1
|
Blümke J, Schameitat M, Verma A, Limbecker C, Arlt E, Kessler SM, Kielstein H, Krug S, Bazwinsky-Wutschke I, Haemmerle M. Innate Immunity and Platelets: Unveiling Their Role in Chronic Pancreatitis and Pancreatic Cancer. Cancers (Basel) 2025; 17:1689. [PMID: 40427186 PMCID: PMC12110028 DOI: 10.3390/cancers17101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic instability, acinar-ductal metaplasia, and pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular matrix, including immune cells, can modulate this progression phase. This includes cells of the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells, mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory responses that support tumor progression by releasing cytokines and growth factors, fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can also activate immune surveillance mechanisms, which can limit tumor development. For example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells, and active dendritic cells are crucial for a functioning anti-tumor immune response. In contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment that is additionally sustained by platelets. Once thought to play a role in hemostasis only, platelets are now recognized as key players in inflammation and cancer progression. By releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation, progression, metastasis, and immune evasion. Neutrophils and macrophages exist in different functional subtypes that can both act pro- and anti-tumorigenic. Understanding the complex interactions between innate immune cells, platelets, and early precursor lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that can harness the immune and potentially also the coagulation system to target and eliminate tumors, offering hope for improved patient outcomes.
Collapse
Affiliation(s)
- Juliane Blümke
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| | - Moritz Schameitat
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Atul Verma
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
| | - Celina Limbecker
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Elise Arlt
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sonja M. Kessler
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Faculty of Natural Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sebastian Krug
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Monika Haemmerle
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| |
Collapse
|
2
|
Abuhelwa Z, Kim DW. LOAd703 and chemotherapy combination in pancreatic cancer: insights from the LOKON001 study. Transl Gastroenterol Hepatol 2025; 10:21. [PMID: 40337771 PMCID: PMC12056096 DOI: 10.21037/tgh-24-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/06/2025] [Indexed: 05/09/2025] Open
Affiliation(s)
- Ziad Abuhelwa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Dae Won Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
3
|
Jafarnezhad-Ansariha F, Contran N, Cristofori C, Simonato M, Davanzo V, Moz S, Galozzi P, Fogar P, Nordi E, Padoan A, Aita A, Fassan M, Fantin A, Sartori A, Sperti C, Correani A, Carnielli V, Cogo P, Basso D. Cystic Fluid Total Proteins, Low-Density Lipoprotein Cholesterol, Lipid Metabolites, and Lymphocytes: Worrisome Biomarkers for Intraductal Papillary Mucinous Neoplasms. Cancers (Basel) 2025; 17:643. [PMID: 40002238 PMCID: PMC11853297 DOI: 10.3390/cancers17040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: Pancreatic cystic neoplasms (PCNs), particularly intraductal papillary mucinous neoplasms (IPMNs), present a challenge for their potential malignancy. Despite promising biomarkers like CEA, amylase, and glucose, our study investigates whether metabolic indices in blood and cystic fluids (CFs), in addition to lymphocyte subsets and hematopoietic stem/progenitor cells (HSPCs), can effectively differentiate between high- and low-risk PCNs. Materials and Methods: A total of 26 patients (11 males, mean age 69.5 ± 9 years) undergoing Endoscopic Ultrasound-guided Fine Needle Aspiration were consecutively enrolled. Analyses included blood, serum, and CF, assessing glucose, CEA, cholesterol (total, HDL, and LDL), and total proteins. Flow cytometry examined immunophenotyping in peripheral blood and cystic fluids. Mass spectrometry was used for the metabolomic analysis of CF. Sensitivity, specificity, and ROC analyses evaluated discriminatory power. Results: A total of 25 out of 26 patients had IPMN. Patients were categorized as low or high risk based on multidisciplinary evaluation of clinical, radiological, and endoscopic data. High-risk patients showed lower CF total proteins and LDL cholesterol (p = 0.005 and p = 0.031), with a marked reduction in CF lymphocytes (p = 0.005). HSCPs were absent in CF. In blood, high-risk patients showed increased non-MHC-restricted cytotoxic T cells (p = 0.019). The metabolomic analysis revealed significantly reduced middle and long-chain acyl carnitines (AcCa) and tryptophan metabolites in high-risk patients. ROC curves indicated comparable discriminant abilities for CF lymphocytes (AUC 0.868), CF total proteins (AUC 0.859), and CF LDL cholesterol (AUC 0.795). The highest performance was achieved by the AcCa 14:2 and 16:0 (AUC: 0.9221 and 0.8857, respectively). Conclusions: CF levels of glucose, CEA, LDL cholesterol, and total proteins together with lymphocyte counts are easy translational biomarkers that may support risk stratification of PCNs in IPMN patients and might be endorsed by metabolomic analysis. Further studies are required for potential clinical integration.
Collapse
Affiliation(s)
- Fahimeh Jafarnezhad-Ansariha
- Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padua, 35128 Padua, Italy; (F.J.-A.); (C.S.)
| | - Nicole Contran
- Laboratory Medicine, University-Hospital of Padua, 35128 Padua, Italy; (N.C.); (V.D.); (S.M.); (P.F.); (E.N.); (A.P.); (A.A.); (D.B.)
| | - Chiara Cristofori
- Department of Gastroenterology, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (C.C.); (A.F.)
| | - Manuela Simonato
- Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (M.S.); (M.F.)
- Pediatric Research Institute “Citta’ della Speranza”, Critical Care Biology and PCare Laboratories, 35127 Padua, Italy;
| | - Veronica Davanzo
- Laboratory Medicine, University-Hospital of Padua, 35128 Padua, Italy; (N.C.); (V.D.); (S.M.); (P.F.); (E.N.); (A.P.); (A.A.); (D.B.)
| | - Stefania Moz
- Laboratory Medicine, University-Hospital of Padua, 35128 Padua, Italy; (N.C.); (V.D.); (S.M.); (P.F.); (E.N.); (A.P.); (A.A.); (D.B.)
| | - Paola Galozzi
- Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (M.S.); (M.F.)
| | - Paola Fogar
- Laboratory Medicine, University-Hospital of Padua, 35128 Padua, Italy; (N.C.); (V.D.); (S.M.); (P.F.); (E.N.); (A.P.); (A.A.); (D.B.)
| | - Evelyn Nordi
- Laboratory Medicine, University-Hospital of Padua, 35128 Padua, Italy; (N.C.); (V.D.); (S.M.); (P.F.); (E.N.); (A.P.); (A.A.); (D.B.)
| | - Andrea Padoan
- Laboratory Medicine, University-Hospital of Padua, 35128 Padua, Italy; (N.C.); (V.D.); (S.M.); (P.F.); (E.N.); (A.P.); (A.A.); (D.B.)
- Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (M.S.); (M.F.)
| | - Ada Aita
- Laboratory Medicine, University-Hospital of Padua, 35128 Padua, Italy; (N.C.); (V.D.); (S.M.); (P.F.); (E.N.); (A.P.); (A.A.); (D.B.)
- Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (M.S.); (M.F.)
| | - Matteo Fassan
- Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (M.S.); (M.F.)
| | - Alberto Fantin
- Department of Gastroenterology, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (C.C.); (A.F.)
| | - Anna Sartori
- Pediatric Research Institute “Citta’ della Speranza”, Critical Care Biology and PCare Laboratories, 35127 Padua, Italy;
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padua, 35128 Padua, Italy; (F.J.-A.); (C.S.)
| | - Alessio Correani
- Department of Odontostomatologic and Specialized Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.C.); (V.C.)
| | - Virgilio Carnielli
- Department of Odontostomatologic and Specialized Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.C.); (V.C.)
- Division of Neonatology, Mother and Child Department, G. Salesi University Hospital, 60123 Ancona, Italy
| | - Paola Cogo
- Department of Medicine, Division of Pediatrics, S. Maria della Misericordia University Hospital, University of Udine, 33100 Udine, Italy;
| | - Daniela Basso
- Laboratory Medicine, University-Hospital of Padua, 35128 Padua, Italy; (N.C.); (V.D.); (S.M.); (P.F.); (E.N.); (A.P.); (A.A.); (D.B.)
- Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (M.S.); (M.F.)
| |
Collapse
|
4
|
Ni R, Hu Z, Tao R. Advances of immune-checkpoint inhibition of CTLA-4 in pancreatic cancer. Biomed Pharmacother 2024; 179:117430. [PMID: 39260322 DOI: 10.1016/j.biopha.2024.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Targeting checkpoints for immune cell activation has been acknowledged known as one of the most effective way to activate anti-tumor immune responses. Among them, drugs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are approved for clinical treatment though several more are in advanced stages of development, which demonstrated durable response rates and manageable safety profile. However, its therapy efficacy is unsatisfactory in pancreatic cancer (PC), which can be limited by the overall condition of patients, the pathological type of PC, the expression level of tumor related genes, etc. To improve clinical efficiency, various researches have been conducted, and the efficacy of combination therapy showed significantly improvement compared to monotherapy. This review analyzed current strategies based on anti-CTLA-4 combination immunotherapy, providing totally new idea for future research.
Collapse
Affiliation(s)
- Ran Ni
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiming Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hepatobiliary & Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Mottini C, Auciello FR, Manni I, Pilarsky C, Caputo D, Caracciolo G, Rossetta A, Di Gennaro E, Budillon A, Blandino G, Roca MS, Piaggio G. The cross-talk between the macro and micro-environment in precursor lesions of pancreatic cancer leads to new and promising circulating biomarkers. J Exp Clin Cancer Res 2024; 43:198. [PMID: 39020414 PMCID: PMC11256648 DOI: 10.1186/s13046-024-03117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024] Open
Abstract
Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.
