast cancer remain poorly understood. In this study, we examined potential mechanisms by which nicotine (NIC) and high-fat diet (HFD) promote growth of HCC70 and HCC1806 xenografts from African American (AA) triple negative (TN) breast cancer cells. Immunodeficient mice fed on HFD and treated with NIC generated larger HCC70 and HCC1806 tumors when compared to NIC or HFD alone. Increased xenograft growth in the presence of NIC and HFD was accompanied by higher levels of tissue-resident macrophage markers and anti-inflammatory cytokines including IL4, IL13, and IL10. We further validated the involvement of these players by in vitro and ex vivo experiments. We found a proinflammatory milieu with increased expression of IL6 and IL12 in xenografts with HFD. In addition, nicotine or nicotine plus HFD increased a subset of mammary cancer stem cells (MCSCs) and key adipose browning markers CD137 and TMEM26. Interestingly, there was upregulation of stress-induced pp38 MAPK and pERK1/2 in xenografts exposed to HFD alone or nicotine plus HFD. Scratch-wound assay showed marked reduction in proliferation/migration of nicotine and palmitate-treated breast cancer cells with mecamylamine (MEC), a nicotine acetylcholine receptor (nAchR) antagonist. Furthermore, xenograft development in immune-deficient mice, fed HFD plus nicotine, was reduced upon cotreatment with MEC and SB 203580, a pp38MAPK inhibitor. Our study demonstrates the presence of nicotine and HFD in facilitating an anti-inflammatory tumor microenvironment that influences breast tumor growth. This study also shows potential efficacy of combination therapy in obese breast cancer patients who smoke.
Collapse
Affiliation(s)
- Thalia Jimenez
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Theodore Friedman
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Vineeta Singh
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Alexandria Tucker
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Javier Collazo
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Satyesh Sinha
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Amiya Sinha Hikim
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rajan Singh
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Shehla Pervin
- Division of Endocrinology and Metabolism, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
9
|
Ji MT, Nie J, Nie XF, Hu WT, Pei HL, Wan JM, Wang AQ, Zhou GM, Zhang ZL, Chang L, Li BY. 1α,25(OH) 2D 3 Radiosensitizes Cancer Cells by Activating the NADPH/ROS Pathway. Front Pharmacol 2020; 11:945. [PMID: 32848720 PMCID: PMC7426479 DOI: 10.3389/fphar.2020.00945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The radioresistance of tumors affect the outcome of radiotherapy. Accumulating data suggest that 1α,25(OH)2D3 is a potential anti-oncogenic molecule in various cancers. In the present study, we investigated the radiosensitive effects and underlying mechanisms of 1α,25(OH)2D3 in vitro and in vivo. We found that 1α,25(OH)2D3 enhanced the radiosensitivity of lung cancer and ovarian cancer cells by promoting the NADPH oxidase-ROS-apoptosis axis. Compared to the group that only received radiation, the survival fraction and self-renewal capacity of cancer cells treated with a combination of 1α,25(OH)2D3 and radiation were decreased. Both apoptosis and ROS were significantly increased in the combination group compared with the radiation only group. Moreover, N-acetyl-L-cysteine, a scavenger of intracellular ROS, reversed the apoptosis and ROS induced by 1α,25(OH)2D3, indicating that 1α,25(OH)2D3 enhanced the radiosensitivity of cancer cells in vitro by promoting ROS-induced apoptosis. Moreover, our results demonstrated that 1α,25(OH)2D3 promoted the ROS level via activating NADPH oxidase complexes, NOX4, p22phox, and p47phox. In addition, knockdown of the vitamin D receptor (VDR) abolished the radiosensitization of 1α,25(OH)2D3, which confirmed that 1α,25(OH)2D3 radiosensitized tumor cells that depend on VDR. Similarly, our study also evidenced that vitamin D3 enhanced the radiosensitivity of cancer cells in vivo and extended the overall survival of mice with tumors. In summary, these results demonstrate that 1α,25(OH)2D3 enhances the radiosensitivity depending on VDR and activates the NADPH oxidase-ROS-apoptosis axis. Our findings suggest that 1α,25(OH)2D3 in combination with radiation enhances lung and ovarian cell radiosensitivity, potentially providing a novel combination therapeutic strategy.
Collapse
Affiliation(s)
- Min-Tao Ji
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xue-Fei Nie
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Wen-Tao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Hai-Long Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jian-Mei Wan
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Ai-Qing Wang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Guang-Ming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zeng-Li Zhang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bing-Yan Li
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| |
Collapse
|
10
|
Role of vitamin D 3 in selected malignant neoplasms. Nutrition 2020; 79-80:110964. [PMID: 32877827 DOI: 10.1016/j.nut.2020.110964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D3 is a fat-soluble essential nutrient that affects multiple biologic functions in the organism through calcitriol and the vitamin D3 receptor. This review article focuses on the results of studies on the relationship between the level of vitamin D3 and cancer incidence or mortality, but also on the anticancer properties of vitamin D3 that support its significant role in the prevention, clinical course, and overall survival rates of selected cancers (colorectal, prostate, breast, ovarian, endometrial, bladder, and malignant melanoma). The mechanisms of vitamin D3 action involve, among others, polymorphism of vitamin D3 receptor, cell cycle, caspases, and cancer stem cells. The level of vitamin D3 has been also demonstrated to serve as a biomarker in some cancers, and high levels of vitamin D3 can be conducive to successful cancer therapy.
