1
|
Newell ME, Aravindan A, Babbrah A, Halden RU. Epigenetic Biomarkers Driven by Environmental Toxins Associated with Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis in the United States: A Systematic Review. TOXICS 2025; 13:114. [PMID: 39997929 PMCID: PMC11860158 DOI: 10.3390/toxics13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Environmental toxins and epigenetic changes have been linked to neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), and amyotrophic lateral sclerosis (ALS). This paper aimed to (i) identify environmental toxins associated with AD, PD, and ALS, (ii) locate potential industrial sources of toxins in the United States (U.S.), and (iii) assess epigenetic changes driven by exposure to toxins reported by patients. Environmental factors and epigenetic biomarkers of neurodegeneration were compiled from 69 studies in the literature using Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) and geographic information system approaches. Some 127 environmental toxins have been associated or putatively associated with AD, PD, or ALS, with four toxic metals (As, Cd, Mn, and Hg) common to all three of these neurodegenerative diseases. Environmental toxins associated with epigenetic changes (e.g., DNA methylation) in patients include air pollutants, metals, and organic chemicals (e.g., pesticides, mycotoxins, and cyanotoxins). Geographic analysis showed that study locations (e.g., U.S., Europe, and East Asia) were selected by researchers based on convenience of access rather than exposure risk and disease prevalence. We conclude that several toxins and epigenetic markers shared among neurodegenerative diseases could serve as attractive future targets guiding environmental quality improvements and aiding in early disease detection.
Collapse
Affiliation(s)
- Melanie Engstrom Newell
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Anumitha Aravindan
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
| | - Ayesha Babbrah
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
3
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
4
|
Pop LA, Berindan-Neagoe I, Bloom MS, Neamtiu IA, Bica C, Gurzau ES. Arsenic Methyltransferase and Apolipoprotein E Polymorphism in Pregnant Women Exposed to Inorganic Arsenic in Drinking Water in Western Romania. Int J Mol Sci 2024; 25:3349. [PMID: 38542322 PMCID: PMC10969814 DOI: 10.3390/ijms25063349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 11/03/2024] Open
Abstract
Previous studies have shown that inorganic arsenic (iAs) exposure may be associated with genotoxic and cytotoxic effects. The aim of this study was to evaluate the relationship between several polymorphisms in AS3MT and APOE genes and urinary As and the relationship between these polymorphisms and pregnancy loss. We determined urinary As concentrations and performed genotyping analysis in 50 cases of spontaneous pregnancy loss and 50 controls, matched to cases on gestational age. The most frequently identified AS3MT polymorphisms in both cases and controls were in rs10748835 (80% cases and 68% controls), rs3740400 (78% cases and 64% controls), rs7085104 (74% cases and 48% controls), and rs1046778 (62% cases and 54% controls). We identified 30 different haplotypes in AS3MT SNPs, with four predominant haplotypes (>8%). Cases with Haplotype 1 had four-fold higher urinary DMA and two-fold higher MMA concentration than those without this haplotype, the MMA levels were lower in cases and controls with Haplotype 4 compared to Haplotype 1, and the DMA levels were significantly lower in cases with Haplotype 4 compared to Haplotype 3. Cases with Haplotype 1 had higher levels of all analyzed biomarkers, suggesting that Haplotype 1 may be associated with greater exposure to iAs and tobacco smoke. Our results suggest the importance of the AS3MT gene in iAs metabolism among pregnant women with low-level drinking water iAs exposure.
Collapse
Affiliation(s)
- Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.A.P.); (E.S.G.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.A.P.); (E.S.G.)
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Iulia Adina Neamtiu
- Health Department, Environmental Health Center Part of ALS, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.A.P.); (E.S.G.)
| | - Eugen S. Gurzau
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.A.P.); (E.S.G.)
| |
Collapse
|
5
|
Ashley-Martin J, Fisher M, Belanger P, Cirtiu CM, Arbuckle TE. Biomonitoring of inorganic arsenic species in pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:921-932. [PMID: 35948664 PMCID: PMC10733137 DOI: 10.1038/s41370-022-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure assessment of inorganic arsenic is challenging due to the existence of multiple species, complexity of arsenic metabolism, and variety of exposure sources. Exposure assessment of arsenic during pregnancy is further complicated by the physiological changes that occur to support fetal growth. Given the well-established toxicity of inorganic arsenic at high concentrations, continued research into the potential health effects of low-level exposure on maternal and fetal health is necessary. Our objectives were to review the value of and challenges inherent in measuring inorganic arsenic species in pregnancy and highlight related research priorities. We discussed how the physiological changes of pregnancy influence arsenic metabolism and necessitate the need for pregnancy-specific data. We reviewed the biomonitoring challenges according to common and novel biological matrices and discussed how each matrix differs according to half-life, bioavailability, availability of laboratory methods, and interpretation within pregnancy. Exposure assessment in both established and novel matrices that accounts for the physiological changes of pregnancy and complexity of speciation is a research priority. Standardization of laboratory method for novel matrices will help address these data gaps. Research is particularly lacking in contemporary populations of pregnant women without naturally elevated arsenic drinking water concentrations (i.e. <10 µg/l).
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Mandy Fisher
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Patrick Belanger
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Ciprian Mihai Cirtiu
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Tye E Arbuckle
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
6
|
Qiu F, Zhang H, He Y, Liu H, Zheng T, Xia W, Xu S, Zhou J, Li Y. Associations of arsenic exposure with blood pressure and platelet indices in pregnant women: A cross-sectional study in Wuhan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114378. [PMID: 36525950 DOI: 10.1016/j.ecoenv.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Environmental inorganic arsenic (iAs) exposure is potentially related to abnormal blood pressure (BP) changes and abnormal platelet activation. However, limited epidemiological studies have explored the impacts of iAs exposure on platelet change mediated by BP, especially for pregnant women. OBJECTIVES Our purpose was to investigate the associations of arsenic exposure with blood pressure and platelet indices among pregnant women. METHODS The present study population included 765 pregnant women drawn from a prospective birth cohort study in Wuhan, China, recruited between October 2013 and April 2016. Urine sampled in the second trimester were used to assess arsenic species concentrations. The relative distribution of urinary arsenic species was used to measure human methylation capacity. BP parameters and platelet indices originated from the medical record. We applied multivariable linear regression models to explore the cross-sectional relationships between urinary arsenic metabolites, BP parameters, and platelet indices. We utilized mediation analysis to investigate the impacts of arsenic exposure on platelet indices through BP as mediator variables. RESULTS We observed significant positive correlations between iAs and systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP). Pregnant women with higher methylation capacity to metabolize iAs characterized by higher secondary methylation index (SMI) and total methylation index (TMI) had a more significant reduction in SBP, DBP, and MAP. Pregnant women with higher DBP and MAP had higher platelet counts (PLC). A decreased PLC was found in subjects wither higher SMI. Additionally, SMI was negatively linked to PLC mediated through MAP. CONCLUSIONS Obtained results suggested that higher methylation capacity to metabolize iAs might contribute to decreased PLC among pregnant women, and MAP might mediate the influence of SMI on PLC.
Collapse
Affiliation(s)
- Feng Qiu
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jieqiong Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Karachaliou C, Sgourou A, Kakkos S, Kalavrouziotis I. Arsenic exposure promotes the emergence of cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:467-486. [PMID: 34253004 DOI: 10.1515/reveh-2021-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies conducted in the past decade 2010-2020 refer to the impact of arsenic (As) exposure on cardiovascular risk factors. The arsenic effect on humans is complex and mainly depends on the varying individual susceptibilities, its numerous toxic expressions and the variation in arsenic metabolism between individuals. In this review we present relevant data from studies which document the association of arsenic exposure with various biomarkers, the effect of several genome polymorphisms on arsenic methylation and the underling molecular mechanisms influencing the cardiovascular pathology. The corresponding results provide strong evidence that high and moderate-high As intake induce oxidative stress, inflammation and vessel endothelial dysfunction that are associated with increased risk for cardiovascular diseases (CVDs) and in particular hypertension, myocardial infarction, carotid intima-media thickness and stroke, ventricular arrhythmias and peripheral arterial disease. In addition, As exposure during pregnancy implies risks for blood pressure abnormalities among infants and increased mortality rates from acute myocardial infarction during early adulthood. Low water As concentrations are associated with increased systolic, diastolic and pulse pressure, coronary heart disease and incident stroke. For very low As concentrations the relevant studies are few. They predict a risk for myocardial infarction, stroke and ischemic stroke and incident CVD, but they are not in agreement regarding the risk magnitude.
Collapse
Affiliation(s)
- Christiana Karachaliou
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- School of Science and Technology, Biology Lab, Hellenic Open University, Patras, Greece
| | - Stavros Kakkos
- Department of Vascular Surgery, Medical School of Patras, University of Patras, Patras, Greece
| | - Ioannis Kalavrouziotis
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| |
Collapse
|
8
|
Yoshinaga-Sakurai K, Rossman TG, Rosen BP. Regulation of arsenic methylation: identification of the transcriptional region of the human AS3MT gene. Cell Biol Toxicol 2022; 38:765-780. [PMID: 33956289 PMCID: PMC8571124 DOI: 10.1007/s10565-021-09611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
The human enzyme As(III) S-adenosylmethionine methyltransferase (AS3MT) catalyzes arsenic biotransformations and is considered to contribute to arsenic-related diseases. AS3MT is expressed in various tissues and cell types including liver, brain, adrenal gland, and peripheral blood mononuclear cells but not in human keratinocytes, urothelial, or brain microvascular endothelial cells. This indicates that AS3MT expression is regulated in a tissue/cell type-specific manner, but the mechanism of transcriptional regulation of expression of the AS3MT gene is not known. In this study, we define the DNA sequence of the core promoter region of the human AS3MT gene. We identify a GC box in the promoter to which the stress-related transcription factor Sp1 binds, indicating involvement of regulatory elements in AS3MT gene expression.