Collapse
Affiliation(s)
- Carla Mottini
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca Romana Auciello
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | | | - Giulio Caracciolo
- Dipartimento Di Medicina Molecolare Sapienza, Università Di Roma, Rome, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giovanni Blandino
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maria Serena Roca
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
6
|
Zheng J, He B, Deng L, Zhu X, Li R, Chen K, Zheng C, Wang D, Wang Y, Yu C, Chen G. Prognostic value of diffuse reduction of spleen density on postoperative survival of pancreatic ductal adenocarcinoma: A retrospective study. Asia Pac J Clin Oncol 2024; 20:275-284. [PMID: 36748794 DOI: 10.1111/ajco.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/05/2022] [Accepted: 01/07/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE It is difficult to predict the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) before radical operation. The purpose of this study was to explore the connection between the diffuse reduction of spleen density on computed tomography (DROSD) and the postoperative prognosis of patients with PDAC. PATIENTS AND METHODS A total of 160 patients with PDAC who underwent radical surgery in the First Affiliated Hospital of Wenzhou Medical University were enrolled. Cox regression analysis was used to cast the overall survival (OS) and evaluate the prognostic factors. Nomogram was used to forecast the possibility of 1-year, 3-year, and 5-year OS. The prediction accuracy and clinical net benefit are performed by concordance index (C-index), calibration curve, time-dependent receiver operating characteristics (tdROC), and decision curve analysis. RESULTS In multivariable Cox analysis, DROSD is independently related to OS. Advanced age, TNM stage, neutrophil/lymphocyte ratio, and severe complications were also independent prognostic factors. The calibration curves of nomogram showed optimal agreement between prediction and observation. The C-index of nomogram is 0.662 (95%CI, 0.606-0.754). The area under tdROC curve for a 3-year OS of nomogram is 0.770. CONCLUSION DROSD is an independent risk factor for an OS of PDAC. We developed a nomogram that combined imaging features, clinicopathological factors, and systemic inflammatory response to provide a personalized risk assessment for patients with PDAC.
Collapse
Affiliation(s)
- Jiuyi Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bangjie He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Liming Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xuewen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Rizhao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Kaiyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chongming Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Daojie Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chang Yu
- Department of Interventional Therapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
7
|
Musher BL, Rowinsky EK, Smaglo BG, Abidi W, Othman M, Patel K, Jawaid S, Jing J, Brisco A, Leen AM, Wu M, Sandin LC, Wenthe J, Eriksson E, Ullenhag GJ, Grilley B, Leja-Jarblad J, Hilsenbeck SG, Brenner MK, Loskog ASI. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study. Lancet Oncol 2024; 25:488-500. [PMID: 38547893 DOI: 10.1016/s1470-2045(24)00079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma. METHODS LOKON001 was a non-randomised, phase 1/2 study conducted at the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA, and consisted of two arms conducted sequentially; the results of arm 1 are presented here. In arm 1, patients 18 years or older with previously treated or treatment-naive unresectable or metastatic pancreatic ductal adenocarcinoma were treated with standard 28-day cycles of intravenous nab-paclitaxel 125 mg/m2 plus gemcitabine 1000 mg/m2 (up to 12 cycles) and intratumoural injections of LOAd703 every 2 weeks. Patients were assigned using Bayesian optimal interval design to receive 500 μL of LOAd703 at 5 × 1010 (dose 1), 1 × 1011 (dose 2), or 5 × 1011 (dose 3) viral particles per injection, injected endoscopically or percutaneously into the pancreatic tumour or a metastasis for six injections. The primary endpoints were safety and treatment-emergent immune response in patients who received at least one dose of LOAd703, and antitumour activity was a secondary endpoint. This study was registered with ClinicalTrials.gov, NCT02705196, arm 2 is ongoing and open to new participants. FINDINGS Between Dec 2, 2016, and Oct 17, 2019, 23 patients were assessed for eligibility, leading to 22 patients being enrolled. One patient withdrew consent, resulting in 21 patients (13 [62%] men and eight [38%] women) assigned to a dose group (three to dose 1, four to dose 2, and 14 to dose 3). 21 patients were evaluable for safety. Median follow-up time was 6 months (IQR 4-10), and data cutoff was Jan 5, 2023. The most common treatment-emergent adverse events overall were anaemia (96 [8%] of 1237 events), lymphopenia (86 [7%] events), hyperglycaemia (70 [6%] events), leukopenia (63 [5%] events), hypertension (62 [5%] events), and hypoalbuminaemia (61 [5%] events). The most common adverse events attributed to LOAd703 were fever (14 [67%] of 21 patients), fatigue (eight [38%]), chills (seven [33%]), and elevated liver enzymes (alanine aminotransferase in five [24%], alkaline phosphatase in four [19%], and aspartate aminotransferase in four [19%]), all of which were grade 1-2, except for a transient grade 3 aminotransferase elevation occurring at dose 3. A maximum tolerated dose was not reached, thereby establishing dose 3 as the highest-evaluated safe dose when combined with nab-paclitaxel plus gemcitabine. Proportions of CD8+ effector memory cells and adenovirus-specific T cells increased after LOAd703 injections in 15 (94%) of 16 patients for whom T-cell assays could be performed. Eight (44%, 95% CI 25-66) of 18 patients evaluable for activity had an objective response. INTERPRETATION Combining LOAd703 with nab-paclitaxel plus gemcitabine in patients with advanced pancreatic ductal adenocarcinoma was feasible and safe. To build upon this novel chemoimmunotherapeutic approach, arm 2 of LOKON001, which combines LOAd703, nab-paclitaxel plus gemcitabine, and atezolizumab, is ongoing. FUNDING Lokon Pharma, the Swedish Cancer Society, and the Swedish Research Council.
Collapse
Affiliation(s)
- Benjamin L Musher
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | | | | | - Wasif Abidi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mohamed Othman
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kalpesh Patel
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Salmaan Jawaid
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - James Jing
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Amanda Brisco
- USF Health Morsani College of Medicine, Tampa, FL, USA
| | - Ann M Leen
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mengfen Wu
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Jessica Wenthe
- Lokon Pharma AB, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emma Eriksson
- Lokon Pharma AB, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gustav J Ullenhag
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Oncology, Uppsala University Hospital, Akademiska Sjukhuset, Uppsala, Sweden
| | - Bambi Grilley
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Susan G Hilsenbeck
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Angelica S I Loskog
- Lokon Pharma AB, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
10
|
Cole KE, Ly QP, Hollingsworth MA, Cox JL, Fisher KW, Padussis JC, Foster JM, Vargas LM, Talmadge JE. Splenic and PB immune recovery in neoadjuvant treated gastrointestinal cancer patients. Int Immunopharmacol 2022; 106:108628. [PMID: 35203041 PMCID: PMC9009221 DOI: 10.1016/j.intimp.2022.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
In recent years, immune therapy, notably immune checkpoint inhibitors (ICI), in conjunction with chemotherapy and surgery has demonstrated therapeutic activity for some tumor types. However, little is known about the optimal combination of immune therapy with standard of care therapies and approaches. In patients with gastrointestinal (GI) cancers, especially pancreatic ductal adenocarcinoma (PDAC), preoperative (neoadjuvant) chemotherapy has increased the number of patients who can undergo surgery and improved their responses. However, most chemotherapy is immunosuppressive, and few studies have examined the impact of neoadjuvant chemotherapy (NCT) on patient immunity and/or the optimal combination of chemotherapy with immune therapy. Furthermore, the majority of chemo/immunotherapy studies focused on immune regulation in cancer patients have focused on postoperative (adjuvant) chemotherapy and are limited to peripheral blood (PB) and occasionally tumor infiltrating lymphocytes (TILs); representing a minority of immune cells in the host. Our previous studies examined the phenotype and frequencies of myeloid and lymphoid cells in the PB and spleens of GI cancer patients, independent of chemotherapy regimen. These results led us to question the impact of NCT on host immunity. We report herein, unique studies examining the splenic and PB phenotypes, frequencies, and numbers of myeloid and lymphoid cell populations in NCT treated GI cancer patients, as compared to treatment naïve cancer patients and patients with benign GI tumors at surgery. Overall, we noted limited immunological differences in patients 6 weeks following NCT (at surgery), as compared to treatment naive patients, supporting rapid immune normalization. We observed that NCT patients had a lower myeloid derived suppressor cells (MDSCs) frequency in the spleen, but not the PB, as compared to treatment naive cancer patients and patients with benign GI tumors. Further, NCT patients had a higher splenic and PB frequency of CD4+ T-cells, and checkpoint protein expression, as compared to untreated, cancer patients and patients with benign GI tumors. Interestingly, in NCT treated cancer patients the frequency of mature (CD45RO+) CD4+ and CD8+ T-cells in the PB and spleens was higher than in treatment naive patients. These differences may also be associated, in part with patient stage, tumor grade, and/or NCT treatment regimen. In summary, the phenotypic profile of leukocytes at the time of surgery, approximately 6 weeks following NCT treatment in GI cancer patients, are similar to treatment naive GI cancer patients (i.e., patients who receive adjuvant therapy); suggesting that NCT may not limit the response to immune intervention and may improve tumor responses due to the lower splenic frequency of MDSCs and higher frequency of mature T-cells.
Collapse
Affiliation(s)
- Kathryn E Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - James C Padussis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Luciano M Vargas
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Current Limitations and Novel Perspectives in Pancreatic Cancer Treatment. Cancers (Basel) 2022; 14:cancers14040985. [PMID: 35205732 PMCID: PMC8870068 DOI: 10.3390/cancers14040985] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This review article presents a synopsis of the key clinical developments, their limitations, and future perspectives in the treatment of pancreatic cancer. In the first part, we summarize the available treatments for pancreatic cancer patients according to tumor stage, as well as the most relevant clinical trials over the past two decades. Despite this progress, there is still much to be improved in terms of patient survival. Therefore, in the second part, we consider various components of the tumor microenvironment in pancreatic cancer, looking for the key drivers of therapy resistance and tumor progression, which may lead to the discovery of new potential targets. We also discuss the most prominent molecules targeting the stroma and immune compartment that are being investigated in either preclinical or clinical trials. Finally, we also outline interesting venues for further research, such as possible combinations of therapies that may have the potential for clinical application. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, largely due to its aggressive development. Consequently, treatment options are often palliative, as only one-fifth of patients present with potentially curable tumors. The only available treatment with curative intent is surgery followed by adjuvant chemotherapy. However, even for patients that are eligible for surgery, the 5-year OS remains below 10%. Hence, there is an urgent need to find new therapeutic regimens. In the first part of this review, we discuss the tumor staging method and its impact on the corresponding current standard-of-care treatments for PDAC. We also consider the key clinical trials over the last 20 years that have improved patient survival. In the second part, we provide an overview of the major components and cell types involved in PDAC, as well as their respective roles and interactions with each other. A deeper knowledge of the interactions taking place in the TME may lead to the discovery of potential new therapeutic targets. Finally, we discuss promising treatment strategies targeting specific components of the TME and potential combinations thereof. Overall, this review provides an overview of the current challenges and future perspectives in the treatment of pancreatic cancer.