Collapse
|
11
|
Negri M, Gentile A, de Angelis C, Montò T, Patalano R, Colao A, Pivonello R, Pivonello C. Vitamin D-Induced Molecular Mechanisms to Potentiate Cancer Therapy and to Reverse Drug-Resistance in Cancer Cells. Nutrients 2020; 12:nu12061798. [PMID: 32560347 PMCID: PMC7353389 DOI: 10.3390/nu12061798] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing interest in studying the role of vitamin D in cancer has been provided by the scientific literature during the last years, although mixed results have been reported. Vitamin D deficiency has been largely associated with various types of solid and non-solid human cancers, and the almost ubiquitous expression of vitamin D receptor (VDR) has always led to suppose a crucial role of vitamin D in cancer. However, the association between vitamin D levels and the risk of solid cancers, such as colorectal, prostate and breast cancer, shows several conflicting results that raise questions about the use of vitamin D supplements in cancer patients. Moreover, studies on vitamin D supplementation do not always show improvements in tumor progression and mortality risk, particularly for prostate and breast cancer. Conversely, several molecular studies are in agreement about the role of vitamin D in inhibiting tumor cell proliferation, growth and invasiveness, cell cycle arrest and inflammatory signaling, through which vitamin D may also regulate cancer microenvironment through the activation of different molecular pathways. More recently, a role in the regulation of cancer stem cells proliferation and short non-coding microRNA (miRNAs) expression has emerged, conferring to vitamin D a more crucial role in cancer development and progression. Interestingly, it has been shown that vitamin D is able not only to potentiate the effects of traditional cancer therapy but can even contribute to overcome the molecular mechanisms of drug resistance—often triggering tumor-spreading. At this regard, vitamin D can act at various levels through the regulation of growth of cancer stem cells and the epithelial–mesenchymal transition (EMT), as well as through the modulation of miRNA gene expression. The current review reconsiders epidemiological and molecular literature concerning the role of vitamin D in cancer risk and tumor development and progression, as well as the action of vitamin D supplementation in potentiating the effects of drug therapy and overcoming the mechanisms of resistance often triggered during cancer therapies, by critically addressing strengths and weaknesses of available data from 2010 to 2020.
Collapse
Affiliation(s)
- Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Annalisa Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Tatiana Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Dipartimento di Sanità Pubblica, Università Federico II di Napoli, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Correspondence:
| |
Collapse
|
12
|
Abdel-Mohsen MA, Abo Deif SM, Abou-Shamaa LA. IL-6 Impairs the Activity of Vitamin D3 in the Regulation of Epithelial-Mesenchymal Transition in Triple Negative Breast Cancer. Asian Pac J Cancer Prev 2019; 20:2267-2273. [PMID: 31450894 PMCID: PMC6852800 DOI: 10.31557/apjcp.2019.20.8.2267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 01/08/2023] Open
Abstract
Objective: The present study aimed to investigate the possible role of IL-6 and 1α,25-dihydroxyvitamin D3 (1,25D) signaling in epithelial-mesenchymal transition (EMT) and stemness in triple-negative breast cancer (TNBC) cell line. Methods: TNBC cell line, HCC 1806, was treated with IL-6 and 1,25D for three and six days. Also, the role of vitamin D receptor (VDR) was studied by transfection of TNBC cell line with VDR gene and transfection efficiency was assessed using Human VDR enzyme-linked immunosorbent assay (ELISA). Changes in E-cadherin gene expression were analyzed by quantitative real-time PCR (qRT-PCR). Also, changes in CD44+ cells were analyzed by flow cytometry. Finally, morphological changes were investigated by light microscopy after 6 days. Results: Treatment of HCC1806 cells with IL-6 has no significant effect either on E-cadherin gene expression or CD44+ cells, (p > 0.05). However, E-cadherin gene expression was significantly up-regulated after treatment with 1,25D for 6 days, (p < 0.05). Also, CD44+ cells were significantly reduced after treatment with 1,25D either for 3 or 6 days, (p < 0.05). Transfection of TNBC cell line with VDR gene significantly up-regulated VDR protein expression, (p < 0.05). In addition, overexpression of VDR in TNBC cells and treatment with 1,25D significantly up-regulated E-cadherin gene expression, (p < 0.05) and reduced CD44+ cells, (p < 0.05). Moreover, transfection with VDR and treatment with a combination of 1,25D and IL-6 significantly down-regulated E-cadherin gene expression and increased CD44+ cells compared with transfected cells with VDR treated with 1,25D alone, (p < 0.05). No significant morphological changes were observed in treated cells, 6 days post-treatment. Conclusion: The presence of IL-6 in the breast tumor microenvironment may impair the activity of vitamin D3 signaling, limiting its anti-tumor effects in TNBC.
Collapse
Affiliation(s)
- Mohamed A Abdel-Mohsen
- Department of Applied Medical Chemistry, Medical Research Institute, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt.
| | - Samar M Abo Deif
- Department of Applied Medical Chemistry, Medical Research Institute, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt.
| | - Lobna A Abou-Shamaa
- Department of Immunology and Allergy, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt
| |
Collapse
|
13
|
Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm Sin B 2019; 9:203-219. [PMID: 30972274 PMCID: PMC6437556 DOI: 10.1016/j.apsb.2018.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor cells along with a small proportion of cancer stem cells exist in a stromal microenvironment consisting of vasculature, cancer-associated fibroblasts, immune cells and extracellular components. Recent epidemiological and clinical studies strongly support that vitamin D supplementation is associated with reduced cancer risk and favorable prognosis. Experimental results suggest that vitamin D not only suppresses cancer cells, but also regulates tumor microenvironment to facilitate tumor repression. In this review, we have outlined the current knowledge on epidemiological studies and clinical trials of vitamin D. Notably, we summarized and discussed the anticancer action of vitamin D in cancer cells, cancer stem cells and stroma cells in tumor microenvironment, providing a better understanding of the role of vitamin D in cancer. We presently re-propose vitamin D to be a novel and economical anticancer agent.