Collapse
Affiliation(s)
- Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Toby G Rossman
- Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
9
|
De Loma J, Vicente M, Tirado N, Ascui F, Vahter M, Gardon J, Schlebusch CM, Broberg K. Human adaptation to arsenic in Bolivians living in the Andes. CHEMOSPHERE 2022; 301:134764. [PMID: 35490756 DOI: 10.1016/j.chemosphere.2022.134764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Humans living in the Andes Mountains have been historically exposed to arsenic from natural sources, including drinking water. Enzymatic methylation of arsenic allows it to be excreted more efficiently by the human body. Adaptation to high-arsenic environments via enhanced methylation and excretion of arsenic was first reported in indigenous women in the Argentinean Andes, but whether adaptation to arsenic is a general phenomenon across native populations from the Andes Mountains remains unclear. Therefore, we evaluated whether adaptation to arsenic has occurred in the Bolivian Andes by studying indigenous groups who belong to the Aymara-Quechua and Uru ethnicities and have lived in the Bolivian Andes for generations. Our population genetics methods, including genome-wide selection scans based on linkage disequilibrium patterns and allele frequency differences, in combination with targeted and whole-genome sequencing and genotype-phenotype association analyses, detected signatures of positive selection near the gene encoding arsenite methyltransferase (AS3MT), the main arsenic methylating enzyme. This was among the strongest selection signals (top 0.5% signals via locus-specific branch length and extended haplotype homozygosity tests) at a genome-wide level in the Bolivian study groups. We found a large haplotype block of 676 kb in the AS3MT region and identified candidate functional variants for further analysis. Moreover, our analyses revealed associations between AS3MT variants and the fraction of mono-methylated arsenic in urine and showed that the Bolivian study groups had the highest frequency of alleles associated with more efficient arsenic metabolism reported so far. Our data support the idea that arsenic exposure has been a driver for human adaptation to tolerate arsenic through more efficient arsenic detoxification in different Andean populations.
Collapse
Affiliation(s)
- Jessica De Loma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Noemi Tirado
- Genetics Institute, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Franz Ascui
- Programa de Salud Familiar Comunitaria e Intercultural, Ministerio de Salud Bolivia, La Paz, Bolivia
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Montpellier, France
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden; Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa; SciLifeLab Uppsala, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Chernoff M, Tong L, Demanelis K, Vander Griend D, Ahsan H, Pierce BL. Genetic Determinants of Reduced Arsenic Metabolism Efficiency in the 10q24.32 Region Are Associated With Reduced AS3MT Expression in Multiple Human Tissue Types. Toxicol Sci 2021; 176:382-395. [PMID: 32433756 DOI: 10.1093/toxsci/kfaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Approximately 140 million people worldwide are exposed to inorganic arsenic through contaminated drinking water. Chronic exposure increases risk for cancers as well as cardiovascular, respiratory, and neurologic diseases. Arsenic metabolism involves the AS3MT (arsenic methyltransferase) gene, and arsenic metabolism efficiency (AME, measured as relative concentrations of arsenic metabolites in urine) varies among individuals. Inherited genetic variation in the 10q24.32 region, containing AS3MT, influences AME, but the mechanisms remain unclear. To better understand these mechanisms, we use tissue-specific expression data from GTEx (Genotype-tissue Expression project) to identify cis-eQTLs (expression quantitative trait loci) for AS3MT and other nearby genes. We combined these data with results from a genome-wide association study of AME using "colocalization analysis," to determine if 10q24.32 SNPs (single nucleotide polymorphisms) that affect AME also affect expression of AS3MT or nearby genes. These analyses identified cis-eQTLs for AS3MT in 38 tissue types. Colocalization results suggest that the casual variant represented by AME lead SNP rs4919690 impacts expression of AS3MT in 13 tissue types (> 80% probability). Our results suggest this causal SNP also regulates/coregulates expression of nearby genes: BORCS7 (43 tissues), NT5C2 (2 tissues), CYP17A1-AS1 (1 tissue), and RP11-724N1.1 (1 tissue). The rs4919690 allele associated with decreased AME is associated with decreased expression of AS3MT (and other coregulated genes). Our study provides a potential biological mechanism for the association between 10q24.32 variation and AME and suggests that the causal variant, represented by rs4919690, may impact AME (as measured in urine) through its effects on arsenic metabolism occurring in multiple tissue types.
Collapse
Affiliation(s)
- Meytal Chernoff
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447.,The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, Illinois 60637
| | - Lin Tong
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447
| | - Kathryn Demanelis
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447
| | - Donald Vander Griend
- The Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois 60612
| | - Habib Ahsan
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447
| | - Brandon L Pierce
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447.,The Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
11
|
Das A, Sanyal T, Bhattacharjee P, Bhattacharjee P. Depletion of S-adenosylmethionine pool and promoter hypermethylation of Arsenite methyltransferase in arsenic-induced skin lesion individuals: A case-control study from West Bengal, India. ENVIRONMENTAL RESEARCH 2021; 198:111184. [PMID: 33894237 DOI: 10.1016/j.envres.2021.111184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Methylation of arsenic compounds in the human body occurs following a series of biochemical reactions in the presence of methyl donor S-adenosylmethionine (SAM) and catalyzed by arsenite methyltransferase (AS3MT). However, the extent and pattern of methylation differs among the arsenic exposed individuals leading to differential susceptibility. The mechanism for such inter-individual difference is enigmatic. In the present case-control study we recruited exposed individuals with and without arsenic induced skin lesion (WSL and WOSL), and an unexposed cohort, each having 120 individuals. Using ELISA, we observed a reduction in SAM levels (p < 0.05) in WSL compared to WOSL. Linear regression analysis revealed a negative correlation between urinary arsenic concentration and SAM concentration between the study groups. qRT-PCR revealed a significant down-regulation (p < 0.01) of key regulatory genes like MTHFR, MTR, MAT2A and MAT2B of SAM biogenesis pathway in WSL cohort. Methylation-specific PCR revealed significant promoter hypermethylation of AS3MT (WSL vs. WOSL: p < 0.01) which resulted in its subsequent transcriptional repression (WSL vs. WOSL: p < 0.001). Linear regression analysis also showed a negative correlation between SAM concentration and percentage of promoter methylation. Taken together, these results indicate that reduction in SAM biogenesis along with a higher utilization of SAM results in a decreased availability of methyl donor. These along with epigenetic down-regulation of AS3MT may be responsible for higher susceptibility in arsenic exposed individuals.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tamalika Sanyal
- Department of Environmental Science, University of Calcutta and Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta and Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
12
|
Abstract
Gallbladder cancer (GBC) is an aggressive malignancy, associated with dismal outcomes. Although several risk factors including age, sex, and gallstones have been postulated, epidemiologic determinants of the disease remain largely uncovered. Moreover, the implication of environmental toxicants as possible risk factors is increasingly suspected. Arsenic (As), an established human carcinogen, is a natural contaminant of groundwater and has a geographic distribution similar to GBC incidence. This, combined with As metabolites being partially excreted in bile, raised the hypothesis that As may represent a carcinogenic hazard for the gallbladder. We conducted an analysis of the association between As concentration in groundwater and incidence rates of GBC worldwide in 52 countries. The USA, India, and Taiwan were selected on the basis of availability and quality of data for further investigation at a county-level. Relationships between As levels and GBC incidence were assessed using multivariable linear regression analyses. Analyses revealed significant associations between high As concentrations in groundwater and increased GBC incidences. Among women, correlations were observed worldwide (Spearman = 0.31, P = 0.028), in Taiwan (Spearman = 0.57, P = 0.005) and in India (R = 0.23, P = 0.006). In men, a correlation was observed in India (R = 0.26, P = 0.009) and a modest correlation was identified in the USA (Spearman = 0.14, P = 0.026). These results provide some support to the hypothesis of an association between high exposures to As-contaminated water on GBC, which appeared more prominent in women. Further observational and molecular studies, conducted at the individual level, are required to confirm this association and decipher its nature.
Collapse
|
13
|
Delgado DA, Chernoff M, Huang L, Tong L, Chen L, Jasmine F, Shinkle J, Cole SA, Haack K, Kent J, Umans J, Best LG, Nelson H, Griend DV, Graziano J, Kibriya MG, Navas-Acien A, Karagas MR, Ahsan H, Pierce BL. Rare, Protein-Altering Variants in AS3MT and Arsenic Metabolism Efficiency: A Multi-Population Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47007. [PMID: 33826413 PMCID: PMC8041273 DOI: 10.1289/ehp8152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Common genetic variation in the arsenic methyltransferase (AS3MT) gene region is known to be associated with arsenic metabolism efficiency (AME), measured as the percentage of dimethylarsinic acid (DMA%) in the urine. Rare, protein-altering variants in AS3MT could have even larger effects on AME, but their contribution to AME has not been investigated. OBJECTIVES We estimated the impact of rare, protein-coding variation in AS3MT on AME using a multi-population approach to facilitate the discovery of population-specific and shared causal rare variants. METHODS We generated targeted DNA sequencing data for the coding regions of AS3MT for three arsenic-exposed cohorts with existing data on arsenic species measured in urine: Health Effects of Arsenic Longitudinal Study (HEALS, n = 2,434 ), Strong Heart Study (SHS, n = 868 ), and New Hampshire Skin Cancer Study (NHSCS, n = 666 ). We assessed the collective effects of rare (allele frequency < 1 % ), protein-altering AS3MT variants on DMA%, using multiple approaches, including a test of the association between rare allele carrier status (yes/no) and DMA% using linear regression (adjusted for common variants in 10q24.32 region, age, sex, and population structure). RESULTS We identified 23 carriers of rare-protein-altering AS3MT variant across all cohorts (13 in HEALS and 5 in both SHS and NHSCS), including 6 carriers of predicted loss-of-function variants. DMA% was 6-10% lower in carriers compared with noncarriers in HEALS [β = - 9.4 (95% CI: - 13.9 , - 4.8 )], SHS [β = - 6.9 (95% CI: - 13.6 , - 0.2 )], and NHSCS [β = - 8.7 (95% CI: - 15.6 , - 2.2 )]. In meta-analyses across cohorts, DMA% was 8.7% lower in carriers [β = - 8.7 (95% CI: - 11.9 , - 5.4 )]. DISCUSSION Rare, protein-altering variants in AS3MT were associated with lower mean DMA%, an indicator of reduced AME. Although a small percentage of the population (0.5-0.7%) carry these variants, they are associated with a 6-10% decrease in DMA% that is consistent across multiple ancestral and environmental backgrounds. https://doi.org/10.1289/EHP8152.