Collapse
|
12
|
Wu Y, Zhou Q, Guo F, Chen M, Tao X, Dong D. S100 Proteins in Pancreatic Cancer: Current Knowledge and Future Perspectives. Front Oncol 2021; 11:711180. [PMID: 34527585 PMCID: PMC8435722 DOI: 10.3389/fonc.2021.711180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor occurring in the digestive system. Currently, there is a lack of specific and effective interventions for PC; thus, further exploration regarding the pathogenesis of this malignancy is warranted. The S100 protein family, a collection of calcium-binding proteins expressed only in vertebrates, comprises 25 members with high sequence and structural similarity. Dysregulated expression of S100 proteins is a biomarker of cancer progression and prognosis. Functionally, these proteins are associated with the regulation of multiple cellular processes, including proliferation, apoptosis, growth, differentiation, enzyme activation, migration/invasion, Ca2+ homeostasis, and energy metabolism. This review highlights the significance of the S100 family in the diagnosis and prognosis of PC and its vital functions in tumor cell metastasis, invasion and proliferation. A further understanding of S100 proteins will provide potential therapeutic targets for preventing or treating PC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mingming Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Kiaie SH, Sanaei MJ, Heshmati M, Asadzadeh Z, Azimi I, Hadidi S, Jafari R, Baradaran B. Immune checkpoints in targeted-immunotherapy of pancreatic cancer: New hope for clinical development. Acta Pharm Sin B 2021; 11:1083-1097. [PMID: 34094821 PMCID: PMC8144893 DOI: 10.1016/j.apsb.2020.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has been recently considered as a promising alternative for cancer treatment. Indeed, targeting of immune checkpoint (ICP) strategies have shown significant success in human malignancies. However, despite remarkable success of cancer immunotherapy in pancreatic cancer (PCa), many of the developed immunotherapy methods show poor therapeutic outcomes in PCa with no or few effective treatment options thus far. In this process, immunosuppression in the tumor microenvironment (TME) is found to be the main obstacle to the effectiveness of antitumor immune response induced by an immunotherapy method. In this paper, the latest findings on the ICPs, which mediate immunosuppression in the TME have been reviewed. In addition, different approaches for targeting ICPs in the TME of PCa have been discussed. This review has also synopsized the cutting-edge advances in the latest studies to clinical applications of ICP-targeted therapy in PCa.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Saleh Hadidi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| |
Collapse
|
14
|
Cole KE, Ly QP, Hollingsworth MA, Cox JL, Padussis JC, Foster JM, Vargas LM, Talmadge JE. Human splenic myeloid derived suppressor cells: Phenotypic and clustering analysis. Cell Immunol 2021; 363:104317. [PMID: 33714729 DOI: 10.1016/j.cellimm.2021.104317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Myeloid derived suppressor cells (MDSCs) can be subset into monocytic (M-), granulocytic (G-) or polymorphonuclear (PMN-), and immature (i-) or early MDSCs and have a role in many disease states. In cancer patients, the frequencies of MDSCs can positively correlate with stage, grade, and survival. Most clinical studies into MDSCs have been undertaken with peripheral blood (PB); however, in the present studies, we uniquely examined MDSCs in the spleens and PB from patients with gastrointestinal cancers. In our studies, MDSCs were rigorously subset using the following markers: Lineage (LIN) (CD3, CD19 and CD56), human leukocyte antigen (HLA)-DR, CD11b, CD14, CD15, CD33, CD34, CD45, and CD16. We observed a significantly higher frequency of PMN- and M-MDSCs in the PB of cancer patients as compared to their spleens. Expression of the T-cell suppressive enzymes arginase (ARG1) and inducible nitric oxide synthase (i-NOS) were higher on all MDSC subsets for both cancer patients PB and spleen cells as compared to MDSCs from the PB of normal donors. Similar findings for the activation markers lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), program death ligand 1 (PD-L1) and program cell death protein 1 (PD-1) were observed. Interestingly, the total MDSC cell number exported to clustering analyses was similar between all sample types; however, clustering analyses of these MDSCs, using these markers, uniquely documented novel subsets of PMN-, M- and i-MDSCs. In summary, we report a comparison of splenic MDSC frequency, subtypes, and functionality in cancer patients to their PB by clustering and cytometric analyses.
Collapse
Affiliation(s)
- Kathryn E Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, United States
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - James C Padussis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, United States
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, United States
| | - Luciano M Vargas
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, United States
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
15
|
Holokai L, Chakrabarti J, Lundy J, Croagh D, Adhikary P, Richards SS, Woodson C, Steele N, Kuester R, Scott A, Khreiss M, Frankel T, Merchant J, Jenkins BJ, Wang J, Shroff RT, Ahmad SA, Zavros Y. Murine- and Human-Derived Autologous Organoid/Immune Cell Co-Cultures as Pre-Clinical Models of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E3816. [PMID: 33348809 PMCID: PMC7766822 DOI: 10.3390/cancers12123816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose: Pancreatic ductal adenocarcinoma (PDAC) has the lowest five-year survival rate of all cancers in the United States. Programmed death 1 receptor (PD-1)-programmed death ligand 1 (PD-L1) immune checkpoint inhibition has been unsuccessful in clinical trials. Myeloid-derived suppressor cells (MDSCs) are known to block anti-tumor CD8+ T cell immune responses in various cancers including pancreas. This has led us to our objective that was to develop a clinically relevant in vitro organoid model to specifically target mechanisms that deplete MDSCs as a therapeutic strategy for PDAC. Method: Murine and human pancreatic ductal adenocarcinoma (PDAC) autologous organoid/immune cell co-cultures were used to test whether PDAC can be effectively treated with combinatorial therapy involving PD-1 inhibition and MDSC depletion. Results: Murine in vivo orthotopic and in vitro organoid/immune cell co-culture models demonstrated that polymorphonuclear (PMN)-MDSCs promoted tumor growth and suppressed cytotoxic T lymphocyte (CTL) proliferation, leading to diminished efficacy of checkpoint inhibition. Mouse- and human-derived organoid/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of arginase 1-expressing PMN-MDSCs within these co-cultures rendered the organoids susceptible to anti-PD-1/PD-L1-induced cancer cell death. Conclusions: Here we use mouse- and human-derived autologous pancreatic cancer organoid/immune cell co-cultures to demonstrate that elevated infiltration of polymorphonuclear (PMN)-MDSCs within the PDAC tumor microenvironment inhibit T cell effector function, regardless of PD-1/PD-L1 inhibition. We present a pre-clinical model that may predict the efficacy of targeted therapies to improve the outcome of patients with this aggressive and otherwise unpredictable malignancy.
Collapse
Affiliation(s)
- Loryn Holokai
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45220, USA; (L.H.); (C.W.)
| | - Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| | - Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.L.); (B.J.J.)
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Daniel Croagh
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia;
| | - Pritha Adhikary
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| | - Scott S. Richards
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Chantal Woodson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45220, USA; (L.H.); (C.W.)
| | - Nina Steele
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (T.F.)
| | - Robert Kuester
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Aaron Scott
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Mohammad Khreiss
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Timothy Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (T.F.)
| | - Juanita Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.L.); (B.J.J.)
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Rachna T. Shroff
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Syed A. Ahmad
- Department of Surgery, Division of Surgical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| |
Collapse
|
16
|
Bu F, Nie H, Zhu X, Wu T, Lin K, Zhao J, Huang J. A signature of 18 immune-related gene pairs to predict the prognosis of pancreatic cancer patients. Immun Inflamm Dis 2020; 8:713-726. [PMID: 33128857 PMCID: PMC7654420 DOI: 10.1002/iid3.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies. With the promising prospects conveyed by immunotherapy in cancers, we aimed to construct an immune-related gene pairs (IRGPs) signature to predict the prognosis of pancreatic cancer patients. We downloaded clinical and transcriptional data of pancreatic cancer patients from The Cancer Genome Atlas data set as the training group and GSE57495 data set as the verification group. We filtered immune-related transcriptional data by IMMPORT. With the assistance of lasso penalized Cox regression, we constructed our prognostic IRGPs signature and divided all samples into high-/low-risk groups by receiver operating characteristic curve for further comparisons. The comparisons between high- and low-risk groups including survival rate, multivariate, and univariate Cox proportional-hazards analysis, infiltration of immune cells, and Gene Set Enrichment Analysis (GSEA). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) are facilitated to analyze the proceedings in which our IRGPs signature may involve in. The results revealed that 18 IRGPs were defined as our prognostic signature. The prognostic value of this IRGPs signature was verified from the GSE57495 data set. We further demonstrated the independent prognostic value of this IRGPs signature. The contents of six immune cells between high-/low-risk groups were different, which was associated with the progression of diverse cancers. Results from GO, KEGG, and GSEA revealed that this IRGPs signature was involved in extracellular space, immune response, cancer pathways, cation channel, and gated channel activities. Evidently, this IRGPs signature will provide remarkable value for the therapy of pancreatic cancer patients.
