1
|
Özçelik MS, Poyatos R. Water-use strategies in pines and oaks across biomes are modulated by soil water availability. TREE PHYSIOLOGY 2025; 45:tpaf031. [PMID: 40089894 DOI: 10.1093/treephys/tpaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Quercus and Pinus are amongst the most economically and ecologically relevant genera of woody species across northern hemisphere forests. Mixed pine-oak woodlands are also abundant in temperate and Mediterranean regions. The recent shift towards dominance of oaks to the detriment of pines-reported in several regions-could be partly driven by differential drought responses between genera and associated with climate change. In this study, we synthesize water-use strategies across pine and oak species globally to elucidate whether water-saver and water-spender strategies are consistently found for pines and oak species, respectively, and to what extent these strategies are determined by species traits and site characteristics. Pines showed a water-saver strategy when soils are dry but a comparatively water-spender strategy when soils are wet. These patterns still hold when pines and oaks grow in the same site and thus are not affected by species interactions between them. Oak species have higher stem hydraulic conductivity and a deeper maximum rooting depth, supporting their higher capacity to withdraw soil water. Water-use regulation was more related to traits in pines, showing more water-spender strategies at low absolute values of predawn leaf water potentials, without necessarily increasing hydraulic risk, as a result of adjustments in sapwood-to-leaf area ratio (Huber value) and xylem hydraulic conductivity. Climate and vegetation structure were more related to water-use strategies in pines than in oaks. Our results show that-despite these trait adjustments-drought severely constrains water (and carbon) acquisition in pines, which would tend to favour oak species in drought-prone environments.
Collapse
Affiliation(s)
- Mehmet S Özçelik
- Isparta University of Applied Sciences, Faculty of Forestry, Department of Forest Engineering, 32260, Çünür, Isparta, Türkiye
| | - Rafael Poyatos
- CREAF, Edifici C Campus UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Department of Animal Biology, Plant Biology and Ecology, Edifici C Campus UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| |
Collapse
|
2
|
Battison R, Prober SM, Zdunic K, Jackson TD, Fischer FJ, Jucker T. Tracking tree demography and forest dynamics at scale using remote sensing. THE NEW PHYTOLOGIST 2024; 244:2251-2266. [PMID: 39425465 PMCID: PMC11579445 DOI: 10.1111/nph.20199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
Capturing how tree growth and survival vary through space and time is critical to understanding the structure and dynamics of tree-dominated ecosystems. However, characterising demographic processes at scale is inherently challenging, as trees are slow-growing, long-lived and cover vast expanses of land. We used repeat airborne laser scanning data acquired across 25 km2 of semi-arid, old-growth temperate woodland in Western Australia to track the height growth, crown expansion and mortality of 42 213 individual trees over 9 yr. We found that demographic rates are constrained by a combination of tree size, competition and topography. After initially investing in height growth, trees progressively shifted to crown expansion as they grew larger, while mortality risk decreased considerably with size. Across the landscape, both tree growth and survival increased with topographic wetness, resulting in vegetation patterns that are strongly spatially structured. Moreover, biomass gains from woody growth generally outpaced losses from mortality, suggesting these old-growth woodlands remain a net carbon sink in the absence of wildfires. Our study sheds new light on the processes that shape the dynamics and spatial structure of semi-arid woody ecosystems and provides a roadmap for using emerging remote sensing technologies to track tree demography at scale.