Collapse
Affiliation(s)
- Dayana A. Delgado
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Lei Huang
- Center for Research Informatics, UChicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Lin Chen
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Shelley A. Cole
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jack Kent
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jason Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota, USA
| | - Heather Nelson
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Donald Vander Griend
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joseph Graziano
- Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Ana Navas-Acien
- Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
- Department of Human Genetics, UChicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, UChicago, Chicago, Illinois, USA
- Department of Medicine, UChicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
- Department of Human Genetics, UChicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, UChicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Arsenic Methyltransferase and Methylation of Inorganic Arsenic. Biomolecules 2020; 10:biom10091351. [PMID: 32971865 PMCID: PMC7563989 DOI: 10.3390/biom10091351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Arsenic occurs naturally in the environment, and exists predominantly as inorganic arsenite (As (III) and arsenate As (V)). Arsenic contamination of drinking water has long been recognized as a major global health concern. Arsenic exposure causes changes in skin color and lesions, and more severe health conditions such as black foot disease as well as various cancers originating in the lungs, skin, and bladder. In order to efficiently metabolize and excrete arsenic, it is methylated to monomethylarsonic and dimethylarsinic acid. One single enzyme, arsenic methyltransferase (AS3MT) is responsible for generating both metabolites. AS3MT has been purified from several mammalian and nonmammalian species, and its mRNA sequences were determined from amino acid sequences. With the advent of genome technology, mRNA sequences of AS3MT have been predicted from many species throughout the animal kingdom. Horizontal gene transfer had been postulated for this gene through phylogenetic studies, which suggests the importance of this gene in appropriately handling arsenic exposures in various organisms. An altered ability to methylate arsenic is dependent on specific single nucleotide polymorphisms (SNPs) in AS3MT. Reduced AS3MT activity resulting in poor metabolism of iAs has been shown to reduce expression of the tumor suppressor gene, p16, which is a potential pathway in arsenic carcinogenesis. Arsenic is also known to induce oxidative stress in cells. However, the presence of antioxidant response elements (AREs) in the promoter sequences of AS3MT in several species does not correlate with the ability to methylate arsenic. ARE elements are known to bind NRF2 and induce antioxidant enzymes to combat oxidative stress. NRF2 may be partly responsible for the biotransformation of iAs and the generation of methylated arsenic species via AS3MT. In this article, arsenic metabolism, excretion, and toxicity, a discussion of the AS3MT gene and its evolutionary history, and DNA methylation resulting from arsenic exposure have been reviewed.
Collapse
|
15
|
McDermott TR, Stolz JF, Oremland RS. Arsenic and the gastrointestinal tract microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:136-159. [PMID: 31773890 DOI: 10.1111/1758-2229.12814] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is a toxin, ranking first on the Agency for Toxic Substances and Disease Registry and the Environmental Protection Agency Priority List of Hazardous Substances. Chronic exposure increases the risk of a broad range of human illnesses, most notably cancer; however, there is significant variability in arsenic-induced disease among exposed individuals. Human genetics is a known component, but it alone cannot account for the large inter-individual variability in the presentation of arsenicosis symptoms. Each part of the gastrointestinal tract (GIT) may be considered as a unique environment with characteristic pH, oxygen concentration, and microbiome. Given the well-established arsenic redox transformation activities of microorganisms, it is reasonable to imagine how the GIT microbiome composition variability among individuals could play a significant role in determining the fate, mobility and toxicity of arsenic, whether inhaled or ingested. This is a relatively new field of research that would benefit from early dialogue aimed at summarizing what is known and identifying reasonable research targets and concepts. Herein, we strive to initiate this dialogue by reviewing known aspects of microbe-arsenic interactions and placing it in the context of potential for influencing host exposure and health risks. We finish by considering future experimental approaches that might be of value.
Collapse
Affiliation(s)
- Timothy R McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - John F Stolz
- Department of Biological Sciences and Center for Environmental Research and Education, Duquesne University, Pittsburgh, PA, USA
| | | |
Collapse
|
16
|
Apata M, Pfeifer SP. Recent population genomic insights into the genetic basis of arsenic tolerance in humans: the difficulties of identifying positively selected loci in strongly bottlenecked populations. Heredity (Edinb) 2020; 124:253-262. [PMID: 31776483 PMCID: PMC6972707 DOI: 10.1038/s41437-019-0285-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in genomics have enabled researchers to shed light on the evolutionary processes driving human adaptation, by revealing the genetic architectures underlying traits ranging from lactase persistence, to skin pigmentation, to hypoxic response, to arsenic tolerance. Complicating the identification of targets of positive selection in modern human populations is their complex demographic history, characterized by population bottlenecks and expansions, population structure, migration, and admixture. In particular, founder effects and recent strong population size reductions, such as those experienced by the indigenous peoples of the Americas, have severe impacts on genetic variation that can lead to the accumulation of large allele frequency differences between populations due to genetic drift rather than natural selection. While distinguishing the effects of demographic history from selection remains challenging, neglecting neutral processes can lead to the incorrect identification of candidate loci. We here review the recent population genomic insights into the genetic basis of arsenic tolerance in Andean populations, and utilize this example to highlight both the difficulties pertaining to the identification of local adaptations in strongly bottlenecked populations, as well as the importance of controlling for demographic history in selection scans.
Collapse
Affiliation(s)
- Mario Apata
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85821, USA
| | - Susanne P Pfeifer
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85821, USA.
| |
Collapse
|
17
|
Leso V, Vetrani I, Della Volpe I, Nocera C, Iavicoli I. Welding Fume Exposure and Epigenetic Alterations: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101745. [PMID: 31108839 PMCID: PMC6571852 DOI: 10.3390/ijerph16101745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022]
Abstract
Epigenetics are heritable changes in gene expression not coded in the DNA sequence, which stand at the interface between the genome, environmental exposure and development. From an occupational health perspective, epigenetic variants may link workplace exposures and health effects. Therefore, this review aimed to overview possible epigenetic effects induced by welding fumes on exposed workers and health implications. A systematic search was performed on Pubmed, Scopus, and ISI Web of Knowledge databases. DNA methylation changes have been reported in genes responsible for the cardiac autonomic function and coagulation, i.e., LINE-1, GPR133 and F2RL3, in mitochondrial-DNA-sequences involved in the regulation of energy-generation/redox-signaling, as well as in inflammatory activated genes, i.e., iNOS. However, the limited number of retrieved articles, their cross-sectional nature, the lack of a suitable qualitative-quantitative exposure assessment, and the heterogeneity of biological-outcomes investigated, prevent the extrapolation of a definite causal relationship between welding fumes and epigenetic phenomena. Future studies should clarify the function of such epigenetic alterations as possible markers of occupational exposure and early effect, dose-response relationships, and underlying molecular mechanisms. Overall, this may be helpful to guide suitable risk assessment and management strategies to protect the health of workers exposed to welding fumes.
Collapse
Affiliation(s)
- Veruscka Leso
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Ilaria Vetrani
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Ilaria Della Volpe
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Caterina Nocera
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
18
|
Gao S, Mostofa MG, Quamruzzaman Q, Rahman M, Rahman M, Su L, Hsueh YM, Weisskopf M, Coull B, Christiani DC. Gene-environment interaction and maternal arsenic methylation efficiency during pregnancy. ENVIRONMENT INTERNATIONAL 2019; 125:43-50. [PMID: 30703610 PMCID: PMC7592115 DOI: 10.1016/j.envint.2019.01.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) may influence arsenic methylation efficiency, affecting arsenic metabolism. Whether gene-environment interactions affect arsenic metabolism during pregnancy remains unclear, which may have implications for pregnancy outcomes. OBJECTIVE We aimed to investigate main effects as well as potential SNP-arsenic interactions on arsenic methylation efficiency in pregnant women. METHOD We recruited 1613 pregnant women in Bangladesh, and collected two urine samples from each participant, one at 4-16 weeks, and the second at 21-37 weeks of pregnancy. We determined the proportions of each arsenic metabolite [inorganic As (iAs)%, monomethylarsonic acid (MMA)%, and dimethylarsinic acid (DMA)%] from the total urinary arsenic level of each sample. A panel of 63 candidate SNPs was selected for genotyping based on their reported associations with arsenic metabolism (including in As3MT, N6AMT1, and GSTO2 genes). We used linear regression models to assess the association between each SNP and DMA% with an additive allelic assumption, as well as SNP-arsenic interaction on DMA%. These analyses were performed separately for two urine collection time-points to capture differences in susceptibility to arsenic toxicity. RESULT Intron variants for As3MT were associated with DMA%. rs9527 (β = -2.98%, PFDR = 0.008) and rs1046778 (β = 1.64%, PFDR = 0.008) were associated with this measure in the early gestational period; rs3740393 (β = 2.54%, PFDR = 0.002) and rs1046778 (β = 1.97%, PFDR = 0.003) in the mid-to-late gestational period. Further, As3MT, GSTO2, and N6AMT1 polymorphisms showed different effect sizes on DMA% conditional on arsenic exposure levels. However, SNP-arsenic interactions were not statistically significant after adjusting for false discovery rate (FDR). rs1048546 in N6AMT1 had the highest significance level in the SNP-arsenic interaction test during mid-to-late gestation (β = -1.8% vs. 1.4%, PGxE_FDR = 0.075). Finally, As3MT and As3MT/CNNM2 haplotypes were associated with DMA% at both time points. CONCLUSION We found that not all genetic associations reported in arsenic methylation efficiency replicate in pregnant women. Arsenic exposure level has a limited effect in modifying the association between genetic variation and arsenic methylation efficiency.