Collapse
Affiliation(s)
- Fanqin Bu
- Department of Gastrointestinal SurgerySecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Han Nie
- Department of Vascular SurgerySecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Xiaojian Zhu
- Zhongshan School of MedicineResearch Center of the Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Ting Wu
- Infection Department of Guixi Traditional Chinese Medicine HospitalGuixiJiangxiChina
| | - Kang Lin
- Department of Gastrointestinal SurgerySecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Jiefeng Zhao
- Department of Gastrointestinal SurgerySecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Jun Huang
- Department of Gastrointestinal SurgerySecond Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
17
|
Immunostimulatory nanoparticle incorporating two immune agonists for the treatment of pancreatic tumors. J Control Release 2020; 330:1095-1105. [PMID: 33188827 DOI: 10.1016/j.jconrel.2020.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/27/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease, where even surgical resection and aggressive chemotherapy produce dismal outcomes. Immunotherapy is a promising alternative to conventional treatments, possessing the ability to elicit T cell-mediated killing of tumor cells and prevent disease recurrence. Immunotherapeutic approaches thus far have seen limited success in PDAC due to a poorly immunogenic and exceedingly immunosuppressive tumor microenvironment, which is enriched with dysfunctional and immunosuppressed antigen-presenting cells (APCs). We developed a highly potent immunostimulatory nanoparticle (immuno-NP) to activate and expand APCs in the tumor and induce local secretion of interferon β (IFNβ), which is a pro-inflammatory cytokine that plays a major role in APC recruitment. The effectiveness of the immuno-NP stems from its dual cargo of two synergistic immune modulators consisting of an agonist of the stimulator of interferon genes (STING) pathway and an agonist of the Toll-like receptor 4 (TLR4) pathway. We show the functional synergy of the dual-agonist cargo can be tweaked by adjusting the ratio of the two agonists loaded in the immuno-NP, leading to an increase in IFNβ production (11-fold) compared to any single agonist immuno-NP variant. Using the orthotopic murine Panc02 model of PDAC, we show that systemic administration allowed immuno-NPs to deposit into the perivascular regions of the tumor, which coincided with the APC-rich tumor areas leading to predominant uptake of immuno-NPs by APCs. The immuno-NPs were effectively taken up by a significant portion of dendritic cells in the tumor (>56%). This led to a significant expansion of APCs, resulting in an 11.5-fold increase of dendritic cells and infiltration of lymphocytes throughout the pancreatic tumor compared to untreated animals.
Collapse
|
18
|
Yang T, Li J, Li R, Yang C, Zhang W, Qiu Y, Yang C, Rong R. Correlation between MDSC and Immune Tolerance in Transplantation: Cytokines, Pathways and Cell-cell Interaction. Curr Gene Ther 2020; 19:81-92. [PMID: 31237207 DOI: 10.2174/1566523219666190618093707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
MDSCs play an important role in the induction of immune tolerance. Cytokines and chemokines (GM-CSF, IL-6) contributed to the expansion, accumulation of MDSCs, and MDSCs function through iNOS, arginase and PD-L1. MDSCs are recruited and regulated through JAK/STAT, mTOR and Raf/MEK/ERK signaling pathways. MDSCs' immunosuppressive functions were realized through Tregs-mediated pathways and their direct suppression of immune cells. All of the above contribute to the MDSC-related immune tolerance in transplantation. MDSCs have huge potential in prolonging graft survival and reducing rejection through different ways and many other factors worthy to be further investigated are also introduced.
Collapse
Affiliation(s)
- Tianying Yang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruimin Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunchen Yang
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weitao Zhang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Mundry CS, Eberle KC, Singh PK, Hollingsworth MA, Mehla K. Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochim Biophys Acta Rev Cancer 2020; 1874:188387. [PMID: 32579889 DOI: 10.1016/j.bbcan.2020.188387] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Late detection, compromised immune system, and chemotherapy resistance underlie the poor patient prognosis for pancreatic ductal adenocarcinoma (PDAC) patients, making it the 3rd leading cause of cancer-related deaths in the United States. Cooperation between the tumor cells and the immune system leads to the immune escape and eventual establishment of the tumor. For more than 20 years, sincere efforts have been made to intercept the tumor-immune crosstalk and identify the probable therapeutic targets for breaking self-tolerance toward tumor antigens. However, the success of these studies depends on detailed examination and understanding of tumor-immune cell interactions, not only in the primary tumor but also at distant systemic niches. Innate and adaptive arms of the immune system sculpt tumor immunogenicity, where they not only aid in providing an amenable environment for their survival but also act as a driver for tumor relapse at primary or distant organ sites. This review article highlights the key events associated with tumor-immune communication and associated immunosuppression at both local and systemic microenvironments in PDAC. Furthermore, we discuss the approaches and benefits of targeting both local and systemic immunosuppression for PDAC patients. The present articles integrate data from clinical and genetic mouse model studies to provide a widespread consensus on the role of local and systemic immunosuppression in undermining the anti-tumor immune responses against PDAC.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Marrow/drug effects
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cancer Vaccines/administration & dosage
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Chemotherapy, Adjuvant/methods
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Disease Models, Animal
- Disease-Free Survival
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Irinotecan/pharmacology
- Irinotecan/therapeutic use
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Lymph Node Excision
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymph Nodes/surgery
- Mice
- Mice, Transgenic
- Neoadjuvant Therapy/methods
- Oxaliplatin/pharmacology
- Oxaliplatin/therapeutic use
- Pancreas/immunology
- Pancreas/pathology
- Pancreas/surgery
- Pancreatectomy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Spleen/immunology
- Spleen/pathology
- Spleen/surgery
- Splenectomy
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transplantation, Autologous/methods
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- United States/epidemiology
Collapse
Affiliation(s)
- Clara S Mundry
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kirsten C Eberle
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kamiya Mehla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| |
Collapse
|
20
|
Melzer MK, Arnold F, Stifter K, Zengerling F, Azoitei N, Seufferlein T, Bolenz C, Kleger A. An Immunological Glance on Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21093345. [PMID: 32397303 PMCID: PMC7246613 DOI: 10.3390/ijms21093345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Different factors such as mutational landscape, intra- and intertumoral heterogeneity, stroma, and immune cells impact carcinogenesis of PDAC associated with an immunosuppressive microenvironment. Different cell types with partly opposing roles contribute to this milieu. In recent years, immunotherapeutic approaches, including checkpoint inhibitors, were favored to treat cancers, albeit not every cancer entity exhibited benefits in a similar way. Indeed, immunotherapies rendered little success in pancreatic cancer. In this review, we describe the communication between the immune system and pancreatic cancer cells and propose some rationale why immunotherapies may fail in the context of pancreatic cancer. Moreover, we delineate putative strategies to sensitize PDAC towards immunological therapeutics and highlight the potential of targeting neoantigens.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Frank Arnold
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
- Correspondence:
| |
Collapse
|
21
|
Pan P, Zhu Z, Oshima K, Aldakkak M, Tsai S, Huang YW, Dong W, Zhang J, Lin CW, Wang Y, Yearsley M, Yu J, Wang LS. Black raspberries suppress pancreatic cancer through modulation of NKp46 +, CD8 +, and CD11b + immune cells. FOOD FRONTIERS 2020; 1:70-82. [PMID: 32368735 DOI: 10.1002/fft2.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with a low survival rate (9%). Epidemiologic studies show that healthy dietary patterns enriched of fruits and vegetables lower the risk of PDAC. We previously showed that supplementing black raspberries (BRBs) to patients with colorectal cancer increased tumor-infiltrating NK cells and their cytotoxicity. We aimed to determine whether BRBs combat PDAC by modulating cancer immunity. NOD.SCID mice lacking T and B cells were injected with human Panc-1-Luc cells orthotopically, and immunocompetent Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice were fed BRBs. Peripheral blood mononuclear cells (PBMCs) from PDAC patients were treated with butyrate, a microbial metabolite of BRBs. The absence of T and B cells did not dampen BRBs' anti-tumor effects in the NOD.SCID mice. In the Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice, BRBs significantly prolonged survival (189 days versus 154 days). In both models, BRBs decreased tumor-infiltrating CD11b+ cells and the expression of IL-1β, sEH, and Ki67. BRBs also increased tumor-infiltrating NKp46+ cells and the expression of CD107a, a functional marker of cytolytic NK and CD8+ T cells. In Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice, tumor infiltration of CD8+ T cells was increased by BRBs. Further using the PBMCs from PDAC patients, we show that butyrate decreased the population of myeloid-derived suppressor cells (MDSCs). Butyrate also reversed CD11b+ cell-mediated suppression on CD8+ T cells. Interestingly, there is a negative association between MDSC changes and patients' survival, suggesting that the more decrease in MDSC population induced by butyrate treatment, the longer the patient had survived. Our study suggests the immune-modulating potentials of BRBs in PDAC.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| | - Zheng Zhu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | | | | | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin
| | - Wenjuan Dong
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | - Jianying Zhang
- Division of Biostatistics, Department of Science of Informatics, City of Hope National Medical Center and Beckman Research Institute
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin
| | - Youwei Wang
- The James Cancer Hospital, The Ohio State University
| | | | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| |
Collapse
|
22
|
Fan JQ, Wang MF, Chen HL, Shang D, Das JK, Song J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer 2020; 19:32. [PMID: 32061257 PMCID: PMC7023714 DOI: 10.1186/s12943-020-01151-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable cancer resistant to traditional treatments, although a limited number of early-stage patients can undergo radical resection. Immunotherapies for the treatment of haematological malignancies as well as solid tumours have been substantially improved over the past decades, and impressive results have been obtained in recent preclinical and clinical trials. However, PDAC is likely the exception because of its unique tumour microenvironment (TME). In this review, we summarize the characteristics of the PDAC TME and focus on the network of various tumour-infiltrating immune cells, outlining the current advances in PDAC immunotherapy and addressing the effect of the PDAC TME on immunotherapy. This review further explores the combinations of different therapies used to enhance antitumour efficacy or reverse immunodeficiencies and describes optimizable immunotherapeutic strategies for PDAC. The concordant combination of various treatments, such as targeting cancer cells and the stroma, reversing suppressive immune reactions and enhancing antitumour reactivity, may be the most promising approach for the treatment of PDAC. Traditional treatments, especially chemotherapy, may also be optimized for individual patients to remodel the immunosuppressive microenvironment for enhanced therapy.
Collapse
Affiliation(s)
- Jia-qiao Fan
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Fei Wang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hai-Long Chen
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jugal K. Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| |
Collapse
|
23
|
Inflammation and Pancreatic Cancer: Focus on Metabolism, Cytokines, and Immunity. Int J Mol Sci 2019; 20:ijms20030676. [PMID: 30764482 PMCID: PMC6387440 DOI: 10.3390/ijms20030676] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Systemic and local chronic inflammation might enhance the risk of pancreatic ductal adenocarcinoma (PDAC), and PDAC-associated inflammatory infiltrate in the tumor microenvironment concurs in enhancing tumor growth and metastasis. Inflammation is closely correlated with immunity, the same immune cell populations contributing to both inflammation and immune response. In the PDAC microenvironment, the inflammatory cell infiltrate is unbalanced towards an immunosuppressive phenotype, with a prevalence of myeloid derived suppressor cells (MDSC), M2 polarized macrophages, and Treg, over M1 macrophages, dendritic cells, and effector CD4⁺ and CD8⁺ T lymphocytes. The dynamic and continuously evolving cross-talk between inflammatory and cancer cells might be direct and contact-dependent, but it is mainly mediated by soluble and exosomes-carried cytokines. Among these, tumor necrosis factor alpha (TNFα) plays a relevant role in enhancing cancer risk, cancer growth, and cancer-associated cachexia. In this review, we describe the inflammatory cell types, the cytokines, and the mechanisms underlying PDAC risk, growth, and progression, with particular attention on TNFα, also in the light of the potential risks or benefits associated with anti-TNFα treatments.