Collapse
Affiliation(s)
- Robin Battison
- School of Biological SciencesUniversity of BristolBristolBS8 1TQUK
| | | | - Katherine Zdunic
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsKensingtonWA6151Australia
| | - Toby D. Jackson
- School of Biological SciencesUniversity of BristolBristolBS8 1TQUK
| | | | - Tommaso Jucker
- School of Biological SciencesUniversity of BristolBristolBS8 1TQUK
| |
Collapse
|
3
|
Miguel S, Ruiz-Benito P, Rebollo P, Viana-Soto A, Mihai MC, García-Martín A, Tanase M. Forest disturbance regimes and trends in continental Spain (1985-2023) using dense landsat time series. ENVIRONMENTAL RESEARCH 2024; 262:119802. [PMID: 39147188 DOI: 10.1016/j.envres.2024.119802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Forest disturbance regimes across biomes are being altered by interactive effects of global change. Establishing baselines for assessing change requires detailed quantitative data on past disturbance events, but such data are scarce and difficult to obtain over large spatial and temporal scales. The integration of remote sensing with dense time series analysis and cloud computing platforms is enhancing the ability to monitor historical disturbances, and especially non-stand replacing events along climatic gradients. Since the integration of such tools is still scarce in Mediterranean regions, here, we combine dense Landsat time series and the Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA) method to monitor forest disturbance in continental Spain from 1985 to 2023. We adapted the CCDC-SMA method for improved disturbance detection creating new spectral libraries representative of the study region, and quantified the year, month, severity, return interval, and type of disturbance (stand replacing, non-stand replacing) at a 30 m resolution. In addition, we characterised forest disturbance regimes and trends (patch size and severity, and frequency of events) of events larger than 0.5 ha at the national scale by biome (Mediterranean and temperate) and forest type (broadleaf, needleleaf and mixed). We quantified more than 2.9 million patches of disturbed forest, covering 4.6 Mha over the region and period studied. Forest disturbances were on average larger but less severe in the Mediterranean than in the temperate biome, and significantly larger and more severe in needleleaf than in mixed and broadleaf forests. Since the late 1980s, forest disturbances have decreased in size and severity while increasing in frequency across all biomes and forest types. These results have important implications as they confirm that disturbance regimes in continental Spain are changing and should therefore be considered in forest strategic planning for policy development and implementation.
Collapse
Affiliation(s)
- S Miguel
- Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain.
| | - P Ruiz-Benito
- Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal (FORECO), Departamento de Ciencias de la Vida, 28805, Alcalá de Henares, Madrid, Spain
| | - P Rebollo
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal (FORECO), Departamento de Ciencias de la Vida, 28805, Alcalá de Henares, Madrid, Spain; Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/ José Antonio Novais 12, 28040, Madrid, Spain
| | - A Viana-Soto
- Technical University of Munich, School of Life Sciences, Earth Observation for Ecosystem Management, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - M C Mihai
- Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain
| | - A García-Martín
- Centro Universitario de la Defensa de Zaragoza, Academia General Militar, Ctra. de Huesca s/n, 50090, Zaragoza, Spain; Geoforest-IUCA, Department of Geography and Land Management, University of 6 Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - M Tanase
- Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain
| |
Collapse
|
4
|
Eskin C, Vural DC. Demographics of co-ageing complex systems: from infected worms to chess games. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240932. [PMID: 39539505 PMCID: PMC11557240 DOI: 10.1098/rsos.240932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Ageing, as defined in terms of the slope of the probability of death versus time (hazard curve), is a generic phenomenon observed in nearly all complex systems. Theoretical models of ageing predict hazard curves that monotonically increase in time, in discrepancy with the peculiar ups and downs observed empirically. Here we introduce the concept of co-ageing, where the demographic trajectories of multiple cohorts couple together, and show that co-ageing dynamics can account for the anomalous hazard curves exhibited by some species. In our model, multiple interdependency networks inflict damage on one other proportional to their number of functional nodes. We then fit our model predictions to three datasets describing (i) co-ageing worm-pathogen populations and (ii) competing tree species. Lastly, we collect data on the mortality statistics of (iii) chess games to demonstrate that co-ageing dynamics is not exclusive to biological systems.
Collapse
Affiliation(s)
- Cagatay Eskin
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, USA
| | - Dervis Can Vural
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
5
|
Billing M, Sakschewski B, von Bloh W, Vogel J, Thonicke K. 'How to adapt forests?'-Exploring the role of leaf trait diversity for long-term forest biomass under new climate normals. GLOBAL CHANGE BIOLOGY 2024; 30:e17258. [PMID: 38629937 DOI: 10.1111/gcb.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Forests, critical components of global ecosystems, face unprecedented challenges due to climate change. This study investigates the influence of functional diversity-as a component of biodiversity-to enhance long-term biomass of European forests in the context of changing climatic conditions. Using the next-generation flexible trait-based vegetation model, LPJmL-FIT, we explored the impact of functional diversity on long-term forest biomass under three different climate change scenarios (video abstract: https://www.pik-potsdam.de/~billing/video/2023/video_abstract_billing_et_al_LPJmLFIT.mp4). Four model set-ups were tested with varying degrees of functional diversity and best-suited functional traits. Our results show that functional diversity positively influences long-term forest biomass, particularly when climate warming is low (RCP2.6). Under these conditions, high-diversity simulations led to an approximately 18.2% increase in biomass compared to low-diversity experiments. However, as climate change intensity increased, the benefits of functional diversity diminished (RCP8.5). A Bayesian multilevel analysis revealed that both full leaf trait diversity and diversity of plant functional types contributed significantly to biomass enhancement under low warming scenarios in our model simulations. Under strong climate change, the presence of a mixture of different functional groups (e.g. summergreen and evergreen broad-leaved trees) was found more beneficial than the diversity of leaf traits within a functional group (e.g. broad-leaved summergreen trees). Ultimately, this research challenges the notion that planting only the most productive and climate-suited trees guarantees the highest future biomass and carbon sequestration. We underscore the importance of high functional diversity and the potential benefits of fostering a mixture of tree functional types to enhance long-term forest biomass in the face of climate change.