Collapse
Key Words
- 1,25(OH)2D3, 1α,25-dihydroxyvitamin D3
- 1α,25-Dihydroxyvitamin D3
- 25(OH)D, 25-hydroxyvitamin D
- CAF, cancer-associated fibroblast
- CRC, colorectal cancer
- CSC, cancer stem cell
- Cancer stem cell
- Cancer-associated fibroblast
- DBP/GC, vitamin D-binding protein
- ESCC, esophageal squamous cell carcinoma
- GI, gastrointestinal
- NSCLC, non-small cell lung cancer
- PC, pancreatic adenocarcinoma
- PG, prostaglandin
- PSC, pancreatic stellate cells
- TDEC, tumor derived endothelial cell
- TIC, tumor initiating cell
- TIL, tumor-infiltrating lymphocyte
- TME, tumor microenvironment
- Tumor microenvironment
- Tumor-derived endothelial cell
- Tumor-infiltrating lymphocyte
- VDR, vitamin D receptor
- VDRE, VDR element
- VEGF, vascular endothelial growth factor
- Vitamin D
Collapse
|
14
|
Pérez-Treviño P, la Cerda HHD, Pérez-Treviño J, Fajardo-Ramírez OR, García N, Altamirano J. 3D Imaging Detection of HER2 Based in the Use of Novel Affibody-Quantum Dots Probes and Ratiometric Analysis. Transl Oncol 2018; 11:672-685. [PMID: 29627705 PMCID: PMC6053773 DOI: 10.1016/j.tranon.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with breast cancer (BC) overexpressing HER2 (HER2+) are selected for Trastuzumab treatment, which blocks HER2 and improves cancer prognosis. However, HER2+ diagnosis, by the gold standard, immunohistochemistry, could lead to errors, associated to: a) variability in sample manipulation (thin 2D sections), b) use of subjective algorithms, and c) heterogeneity of HER2 expression within the tissue. Therefore, we explored HER2 3D detection by multiplexed imaging of Affibody-Quantum Dots conjugates (Aff-QD), ratiometric analysis (RMAFI) and thresholding, using BC multicellular tumor spheroids (BC-MTS) (~120 μm of diameter) as 3D model of BC. HER2+, HER2- and hybrid HER2+/- BC-MTS (mimicking heterogeneous tissue) were incubated simultaneously with two Aff-QD probes (anti-HER2 and negative control (NC), respectively, (1:1)). Confocal XY sections were recorded along the Z distance, and processed by automatized RMAFI (anti-HER2 Aff-QD/ NC). Quantifying the NC fluorescence allowed to predict the fraction of non-specific accumulation of the anti-HER2 probe within the thick sample, and resolve the specific HER2 level. HER2 was detected up to 30μm within intact BC-MTS, however, permeabilization improved detection up to 70μm. Specific HER2 signal was objectively quantified, and HER2 3D-density of 9.2, 48.3 and 30.8% were obtained in HER2-, HER2+ and hybrid HER2+/- permeabilized BC-MTS, respectively. Therefore, by combining the multiplexing capacity of Aff-QD probes and RMAFI, we overcame the challenge of non-specific probe accumulation in 3D samples with minimal processing, yielding a fast, specific spatial HER2 detection and objective quantification.
Collapse
Affiliation(s)
- Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710
| | | | - Jorge Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710
| | - Oscar Raúl Fajardo-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710
| | - Noemí García
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710.
| |
Collapse
|
15
|
Hahn JM, Supp DM. Abnormal expression of the vitamin D receptor in keloid scars. Burns 2017; 43:1506-1515. [PMID: 28778755 DOI: 10.1016/j.burns.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
Abstract
Keloids are abnormal fibroproliferative scars that pose a significant challenge to patients and clinicians. The molecular basis for keloid formation remains incompletely understood, and currently no universally effective treatments exist. It is well recognized that keloids are more prevalent in populations with darkly pigmented skin, such as African Americans, but the basis for the link between skin color and keloid risk is not known. Pigmentation reduces vitamin D production in the skin. Because most of the body's vitamin D is produced in the skin, rates of vitamin D deficiency are higher in populations with darker skin pigmentation. In addition to regulation of calcium homeostasis, vitamin D plays important roles in cell proliferation, differentiation, cancer progression, inflammation, and fibrosis. The activities of vitamin D are dependent on the vitamin D receptor (VDR), a member of the steroid nuclear receptor superfamily. The ligand-bound VDR acts as a transcription factor; thus, nuclear localization is required for ligand-dependent regulation of target gene expression. The current study investigated expression and nuclear localization of VDR in keloid scars (N=24) and biopsies of normal skin (N=24). Immunohistochemistry with two different antibodies demonstrated reduced VDR protein levels in a majority of keloid scars. Further, the percentage of epidermal cells displaying nuclear VDR localization was significantly lower in keloid scars compared with normal skin samples. Interestingly, analysis of VDR-positive nuclei among different normal skin samples showed a significant reduction in nuclear localization in epidermis of black donors compared with white donors. The results suggest that VDR may play a role in keloid pathology, and hint at a possible role for VDR in the increased susceptibility to keloid scarring in individuals with darkly pigmented skin.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA
| | - Dorothy M Supp
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA; Division of Plastic, Reconstructive and Hand Surgery/Burn Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Liao TT, Yang MH. Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Mol Oncol 2017. [PMID: 28649800 PMCID: PMC5496497 DOI: 10.1002/1878-0261.12096] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial‐mesenchymal transition (EMT) is an important process in embryonic development, fibrosis, and cancer metastasis. During cancer progression, the activation of EMT permits cancer cells to acquire migratory, invasive, and stem‐like properties. A growing body of evidence supports the critical link between EMT and cancer stemness. However, contradictory results have indicated that the inhibition of EMT also promotes cancer stemness, and that mesenchymal‐epithelial transition, the reverse process of EMT, is associated with the tumor‐initiating ability required for metastatic colonization. The concept of ‘intermediate‐state EMT’ provides a possible explanation for this conflicting evidence. In addition, recent studies have indicated that the appearance of ‘hybrid’ epithelial‐mesenchymal cells is favorable for the establishment of metastasis. In summary, dynamic changes or plasticity between the epithelial and the mesenchymal states rather than a fixed phenotype is more likely to occur in tumors in the clinical setting. Further studies aimed at validating and consolidating the concept of intermediate‐state EMT and hybrid tumors are needed for the establishment of a comprehensive profile of cancer metastasis.
Collapse
Affiliation(s)
- Tsai-Tsen Liao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taiwan
| |
Collapse
|
17
|
La Marra F, Stinco G, Buligan C, Chiriacò G, Serraino D, Di Loreto C, Cauci S. Immunohistochemical evaluation of vitamin D receptor (VDR) expression in cutaneous melanoma tissues and four VDR gene polymorphisms. Cancer Biol Med 2017; 14:162-175. [PMID: 28607807 PMCID: PMC5444928 DOI: 10.20892/j.issn.2095-3941.2017.0020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective : Vitamin D receptor (VDR) mediates vitamin D activity. We examined whether VDR expression in excised melanoma tissues is associated with VDR gene (VDR) polymorphisms.