Collapse
Affiliation(s)
- Shangzhi Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | | - Mohammad Rahman
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu-Mei Hsueh
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Stajnko A, Šlejkovec Z, Mazej D, France-Štiglic A, Briški AS, Prpić I, Špirić Z, Horvat M, Falnoga I. Arsenic metabolites; selenium; and AS3MT, MTHFR, AQP4, AQP9, SELENOP, INMT, and MT2A polymorphisms in Croatian-Slovenian population from PHIME-CROME study. ENVIRONMENTAL RESEARCH 2019; 170:301-319. [PMID: 30612060 DOI: 10.1016/j.envres.2018.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The relationships between inorganic arsenic (iAs) metabolism, selenium (Se) status, and genetic polymorphisms of various genes, commonly studied in populations exposed to high levels of iAs from drinking water, were studied in a Croatian-Slovenian population from the wider PHIME-CROME project. Population consisted of 136 pregnant women in the 3rd trimester and 176 non-pregnant women with their children (n = 176, 8-9 years old). Their exposure to iAs, defined by As (speciation) analyses of biological samples, was low. The sums of biologically active metabolites (arsenite + arsenate + methylated As forms) for pregnant women, non-pregnant women, and children, respectively were: 3.23 (2.84-3.68), 1.83 (1.54-2.16) and 2.18 (1.86-2.54) ng/mLSG; GM (95 CI). Corresponding plasma Se levels were: 54.8 (52.8-56.9), 82.3 (80.4-84.0) and 65.8 (64.3-67.3) ng/mL; GM (95 CI). As methylation efficiency indexes confirmed the relationship between pregnancy/childhood and better methylation efficiency. Archived blood and/or saliva samples were used for single nucleotide polymorphism (SNP) genotyping of arsenic(3+) methyltransferase - AS3MT (rs7085104, rs3740400, rs3740393, rs3740390, rs11191439, rs10748835, rs1046778 and the corresponding AS3MT haplotype); methylene tetrahydrofolate reductase - MTHFR (rs1801131, rs1801133); aquaporin - AQP 4 and 9 (rs9951307 and rs2414539); selenoprotein P1 - SELENOP (rs7579, rs3877899); indolethylamine N-methyltransferase - INMT (rs6970396); and metallothionein 2A - MT2A (rs28366003). Associations of SNPs with As parameters and urine Se were determined through multiple regression analyses adjusted using appropriate confounders (blood As, plasma Se, ever smoking, etc.). SNPs' influence on As methylation, defined particularly by the secondary methylation index (SMI), confirmed the 'protective' role of minor alleles of six AS3MT SNPs and their haplotype only among non-pregnant women. Among the other investigated genes, the carriers of AQP9 (rs2414539) were associated with more efficient As methylation and higher urine concentration of As and Se among non-pregnant women; poorer methylation was observed for carriers of AQP4 (rs9951307) among pregnant women and SELENOP (rs7579) among non-pregnant women; MT2A (rs28366003) was associated with higher urine concentration of AsIII regardless of the pregnancy status; and INMT (rs6970396) was associated with higher As and Se concentration in non-pregnant women. Among confounders, the strongest influence was observed for plasma Se; it reduced urine AsIII concentration during pregnancy and increased secondary methylation index among non-pregnant women. In the present study of populations with low As exposure, we observed a few new As-gene associations (particularly with AQPs). More reliable interpretations will be possible after their confirmation in larger populations with higher As exposure levels.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Zdenka Šlejkovec
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Alenka France-Štiglic
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, Ljubljana, Slovenia
| | - Alenka Sešek Briški
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, Ljubljana, Slovenia
| | - Igor Prpić
- Department of Pediatrics, University Hospital Centre Rijeka, Krešimirova 42, Rijeka, Croatia; Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20/1, Rijeka, Croatia
| | - Zdravko Špirić
- Green infrastructure ltd., Fallerovo šetalište 22, Zagreb, Croatia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Ashley-Martin J, Dodds L, Arbuckle TE, Bouchard MF, Shapiro GD, Fisher M, Monnier P, Morisset AS, Ettinger AS. Association between maternal urinary speciated arsenic concentrations and gestational diabetes in a cohort of Canadian women. ENVIRONMENT INTERNATIONAL 2018; 121:714-720. [PMID: 30321846 DOI: 10.1016/j.envint.2018.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Epidemiological and toxicological evidence suggests that maternal total arsenic (As) levels are associated with an elevated risk of gestational diabetes (GDM). Uncertainty remains regarding the metabolic toxicity of specific arsenic species, comprised of both organic and inorganic sources of arsenic exposure. OBJECTIVES We assessed associations between speciated As and GDM using data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study. METHODS Concentrations of speciated As [(inorganic (trivalent, pentavalent)), methylated arsenic species metabolites (monomethylarsonic acid (MMA), dimethylarsinic acid (DMA)), and organic (arsenobetaine)] were measured in first trimester maternal urine samples. GDM cases were identified in accordance with Canadian guidelines. Multivariable regression models were used to estimate associations between speciated As and GDM, evaluate potential interaction between speciated As exposures, and assess fetal sex-specific findings. RESULTS Among 1243 women who had a live, singleton birth and no previous history of diabetes, 4% met the diagnostic criteria for GDM. Our analyses focused on DMA and arsenobetaine as these were the subtypes with detectable concentrations in at least 40% of samples. Compared to women in the lowest tertile of DMA (<1.49 μg As/L), women with concentrations exceeding 3.52 μg As/L (3rd tertile) experienced an increased risk of GDM (aOR = 3.86; 95% CI: 1.18, 12.57) (p-value for trend across tertiles = 0.04). When restricted to women carrying male infants, the magnitude of this association increased (aOR 3rd tertile = 4.71; 95% CI: 1.05, 21.10). CONCLUSIONS These results suggest a positive relation between DMA and GDM; potential differences in risk by fetal sex requires further investigation.
Collapse
|
21
|
De Loma J, Skröder H, Raqib R, Vahter M, Broberg K. Arsenite methyltransferase (AS3MT) polymorphisms and arsenic methylation in children in rural Bangladesh. Toxicol Appl Pharmacol 2018; 357:80-87. [DOI: 10.1016/j.taap.2018.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
|
22
|
Balakrishnan P, Jones MR, Vaidya D, Tellez-Plaza M, Post WS, Kaufman JD, Bielinski SJ, Taylor K, Francesconi K, Goessler W, Navas-Acien A. Ethnic, Geographic, and Genetic Differences in Arsenic Metabolism at Low Arsenic Exposure: A Preliminary Analysis in the Multi-Ethnic Study of Atherosclerosis (MESA). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1179. [PMID: 29874848 PMCID: PMC6025014 DOI: 10.3390/ijerph15061179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022]
Abstract
We investigated the effect of candidate variants in AS3MT (arsenic (III) methyltransferase) with urinary arsenic metabolites and their principal components in a subset of 264 participants in the Multi-Ethnic Study of Atherosclerosis (MESA). Urinary arsenic species, including inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA), and arsenobetaine (Ab), were measured using high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and corrected for organic sources from seafood consumption by regressing Ab on arsenic species using a validated method. Principal components of arsenic metabolism were also used as independent phenotypes. We conducted linear regression of arsenic traits with allelic dosage of candidate single nucleotide polymorphisms (SNPs) rs12768205 (G > A), rs3740394 (A > G), and rs3740393 (G > C) measured using Illumina MetaboChip. Models were stratified by non-Hispanic white vs. all other race/ethnicity and adjusted for age, sex, arsenic exposure, study site, and population stratification. Consistent with previous studies, rs12768205 showed evidence for strongest association (non-Hispanic white: iAs% -0.14 (P 0.83), MMA% -0.66 (0.49), DMA% 0.81(0.49); other race/ethnicity: 0.13 (0.71), -1.21 (0.09), 1.08 (0.20)). No association, however, passed the strict Bonferroni p-value. This was a novel study among an ethnically diverse population exposed to low arsenic levels.
Collapse
Affiliation(s)
- Poojitha Balakrishnan
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA.
| | - Miranda R Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Maria Tellez-Plaza
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Fundación de Investigación Hospital Clínico de Valencia INCLIVA, Valencia 46010, Spain.
| | - Wendy S Post
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Suzette J Bielinski
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kent Taylor
- Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, CA 90502, USA.
| | | | - Walter Goessler
- Institute of Chemistry, University of Graz, 8010 Graz, Austria.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Bozack AK, Saxena R, Gamble MV. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu Rev Nutr 2018; 38:401-429. [PMID: 29799766 DOI: 10.1146/annurev-nutr-082117-051757] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exposure to inorganic arsenic (InAs) via drinking water and/or food is a considerable worldwide problem. Methylation of InAs generates monomethyl (MMAsIII+V)- and dimethyl (DMAsIII+V)-arsenical species in a process that facilitates urinary As elimination; however, MMAs is considerably more toxic than either InAs or DMAs. Emerging evidence suggests that incomplete methylation of As to DMAs, resulting in increased MMAs, is associated with increased risk for a host of As-related health outcomes. The biochemical pathway that provides methyl groups for As methylation, one-carbon metabolism (OCM), is influenced by folate and other micronutrients, including choline and betaine. Individuals and species differ widely in their ability to methylate As. A growing body of research, including cell-culture, animal-model, and epidemiological studies, has demonstrated the role of OCM-related micronutrients in As methylation. This review examines the evidence that nutritional status and nutritional interventions can influence the metabolism and toxicity of As, with a primary focus on folate.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
24
|
Lin YC, Chen WJ, Huang CY, Shiue HS, Su CT, Ao PL, Pu YS, Hsueh YM. Polymorphisms of Arsenic (+3 Oxidation State) Methyltransferase and Arsenic Methylation Capacity Affect the Risk of Bladder Cancer. Toxicol Sci 2018; 164:328-338. [DOI: 10.1093/toxsci/kfy087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital
- Department of Health Examination, Wan Fang Hospital
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Urology, National Taiwan University Hospital, Hsin Chu Branch, Hsin Chu, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chien-Tien Su
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Bambino K, Zhang C, Austin C, Amarasiriwardena C, Arora M, Chu J, Sadler KC. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech 2018; 11:dmm.031575. [PMID: 29361514 PMCID: PMC5894941 DOI: 10.1242/dmm.031575] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. Summary: Using zebrafish, the authors show that exposure to a common environmental contaminant, inorganic arsenic, increases the risk of alcoholic liver disease.
Collapse
Affiliation(s)
- Kathryn Bambino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jaime Chu
- Department of Pediatrics, Division of Pediatric Hepatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| |
Collapse
|
26
|
Joseph P. Transcriptomics in toxicology. Food Chem Toxicol 2017; 109:650-662. [PMID: 28720289 PMCID: PMC6419952 DOI: 10.1016/j.fct.2017.07.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
Xenobiotics, of which many are toxic, may enter the human body through multiple routes. Excessive human exposure to xenobiotics may exceed the body's capacity to defend against the xenobiotic-induced toxicity and result in potentially fatal adverse health effects. Prevention of the adverse health effects, potentially associated with human exposure to the xenobiotics, may be achieved by detecting the toxic effects at an early, reversible and, therefore, preventable stage. Additionally, an understanding of the molecular mechanisms underlying the toxicity may be helpful in preventing and/or managing the ensuing adverse health effects. Human exposures to a large number of xenobiotics are associated with hepatotoxicity or pulmonary toxicity. Global gene expression changes taking place in biological systems, in response to exposure to xenobiotics, may represent the early and mechanistically relevant cellular events contributing to the onset and progression of xenobiotic-induced adverse health outcomes. Hepatotoxicity and pulmonary toxicity resulting from exposure to xenobiotics are discussed as specific examples to demonstrate the potential application of transcriptomics or global gene expression analysis in the prevention of adverse health effects associated with exposure to xenobiotics.