Collapse
Affiliation(s)
- Maik Billing
- Research Domain 1 'Earth System Analysis', Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Boris Sakschewski
- Research Domain 1 'Earth System Analysis', Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Werner von Bloh
- Research Domain 1 'Earth System Analysis', Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Johannes Vogel
- Research Domain 1 'Earth System Analysis', Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- Theoretical Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- ScaDS.AI-Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Kirsten Thonicke
- Research Domain 1 'Earth System Analysis', Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| |
Collapse
|
6
|
Cabon A, DeRose RJ, Shaw JD, Anderegg WRL. Declining tree growth resilience mediates subsequent forest mortality in the US Mountain West. GLOBAL CHANGE BIOLOGY 2023; 29:4826-4841. [PMID: 37344959 DOI: 10.1111/gcb.16826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Climate change-triggered forest die-off is an increasing threat to global forests and carbon sequestration but remains extremely challenging to predict. Tree growth resilience metrics have been proposed as measurable proxies of tree susceptibility to mortality. However, it remains unclear whether tree growth resilience can improve predictions of stand-level mortality. Here, we use an extensive tree-ring dataset collected at ~3000 permanent forest inventory plots, spanning 13 dominant species across the US Mountain West, where forests have experienced strong drought and extensive die-off has been observed in the past two decades, to test the hypothesis that tree growth resilience to drought can explain and improve predictions of observed stand-level mortality. We found substantial increases in growth variability and temporal autocorrelation as well declining drought resistance and resilience for a number of species over the second half of the 20th century. Declining resilience and low tree growth were strongly associated with cross- and within-species patterns of mortality. Resilience metrics had similar explicative power compared to climate and stand structure, but the covariance structure among predictors implied that the effect of tree resilience on mortality could partially be explained by stand and climate variables. We conclude that tree growth resilience offers highly valuable insights on tree physiology by integrating the effect of stressors on forest mortality but may have only moderate potential to improve large-scale projections of forest die-off under climate change.
Collapse
Affiliation(s)
- Antoine Cabon
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - R Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, USA
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Logan, Utah, USA
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Young DJN, Estes BL, Gross S, Wuenschel A, Restaino C, Meyer MD. Effectiveness of forest density reduction treatments for increasing drought resistance of ponderosa pine growth. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2854. [PMID: 37032063 DOI: 10.1002/eap.2854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 06/02/2023]
Abstract
As the climate changes, it is increasingly important to understand how forests will respond to drought and how forest management can influence those outcomes. In many forests that have become unnaturally dense, "restoration treatments," which decrease stand density using fire and/or mechanical thinning, are generally associated with reduced mortality during drought. However, the effects of such treatments on tree growth during drought are less clear. Previous studies have yielded apparently contradictory results, which may stem from differences in underlying aridity or drought intensity across studies. To address this uncertainty, we studied the growth of ponderosa pine (Pinus ponderosa) in paired treated and untreated areas before and during the extreme California drought of 2012-2016. Our study spanned gradients in climate and tree size and found that density reduction treatments could completely ameliorate drought-driven declines in growth under some contexts, specifically in more mesic areas and in medium-sized trees (i.e., normal annual precipitation > ca. 1100 mm and tree diameter at breast height < ca. 65 cm). Treatments were much less effective in ameliorating drought-associated growth declines in the most water-limited sites and largest trees, consistent with underlying ecophysiology. In medium-sized trees and wetter sites, growth of trees in untreated stands decreased by more than 15% during drought, while treatment-associated increases in growth of 25% or more persisted during the drought. Trees that ultimately died due to drought showed greater growth reductions during drought relative to trees that survived. Our results suggest that density reduction treatments can increase tree resistance to water stress, and they highlight an important pathway for treatments to influence carbon sequestration and other ecosystem services beyond mitigating tree mortality.