Collapse
|
24
|
Wolfe AR, Williams TM. Altering the response to radiation: radiosensitizers and targeted therapies in pancreatic ductal adenocarcinoma: preclinical and emerging clinical evidence. ACTA ACUST UNITED AC 2018; 1. [PMID: 32656528 DOI: 10.21037/apc.2018.08.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Radiation therapy continues to have an evolving role in pancreatic ductal adenocarcinoma. While metastatic failure likely contributes to the majority of patient mortality, achieving local control through surgery and/or radiation appears to be important as certain studies suggest that mortality is contributed by local failure. Many studies support that pancreatic cancer is a relatively radiation resistant tumor type. In addition, the ability to further improve radiation through dose escalation strategies in the non-metastatic setting is hampered by closeness of normal organs, including small bowel and stomach, to the tumor. Thus subverting molecular pathways that promote radiation resistance will be critical to further success of radiation in this disease. There is a wealth of preclinical data supporting the targeting of various molecular pathways in combination with radiation therapy, including DNA repair, cell cycle checkpoint proteins, receptor tyrosine kinases, oncoproteins, stem cells, and immunomodulation. A number of clinical trials have been completed or are on-going with novel molecular inhibitors. In this review, we summarize existing preclinical and clinical molecular strategies for improving the efficacy of radiation in pancreatic cancer, and highlight recent and ongoing clinical trials combining radiation and various targeted therapies.
Collapse
Affiliation(s)
- Adam R Wolfe
- Department of Radiation Oncology, The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Deicher A, Andersson R, Tingstedt B, Lindell G, Bauden M, Ansari D. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int 2018; 18:85. [PMID: 29946224 PMCID: PMC6006559 DOI: 10.1186/s12935-018-0585-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are an integral part of the tumor microenvironment. Pancreatic cancer is characterized by reduced number and function of DCs, which impacts antigen presentation and contributes to immune tolerance. Recent data suggest that exosomes can mediate communication between pancreatic cancer cells and DCs. Furthermore, levels of DCs may serve as prognostic factors. There is also growing evidence for the effectiveness of vaccination with DCs pulsed with tumor antigens to initiate adaptive cytolytic immune responses via T cells. Most experience with DC-based vaccination has been gathered for MUC1 and WT1 antigens, where clinical studies in advanced pancreatic cancer have provided encouraging results. In this review, we highlight the role of DC in the course, prognosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Anton Deicher
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
- Faculty of Medicine, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Bobby Tingstedt
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Gert Lindell
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
26
|
Jindal V, Arora E, Masab M, Gupta S. Chimeric antigen receptor T cell therapy in pancreatic cancer: from research to practice. Med Oncol 2018; 35:84. [PMID: 29728788 DOI: 10.1007/s12032-018-1145-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is genetically engineered tumor antigen-specific anticancer immunotherapy, which after showing great success in hematological malignancies is currently being tried in advanced solid tumors like pancreatic cancer. Immunosuppressive tumor microenvironment and dense fibrous stroma are some of the limitation in the success of this novel therapy. However, genetic modifications and combination therapy is the topic of the research to improve its efficacy. In this article, we summarize the current state of knowledge, limitations, and future prospects for CAR T cell therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Vishal Jindal
- Department of Internal Medicine, Saint Vincent Hospital, 123 Summer Street, Worcester, 01608, USA.
| | - Ena Arora
- Department of Internal Medicine, Government Medical College, Chandigarh, India
| | - Muhammad Masab
- Department of Internal Medicine, Einstein Healthcare Network, Philadelphia, USA
| | - Sorab Gupta
- Department of Hematology and Oncology, Einstein Healthcare Network, Philadelphia, USA
| |
Collapse
|
27
|
Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O, Raoul JL, Delpero JR, Moutardier V, Birnbaum D, Mamessier E, Bertucci F. Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget 2018; 7:71198-71210. [PMID: 27589570 PMCID: PMC5342072 DOI: 10.18632/oncotarget.11685] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancers. PD1/PDL1-inhibitors recently showed promising results in different cancers with correlation between PDL1 tumor expression and responses. Expression of programmed cell death receptor ligand 1 (PDL1) has been scarcely studied in pancreatic cancer. In this retrospective study, we analyzed PDL1 mRNA expression in 453 clinical pancreatic cancer samples profiled using DNA microarrays and RNASeq. Compared to normal pancreatic samples, PDL1 expression was upregulated in 19% of cancer samples. Upregulation was not associated with clinicopathological features such as patients' age and sex, pathological type, tumor size, lymph node status, and grade, but was associated with shorter disease-free survival and overall survival in multivariate analyses. Analysis of correlations with biological parameters showed that PDL1 upregulation was associated with some degree of lymphocyte infiltration and signs of anti-tumor T-cell response, but to a lesser extent than what has been reported in breast cancer and GIST. PDL1-up pancreatic cancers displayed profiles of lymphocyte exhaustion, were more enriched in inhibitory molecules and pro-tumor populations (Tregs with upregulation of FOXP3 and IL10, myeloid-derived suppressor cells with upregulation of CD33 and S100A8/A9), and demonstrated a down-modulation of most MHC class I members (HLA-A/B/C, HLA-E/F/G) suggestive of a defect in antigen processing and presentation. In conclusion, our results suggest that PDL1 expression might refine the prediction of metastatic relapse in operated pancreatic cancer, and that PD1/PDL1 inhibitors might reactivate inhibited T-cells to increase the anti-tumor immune response in PDL1-upregulated tumors.
Collapse
Affiliation(s)
- David J Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France.,Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France
| | - Alexia Lopresti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France
| | - Marine Gilabert
- Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Flora Poizat
- Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Anatomopathologie, Institut Paoli-Calmettes, Marseille, France
| | - Olivier Turrini
- Faculté de Médecine, Aix-Marseille Université, Marseille, France.,Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Chirurgicale, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Luc Raoul
- Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Robert Delpero
- Faculté de Médecine, Aix-Marseille Université, Marseille, France.,Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Chirurgicale, Institut Paoli-Calmettes, Marseille, France
| | - Vincent Moutardier
- Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France.,Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France
| | - François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France.,Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
28
|
Arrieta O, Montes-Servín E, Hernandez-Martinez JM, Cardona AF, Casas-Ruiz E, Crispín JC, Motola D, Flores-Estrada D, Barrera L. Expression of PD-1/PD-L1 and PD-L2 in peripheral T-cells from non-small cell lung cancer patients. Oncotarget 2017; 8:101994-102005. [PMID: 29254220 PMCID: PMC5731930 DOI: 10.18632/oncotarget.22025] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/03/2017] [Indexed: 12/11/2022] Open
Abstract
Binding of programmed death-1 (PD-1) with its ligands (PD-L1/2) transmits a co-inhibitory signal in activated T-cells that promotes T-cell exhaustion, leading to tumor immune evasion. The efficacy of antibodies targeting PD-1 and PD-L1 has led to a paradigm shift in lung cancer treatment but the prognostic and predictive value of tumor PD-L1 expression remains controversial. Evaluating PD-1, PD-L1/2 expression in peripheral blood cells may serve as a potential biomarker for prognosis and response to therapy. In this prospective observational study, plasma cytokine levels and PD-1, PD-L1 and PD-L2 expression was evaluated in circulating CD3+, CD3+CD4+ and CD3+CD8+ cells from 70 treatment-naïve patients with advanced NSCLC (Stage IIIB and IV) and from 10 healthy donors. The primary objective was to assess OS according to PD-1, PD-L1, PD-L2 expression status on PBMCs and lymphocyte subsets. Our results indicate that the percentage of PD-L1+CD3+, PD-L1+CD3+CD8+ PD-L2+PBMCs, PD-L2+CD3+, PD-L2+CD3+CD4+ cells was higher in patients than in healthy donors. Survival was decreased among patients with a high percentage of either PD-1+PBMCs, PD-1+CD3+, PD-L1+CD3+, PD-L1+CD3+CD8+, PD-L2+CD3+, PD-L2+CD3+CD4+, or PD-L2+CD3+CD8+ cells. IL-2 and TNF-α showed the strongest association with PD-L1 and PD-L2 expression on specific subsets of T-lymphocytes. Our findings suggest that increased PD-1/PD-L1/PDL-2 expression in PBMCs, particularly in T-cells, may be an additional mechanism leading to tumor escape from immune control. This study is registered with ClinicalTrials.gov, number NCT02758314.
Collapse
Affiliation(s)
- Oscar Arrieta
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Edgar Montes-Servín
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Juan-Manuel Hernandez-Martinez
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico.,CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Andrés F Cardona
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Eibar Casas-Ruiz
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Daniel Motola
- Centro Oncológico, Hospital Médica Sur, Mexico City, Mexico
| | - Diana Flores-Estrada
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Lourdes Barrera
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
29
|
Zhuan-Sun Y, Huang F, Feng M, Zhao X, Chen W, Zhu Z, Zhang S. Prognostic value of PD-L1 overexpression for pancreatic cancer: evidence from a meta-analysis. Onco Targets Ther 2017; 10:5005-5012. [PMID: 29081663 PMCID: PMC5652904 DOI: 10.2147/ott.s146383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an immune checkpoint that is often activated in cancer and plays a pivotal role in the initiation and progression of cancer. However, the clinicopathologic significance and prognostic value of PD-L1 in pancreatic cancer (PC) remains controversial. In this study, we conducted a meta-analysis to retrospectively evaluate the relationship between PD-L1 and PC. PubMed and other databases were searched for the clinical studies published up to March 21, 2017, to be included in the meta-analysis. Hazard ratios and their 95% CIs were calculated. Risk ratios (RRs) were extracted to assess the correlations between the clinicopathologic parameters and PD-L1 expression. Ten studies including 1,058 patients were included in the meta-analysis. The pooled results indicated that positive PD-L1 expression was correlated with a poor overall survival outcome in PC patients (hazard ratio =1.76, 95% CI: 1.43–2.17, P<0.00001). Interestingly, high PD-L1 expression was correlated with poor pathologic differentiation (RR =1.57, 95% CI: 1.25–1.98, P=0.0001) and neural invasion (RR =1.30, 95% CI: 1.03–1.64, P=0.03). However, there were no significant correlations between PD-L1 expression and other clinicopathologic characteristics. In summary, our meta-analysis implied that PD-L1 could serve as a negative predictor for the overall survival of PC patients, and high expression of PD-L1 was correlated with poor differentiation and neural invasion, indicating that anti-PD-L1 treatments should be evaluated in PC patients, especially in those who exhibit these two characteristics.