Collapse
Affiliation(s)
- Pius Joseph
- Molecular Carcinogenesis Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| |
Collapse
|
27
|
Negro Silva LF, Lemaire M, Lemarié CA, Plourde D, Bolt AM, Chiavatti C, Bohle DS, Slavkovich V, Graziano JH, Lehoux S, Mann KK. Effects of Inorganic Arsenic, Methylated Arsenicals, and Arsenobetaine on Atherosclerosis in the Mouse Model and the Role of As3mt-Mediated Methylation. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:077001. [PMID: 28728140 PMCID: PMC5744679 DOI: 10.1289/ehp806] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. OBJECTIVES Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. METHODS We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. RESULTS We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. CONCLUSION Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806.
Collapse
Affiliation(s)
| | - Maryse Lemaire
- Lady Davis Institute for Medical Research
- Department of Oncology
| | | | | | - Alicia M Bolt
- Lady Davis Institute for Medical Research
- Department of Oncology
| | | | - D Scott Bohle
- Department of Chemistry, McGill University, Montréal, Québec, Canada
| | - Vesna Slavkovich
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Joseph H Graziano
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Stéphanie Lehoux
- Lady Davis Institute for Medical Research
- Division of Experimental Medicine
- Department of Medicine, and
| | - Koren K Mann
- Lady Davis Institute for Medical Research
- Division of Experimental Medicine
- Department of Oncology
| |
Collapse
|
28
|
Hsieh RL, Su CT, Shiue HS, Chen WJ, Huang SR, Lin YC, Lin MI, Mu SC, Chen RJ, Hsueh YM. Relation of polymorphism of arsenic metabolism genes to arsenic methylation capacity and developmental delay in preschool children in Taiwan. Toxicol Appl Pharmacol 2017; 321:37-47. [DOI: 10.1016/j.taap.2017.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/15/2022]
|
29
|
Ameer SS, Engström K, Hossain MB, Concha G, Vahter M, Broberg K. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood. Toxicol Appl Pharmacol 2017; 321:57-66. [PMID: 28242323 DOI: 10.1016/j.taap.2017.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/22/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. OBJECTIVES To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. METHODS The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by the urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N=80 women) and DNA methylation (N=93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. RESULTS U-As concentrations, ranging 10-1251μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. CONCLUSIONS Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap.
Collapse
Affiliation(s)
- Syeda Shegufta Ameer
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Karin Engström
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm, Sweden
| | - Mohammad Bakhtiar Hossain
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Gabriela Concha
- Science Department, Risk Benefit Assessment Unit, National Food Agency, Uppsala, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Rea M, Eckstein M, Eleazer R, Smith C, Fondufe-Mittendorf YN. Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation. Sci Rep 2017; 7:41474. [PMID: 28150704 PMCID: PMC5288714 DOI: 10.1038/srep41474] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Meredith Eckstein
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Rebekah Eleazer
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Caroline Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.,Bellarmine University, Louisville, KY 40205, USA
| | | |
Collapse
|
31
|
Ettinger AS, Arbuckle TE, Fisher M, Liang CL, Davis K, Cirtiu CM, Bélanger P, LeBlanc A, Fraser WD. Arsenic levels among pregnant women and newborns in Canada: Results from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. ENVIRONMENTAL RESEARCH 2017; 153:8-16. [PMID: 27880879 DOI: 10.1016/j.envres.2016.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 05/22/2023]
Abstract
Arsenic is a common environmental contaminant from both naturally-occurring and anthropomorphic sources and human exposure can be detected in various tissues. Its toxicity depends on many factors including the chemical form, valence state, bioavailability, metabolism and detoxification within the human body. Of paramount concern, particularly with respect to health effects in children, is the timing of exposure as the prenatal and early life periods are more susceptible to toxic effects. The Maternal-Infant Research on Environmental Chemicals (MIREC) cohort was established to obtain national-level biomonitoring data for approximately 2,000 pregnant women and their infants between 2008 and 2011 from 10 Canadian cities. We measured total arsenic (As) in 1st and 3rd trimester maternal blood, umbilical cord blood, and infant meconium and speciated arsenic in 1st trimester maternal urine. Most pregnant women had detectable levels of total arsenic in blood (92.5% and 87.3%, respectively, for 1st and 3rd trimester); median difference between 1st and 3rd trimester was 0.1124µg/L (p<0.0001), but paired samples were moderately correlated (Spearman r=0.41, p<0.0001). Most samples were below the LOD for umbilical cord blood (50.9%) and meconium (93.9%). In 1st trimester urine samples, a high percentage (>50%) of arsenic species (arsenous acid (As-III), arsenic acid (As-V), monomethylarsonic acid (MMA), and arsenobetaine (AsB)) were also below the limit of detection, except dimethylarsinic acid (DMA). DMA (>85% detected) ranged from <LOD to 64.42 (95th percentile: 11.99)µgAs/L. There was a weak but significant correlation between total arsenic in blood and specific gravity-adjusted DMA in urine (Spearman r=0.33, p<0.0001). Among this population of pregnant woman and newborns, levels of arsenic measured in blood and urine were lower than national population figures for Canadian women of reproductive age (20-39 years). In general, higher arsenic levels were observed in women who were older, foreign-born (predominantly from Asian countries), and had higher education. Further research is needed to elucidate sources of exposure and factors that may influence arsenic exposure in pregnant women and children.
Collapse
Affiliation(s)
- Adrienne S Ettinger
- University of Michigan School of Public Health, Department of Nutritional Sciences, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA.
| | - Tye E Arbuckle
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, A.L. 0801 A, 50 Colombine Dr., Ottawa, ON, Canada K1A 0K9.
| | - Mandy Fisher
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, A.L. 0801 A, 50 Colombine Dr., Ottawa, ON, Canada K1A 0K9
| | - Chun Lei Liang
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, A.L. 0801 A, 50 Colombine Dr., Ottawa, ON, Canada K1A 0K9
| | - Karelyn Davis
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, A.L. 0801 A, 50 Colombine Dr., Ottawa, ON, Canada K1A 0K9
| | - Ciprian-Mihai Cirtiu
- Laboratoire de toxicologie, Institut national de santé publique du Québec, 945, avenue Wolfe, Québec, QC, Canada G1V 5B3
| | - Patrick Bélanger
- Laboratoire de toxicologie, Institut national de santé publique du Québec, 945, avenue Wolfe, Québec, QC, Canada G1V 5B3
| | - Alain LeBlanc
- Laboratoire de toxicologie, Institut national de santé publique du Québec, 945, avenue Wolfe, Québec, QC, Canada G1V 5B3
| | - William D Fraser
- Department of Obstetrics and Gynecology, University of Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC, Canada J1H 5N4; CHU Sainte-Justine Research Center, Mother and Child University Hospital Center, 3175 chemin de la Côte-Sainte-Catherine, Montréal, QC, Canada H3T 1C5
| |
Collapse
|
32
|
Ameer SS, Xu Y, Engström K, Li H, Tallving P, Nermell B, Boemo A, Parada LA, Peñaloza LG, Concha G, Harari F, Vahter M, Broberg K. Exposure to Inorganic Arsenic Is Associated with Increased Mitochondrial DNA Copy Number and Longer Telomere Length in Peripheral Blood. Front Cell Dev Biol 2016; 4:87. [PMID: 27597942 PMCID: PMC4992680 DOI: 10.3389/fcell.2016.00087] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Background: Exposure to inorganic arsenic (iAs) through drinking water causes cancer. Alterations in mitochondrial DNA copy number (mtDNAcn) and telomere length in blood have been associated with cancer risk. We elucidated if arsenic exposure alters mtDNAcn and telomere length in individuals with different arsenic metabolizing capacity. Methods: We studied two groups in the Salta province, Argentina, one in the Puna area of the Andes (N = 264, 89% females) and one in Chaco (N = 169, 75% females). We assessed arsenic exposure as the sum of arsenic metabolites [iAs, methylarsonic acid (MMA), dimethylarsinic acid (DMA)] in urine (U-As) using high-performance liquid chromatography coupled with hydride generation and inductively coupled plasma mass spectrometry. Efficiency of arsenic metabolism was expressed as percentage of urinary metabolites. MtDNAcn and telomere length were determined in blood by real-time PCR. Results: Median U-As was 196 (5–95 percentile: 21–537) μg/L in Andes and 80 (5–95 percentile: 15–1637) μg/L in Chaco. The latter study group had less-efficient metabolism, with higher %iAs and %MMA in urine compared with the Andean group. U-As was significantly associated with increased mtDNAcn (log2 transformed to improve linearity) in Chaco (β = 0.027 per 100 μg/L, p = 0.0085; adjusted for age and sex), but not in Andes (β = 0.025, p = 0.24). U-As was also associated with longer telomere length in Chaco (β = 0.016, p = 0.0066) and Andes (β = 0.0075, p = 0.029). In both populations, individuals with above median %iAs showed significantly higher mtDNAcn and telomere length compared with individuals with below median %iAs. Conclusions: Arsenic was associated with increased mtDNAcn and telomere length, particularly in individuals with less-efficient arsenic metabolism, a group who may have increased risk for arsenic-related cancer.