Methods : We evaluated VDR protein expression (by monoclonal antibody immunostaining), melanoma characteristics, and carriage of VDR-FokI-rs2228570 (C>T),VDR-BsmI-rs1544410 (G>A),VDR-ApaI-rs7975232 (T>G), andVDR-TaqI-rs731236 (T>C) polymorphisms (by restriction fragment length polymorphism). Absence or presence of restriction site was denoted by a capital or lower letter, respectively: " F” and " f” for FokI, " B” and " b” for BsmI, " A” and " a” for ApaI, and " T” and " t” for TaqI endonuclease. Seventy-four Italian cutaneous primary melanomas (52.1±12.7 years old) were studied; 51.4% were stage I, 21.6% stage II, 13.5% stage III, and 13.5% stage IV melanomas. VDR expression was categorized as follows: 100% positivevs. <100%; over the median 20% (high VDR expression) vs. ≤20% (low VDR expression); absence vs. presence of VDR-expressing cells.
Results : Stage I melanomas, Breslow thickness of <1.00 mm, level II Clark invasion, Aa heterozygous genotype, and AaTT combined genotype were more frequent in melanomas with high vs. low VDR expression. Combined genotypes BbAA, bbAa, AATt, BbAATt, and bbAaTT were more frequent in 100% vs. <100% VDR-expressing cells. Combined genotype AATT was more frequent in melanomas lacking VDR expression (odds ratio=14.5; P=0.025). VDR expression was not associated with metastasis, ulceration, mitosis >1, regression, tumor-infiltrating lymphocytes, tumoral infiltration of vascular tissues, additional skin and non-skin cancers, and melanoma familiarity.
Conclusions : We highlighted that VDR polymorphisms can affect VDR expression in excised melanoma cells. Low VDR expression in AATT carriers is a new finding that merits further study. VDR expression possibly poses implications for vitamin D supplementation against melanoma. VDR expression and VDR genotype may become precise medicinal tools for melanoma in the future.
Collapse
Affiliation(s)
- Francesco La Marra
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| | - Giuseppe Stinco
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy.,Dermatology Clinic, Udine University-Hospital, University of Udine, Udine 33100, Italy
| | - Cinzia Buligan
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy.,Dermatology Clinic, Udine University-Hospital, University of Udine, Udine 33100, Italy
| | - Giovanni Chiriacò
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| | - Diego Serraino
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| | - Carla Di Loreto
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| | - Sabina Cauci
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| |
Collapse
|
18
|
Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer 2016; 16:559. [PMID: 27473585 PMCID: PMC4966744 DOI: 10.1186/s12885-016-2547-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer is a complex heterogeneous disease where many distinct subtypes are found. Younger African American (AA) women often present themselves with aggressive form of breast cancer with unique biology which is very difficult to treat. Better understanding the biology of AA breast tumors could lead to development of effective treatment strategies. Our previous studies indicate that AA but not Caucasian (CA) triple negative (TN) breast cancer cells were sensitive to nitrosative stress-induced cell death. In this study, we elucidate possible mechanisms that contribute to nitric oxide (NO)-induced apoptosis in AA TN breast cancer cells. Methods Breast cancer cells were treated with various concentrations of long-acting NO donor, DETA-NONOate and cell viability was determined by trypan blue exclusion assay. Apoptosis was determined by TUNEL and caspase 3 activity as well as changes in mitochondrial membrane potential. Caspase 3 and Bax cleavage, levels of Cu/Zn superoxide dismutase (SOD) and Mn SOD was assessed by immunoblot analysis. Inhibition of Bax cleavage by Calpain inhibitor, and levels of reactive oxygen species (ROS) as well as SOD activity was measured in NO-induced apoptosis. In vitro and in vivo effect of NO treatment on mammary cancer stem cells (MCSCs) was assessed. Results and discussion NO induced mitocondria-mediated apoptosis in all AA but not in CA TN breast cancer cells. We found significant TUNEL-positive cells, cleavage of Bax and caspase-3 activation as well as depolarization mitochondrial membrane potential only in AA TN breast cancer cells exposed to NO. Inhibition of Bax cleavage and quenching of ROS partially inhibited NO-induced apoptosis in AA TN cells. Increase in ROS coincided with reduction in SOD activity in AA TN breast cancer cells. Furthermore, NO treatment of AA TN breast cancer cells dramatically reduced aldehyde dehydrogenase1 (ALDH1) expressing MCSCs and xenograft formation but not in breast cancer cells from CA origin. Conclusions Ethnic differences in breast tumors dictate a need for tailoring treatment options more suited to the unique biology of the disease.
Collapse
Affiliation(s)
- Luis Martinez
- California State University, Dominguez Hills, Los Angeles, CA, USA
| | - Easter Thames
- Columbia University New York, New York, NY, 10027, USA
| | - Jinna Kim
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, 90095, USA
| | - Rajan Singh
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, 90095, USA
| | - Shehla Pervin
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, 90095, USA. .,Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA, 90059, USA.
| |
Collapse
|
19
|
Al-Azhri J, Zhang Y, Bshara W, Zirpoli G, McCann SE, Khoury T, Morrison CD, Edge SB, Ambrosone CB, Yao S. Tumor Expression of Vitamin D Receptor and Breast Cancer Histopathological Characteristics and Prognosis. Clin Cancer Res 2016; 23:97-103. [PMID: 27407090 DOI: 10.1158/1078-0432.ccr-16-0075] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Our previous work has shown low serum 25-hydroxyvitamin D concentrations in association with aggressive breast cancer subtypes. Vitamin D receptor (VDR) is central for vitamin D-mediated transcription regulation. Few studies have examined breast VDR expression with tumor characteristics or patient survival. EXPERIMENTAL DESIGN VDR expression in breast tumor tissue microarrays was determined by immunohistochemistry in 1,114 female patients as low, moderate, and strong expression based on an immunoreactive score, and examined with histopathologic tumor characteristics and survival outcomes including progression-free survival, breast cancer-specific survival, and overall survival. RESULTS A majority (58%) of breast tumors showed moderate or strong VDR expression. VDR expression was inversely related to aggressive tumor characteristics, including large tumor size, hormonal receptor (HR) negativity, and triple-negative subtype (P < 0.05). In addition, VDR expression was also inversely related to Ki-67 expression among patients older than 50 years. Nevertheless, VDR expression was not associated with any patient survival outcomes examined. CONCLUSIONS In a large patient population, VDR expression is inversely associated with more aggressive breast cancer, but not with breast cancer survival outcomes. The present findings of VDR expression are consistent with our previous results of circulating vitamin D biomarkers, which provide two converging lines of evidence supporting the putative benefits of vitamin D against aggressive breast cancer. Because of the observational nature of our analyses, future studies are warranted to establish the causality of the reported associations. Clin Cancer Res; 23(1); 97-103. ©2016 AACR.