Collapse
Affiliation(s)
- Derek J N Young
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Becky L Estes
- USDA Forest Service, Pacific Southwest Region, Vallejo, California, USA
| | - Shana Gross
- USDA Forest Service, Pacific Southwest Region, Vallejo, California, USA
| | - Amarina Wuenschel
- USDA Forest Service, Pacific Southwest Region, Vallejo, California, USA
| | | | - Marc D Meyer
- USDA Forest Service, Pacific Southwest Region, Vallejo, California, USA
| |
Collapse
|
8
|
Barrere J, Reineking B, Cordonnier T, Kulha N, Honkaniemi J, Peltoniemi M, Korhonen KT, Ruiz-Benito P, Zavala MA, Kunstler G. Functional traits and climate drive interspecific differences in disturbance-induced tree mortality. GLOBAL CHANGE BIOLOGY 2023; 29:2836-2851. [PMID: 36757005 DOI: 10.1111/gcb.16630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.
Collapse
Affiliation(s)
- Julien Barrere
- Univ. Grenoble Alpes, INRAE, LESSEM, St-Martin-d'Hères, France
| | - Björn Reineking
- Univ. Grenoble Alpes, INRAE, LESSEM, St-Martin-d'Hères, France
| | - Thomas Cordonnier
- Univ. Grenoble Alpes, INRAE, LESSEM, St-Martin-d'Hères, France
- Office National des Forêts, Département Recherche Développement Innovation, Direction Territoriale Bourgogne-Franche-Comté, Dole, France
| | - Niko Kulha
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Juha Honkaniemi
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Kari T Korhonen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Paloma Ruiz-Benito
- Grupo de Ecologıa y Restauracion Forestal, Departamento de Ciencias de la Vida, Universidad de Alcala, Madrid, Spain
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Madrid, Spain
| | - Miguel A Zavala
- Grupo de Ecologıa y Restauracion Forestal, Departamento de Ciencias de la Vida, Universidad de Alcala, Madrid, Spain
| | | |
Collapse
|
9
|
Hasik AZ, King KC, Hawlena H. Interspecific host competition and parasite virulence evolution. Biol Lett 2023; 19:20220553. [PMID: 37130550 PMCID: PMC10734695 DOI: 10.1098/rsbl.2022.0553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Virulence, the harm to hosts caused by parasite infection, can be selected for by several ecological factors acting synergistically or antagonistically. Here, we focus on the potential for interspecific host competition to shape virulence through such a network of effects. We first summarize how host natural mortality, body mass changes, population density and community diversity affect virulence evolution. We then introduce an initial conceptual framework highlighting how these host factors, which change during host competition, may drive virulence evolution via impacts on life-history trade-offs. We argue that the multi-faceted nature of both interspecific host competition and virulence evolution still requires consideration and experimentation to disentangle contrasting mechanisms. It also necessitates a differential treatment for parasites with various transmission strategies. However, such a comprehensive approach focusing on the role of interspecific host competition is essential to understand the processes driving the evolution of virulence in a tangled bank.