Collapse
Affiliation(s)
- Syeda S Ameer
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University Lund, Sweden
| | - YiYi Xu
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University Lund, Sweden
| | - Karin Engström
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund UniversityLund, Sweden; Unit of Metals and Health, Institute of Environmental Medicine, Karolinska InstitutetStockholm, Sweden
| | - Huiqi Li
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University Lund, Sweden
| | - Pia Tallving
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University Lund, Sweden
| | - Barbro Nermell
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet Stockholm, Sweden
| | - Analia Boemo
- Facultad de Ciencias Exactas and Consejo de Investigación, Universidad Nacional de Salta Salta, Argentina
| | - Luis A Parada
- Institute of Experimental Pathology - UNSa - CONICET Salta, Argentina
| | - Lidia G Peñaloza
- Facultad de Ciencias Exactas and Consejo de Investigación, Universidad Nacional de Salta Salta, Argentina
| | - Gabriela Concha
- Risk Benefit Assessment Unit, Science Department, National Food Agency Uppsala, Sweden
| | - Florencia Harari
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet Stockholm, Sweden
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet Stockholm, Sweden
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
33
|
Drobná Z, Martin E, Kim KS, Smeester L, Bommarito P, Rubio-Andrade M, García-Vargas GG, Stýblo M, Zou F, Fry RC. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis. Reprod Toxicol 2016; 61:28-38. [PMID: 26928318 PMCID: PMC4970429 DOI: 10.1016/j.reprotox.2016.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/28/2016] [Accepted: 02/23/2016] [Indexed: 02/03/2023]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the metabolism of inorganic arsenic (iAs). Polymorphisms of AS3MT influence adverse health effects in adults, but little is known about their role in iAs metabolism in pregnant women and infants. The relationships between seven single nucleotide polymorphisms (SNPs) in AS3MT and urinary concentrations of iAs and its methylated metabolites were assessed in mother-infant pairs of the Biomarkers of Exposure to ARsenic (BEAR) cohort. Maternal alleles for five of the seven SNPs (rs7085104, rs3740400, rs3740393, rs3740390, and rs1046778) were associated with urinary concentrations of iAs metabolites, and alleles for one SNP (rs3740393) were associated with birth outcomes/measures. These associations were strongly dependent upon the male sex of the fetus but independent of fetal genotype for AS3MT. These data highlight a potential sex-dependence of the relationships among maternal genotype, iAs metabolism and infant health outcomes.
Collapse
Affiliation(s)
- Zuzana Drobná
- Department of Biological Sciences, North Carolina State University, NC 27695, United States
| | - Elizabeth Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kyung Su Kim
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
34
|
Drobná Z, Martin E, Kim KS, Smeester L, Bommarito P, Rubio-Andrade M, García-Vargas GG, Stýblo M, Zou F, Fry RC. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis. Reprod Toxicol 2016. [PMID: 26928318 DOI: 10.1016/j.reprotox.2016.1002.1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the metabolism of inorganic arsenic (iAs). Polymorphisms of AS3MT influence adverse health effects in adults, but little is known about their role in iAs metabolism in pregnant women and infants. The relationships between seven single nucleotide polymorphisms (SNPs) in AS3MT and urinary concentrations of iAs and its methylated metabolites were assessed in mother-infant pairs of the Biomarkers of Exposure to ARsenic (BEAR) cohort. Maternal alleles for five of the seven SNPs (rs7085104, rs3740400, rs3740393, rs3740390, and rs1046778) were associated with urinary concentrations of iAs metabolites, and alleles for one SNP (rs3740393) were associated with birth outcomes/measures. These associations were strongly dependent upon the male sex of the fetus but independent of fetal genotype for AS3MT. These data highlight a potential sex-dependence of the relationships among maternal genotype, iAs metabolism and infant health outcomes.
Collapse
Affiliation(s)
- Zuzana Drobná
- Department of Biological Sciences, North Carolina State University, NC 27695, United States
| | - Elizabeth Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kyung Su Kim
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
35
|
Skröder Löveborn H, Kippler M, Lu Y, Ahmed S, Kuehnelt D, Raqib R, Vahter M. Arsenic Metabolism in Children Differs From That in Adults. Toxicol Sci 2016; 152:29-39. [PMID: 27056082 PMCID: PMC4922540 DOI: 10.1093/toxsci/kfw060] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Arsenic toxicity in adults is associated with methylation efficiency, influenced by factors such as gender, genetics, and nutrition. The aim of this study was to evaluate influencing factors for arsenic metabolism in children. For 488 children (9 years), whose mothers participated in a study on arsenic exposure during pregnancy (nested into the MINIMat trial) in rural Bangladesh, we measured urinary concentrations of inorganic arsenic (iAs) and its metabolites methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by HPLC-HG-ICPMS. Methylation efficiency was assessed by relative amounts (%) of the metabolites. We evaluated the impact of factors such as maternal urinary metabolite pattern, arsenic exposure, gender, socioeconomic status, season of sampling, and nutritional factors, including erythrocyte selenium (Ery-Se), and plasma folate and vitamin B12. Children had higher %DMA and lower %iAs in urine compared to their mothers, unrelated to their lower exposure [median urinary arsenic (U-As) 53 vs 78 µg/l]. Surprisingly, selenium status (Ery-Se) was strongly associated with children’s arsenic methylation; an increase in Ery-Se from the 5–95th percentile was associated with: +1.8 percentage points (pp) for %iAs (P = .001), +1.4 pp for %MMA (P = .003), and −3.2 pp for %DMA (P < .001). Despite this, Ery-Se was positively associated with U-As (5–95th percentile: +41 µg/l, P = .026). As expected, plasma folate was inversely associated with %iAs (5–95th percentile: −1.9 pp, P = .001) and positively associated with %DMA (5–95th percentile: +2.2 pp, P = .008). Children methylated arsenic more efficiently than their mothers. Also influencing factors, mainly selenium and folate, differed. This warrants further research.
Collapse
Affiliation(s)
| | - Maria Kippler
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden;
| | - Ying Lu
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Sultan Ahmed
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; International Center for Diarrhoeal Disease Research, Bangladesh (Icddr,B), Dhaka 1000, Bangladesh
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Rubhana Raqib
- International Center for Diarrhoeal Disease Research, Bangladesh (Icddr,B), Dhaka 1000, Bangladesh
| | - Marie Vahter
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden;
| |
Collapse
|
36
|
Marsit CJ. Influence of environmental exposure on human epigenetic regulation. ACTA ACUST UNITED AC 2015; 218:71-9. [PMID: 25568453 DOI: 10.1242/jeb.106971] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Environmental toxicants can alter epigenetic regulatory features such as DNA methylation and microRNA expression. As the sensitivity of epigenomic regulatory features may be greatest during the in utero period, when critical windows are narrow, and when epigenomic profiles are being set, this review will highlight research focused on that period. I will focus on work in human populations, where the impact of environmental toxicants in utero, including cigarette smoke and toxic trace metals such as arsenic, mercury and manganese, on genome-wide, gene-specific DNA methylation has been assessed. In particular, arsenic is highlighted, as this metalloid has been the focus of a number of studies and its detoxification mechanisms are well understood. Importantly, the tissues and cells being examined must be considered in context in order to interpret the findings of these studies. For example, by studying the placenta, it is possible to identify potential epigenetic adaptations of key genes and pathways that may alter the developmental course in line with the developmental origins of health and disease paradigm. Alternatively, studies of newborn cord blood can be used to examine how environmental exposure in utero can impact the composition of cells within the peripheral blood, leading to immunological effects of exposure. The results suggest that in humans, like other vertebrates, there is a susceptibility for epigenomic alteration by the environment during intrauterine development, and this may represent a mechanism of plasticity of the organism in response to its environment as well as a mechanism through which long-term health consequences can be shaped.
Collapse
Affiliation(s)
- Carmen J Marsit
- Department of Pharmacology and Toxicology and Section of Epidemiology and Biostatistics in the Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
37
|
Eichstaedt CA, Antao T, Cardona A, Pagani L, Kivisild T, Mormina M. Positive selection of AS3MT to arsenic water in Andean populations. Mutat Res 2015; 780:97-102. [PMID: 26366667 PMCID: PMC4896383 DOI: 10.1016/j.mrfmmm.2015.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 10/31/2022]
Abstract
Arsenic is a carcinogen associated with skin lesions and cardiovascular diseases. The Colla population from the Puna region in Northwest Argentinean is exposed to levels of arsenic in drinking water exceeding the recommended maximum by a factor of 20. Yet, they thrive in this challenging environment since thousands of years and therefore we hypothesize strong selection signatures in genes involved in arsenic metabolism. We analyzed genome-wide genotype data for 730,000 loci in 25 Collas, considering 24 individuals of the neighbouring Calchaquíes and 24 Wichí from the Gran Chaco region in the Argentine province of Salta as control groups. We identified a strong signal of positive selection in the main arsenic methyltransferase AS3MT gene, which has been previously associated with lower concentrations of the most toxic product of arsenic metabolism monomethylarsonic acid. This study confirms recent studies reporting selection signals in the AS3MT gene albeit using different samples, tests and control populations.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, Cambridgeshire, UK; Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, 69126 Heidelberg, Baden-Württemberg, Germany.
| | - Tiago Antao
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, Lancashire, UK
| | - Alexia Cardona
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, Cambridgeshire, UK
| | - Luca Pagani
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, Cambridgeshire, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
| | - Toomas Kivisild
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, Cambridgeshire, UK
| | - Maru Mormina
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, Cambridgeshire, UK; Faculty of Humanities and Social Sciences, University of Winchester, Winchester SO22 4NR, Hampshire, UK.
| |
Collapse
|
38
|
Gribble MO, Voruganti VS, Cole SA, Haack K, Balakrishnan P, Laston SL, Tellez-Plaza M, Francesconi KA, Goessler W, Umans JG, Thomas DC, Gilliland F, North KE, Franceschini N, Navas-Acien A. Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study. Toxicol Sci 2015. [PMID: 26209557 DOI: 10.1093/toxsci/kfv164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ~400 genome-wide microsatellite markers spaced ~10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly.