Collapse
Affiliation(s)
- Jamila Al-Azhri
- Department of Surgery, King Fahad Specialist Hospital, Dammam, Saudi Arabia.,Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Yali Zhang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Wiam Bshara
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Gary Zirpoli
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Susan E McCann
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Thaer Khoury
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Carl D Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Stephen B Edge
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
20
|
Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat 2016; 157:77-90. [PMID: 27120467 PMCID: PMC4869778 DOI: 10.1007/s10549-016-3807-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
Anti-estrogen and anti-HER2 treatments have been among the first and most successful examples of targeted therapy for breast cancer (BC). However, the treatment of triple-negative BC (TNBC) that lack estrogen receptor expression or HER2 amplification remains a major challenge. We previously discovered that approximately two-thirds of TNBCs express vitamin D receptor (VDR) and/or androgen receptor (AR) and hypothesized that TNBCs co-expressing AR and VDR (HR2-av TNBC) could be treated by targeting both of these hormone receptors. To evaluate the feasibility of VDR/AR-targeted therapy in TNBC, we characterized 15 different BC lines and identified 2 HR2-av TNBC lines and examined the changes in their phenotype, viability, and proliferation after VDR and AR-targeted treatment. Treatment of BC cell lines with VDR or AR agonists inhibited cell viability in a receptor-dependent manner, and their combination appeared to inhibit cell viability additively. Moreover, cell viability was further decreased when AR/VDR agonist hormones were combined with chemotherapeutic drugs. The mechanisms of inhibition by AR/VDR agonist hormones included cell cycle arrest and apoptosis in TNBC cell lines. In addition, AR/VDR agonist hormones induced differentiation and inhibited cancer stem cells (CSCs) measured by reduction in tumorsphere formation efficiency, high aldehyde dehydrogenase activity, and CSC markers. Surprisingly, we found that AR antagonists inhibited proliferation of most BC cell lines in an AR-independent manner, raising questions regarding their mechanism of action. In summary, AR/VDR-targeted agonist hormone therapy can inhibit HR2-av TNBC through multiple mechanisms in a receptor-dependent manner and can be combined with chemotherapy.
Collapse
Affiliation(s)
- A Thakkar
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, FL, USA
| | - B Wang
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Picon-Ruiz
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - P Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Tan A Ince
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- , Biomedical Research Building, Room 926, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
21
|
Papi A, Orlandi M. Role of nuclear receptors in breast cancer stem cells. World J Stem Cells 2016; 8:62-72. [PMID: 27022437 PMCID: PMC4807310 DOI: 10.4252/wjsc.v8.i3.62] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.
Collapse
Affiliation(s)
- Alessio Papi
- Alessio Papi, Marina Orlandi, Department of Biological, Geological and Environmental Science (BiGea), University of Bologna, 40126 Bologna, Italy
| | - Marina Orlandi
- Alessio Papi, Marina Orlandi, Department of Biological, Geological and Environmental Science (BiGea), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
22
|
Vitamin D and the Epithelial to Mesenchymal Transition. Stem Cells Int 2016; 2016:6213872. [PMID: 26880977 PMCID: PMC4736588 DOI: 10.1155/2016/6213872] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022] Open
Abstract
Several studies support reciprocal regulation between the active vitamin D derivative 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the epithelial to mesenchymal transition (EMT). Thus, 1,25(OH)2D3 inhibits EMT via the induction of a variety of target genes that encode cell adhesion and polarity proteins responsible for the epithelial phenotype and through the repression of key EMT inducers. Both direct and indirect regulatory mechanisms mediate these effects. Conversely, certain master EMT inducers inhibit 1,25(OH)2D3 action by repressing the transcription of VDR gene encoding the high affinity vitamin D receptor that mediates 1,25(OH)2D3 effects. Consequently, the balance between the strength of 1,25(OH)2D3 signaling and the induction of EMT defines the cellular phenotype in each context. Here we review the current understanding of the genes and mechanisms involved in the interplay between 1,25(OH)2D3 and EMT.
Collapse
|
23
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1190] [Impact Index Per Article: 132.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Yao S, Haddad SA, Hu Q, Liu S, Lunetta KL, Ruiz-Narvaez EA, Hong CC, Zhu Q, Sucheston-Campbell L, Cheng TYD, Bensen JT, Johnson CS, Trump DL, Haiman CA, Olshan AF, Palmer JR, Ambrosone CB. Genetic variations in vitamin D-related pathways and breast cancer risk in African American women in the AMBER consortium. Int J Cancer 2015; 138:2118-26. [PMID: 26650177 DOI: 10.1002/ijc.29954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
Studies of genetic variations in vitamin D-related pathways and breast cancer risk have been conducted mostly in populations of European ancestry, and only sparsely in African Americans (AA), who are known for a high prevalence of vitamin D deficiency. We analyzed 24,445 germline variants in 63 genes from vitamin D-related pathways in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium, including 3,663 breast cancer cases and 4,687 controls. Odds ratios (OR) were derived from logistic regression models for overall breast cancer, by estrogen receptor (ER) status (1,983 ER positive and 1,098 ER negative), and for case-only analyses of ER status. None of the three vitamin D-related pathways were associated with breast cancer risk overall or by ER status. Gene-level analyses identified associations with risk for several genes at a nominal p ≤ 0.05, particularly for ER- breast cancer, including rs4647707 in DDB2. In case-only analyses, vitamin D metabolism and signaling pathways were associated with ER- cancer (pathway-level p = 0.02), driven by a single gene CASR (gene-level p = 0.001). The top SNP in CASR was rs112594756 (p = 7 × 10(-5), gene-wide corrected p = 0.01), followed by a second signal from a nearby SNP rs6799828 (p = 1 × 10(-4), corrected p = 0.03). In summary, several variants in vitamin D pathways were associated with breast cancer risk in AA women. In addition, CASR may be related to tumor ER status, supporting a role of vitamin D or calcium in modifying breast cancer phenotypes.
Collapse
Affiliation(s)
- Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | | | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | | | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY
| | | | - Ting-Yuan David Cheng
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Candace S Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY
| | | | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| |
Collapse
|
25
|
Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury. Sci Rep 2015; 5:18687. [PMID: 26691774 PMCID: PMC4686931 DOI: 10.1038/srep18687] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/23/2015] [Indexed: 01/19/2023] Open
Abstract
Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury.