Collapse
Affiliation(s)
- Adam Z. Hasik
- Jacob Blaustein Center for
Scientific Cooperation, Ben-Gurion University of the
Negev, 8499000 Midreshet Ben-Gurion,
Israel
| | - Kayla C. King
- Department of Biology,
University of Oxford, 11a Mansfield Road,
Oxford OX1 3SZ, UK
| | - Hadas Hawlena
- Mitrani Department of Desert
Ecology, Swiss Institute for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research, Ben-Gurion
University of the Negev, 849900 Midreshet Ben-Gurion,
Israel
| |
Collapse
|
10
|
Margalef-Marrase J, Molowny-Horas R, Jaime L, Lloret F. Modelling the dynamics of Pinus sylvestris forests after a die-off event under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159063. [PMID: 36202357 DOI: 10.1016/j.scitotenv.2022.159063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, die-off events in Pinus sylvestris populations have increased. The causes of these phenomena, which are usually related to local and regional extreme hot droughts, have been extensively investigated from a physiological viewpoint. However, the consequences of die-off process in terms of demography and vegetation dynamics have been less thoroughly addressed. Here, we projected P. sylvestris plot dynamics after a die-off event, under climate change scenarios, considering also their early demographic stages (i.e., seedlings, saplings and ingrowth from the sapling to adult class), to assess the resilience of P. sylvestris populations after such events. We used Integral Projection Models (IPMs) to project future plot structure under current climate, and under RCP4.5 and RCP8.0 climate scenarios, using climatic suitability - extracted from Species Distribution Models - as a covariable in the estimations of vital rates over time. Field data feeding IPMs were obtained from two successive surveys, at the end of the die-off event (2013) and four years later (2017), undertaken on populations situated across the P. sylvestris range of distribution in Catalonia (NE Spain). Plots affected by die-off experienced a loss of large trees, which causes that basal area, tree diameter and tree density will remain lower for decades relative to unaffected plots. After the event, this situation is partially counterbalanced in affected plots by a greater increase in basal area and seedling recruitment into tree stage, thus promoting resilience. However, resilience is delayed under the climate-change scenarios with warmer and drier conditions involving additional physiological stress, due to a reduced abundance of seedlings and a smaller plot basal area. The study shows lagged effect of drought-induced die-off events on forest structure, also revealing stabilizing mechanisms, such as recruitment and tree growth release, which enhance resilience. However, these mechanisms would be jeopardized by oncoming regional warming.
Collapse
Affiliation(s)
| | - Roberto Molowny-Horas
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra 08193, Spain
| | - Luciana Jaime
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra 08193, Spain
| | - Francisco Lloret
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra 08193, Spain; Unitat d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
11
|
Díaz‐Martínez P, Ruiz‐Benito P, Madrigal‐González J, Gazol A, Andivia E. Positive effects of warming do not compensate growth reduction due to increased aridity in Mediterranean mixed forests. Ecosphere 2023. [DOI: 10.1002/ecs2.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Paloma Díaz‐Martínez
- Instituto de Ciencias Agrarias Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Paloma Ruiz‐Benito
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida Universidad de Alcala Alcalá de Henares Spain
- Environmental Remote Sensing Research Group, Department of Geology, Geography and the Environment University of Alcala Alcalá de Henares Spain
| | | | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE‐CSIC) Zaragoza Spain
| | - Enrique Andivia
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences Universidad Complutense de Madrid Madrid Spain
| |
Collapse
|
12
|
Abstract
The forest mortality models developed so far have ignored the effects of spatial correlations and climate, which lead to the substantial bias in the mortality prediction. This study thus developed the tree mortality models for Prince Rupprecht larch (Larix gmelinii subsp. principis-rupprechtii), one of the most important tree species in northern China, by taking those effects into account. In addition to these factors, our models include both the tree—and stand—level variables, the information of which was collated from the temporary sample plots laid out across the larch forests. We applied the Bayesian modeling, which is the novel approach to build the multi-level tree mortality models. We compared the performance of the models constructed through the combination of selected predictor variables and explored their corresponding effects on the individual tree mortality. The models precisely predicted mortality at the three ecological scales (individual, stand, and region). The model at the levels of both the sample plot and stand with different site condition (block) outperformed the other model forms (model at block level alone and fixed effects model), describing significantly larger mortality variations, and accounted for multiple sources of the unobserved heterogeneities. Results showed that the sum of the squared diameter was larger than the estimated diameter, and the mean annual precipitation significantly positively correlated with tree mortality, while the ratio of the diameter to the average of the squared diameter, the stand arithmetic mean diameter, and the mean of the difference of temperature was significantly negatively correlated. Our results will have significant implications in identifying various factors, including climate, that could have large influence on tree mortality and precisely predict tree mortality at different scales.