Collapse
Affiliation(s)
- Yongxun Zhuan-Sun
- Department of Respirology.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation
| | - Fengting Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation.,Department of Gastroenterology
| | | | - Xinbao Zhao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Shineng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation.,Department of Gastroenterology
| |
Collapse
|
30
|
Bai M, Zheng Y, Liu H, Su B, Zhan Y, He H. CXCR5 + CD8 + T cells potently infiltrate pancreatic tumors and present high functionality. Exp Cell Res 2017; 361:39-45. [PMID: 28965867 DOI: 10.1016/j.yexcr.2017.09.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023]
Abstract
Despite continued improvement in conventional therapy, pancreatic cancer continues to be one of the deadliest tumors worldwide with abysmal 5-year survival rate. New immunotherapeutic strategies that aim at improving antitumor cytotoxic CD8+ T cell responses are being developed in solid tumors. To assist the development of immunotherapies, we investigated the CD8+ T cells in pancreatic cancer patients. Compared to healthy individuals, pancreatic cancer patients presented a significant enrichment in the frequency of CD8+CXCR5+ T cells. In the tumor microenvironment, the frequencies of CD8+CXCR5+ T cells were further increased. In most cases, over half of tumor-infiltrating CD8+ T cells were CD8+CXCR5+ T cells. Compared to the circulating population, the tumor-infiltrating CD8+CXCR5+ T cells expressed higher levels of PD-1 and TIM-3. Functional analyses demonstrated that upon CD3/CD28 activation, the percentages of TNF-expressing and IFN-γ-expressing cells in CD8+CXCR5+ T cells were significantly higher than that in CD8+CXCR5- T cells. CD8+CXCR5+ T cells also presented enhanced cytotoxicity than CD8+CXCR5- T cells. Upon PD-1 and TIM-3 blockade, the functions of CD8+CXCR5+ T cells were further improved. The disease-free survival of pancreatic cancer patients following tumor resection was positively correlated with the frequencies of circulating and tumor-infiltrating CD8+CXCR5+ T cells. Together, our study identified that CD8+CXCR5+ T cells were a potent subset of CD8+ T cells that were highly enriched in pancreatic cancer patients and could respond to anti-PD-1/anti-TIM-3 blockade by further upregulation in function.
Collapse
Affiliation(s)
- Minghui Bai
- The Second Ward, Department of Hepatobiliary and Hernia Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China.
| | - Youwei Zheng
- Department of Hepatobiliary and Hernia Surgery, The First Affiliated Hospital of Henan Science and Technology Univeristy, Luoyang, Henan, China
| | - Haichao Liu
- The Second Ward, Department of Hepatobiliary and Hernia Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Baowei Su
- The Second Ward, Department of Hepatobiliary and Hernia Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Yong Zhan
- The Second Ward, Department of Hepatobiliary and Hernia Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Hua He
- The Second Ward, Department of Hepatobiliary and Hernia Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| |
Collapse
|
31
|
Basso D, Gnatta E, Padoan A, Fogar P, Furlanello S, Aita A, Bozzato D, Zambon CF, Arrigoni G, Frasson C, Franchin C, Moz S, Brefort T, Laufer T, Navaglia F, Pedrazzoli S, Basso G, Plebani M. PDAC-derived exosomes enrich the microenvironment in MDSCs in a SMAD4-dependent manner through a new calcium related axis. Oncotarget 2017; 8:84928-84944. [PMID: 29156694 PMCID: PMC5689584 DOI: 10.18632/oncotarget.20863] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023] Open
Abstract
Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4, deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4-dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3-SMAD4+) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3-SMAD4+, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs (p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4-associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4-associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3-SMAD4+ Exo. Conclusion: PDAC-derived Exo from cells with, but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4-related differentially expressed miRNAs and proteins.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Elisa Gnatta
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Andrea Padoan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Paola Fogar
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Sara Furlanello
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Ada Aita
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Dania Bozzato
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | | | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomic Center, University of Padova, Padova, Italy
| | - Chiara Frasson
- Department of Woman and Child Health, Oncohematology Laboratory, University of Padova, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomic Center, University of Padova, Padova, Italy
| | - Stefania Moz
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Thomas Brefort
- Eurofins Medigenomix GmbH, Ebersberg, Germany.,Comprehensive Biomarker Center GmbH (Recently re-named to Hummingbird Diagnostics GmbH), Heidelberg, Germany
| | - Thomas Laufer
- Comprehensive Biomarker Center GmbH (Recently re-named to Hummingbird Diagnostics GmbH), Heidelberg, Germany
| | - Filippo Navaglia
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | | | - Giuseppe Basso
- Department of Woman and Child Health, Oncohematology Laboratory, University of Padova, Padova, Italy
| | - Mario Plebani
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Abstract
OBJECTIVES We previously described adoptive immunotherapy (AIT) with cytotoxic T lymphocytes (CTLs) stimulated by the mucin 1 (MUC1)-expressing human pancreatic cancer cell line YPK-1 (MUC1-CTLs) and demonstrated that MUC1-CTLs might prevent liver metastasis. In the present study, we combined gemcitabine (GEM) and AIT for the treatment of pancreatic cancer. METHODS A total of 43 patients who underwent radical pancreatectomy received treatment with MUC1-CTLs and GEM. After surgery, MUC1-CTLs were induced and administered intravenously 3 times, and GEM administered according to the standard regimen for 6 months. The patients whose relative dose intensity of GEM was 50% or more and who received 2 or more MUC1-CTL treatments were used as the adequate treatment group (n = 21). RESULTS In the adequate treatment group, disease-free survival was 15.8 months, and overall survival was 24.7 months. Liver metastasis was found only in 7 patients (33%), and local recurrence occurred in 4 patients (19%). The independent prognostic factor of long-term disease-free survival on multivariate analysis was the average number of CTLs administered (P = 0.0133). CONCLUSIONS The combination therapy with AIT and GEM prevented liver metastasis and local recurrence. Moreover, the disease free-survival was improved in patients who received sufficient CTLs.
Collapse
|
33
|
Rahal A, Musher B. Oncolytic viral therapy for pancreatic cancer. J Surg Oncol 2017; 116:94-103. [PMID: 28407327 DOI: 10.1002/jso.24626] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022]
Abstract
Outcomes of pancreatic adenocarcinoma (PDA) remain dismal despite extensive clinical investigation. Combination chemotherapy provides modest improvements in survival above best supportive care, and immunotherapy has thus far not proven effective. Nevertheless, growing insight into antitumor immunity and the tumor microenvironment has inspired the discovery of novel agents targeting PDA. Oncolytic viruses represent an emerging class of immunotherapeutic agents that have undergone extensive preclinical investigation and warrant further investigation in well-designed clinical trials.
Collapse
Affiliation(s)
- Ahmad Rahal
- Division of Hematology-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Benjamin Musher
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Chang JH, Jiang Y, Pillarisetty VG. Role of immune cells in pancreatic cancer from bench to clinical application: An updated review. Medicine (Baltimore) 2016; 95:e5541. [PMID: 27930550 PMCID: PMC5266022 DOI: 10.1097/md.0000000000005541] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) remains difficult to treat, despite the recent advances in various anticancer therapies. Immuno-inflammatory response is considered to be a major risk factor for the development of PC in addition to a combination of genetic background and environmental factors. Although patients with PC exhibit evidence of systemic immune dysfunction, the PC microenvironment is replete with immune cells. METHODS We searched PubMed for all relevant English language articles published up to March 2016. They included clinical trials, experimental studies, observational studies, and reviews. Trials enrolled at Clinical trial.gov were also searched. RESULTS PC induces an immunosuppressive microenvironment, and intratumoral activation of immunity in PC is attenuated by inhibitory signals that limit immune effector function. Multiple types of immune responses can promote an immunosuppressive microenvironment; key regulators of the host tumor immune response are dendritic cells, natural killer cells, macrophages, myeloid derived suppressor cells, and T cells. The function of these immune cells in PC is also influenced by chemotherapeutic agents and the components in tumor microenvironment such as pancreatic stellate cells. Immunotherapy of PC employs monoclonal antibodies/effector cells generated in vitro or vaccination to stimulate antitumor response. Immune therapy in PC has failed to improve overall survival; however, combination therapies comprising immune checkpoint inhibitors and vaccines have been attempted to increase the response. CONCLUSION A number of studies have begun to elucidate the roles of immune cell subtypes and their capacity to function or dysfunction in the tumor microenvironment of PC. It will not be long before immune therapy for PC becomes a clinical reality.