Collapse
Affiliation(s)
- Matthew O Gribble
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California;
| | - Venkata Saroja Voruganti
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina; UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Poojitha Balakrishnan
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandra L Laston
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center, San Antonio-Regional Academic Health Center, Brownsville, Texas
| | - Maria Tellez-Plaza
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Biomedical Research Institute, Hospital Clinic de Valencia-INCLIVA, Valencia, Spain
| | - Kevin A Francesconi
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Jason G Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia; MedStar Health Research Institute, Hyattsville, Maryland
| | - Duncan C Thomas
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Frank Gilliland
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
39
|
Koch I, Zhang J, Button M, Gibson LA, Caumette G, Langlois VS, Reimer KJ, Cullen WR. Arsenic(+3) and DNA methyltransferases, and arsenic speciation in tadpole and frog life stages of western clawed frogs (Silurana tropicalis) exposed to arsenate. Metallomics 2015; 7:1274-84. [PMID: 26067210 DOI: 10.1039/c5mt00078e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Western clawed frog (Silurana tropicalis) embryos were exposed to control, low (nominally 0.5 mg L(-1)) and high (nominally 1 mg L(-1)) arsenate (As(V)) culture water concentrations to investigate the effects of arsenic (As) on different life stages, namely tadpole (Nieuwkoop and Faber stage 56, NF56) and frog stages (NF66). The effects were assessed by measuring arsenic(+3) and DNA methyltransferases (AS3MT and DNMT1), as well as As speciation in the tissues. The As content in frog tissues increased with water As concentration. The As species observed by high performance liquid chromatography - inductively coupled plasma mass spectrometry (HPLC-ICPMS) were mostly inorganic, dimethylarsinic acid (DMA) and trimethylarsine oxide (TMAO). With solid state X-ray absorption near edge structure (XANES) analysis, arsenobetaine/tetramethylarsonium ion were also seen. AS3MT levels decreased upon low As exposure in NF56, rising again to control levels at the high As exposure. In NF66 tissues, on the other hand, AS3MT decreased only with NF66 high As exposure. DNMT1 increased with exposure, and this was statistically significant only for the high As exposure at both life stages. Thus these enzymes seem to be affected by the As exposure. Methylation of As to form monomethylarsonate (MMA), DMA and TMAO in the frogs appeared to be inversely related to AS3MT levels. A possible interpretation of this finding is that when AS3MT is higher, excretion of MMA + DMA + TMAO is more efficient, leaving lower concentrations in the tissues, with the opposite effect (less excretion) when AS3MT is lower; alternatively, other enzymes or linked genes may affect the methylation of As.
Collapse
Affiliation(s)
- Iris Koch
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Argos M. Arsenic Exposure and Epigenetic Alterations: Recent Findings Based on the Illumina 450K DNA Methylation Array. Curr Environ Health Rep 2015; 2:137-44. [PMID: 26231363 PMCID: PMC4522705 DOI: 10.1007/s40572-015-0052-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arsenic is a major public health concern worldwide. While it is an established carcinogen and associated with a number of other adverse health outcomes, the molecular mechanisms underlying arsenic toxicity are not completely clarified. There is mounting evidence from human studies suggesting that arsenic exposure is associated with epigenetic alterations, including DNA methylation. In this review, we summarize several recent human studies that have evaluated arsenic exposure using the Illumina HumanMethylation 450K BeadChip, which interrogates more than 485,000 methylation sites across the genome. Many of these studies have observed novel regions of the genome associated with arsenic exposure. However, few studies have evaluated the biological and functional relevance of these DNA methylation changes, which are still needed. We emphasize the need for future studies to replicate the identified DNA methylation signals as well as assess whether these markers are associated with risk of arsenic-related diseases.
Collapse
Affiliation(s)
- Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, MC923, Chicago, IL, 60612, USA,
| |
Collapse
|
41
|
Schlebusch CM, Gattepaille LM, Engström K, Vahter M, Jakobsson M, Broberg K. Human adaptation to arsenic-rich environments. Mol Biol Evol 2015; 32:1544-55. [PMID: 25739736 DOI: 10.1093/molbev/msv046] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adaptation drives genomic changes; however, evidence of specific adaptations in humans remains limited. We found that inhabitants of the northern Argentinean Andes, an arid region where elevated arsenic concentrations in available drinking water is common, have unique arsenic metabolism, with efficient methylation and excretion of the major metabolite dimethylated arsenic and a less excretion of the highly toxic monomethylated metabolite. We genotyped women from this population for 4,301,332 single nucleotide polymorphisms (SNPs) and found a strong association between the AS3MT (arsenic [+3 oxidation state] methyltransferase) gene and mono- and dimethylated arsenic in urine, suggesting that AS3MT functions as the major gene for arsenic metabolism in humans. We found strong genetic differentiation around AS3MT in the Argentinean Andes population, compared with a highly related Peruvian population (FST = 0.014) from a region with much less environmental arsenic. Also, 13 of the 100 SNPs with the highest genome-wide Locus-Specific Branch Length occurred near AS3MT. In addition, our examination of extended haplotype homozygosity indicated a selective sweep of the Argentinean Andes population, in contrast to Peruvian and Colombian populations. Our data show that adaptation to tolerate the environmental stressor arsenic has likely driven an increase in the frequencies of protective variants of AS3MT, providing the first evidence of human adaptation to a toxic chemical.
Collapse
Affiliation(s)
- Carina M Schlebusch
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Lucie M Gattepaille
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV, Harper KN, Parvez F, Rahman M, Rakibuz-Zaman M, Slavkovich V, Baron JA, Graziano JH, Kibriya MG, Ahsan H. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:64-71. [PMID: 25325195 PMCID: PMC4286273 DOI: 10.1289/ehp.1307884] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. OBJECTIVE Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. METHODS We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. RESULTS In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10(-7). Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10(-11)) and blood arsenic concentrations (p = 1.48 × 10(-11)). Three additional novel methylation loci-SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)--were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. CONCLUSIONS We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions.
Collapse
Affiliation(s)
- Maria Argos
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Engström KS, Vahter M, Fletcher T, Leonardi G, Goessler W, Gurzau E, Koppova K, Rudnai P, Kumar R, Broberg K. Genetic variation in arsenic (+3 oxidation state) methyltransferase (AS3MT), arsenic metabolism and risk of basal cell carcinoma in a European population. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:60-9. [PMID: 25156000 PMCID: PMC4322484 DOI: 10.1002/em.21896] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/11/2014] [Indexed: 05/19/2023]
Abstract
Exposure to inorganic arsenic increases the risk of basal cell carcinoma (BCC). Arsenic metabolism is a susceptibility factor for arsenic toxicity, and specific haplotypes in arsenic (+3 oxidation state) methyltransferase (AS3MT) have been associated with increased urinary fractions of the most toxic arsenic metabolite, methylarsonic acid (MMA). The aim of this study is to elucidate the association of AS3MT haplotypes with arsenic metabolism and the risk of BCC. Four AS3MT polymorphisms were genotyped in BCC cases (N = 529) and controls (N = 533) from Eastern Europe with low to moderate arsenic exposure (lifetime average drinking water concentration: 1.3 µg/L, range 0.01-167 µg/L). Urinary metabolites [inorganic arsenic (iAs), MMA, dimethylarsinic acid (DMA)] were analyzed by HPLC-ICPMS. Five AS3MT haplotypes (based on rs3740400 A/C, rs3740393 G/C, rs11191439 T/C and rs1046778 T/C) had frequencies >5%. Individuals with the CCTC haplotype had lower %iAs (P = 0.032) and %MMA (P = 0.020) in urine, and higher %DMA (P = 0.033); individuals with the CGCT haplotype had higher %MMA (P < 0.001) and lower %DMA (P < 0.001). All haplotypes showed increased risk of BCC with increasing arsenic exposure through drinking water (ORs 1.1-1.4, P values from <0.001 to 0.082), except for the CCTC haplotype (OR 1.0, CI 0.9-1.2, P value 0.85). The results suggest that carriage of AS3MT haplotypes associated with less-efficient arsenic methylation, or lack of AS3MT haplotypes associated with a more-efficient arsenic methylation, results in higher risk of arsenic-related BCC. The fact that AS3MT haplotype status modified arsenic metabolism, and in turn the arsenic-related BCC risk, supports a causal relationship between low-level arsenic exposure and BCC.
Collapse
Affiliation(s)
- Karin S Engström
- Division of Occupational and Environmental Medicine, Lund UniversityLund, Sweden
| | - Marie Vahter
- Section for Metals and Health, Institute for Environmental Medicine, Karolinska InstitutetSolna, Sweden
| | - Tony Fletcher
- London School of Hygiene & Tropical MedicineLondon, United Kingdom
| | | | - Walter Goessler
- Institut für Chemie, Analytische Chemie, Karl-Franzens-UniversitätGraz, Austria
| | - Eugen Gurzau
- Health Department, Environmental Health Center, Babes Bolyai UniversityCluj-Napoca, Romania
| | - Kvetoslava Koppova
- Department of Environmental Health, Regional Authority of Public HealthBanska Bystrica, Slovakia
| | - Peter Rudnai
- Department of Environmental Epidemiology, National Institute of Environmental HealthBudapest, Hungary
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research CentreHeidelberg, Germany
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund UniversityLund, Sweden
- Section for Metals and Health, Institute for Environmental Medicine, Karolinska InstitutetSolna, Sweden
| |
Collapse
|
44
|
Konkel L. Inner workings of arsenic: DNA methylation targets offer clues to mechanisms of toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:A21. [PMID: 25561608 PMCID: PMC4286264 DOI: 10.1289/ehp.123-a21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
|
45
|
Pierce BL, Tong L, Argos M, Gao J, Farzana J, Roy S, Paul-Brutus R, Rahaman R, Rakibuz-Zaman M, Parvez F, Ahmed A, Quasem I, Hore SK, Alam S, Islam T, Harjes J, Sarwar G, Slavkovich V, Gamble MV, Chen Y, Yunus M, Rahman M, Baron JA, Graziano JH, Ahsan H. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction. Int J Epidemiol 2014; 42:1862-71. [PMID: 24536095 DOI: 10.1093/ije/dyt182] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. METHODS Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. RESULTS Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). CONCLUSIONS We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.