Collapse
|
26
|
Singh R, Parveen M, Basgen JM, Fazel S, Meshesha MF, Thames EC, Moore B, Martinez L, Howard CB, Vergnes L, Reue K, Pervin S. Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Mol Cancer Res 2015; 14:78-92. [PMID: 26464213 DOI: 10.1158/1541-7786.mcr-15-0151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/30/2015] [Indexed: 12/28/2022]
Abstract
UNLABELLED The initiation and progression of breast cancer is a complex process that is influenced by heterogeneous cell populations within the tumor microenvironment. Although adipocytes have been shown to promote breast cancer development, adipocyte characteristics involved in this process remain poorly understood. In this study, we demonstrate enrichment of beige/brown adipose markers, contributed from the host as well as tumor cells, in the xenografts from breast cancer cell lines. In addition to uncoupling protein-1 (UCP1) that is exclusively expressed in beige/brown adipocytes, gene expression for classical brown (MYF5, EVA1, and OPLAH) as well as beige (CD137/TNFRSF9 and TBX1) adipocyte markers was also elevated in the xenografts. Enrichment of beige/brown characteristics in the xenografts was independent of the site of implantation of the breast tumor cells. Early stages of xenografts showed an expansion of a subset of mammary cancer stem cells that expressed PRDM16, a master regulator of brown adipocyte differentiation. Depletion of UCP1(+) or Myf5(+) cells significantly reduced tumor development. There was increased COX2 (MT-CO2) expression, which is known to stimulate formation of beige adipocytes in early xenografts and treatment with a COX2 inhibitor (SC236) reduced tumor growth. In contrast, treatment with factors that induce brown adipocyte differentiation in vitro led to larger tumors in vivo. A panel of xenografts derived from established breast tumor cells as well as patient tumor tissues were generated that expressed key brown adipose tissue-related markers and contained cells that morphologically resembled brown adipocytes. IMPLICATIONS This is the first report demonstrating that beige/brown adipocyte characteristics could play an important role in breast tumor development and suggest a potential target for therapeutic drug design.
Collapse
Affiliation(s)
- Rajan Singh
- Charles R. Drew University of Medicine and Science, Los Angeles, California. Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Meher Parveen
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - John M Basgen
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Sayeda Fazel
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Meron F Meshesha
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | | | - Brandis Moore
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Luis Martinez
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | | | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shehla Pervin
- Charles R. Drew University of Medicine and Science, Los Angeles, California. Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.
| |
Collapse
|
27
|
Chen YH, Yu Z, Fu L, Wang H, Chen X, Zhang C, Lv ZM, Xu DX. Vitamin D3 inhibits lipopolysaccharide-induced placental inflammation through reinforcing interaction between vitamin D receptor and nuclear factor kappa B p65 subunit. Sci Rep 2015; 5:10871. [PMID: 26065916 PMCID: PMC4464284 DOI: 10.1038/srep10871] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/01/2015] [Indexed: 01/14/2023] Open
Abstract
It is increasingly recognized that vitamin D3 (VitD3) has an anti-inflammatory activity. The present study investigated the effects of maternal VitD3 supplementation during pregnancy on LPS-induced placental inflammation and fetal intrauterine growth restriction (IUGR). All pregnant mice except controls were intraperitoneally injected with LPS (100 μg/kg) daily from gestational day (GD)15–17. In VitD3 + LPS group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, maternal LPS exposure caused placental inflammation and fetal IUGR. Interestingly, pretreatment with VitD3 repressed placental inflammation and protected against LPS-induced fetal IUGR. Further analysis showed that pretreatment with VitD3, which activated placental vitamin D receptor (VDR) signaling, specifically suppressed LPS-induced activation of nuclear factor kappa B (NF-κB) and significantly blocked nuclear translocation of NF-κB p65 subunit in trophoblast gaint cells of the labyrinth layer. Conversely, LPS, which activated placental NF-κB signaling, suppressed placental VDR activation and its target gene expression. Moreover, VitD3 reinforced physical interaction between placental VDR and NF-κB p65 subunit. The further study demonstrates that VitD3 inhibits placental NF-κB signaling in VDR-dependent manner. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity. Overall, the present study provides evidence for roles of VDR as a key regulator of placental inflammation.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China [3] School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China
| | - Lin Fu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China
| | - Xue Chen
- School of Public Health, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China
| | - Zheng-Mei Lv
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Jeong Y, Swami S, Krishnan AV, Williams JD, Martin S, Horst RL, Albertelli MA, Feldman BJ, Feldman D, Diehn M. Inhibition of Mouse Breast Tumor-Initiating Cells by Calcitriol and Dietary Vitamin D. Mol Cancer Ther 2015; 14:1951-61. [PMID: 25934710 DOI: 10.1158/1535-7163.mct-15-0066] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/28/2015] [Indexed: 12/29/2022]
Abstract
The anticancer actions of vitamin D and its hormonally active form, calcitriol, have been extensively documented in clinical and preclinical studies. However, the mechanisms underlying these actions have not been completely elucidated. Here, we examined the effect of dietary vitamin D and calcitriol on mouse breast tumor-initiating cells (TICs, also known as cancer stem cells). We focused on MMTV-Wnt1 mammary tumors, for which markers for isolating TICs have previously been validated. We confirmed that these tumors expressed functional vitamin D receptors and estrogen receptors (ER) and exhibited calcitriol-induced molecular responses including ER downregulation. Following orthotopic implantation of MMTV-Wnt1 mammary tumor cells into mice, calcitriol injections or a vitamin D-supplemented diet caused a striking delay in tumor appearance and growth, whereas a vitamin D-deficient diet accelerated tumor appearance and growth. Calcitriol inhibited TIC tumor spheroid formation in a dose-dependent manner in primary cultures and inhibited TIC self-renewal in secondary passages. A combination of calcitriol and ionizing radiation inhibited spheroid formation more than either treatment alone. Further, calcitriol significantly decreased TIC frequency as evaluated by in vivo limiting dilution analyses. Calcitriol inhibition of TIC spheroid formation could be overcome by the overexpression of β-catenin, suggesting that the inhibition of Wnt/β-catenin pathway is an important mechanism mediating the TIC inhibitory activity of calcitriol in this tumor model. Our findings indicate that vitamin D compounds target breast TICs reducing tumor-initiating activity. Our data also suggest that combining vitamin D compounds with standard therapies may enhance anticancer activity and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Youngtae Jeong
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Srilatha Swami
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, California
| | - Aruna V Krishnan
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, California
| | - Jasmaine D Williams
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, Stanford, California. Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Shanique Martin
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Megan A Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Brian J Feldman
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California. Department of Pediatrics/Endocrinology, Stanford University School of Medicine, Stanford, California. Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - David Feldman
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California. Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, California.