Collapse
Affiliation(s)
- Jae Hyuck Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Venu G. Pillarisetty
- Department of Surgery, University of Washington Medical Center, Seattle, University of Washington, Seattle, WA
| |
Collapse
|
35
|
Lu C, Redd PS, Lee JR, Savage N, Liu K. The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology 2016; 5:e1247135. [PMID: 28123883 DOI: 10.1080/2162402x.2016.1247135] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an inhibitory ligand that binds to PD-1 to suppress T cell activation. PD-L1 is constitutively expressed and inducible in tumor cells, but the expression profiles and regulatory mechanism of PD-L1 in myeloid-derived suppressor cells (MDSCs) are largely unknown. We report that PD-L1 is abundantly expressed in tumor-infiltrating leukocytes in human patients with both microsatellite instable and microsatellite stable colon cancer. About 60% CD11b+CD33+HLA-DR- MDSCs from peripheral blood of human colon cancer patients are PD-L1+. PD-L1+ MDSCs are also significantly higher in tumor-bearing mice than in tumor-free mice. Interestingly, the highest PD-L1+ MDSCs were observed in the tumor microenvironment in which 56-71% tumor-infiltrating MDSCs are PD-L1+in vivo. In contrast, PD-L1+ MDSCs are significantly less in secondary lymphoid organs and peripheral blood as compared to the tumor tissues, whereas bone marrow MDSCs are essentially PD-L1- in tumor-bearing mice. IFNγ is highly expressed in cells of the tumor tissues and IFNγ neutralization significantly decreased PD-L1+ MDSCs in the tumor microenvironment in vivo. However, IFNγ-activated pSTAT1 does not bind to the cd274 promoter in MDSCs. Instead, pSTAT1 activates expression of IRF1, IRF5, IRF7 and IRF8 in MDSCs, and only pSTAT1-activated IRF1 binds to a unique IRF-binding sequence element in vitro and chromatin in vivo in the cd274 promoter to activate PD-L1 transcription. Our data determine that PD-L1 is highly expressed in tumor-infiltrating MDSCs and in a lesser degree in lymphoid organs, and the pSTAT1-IRF1 axis regulates PD-L1 expression in MDSCs.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Jeffrey R Lee
- Charlie Norwood VA Medical Center, Augusta, GA, USA; Pathology, Medical College of Georgia, Augusta, GA, USA
| | - Natasha Savage
- Pathology, Medical College of Georgia , Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
36
|
Song J, Lee J, Kim J, Jo S, Kim YJ, Baek JE, Kwon ES, Lee KP, Yang S, Kwon KS, Kim DU, Kang TH, Park YY, Chang S, Cho HJ, Kim SC, Koh SS, Kim S. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget 2016; 7:51840-51853. [PMID: 27322081 PMCID: PMC5239518 DOI: 10.18632/oncotarget.10123] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/28/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is characterized by an immunosuppressive tumor microenvironment (TME) with a profound immune infiltrate populated by a significant number of myeloid-derived suppressor cells (MDSCs). MDSCs have been increasingly recognized for their role in immune evasion and cancer progression as well as their potential as a target for immunotherapy. However, not much is known about the mechanisms regulating their behavior and function in the pancreatic TME. Here we report that pancreatic adenocarcinoma up-regulated factor (PAUF), a soluble protein involved in pancreatic tumorigenesis and metastasis, plays a role as an enhancer of tumor-infiltrating MDSC and its functional activity. We show that PAUF enhanced the accumulation of MDSCs in the spleen and tumor tissues of PAUF-overexpressing tumor cell-injected mice. In addition, PAUF was found to enhance the immunosuppressive function of MDSCs via the TLR4-mediated signaling pathway, which was demonstrated by PAUF-induced increased levels of arginase, nitric oxide (NO), and reactive oxygen species (ROS). The role of PAUF in modulating the functional properties of MDSCs was further demonstrated by the use of a PAUF-neutralizing antibody that caused a decreased number of tumor-infiltrating MDSCs and reduced MDSC immunosuppressive activity. The observations made in mice were confirmed in human pancreatic cancer patient-derived MDSCs, supporting the clinical relevance of our findings. Collectively, we conclude that the PAUF is a powerful and multifunctional promoter of tumor growth through increase and functional activation of MDSCs, suggesting therapeutic potential for targeting PAUF in pancreatic cancers.
Collapse
Affiliation(s)
- Jinhoi Song
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Jaemin Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jinsil Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seongyea Jo
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yeon Jeong Kim
- Department of Biological Sciences, Dong-A University, Busan, Republic of Korea
| | - Ji Eun Baek
- Department of Biological Sciences, Dong-A University, Busan, Republic of Korea
| | - Eun-Soo Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Siyoung Yang
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Uk Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Yun-Yong Park
- Department of Biomedical Sciences and Physiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suhwan Chang
- Departments of Biomedical Sciences and Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Song Cheol Kim
- Department of Surgery, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Sang Seok Koh
- Department of Biological Sciences, Dong-A University, Busan, Republic of Korea
| | - Seokho Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Zheng R, Chen S, Chen S. Correlation between myeloid-derived suppressor cells and S100A8/A9 in tumor and autoimmune diseases. Int Immunopharmacol 2015; 29:919-925. [PMID: 26508452 DOI: 10.1016/j.intimp.2015.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that constitute an important component of immune regulatory system. Two calcium-binding proteins S100A8 and S100A9 act as important mediators in acute and chronic inflammation. In recent years, many researchers have found that MDSCs and S100A8/A9 operated with one another through a positive feedback loop to promote tumor development and metastasis. However, the correlation between MDSCs and S100A8/A9 in autoimmune diseases (AIDs) remains unknown. In this review, we discussed the co-operation of MDSCs and S100A8/A9 in tumor environment, and also, the role of these two components in AIDs.
Collapse
Affiliation(s)
- Ruoting Zheng
- Department of Endocrinology and Rheumatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Shiyi Chen
- Department of Endocrinology and Rheumatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Shenren Chen
- Department of Endocrinology and Rheumatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China.
| |
Collapse
|
38
|
Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN, Zoubeidi A. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncotarget 2015; 6:234-42. [PMID: 25428917 PMCID: PMC4381591 DOI: 10.18632/oncotarget.2703] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 01/18/2023] Open
Abstract
Efficacy of Enzalutamide (ENZ) in castration resistant prostate cancer (CRPC) patients is short-lived. Immunotherapy like T cell checkpoint blockade may improve patient survival. However, when and where checkpoint molecules are expressed in CRPC and whether immune evasion is a mechanism of ENZ resistance remains unclear. Thus, we investigated whether clinically relevant immunotherapy targets, specifically PD-L1/2, PD-1 and CTLA-4, are upregulated in ENZ resistant (ENZR) patients and in a pre-clinical model of ENZ resistance. We show for the first time that patients progressing on ENZ had significantly increased PD-L1/2+ dendritic cells (DC) in blood compared to those naïve or responding to treatment, and a high frequency of PD-1+T cells. These data supported our pre-clinical results, in which we found significantly increased circulating PD-L1/2+ DCs in mice bearing ENZR tumors compared to CRPC, and ENZR tumors expressed significantly increased levels of tumor-intrinsic PD-L1. Importantly, the expression of PD-L1 on ENZR cells, or the ability to modulate PD-L1/2+ DC frequency, was unique to ENZR cell lines and xenografts that did not show classical activation of the androgen receptor. Overall, our results suggest that ENZ resistance is associated with the strong expression of anti-PD-1 therapy targets in circulating immune cells both in patients and in a pre-clinical model that is non-AR driven. Further evaluation of the contribution of tumor vs. immune cell PD-L1 expression in progression of CRPC to anti-androgen resistance and the utility of monitoring circulating cell PD-L1 pathway activity in CRPC patients to predict responsiveness to checkpoint immunotherapy, is warranted.
Collapse
Affiliation(s)
| | | | | | - Morgan E Roberts
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Arun A Azad
- Department of Medicine, Division of Medical Oncology, BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Kim N Chi
- Department of Medicine, Division of Medical Oncology, BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, Wamwea A, Bigelow E, Lutz E, Liu L, Yao S, Anders RA, Laheru D, Wolfgang CL, Edil BH, Schulick RD, Jaffee EM, Zheng L. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother 2015; 38:1-11. [PMID: 25415283 PMCID: PMC4258151 DOI: 10.1097/cji.0000000000000062] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to late detection and resistance to conventional therapies. Published studies show that the PDA tumor microenvironment is predominantly infiltrated with immune suppressive cells and signals that if altered, would allow effective immunotherapy. However, single-agent checkpoint inhibitors including agents that alter immune suppressive signals in other human cancers such as cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1), and its ligand PD-L1, have failed to demonstrate objective responses when given as single agents to PDA patients. We recently reported that inhibition of the CTLA-4 pathway when given together with a T cell inducing vaccine gives objective responses in metastatic PDA patients. In this study, we evaluated blockade of the PD-1/PD-L1 pathway. We found that PD-L1 is weakly expressed at a low frequency in untreated human and murine PDAs but treatment with a granulocyte macrophage colony-stimulating factor secreting PDA vaccine (GVAX) significantly upregulates PD-L1 membranous expression after treatment of tumor-bearing mice. In addition, combination therapy with vaccine and PD-1 antibody blockade improved murine survival compared with PD-1 antibody monotherapy or GVAX therapy alone. Furthermore, PD-1 blockade increased effector CD8 T lymphocytes and tumor-specific interferon-γ production of CD8 T cells in the tumor microenvironment. Immunosuppressive pathways, including regulatory T cells and CTLA-4 expression on T cells were overcome by the addition of vaccine and low-dose cyclophosphamide to PD-1 blockade. Collectively, our study supports combining PD-1 or PD-L1 antibody therapy with a T cell inducing agent for PDA treatment.
Collapse
Affiliation(s)
- Kevin C. Soares
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Agnieszka A. Rucki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Annie A. Wu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kelly Olino
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Qian Xiao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yi Chai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anthony Wamwea
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elaine Bigelow
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric Lutz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Robert A. Anders
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher L. Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Barish H. Edil
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Richard D. Schulick
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Hongo D, Tang X, Baker J, Engleman EG, Strober S. Requirement for interactions of natural killer T cells and myeloid-derived suppressor cells for transplantation tolerance. Am J Transplant 2014; 14:2467-77. [PMID: 25311657 PMCID: PMC4205183 DOI: 10.1111/ajt.12914] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 01/25/2023]
Abstract
The goal of the study was to elucidate the cellular and molecular mechanisms by which a clinically applicable immune tolerance regimen of combined bone marrow and heart transplants in mice results in mixed chimerism and graft acceptance. The conditioning regimen of lymphoid irradiation and anti-T cell antibodies changed the balance of cells in the lymphoid tissues to create a tolerogenic microenvironment favoring the increase of natural killer T (NKT) cells, CD4+ CD25+ regulatory T cells and Gr-1+ CD11b+ myeloid-derived suppressor cells (MDSCs), over conventional T cells (Tcons). The depletion of MDSCs abrogated chimerism and tolerance, and add back of these purified cells was restorative. The conditioning regimen activated the MDSCs as judged by the increased expression of arginase-1, IL-4Rα and programmed death ligand 1, and the activated cells gained the capacity to suppress the proliferation of Tcons to alloantigens in the mixed leukocyte reaction. MDSC activation was dependent on the presence of host invariant NKT cells. The conditioning regimen polarized the host invariant NKT cells toward IL-4 secretion, and MDSC activation was dependent on IL-4. In conclusion, there was a requirement for MDSCs for chimerism and tolerance, and their suppressive function was dependent on their interactions with NKT cells and IL-4.