Collapse
|
46
|
Rentschler G, Kippler M, Axmon A, Raqib R, Skerfving S, Vahter M, Broberg K. Cadmium concentrations in human blood and urine are associated with polymorphisms in zinc transporter genes. Metallomics 2014; 6:885-91. [PMID: 24514587 DOI: 10.1039/c3mt00365e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Variation in susceptibility to cadmium (Cd) toxicity may partly be due to differences in Cd toxicokinetics. Experimental studies indicate that zinc (Zn) homeostasis proteins transport Cd. OBJECTIVE To evaluate the potential effect of variation in Zn-transporter genes (SLC39A8 and SLC39A14) on Cd concentrations in blood and urine. METHODS We studied women from the Argentinean Andes [median urinary Cd concentration (U-Cd) = 0.24 μg L(-1); erythrocyte Cd (Ery-Cd) = 0.75 μg L(-1) (n = 172)] and from rural Bangladesh [U-Cd = 0.54 μg L(-1) (n = 359), Ery-Cd = 1.1 μg L(-1) (n = 400)]. Polymorphisms (n = 36) were genotyped with Sequenom. Gene expression was measured in whole blood with Illumina DirectHyb HumanHT-12 v4.0. RESULTS Polymorphisms in SLC39A8 and SLC39A14 were associated with Ery-Cd concentrations in the Andean population. For SLC39A14, women carrying GT or TT genotypes of rs4872479 had 1.25 [95% confidence interval (CI) = 1.07-1.46] times higher Ery-Cd than women carrying GG. Also, women carrying AG or AA of rs870215 had 1.17 (CI 1.01-1.32) times higher Ery-Cd than those carrying GG. For SLC39A8, women carrying AG or GG of rs10014145 had 1.18 (CI 1.03-1.35) times higher Ery-Cd than those with AA, and carriers of CA or AA of rs233804 showed 1.22 (CI 1.04-1.42) times higher Ery-Cd than CC. The Bangladeshi population had similar, but statistically non-significant associations between some of these SNPs and Ery-Cd. In the Andean population, the genotypes of SLC39A14 rs4872479 and rs870215 associated with lower Ery-Cd showed positive correlations with plasma-Zn (P-Zn) and SLC39A14 expression. CONCLUSIONS Polymorphisms in SLC39A14 and SLC39A8 seemed to affect blood Cd concentrations, for SLC39A14 this effect may occur via differential gene expression.
Collapse
Affiliation(s)
- Gerda Rentschler
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Khaleghian A, Ghaffari SH, Ahmadian S, Alimoghaddam K, Ghavamzadeh A. Metabolism of arsenic trioxide in acute promyelocytic leukemia cells. J Cell Biochem 2014; 115:1729-39. [PMID: 24819152 DOI: 10.1002/jcb.24838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022]
Abstract
Arsenic trioxide (As2O3) effectively induces complete clinical and molecular remissions in acute promyelocytic leukemia (APL) patients and triggers apoptosis in APL cells. The effect induced by As2O3 is also associated with extensive genomic-wide epigenetic changes with large-scale alterations in DNA methylation. We investigated the As2O3 metabolism in association with factors involved in the production of its methylated metabolites in APL-derived cell line, NB4. We used high performance liquid chromatography (HPLC) technique to detect As2O3 metabolites in NB4 cells. The effects of As2O3 on glutathione level, S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were investigated. Also, we studied the expression levels of arsenic methyltransferase (AS3MT) and DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) by real-time PCR. Our results show that after As2O3 entry into the cell, it was converted into methylated metabolites, mono-methylarsenic (MMA) and dimethylarsenic (DMA). The glutathione (GSH) production was increased in parallel with the methylated metabolites formations. As2O3 treatment inhibited DNMTs (DNMT1, DNMT3a, and DNMT3b) in dose- and time-dependent manners. The SAH levels in As2O3-treated cells were increased; however, the SAM level was not affected. The present study shows that APL cell is capable of metabolizing As2O3. The continuous formation of intracellular methylated metabolites, the inhibition of DNMTs expression levels and the increase of SAH level by As2O3 biotransformation would probably affect the DNMTs-methylated DNA methylation in a manner related to the extent of DNA hypomethylation. Production of intracellular methylated metabolites and epigenetic changes of DNA methylation during As2O3 metabolism may contribute to the therapeutic effect of As2O3 in APL.
Collapse
Affiliation(s)
- Ali Khaleghian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tehran, Iran; Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
48
|
Broberg K, Ahmed S, Engström K, Hossain MB, Jurkovic Mlakar S, Bottai M, Grandér M, Raqib R, Vahter M. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis 2014; 5:288-98. [PMID: 24965135 PMCID: PMC4283288 DOI: 10.1017/s2040174414000221] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022]
Abstract
Early-life inorganic arsenic exposure influences not only child health and development but also health in later life. The adverse effects of arsenic may be mediated by epigenetic mechanisms, as there are indications that arsenic causes altered DNA methylation of cancer-related genes. The objective was to assess effects of arsenic on genome-wide DNA methylation in newborns. We studied 127 mothers and cord blood of their infants. Arsenic exposure in early and late pregnancy was assessed by concentrations of arsenic metabolites in maternal urine, measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry. Genome-wide 5-methylcytosine methylation in mononuclear cells from cord blood was analyzed by Infinium HumanMethylation450K BeadChip. Urinary arsenic in early gestation was associated with cord blood DNA methylation (Kolmogorov-Smirnov test, P-value<10-15), with more pronounced effects in boys than in girls. In boys, 372 (74%) of the 500 top CpG sites showed lower methylation with increasing arsenic exposure (r S -values>-0.62), but in girls only 207 (41%) showed inverse correlation (r S -values>-0.54). Three CpG sites in boys (cg15255455, cg13659051 and cg17646418), but none in girls, were significantly correlated with arsenic after adjustment for multiple comparisons. The associations between arsenic and DNA methylation were robust in multivariable-adjusted linear regression models. Much weaker associations were observed with arsenic exposure in late compared with early gestation. Pathway analysis showed overrepresentation of affected cancer-related genes in boys, but not in girls. In conclusion, early prenatal arsenic exposure appears to decrease DNA methylation in boys. Associations between early exposure and DNA methylation might reflect interference with de novo DNA methylation.
Collapse
Affiliation(s)
- K. Broberg
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - S. Ahmed
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - K. Engström
- Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - M. B. Hossain
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - S. Jurkovic Mlakar
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - M. Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M. Grandér
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
| | - R. Raqib
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - M. Vahter
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Antonelli R, Shao K, Thomas DJ, Sams R, Cowden J. AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility. ENVIRONMENTAL RESEARCH 2014; 132:156-67. [PMID: 24792412 DOI: 10.1016/j.envres.2014.03.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Oral exposure to inorganic arsenic (iAs) is associated with adverse health effects. Epidemiological studies suggest differences in susceptibility to these health effects, possibly due to genotypic variation. Genetic polymorphisms in iAs metabolism could lead to increased susceptibility by altering urinary iAs metabolite concentrations. OBJECTIVE To examine the impact of genotypic polymorphisms on iAs metabolism. METHODS We screened 360 publications from PubMed and Web of Science for data on urinary mono- and dimethylated arsenic (MMA and DMA) percentages and polymorphic genes encoding proteins that are hypothesized to play roles in arsenic metabolism. The genes we examined were arsenic (+3) methyltransferase (AS3MT), glutathione-s-transferase omega (GSTO), and purine nucleoside phosphorylase (PNP). Relevant data were pooled to determine which polymorphisms are associated across studies with changes in urinary metabolite concentration. RESULTS In our review, AS3MT polymorphisms rs3740390, rs11191439, and rs11191453 were associated with statistically significant changes in percent urinary MMA. Studies of GSTO polymorphisms did not indicate statistically significant associations with methylation, and there are insufficient data on PNP polymorphisms to evaluate their impact on metabolism. DISCUSSION Collectively, these data support the hypothesis that AS3MT polymorphisms alter in vivo metabolite concentrations. Preliminary evidence suggests that AS3MT genetic polymorphisms may impact disease susceptibility. GSTO polymorphisms were not associated with iAs-associated health outcomes. Additional data are needed to evaluate the association between PNP polymorphisms and iAs-associated health outcomes. Delineation of these relationships may inform iAs mode(s) of action and the approach for evaluating low-dose health effects for iAs. CONCLUSIONS Genotype impacts urinary iAs metabolite concentrations and may be a potential mechanism for iAs-related disease susceptibility.
Collapse
Affiliation(s)
- Ray Antonelli
- ORISE Fellow, Hazardous Pollutant Assessment Group, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kan Shao
- ORISE Fellow, Hazardous Pollutant Assessment Group, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David J Thomas
- Integrated Systems Toxicology Division, National Health and Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Reeder Sams
- Hazardous Pollutant Assessment Group, National Center for Environmental Assessment, Research Triangle Park Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John Cowden
- Hazardous Pollutant Assessment Group, National Center for Environmental Assessment, Research Triangle Park Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
50
|
Ezeh PC, Lauer FT, MacKenzie D, McClain S, Liu KJ, Hudson LG, Gandolfi AJ, Burchiel SW. Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo. PLoS One 2014; 9:e93920. [PMID: 24714590 PMCID: PMC3979857 DOI: 10.1371/journal.pone.0093920] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/11/2014] [Indexed: 12/02/2022] Open
Abstract
It is known that exposure to As+3 via drinking water causes a disruption of the immune system and significantly compromises the immune response to infection. The purpose of these studies was to assess the effects of As+3 on bone marrow progenitor cell colony formation and the humoral immune response to a T-dependent antigen response (TDAR) in vivo. In a 30 day drinking water study, mice were exposed to 19, 75, or 300 ppb As+3. There was a decrease in bone marrow cell recovery, but not spleen cell recovery at 300 ppb As+3. In the bone marrow, As+3 altered neither the expression of CD34+ and CD38+ cells, markers of early hematopoietic stem cells, nor CD45−/CD105+, markers of mesenchymal stem cells. Spleen cell surface marker CD45 expression on B cells (CD19+), T cells (CD3+), T helper cells (CD4+) and cytotoxic T cells (CD8+), natural killer (NK+), and macrophages (Mac 1+) were not altered by the 30 day in vivo As+3 exposure. Functional assays of CFU-B colony formation showed significant selective suppression (p<0.05) by 300 ppb As+3 exposure, whereas CFU-GM formation was not altered. The TDAR of the spleen cells was significantly suppressed at 75 and 300 ppb As+3. In vitro studies of the bone marrow revealed a selective suppression of CFU-B by 50 nM As+3 in the absence of apparent cytotoxicity. Monomethylarsonous acid (MMA+3) demonstrated a dose-dependent and selective suppression of CFU-B beginning at 5 nM (p<0.05). MMA+3 suppressed CFU-GM formation at 500 nM, a concentration that proved to be nonspecifically cytotoxic. As+5 did not suppress CFU-B and/or CFU-GM in vitro at concentrations up to 500 nM. Collectively, these results demonstrate that As+3 and likely its metabolite (MMA+3) target lymphoid progenitor cells in mouse bone marrow and mature B and T cell activity in the spleen.
Collapse
Affiliation(s)
- Peace C. Ezeh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Debra MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Shea McClain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - A. Jay Gandolfi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Scott W. Burchiel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|