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California. Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
29
|
Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G. Vitamin D in cancer chemoprevention. PHARMACEUTICAL BIOLOGY 2015; 53:1399-1434. [PMID: 25856702 DOI: 10.3109/13880209.2014.988274] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT There is increasing evidence that Vitamin D (Vit D) and its metabolites, besides their well-known calcium-related functions, may also exert antiproliferative, pro-differentiating, and immune modulatory effects on tumor cells in vitro and may also delay tumor growth in vivo. OBJECTIVE The aim of this review is to provide fresh insight into the most recent advances on the role of Vit D and its analogues as chemopreventive drugs in cancer therapy. METHODS A systematic review of experimental and clinical studies on Vit D and cancer was undertaken by using the major electronic health database including ISI Web of Science, Medline, PubMed, Scopus and Google Scholar. RESULTS AND CONCLUSION Experimental and clinical observations suggest that Vit D and its analogues may be effective in preventing the malignant transformation and/or the progression of various types of human tumors including breast cancer, prostate cancer, colorectal cancer, and some hematological malignances. These findings suggest the possibility of the clinical use of these molecules as novel potential chemopreventive and anticancer agents.
Collapse
|
30
|
Grimm M, Cetindis M, Biegner T, Lehman M, Munz A, Teriete P, Reinert S. Serum vitamin D levels of patients with oral squamous cell carcinoma (OSCC) and expression of vitamin D receptor in oral precancerous lesions and OSCC. Med Oral Patol Oral Cir Bucal 2015; 20:e188-95. [PMID: 25662556 PMCID: PMC4393981 DOI: 10.4317/medoral.20368] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/09/2014] [Indexed: 01/06/2023] Open
Abstract
Background: Resistance to programmed cell death (apoptosis) is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Vitamin D (calcitriol) may overcome apoptosis resistance in tumor cells of OSCC. Vitamin D receptor (VDR) expression in oral precancerous lesions of OSCC has not been analyzed and serum vitamin D level seems to be a predictor of cancer development.
Material and Methods: Expression of VDR was analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen (n=42) by immunohistochemistry (IHC). Moreover, serum vitamin D levels were measured by 25(OH)D3 (calcidiol) in patients with OSCC (n=42) and correlated with IHC results.
Results: Expression of VDR was significantly increased in precancerous and OSCC compared with normal tissue. Compared with SIN I-III lesions VDR expression significantly decreased in OSCC. Severe vitamin D deficiency was detected in our OSCC patient cohort but there was no significant correlation analyzed between serum vitamin D levels and corresponding immunohistochemically detected VDR expression in OSCC.
Conclusions: Our survey provides the first evidence of VDR expression in precancerous lesions of OSCC. Apoptosis induction of VDR+ cells in oral precancerous lesions and OSCC by natural vitamin D or synthetic vitamin D compounds could be useful for chemoprevention. Moreover, systemically and/or locally applied, these compounds may act as sensitizers for apoptosis mediated by radio-, and chemotherapy treatment in OSCC.
Key words:Oral cancer, oral precancer, lichen planus, leukoplakia, apoptosis, serum 25(OH)D3, vitamin D receptor, chemoprevention, multistep carcinogenesis.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, 72076, Tuebingen, Germany,
| | | | | | | | | | | | | |
Collapse
|
31
|
Pickholtz I, Saadyan S, Keshet GI, Wang VS, Cohen R, Bouwman P, Jonkers J, Byers SW, Papa MZ, Yarden RI. Cooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21waf1 promoter and growth inhibition of breast cancer cells and cancer stem-like cells. Oncotarget 2014; 5:11827-46. [PMID: 25460500 PMCID: PMC4322975 DOI: 10.18632/oncotarget.2582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/09/2014] [Indexed: 12/19/2022] Open
Abstract
Carriers of germline mutations in the BRCA1 gene have a significant increased lifetime risk for being diagnosed with breast cancer. The incomplete penetrance of BRCA1 suggests that environmental and/or genetic factors modify the risk and incidence among mutation carriers. Nutrition and particular micronutrients play a central role in modifying the phenotypic expression of a given genotype by regulating chromatin structure and gene expression. The active form of vitamin D, 1α,25-dihydroxyvitamin D3, is a potent inhibitor of breast cancer growth. Here we report that two non-calcemic analogues of 1α,25-dihydroxyvitamin D3, seocalcitol (EB1089) and QW-1624F2-2, collaborate with BRCA1 in mediating growth inhibition of breast cancer cells and breast cancer stem-like cells. EB1089 induces a G1/S phase growth arrest that coincides with induction of p21waf1 expression only in BRCA1-expressing cells. A complete knockdown of BRCA1 or p21waf1 renders the cells unresponsive to EB1089. Furthermore, we show that in the presence of ligand, BRCA1 associates with vitamin D receptor (VDR) and the complex co-occupies vitamin D responsive elements (VDRE) at the CDKN1A (p21waf1) promoter and enhances acetylation of histone H3 and H4 at these sites. Thus, BRCA1 expression is critical for mediating the biological impact of vitamin D3 in breast tumor cells.