Collapse
Affiliation(s)
- David Hongo
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| | - Xiaobin Tang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| | - Jeanette Baker
- Department of Medicine, Division of Blood and Bone Marrow Transplantation, Stanford University School of Medicine, Stanford, CA
| | - Edgar G. Engleman
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA,Department of Medicine, Division of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Samuel Strober
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
41
|
Inman KS, Francis AA, Murray NR. Complex role for the immune system in initiation and progression of pancreatic cancer. World J Gastroenterol 2014; 20:11160-11181. [PMID: 25170202 PMCID: PMC4145756 DOI: 10.3748/wjg.v20.i32.11160] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.
Collapse
|
42
|
Nguyen KQN, Tsou WI, Calarese DA, Kimani SG, Singh S, Hsieh S, Liu Y, Lu B, Wu Y, Garforth SJ, Almo SC, Kotenko SV, Birge RB. Overexpression of MERTK receptor tyrosine kinase in epithelial cancer cells drives efferocytosis in a gain-of-function capacity. J Biol Chem 2014; 289:25737-49. [PMID: 25074939 DOI: 10.1074/jbc.m114.570838] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MERTK, a member of the TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases, has complex and diverse roles in cell biology. On the one hand, knock-out of MERTK results in age-dependent autoimmunity characterized by failure of apoptotic cell clearance, while on the other, MERTK overexpression in cancer drives classical oncogene pathways leading to cell transformation. To better understand the interplay between cell transformation and efferocytosis, we stably expressed MERTK in human MCF10A cells, a non-tumorigenic breast epithelial cell line devoid of endogenous MERTK. While stable expression of MERTK in MCF10A resulted in enhanced motility and AKT-mediated chemoprotection, MERTK-10A cells did not form stable colonies in soft agar, or enhance proliferation compared with parental MCF10A cells. Concomitant to chemoresistance, MERTK also stimulated efferocytosis in a gain-of-function capacity. However, unlike AXL, MERTK activation was highly dependent on apoptotic cells, suggesting MERTK may preferentially interface with phosphatidylserine. Consistent with this idea, knockdown of MERTK in breast cancer cells MDA-MB 231 reduced efferocytosis, while transient or stable expression of MERTK stimulated apoptotic cell clearance in all cell lines tested. Moreover, human breast cancer cells with higher endogenous MERTK showed higher levels of efferocytosis that could be blocked by soluble TAM receptors. Finally, through MERTK, apoptotic cells induced PD-L1 expression, an immune checkpoint blockade, suggesting that cancer cells may adopt MERTK-driven efferocytosis as an immune suppression mechanism for their advantage. These data collectively identify MERTK as a significant link between cancer progression and efferocytosis, and a potentially unrealized tumor-promoting event when MERTK is overexpressed in epithelial cells.
Collapse
Affiliation(s)
- Khanh-Quynh N Nguyen
- From the Department of Biochemistry and Molecular Biology, University Hospital Cancer Center
| | - Wen-I Tsou
- From the Department of Biochemistry and Molecular Biology, University Hospital Cancer Center, Center for Immunity and Inflammation, New Jersey Medical School, and
| | - Daniel A Calarese
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Stanley G Kimani
- From the Department of Biochemistry and Molecular Biology, University Hospital Cancer Center
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, Flow Cytometry and Immunology Core Laboratory, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103
| | - Shelly Hsieh
- Rutgers, New Jersey Medical School of Yeshiva University, Newark, New Jersey 07103
| | - Yongzhang Liu
- Institute of Biophysics and Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China, and
| | - Bin Lu
- Institute of Biophysics and Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China, and
| | - Yi Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Steve C Almo
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Sergei V Kotenko
- From the Department of Biochemistry and Molecular Biology, University Hospital Cancer Center, Center for Immunity and Inflammation, New Jersey Medical School, and
| | - Raymond B Birge
- From the Department of Biochemistry and Molecular Biology, University Hospital Cancer Center,
| |
Collapse
|
43
|
Stromnes IM, Greenberg PD, Hingorani SR. Molecular pathways: myeloid complicity in cancer. Clin Cancer Res 2014; 20:5157-70. [PMID: 25047706 DOI: 10.1158/1078-0432.ccr-13-0866] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer-induced inflammation results in accumulation of myeloid cells. These myeloid cells include progenitors and progeny of monocytes, granulocytes, macrophages, and dendritic cells. It has become increasingly evident that tumor-dependent factors can condition myeloid cells toward an immunosuppressive and protumorigenic phenotype. Thus, myeloid cells are not simply bystanders in malignancy or barometers of disease burden. Reflecting their dynamic and plastic nature, myeloid cells manifest a continuum of cellular differentiation and are intimately involved at all stages of neoplastic progression. They can promote tumorigenesis through both immune-dependent and -independent mechanisms and can dictate response to therapies. A greater understanding of the inherent plasticity and relationships among myeloid subsets is needed to inform therapeutic targeting. New clinical trials are being designed to modulate the activities of myeloid cells in cancer, which may be essential to maximize the efficacy of both conventional cytotoxic and immune-based therapies for solid tumors. Clin Cancer Res; 20(20); 5157-70. ©2014 AACR.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington
| | - Philip D Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington. Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|
44
|
Martin RK, Saleem SJ, Folgosa L, Zellner HB, Damle SR, Nguyen GKT, Ryan JJ, Bear HD, Irani AM, Conrad DH. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol 2014; 96:151-9. [PMID: 24610880 DOI: 10.1189/jlb.5a1213-644r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been shown recently that MCs are required for differential regulation of the immune response by granulocytic versus monocytic MDSCs. Granulocytic MDSCs promoted parasite clearance, whereas monocytic MDSCs enhanced tumor progression; both activities were abrogated in MC-deficient mice. Herein, we demonstrate that the lack of MCs also influences MDSC trafficking. Preferential trafficking to the liver was not seen in MC-deficient mice. In addition, evidence that the MC mediator histamine was important in MDSC trafficking and activation is also shown. MDSCs express HR1-3. Blockade of these receptors by HR1 or HR2 antagonists reversed the histamine enhancement of MDSC survival and proliferation observed in cell culture. In addition, histamine differentially influenced Arg1 and iNOS gene expression in MDSCs and greatly enhanced IL-4 and IL-13 message, especially in granulocytic MDSCs. Evidence that histamine influenced activity seen in vitro translated to in vivo when HR1 and HR2 antagonists blocked the effect of MDSCs on parasite expulsion and tumor metastasis. All of these data support the MDSC-mediated promotion of Th2 immunity, leading to the suggestion that allergic-prone individuals would have elevated MDSC levels. This was directly demonstrated by looking at the relative MDSC levels in allergic versus control patients. Monocytic MDSCs trended higher, whereas granulocytic MDSCs were increased significantly in allergic patients. Taken together, our studies indicate that MCs and MC-released histamine are critical for MDSC-mediated immune regulation, and this interaction should be taken into consideration for therapeutic interventions that target MDSCs.
Collapse
Affiliation(s)
| | | | - Lauren Folgosa
- Departments of Microbiology and Immunology, Center for Clinical and Translational Research
| | | | | | | | - John J Ryan
- Departments of Microbiology and Immunology, Biology, and
| | - Harry D Bear
- Departments of Microbiology and Immunology, Massey Cancer Center; and Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | |
Collapse
|
45
|
Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients. J Immunol Res 2014; 2014:879897. [PMID: 24741628 PMCID: PMC3987936 DOI: 10.1155/2014/879897] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) often presents late with poor survival. While role of immunosuppressive cells in preclinical studies provided help to develop immunotherapeutic agents, these cells remain under investigation in PC. The aim of this study was to characterise the different subsets of myeloid-derived suppressor cells (MDSCs) and evaluate their level and function in the circulation and tissue of PC patients. Significant increases in circulating and tumour-infiltrating granulocytic (Lin-HLA-DR-CD33+CD11b+CD15+), but not monocytic (Lin-HLA-DR-CD14+), MDSCs were detected in PC patients when compared with healthy donors and patients with chronic pancreatitis. The circulating MDSCs from PC patients expressed arginase 1, which represents their functional state. Blood levels of MDSCs showed no association with PC stage or preoperative levels of tumour markers. These findings provide a first characterisation of the phenotype of different subsets of peripheral and local MDSCs in PC patients and suggest that the frequency and contribution of these cells are predominantly granulocytic. This information demonstrates that MDSCs play a role in pancreatic cancer and future large validation studies may help in the development of new immunotherapeutic strategies to inhibit or eliminate MDSC function.
Collapse
|
46
|
Basso D, Fogar P, Plebani M. The S100A8/A9 complex reduces CTLA4 expression by immature myeloid cells: Implications for pancreatic cancer-driven immunosuppression. Oncoimmunology 2013; 2:e24441. [PMID: 23894703 PMCID: PMC3716738 DOI: 10.4161/onci.24441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022] Open
Abstract
An expansion of different myeloid derived suppressive cell (MDSC) subsets can be detected in the blood and secondary lymphoid organs of early and advanced pancreatic ductal adenocarcinoma (PDAC) patients. Double negative (CD14−HLA-DR−) MDSCs are frequently induced by PDACs. In addition, by releasing S100A8 and S100A9, advanced PDAC lesions cause an expansion of highly immunosuppressive CD33+CD14+HLA-DR− monocytic MDSCs expressing low levels of cytotoxic T lymphocyte antigen 4 (CTLA4) on the cell surface.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Laboratory Medicine; University-Hospital of Padova; Padova, Italy
| | | | | |
Collapse
|