Collapse
Affiliation(s)
- Itay Pickholtz
- Laboratory of Genomic Applications, Department of Surgical Oncology, Sheba Medical Center, Ramat-Gan 52621, Israel
- Sheba Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- Sackler school of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Saadyan
- Laboratory of Genomic Applications, Department of Surgical Oncology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Gilmor I. Keshet
- Sheba Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Victor S. Wang
- Department of Human Science, Georgetown University Medical Center, Washington DC 20057, USA
| | - Rachel Cohen
- Laboratory of Genomic Applications, Department of Surgical Oncology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Peter Bouwman
- Division of Molecular Pathology and Cancer Genomic Center, The Netherland Cancer Institute, Amsterdam 1066, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomic Center, The Netherland Cancer Institute, Amsterdam 1066, The Netherlands
| | - Stephen W. Byers
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW Washington DC 20057, USA
| | - Moshe Z. Papa
- Laboratory of Genomic Applications, Department of Surgical Oncology, Sheba Medical Center, Ramat-Gan 52621, Israel
- Sackler school of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit I. Yarden
- Laboratory of Genomic Applications, Department of Surgical Oncology, Sheba Medical Center, Ramat-Gan 52621, Israel
- Sheba Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- Department of Human Science, Georgetown University Medical Center, Washington DC 20057, USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW Washington DC 20057, USA
| |
Collapse
|
32
|
Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer 2014; 14:342-57. [PMID: 24705652 DOI: 10.1038/nrc3691] [Citation(s) in RCA: 936] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D is not really a vitamin but the precursor to the potent steroid hormone calcitriol, which has widespread actions throughout the body. Calcitriol regulates numerous cellular pathways that could have a role in determining cancer risk and prognosis. Although epidemiological and early clinical trials are inconsistent, and randomized control trials in humans do not yet exist to conclusively support a beneficial role for vitamin D, accumulating results from preclinical and some clinical studies strongly suggest that vitamin D deficiency increases the risk of developing cancer and that avoiding deficiency and adding vitamin D supplements might be an economical and safe way to reduce cancer incidence and improve cancer prognosis and outcome.
Collapse
Affiliation(s)
- David Feldman
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aruna V Krishnan
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Srilatha Swami
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Edward Giovannucci
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian J Feldman
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
33
|
Upadhyay SK, Verone A, Shoemaker S, Qin M, Liu S, Campbell M, Hershberger PA. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) Signaling Capacity and the Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer (NSCLC): Implications for Use of 1,25(OH)2D3 in NSCLC Treatment. Cancers (Basel) 2013; 5:1504-21. [PMID: 24217116 PMCID: PMC3875951 DOI: 10.3390/cancers5041504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 12/23/2022] Open
Abstract
1,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC) cells which harbor epidermal growth factor receptor (EGFR) mutations display elevated VDR expression (VDRhigh) and are vitamin D-sensitive. Conversely, those with K-ras mutations are VDRlow and vitamin D-refractory. Because EGFR mutations are found predominately in NSCLC cells with an epithelial phenotype and K-ras mutations are more common in cells with a mesenchymal phenotype, we investigated the relationship between vitamin D signaling capacity and the epithelial mesenchymal transition (EMT). Using NSCLC cell lines and publically available lung cancer cell line microarray data, we identified a relationship between VDR expression, 1,25(OH)2D3 sensitivity, and EMT phenotype. Further, we discovered that 1,25(OH)2D3 induces E-cadherin and decreases EMT-related molecules SNAIL, ZEB1, and vimentin in NSCLC cells. 1,25(OH)2D3-mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH)2D3 opposes EMT in NSCLC cells. Because EMT is associated with increased migration, invasion, and chemoresistance, our data imply that 1,25(OH)2D3 may prevent lung cancer progression in a molecularly defined subset of NSCLC patients.
Collapse
Affiliation(s)
- Santosh Kumar Upadhyay
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; E-Mails: (S.K.U.); (A.V.); (S.S.); (M.C.)
| | - Alissa Verone
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; E-Mails: (S.K.U.); (A.V.); (S.S.); (M.C.)
| | - Suzanne Shoemaker
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; E-Mails: (S.K.U.); (A.V.); (S.S.); (M.C.)
| | - Maochun Qin
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute; Elm and Carlton Streets, Buffalo, NY 14263, USA; E-Mails: (M.Q.); (S.L.)
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute; Elm and Carlton Streets, Buffalo, NY 14263, USA; E-Mails: (M.Q.); (S.L.)
| | - Moray Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; E-Mails: (S.K.U.); (A.V.); (S.S.); (M.C.)
| | - Pamela A. Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; E-Mails: (S.K.U.); (A.V.); (S.S.); (M.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-716-845-1697; Fax: +1-716-845-8857
| |
Collapse
|
34
|
Singh R, Avliyakulov NK, Braga M, Haykinson MJ, Martinez L, Singh V, Parveen M, Chaudhuri G, Pervin S. Proteomic identification of mitochondrial targets of arginase in human breast cancer. PLoS One 2013; 8:e79242. [PMID: 24223914 PMCID: PMC3818427 DOI: 10.1371/journal.pone.0079242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
We have previously reported arginase expression in human breast cancer cells and demonstrated that the inhibition of arginase by Nω hydroxy L-arginine (NOHA) in MDA-MB-468 cells induces apoptosis. However, arginase expression and its possible molecular targets in human breast tumor samples and potential clinical implications have not been fully elucidated. Here, we demonstrate arginase expression in human breast tumor samples, and several established breast cancer cell lines, in which NOHA treatment selectively inhibits cell proliferation. The over-expression of Bcl2 in MDA-MB-468 cells abolished NOHA-induced apoptosis, suggesting that the mitochondria may be the main site of NOHA’s action. We, therefore, undertook a proteomics approach to identify key mitochondrial targets of arginase in MDA-MB-468 cells. We identified 54 non-mitochondrial and 13 mitochondrial proteins that were differentially expressed in control and NOHA treated groups. Mitochondrial serine hydroxymethyltransferase (mSHMT) was identified as one of the most promising targets of arginase. Both arginase II (Arg II) and mSHMT expressions were higher in human breast tumor tissues compared to the matched normal and there was a strong correlation between Arg II and mSHMT protein expression. MDA-MB-468 xenografts had significant upregulation of Arg II expression that preceded the induction of mSHMT expression. Small inhibitory RNA (siRNA)-mediated inhibition of Arg II in MDA-MB-468 and HCC-1806 cells led to significant inhibition of both the mSHMT gene and protein expression. As mSHMT is a key player in folate metabolism, our data provides a novel link between arginine and folate metabolism in human breast cancer, both of which are critical for tumor cell proliferation.
Collapse
Affiliation(s)
- Rajan Singh
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| | - Nuraly K. Avliyakulov
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Melissa Braga
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Michael J. Haykinson
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Luis Martinez
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Vikash Singh
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Meher Parveen
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shehla Pervin
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|