Collapse
|
13
|
Gazol A, Camarero JJ. Compound climate events increase tree drought mortality across European forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151604. [PMID: 34780817 DOI: 10.1016/j.scitotenv.2021.151604] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Climate change can lead to the simultaneous occurrence of extreme droughts and heat waves increasing the frequency of compound events with unknown impacts on forests. Here we use two independent datasets, a compiled database of tree drought mortality events and the ICP-Forest level I plots, to study the impacts of the simultaneous occurrence of hot summers, with elevated vapour pressure deficit (VPD), and dry years on forest defoliation and mortality across Europe. We focused on tree drought mortality and background mortality rates, and we studied their co-occurrence with compound events of hot summers and dry years. In total, 143 out of 310 mortality events across Europe, i.e. 46% of cases, corresponded with rare compound events characterized by hot summers and dry years. Over the past decades, summer temperature increased in most sites and severe droughts resulted in compound events not observed before the 1980s. From the ICP-Forest plots we identified 291 (1718 trees) and 61 plots (128 trees) where severe defoliation and mortality, respectively, were caused by drought. The analyses of these events showed that 34% and 27% of the defoliation and mortality cases corresponded with rare compound climate events, respectively. Background mortality rates across Europe in the period 1993-2013 presented higher values in regions where summer temperature and VPD more steeply rose, where drought frequency increased. The steady increase in summer temperatures and VPD in Southern and Eastern Europe may favor the occurrence of compound events of hot summers and dry conditions. Giving that both, local and intense tree drought mortality events and background forest mortality rates, are linked to such compound events we can expect an increase in forest drought mortality in these European regions over the next decades.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), E-50059 Zaragoza, Spain.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), E-50059 Zaragoza, Spain.
| |
Collapse
|
14
|
Furniss TJ, Das AJ, van Mantgem PJ, Stephenson NL, Lutz JA. Crowding, climate, and the case for social distancing among trees. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2507. [PMID: 34870871 DOI: 10.1002/eap.2507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
In an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate-vegetation-disturbance interactions. Current strategies for creating resilient forests often rely on retrospective approaches, seeking to impart resilience by restoring historical conditions to contemporary landscapes, but historical conditions are becoming increasingly unattainable amidst modern bioclimatic conditions. What becomes an appropriate benchmark for resilience when we have novel forests, rapidly changing climate, and unprecedented disturbance regimes? We combined two longitudinal datasets-each representing some of the most comprehensive spatially explicit, annual tree mortality data in existence-in a post-hoc factorial design to examine the nonlinear relationships between fire, climate, forest spatial structure, and bark beetles. We found that while prefire drought elevated mortality risk, advantageous local neighborhoods could offset these effects. Surprisingly, mortality risk (Pm ) was higher in crowded local neighborhoods that burned in wet years (Pm = 42%) compared with sparse neighborhoods that burned during drought (Pm = 30%). Risk of beetle attack was also increased by drought, but lower conspecific crowding impeded the otherwise positive interaction between fire and beetle attack. Antecedent fire increased drought-related mortality over short timespans (<7 years) but reduced mortality over longer intervals. These results clarify interacting disturbance dynamics and provide a mechanistic underpinning for forest restoration strategies. Importantly, they demonstrate the potential for managed fire and silvicultural strategies to offset climate effects and bolster resilience to fire, beetles, and drought.
Collapse
Affiliation(s)
- Tucker J Furniss
- Wildland Resources Department and Ecology Center, Utah State University, Logan, Utah, USA
- USDA Forest Service, Pacific Northwest Research Station, Wenatchee, Washington, USA
| | - Adrian J Das
- U.S. Geological Survey, Western Ecological Research Center, Three Rivers, California, USA
| | | | - Nathan L Stephenson
- U.S. Geological Survey, Western Ecological Research Center, Three Rivers, California, USA
| | - James A Lutz
- Wildland Resources Department and Ecology Center, Utah State University, Logan, Utah, USA
| |
Collapse
|
15
|
Weithmann G, Link RM, Banzragch BE, Würzberg L, Leuschner C, Schuldt B. Soil water availability and branch age explain variability in xylem safety of European beech in Central Europe. Oecologia 2022; 198:629-644. [PMID: 35212818 PMCID: PMC8956530 DOI: 10.1007/s00442-022-05124-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Xylem embolism resistance has been identified as a key trait with a causal relation to drought-induced tree mortality, but not much is known about its intra-specific trait variability (ITV) in dependence on environmental variation. We measured xylem safety and efficiency in 300 European beech (Fagus sylvatica L.) trees across 30 sites in Central Europe, covering a precipitation reduction from 886 to 522 mm year−1. A broad range of variables that might affect embolism resistance in mature trees, including climatic and soil water availability, competition, and branch age, were examined. The average P50 value varied by up to 1 MPa between sites. Neither climatic aridity nor structural variables had a significant influence on P50. However, P50 was less negative for trees with a higher soil water storage capacity, and positively related to branch age, while specific conductivity (Ks) was not significantly associated with either of these variables. The greatest part of the ITV for xylem safety and efficiency was attributed to random variability within populations. We conclude that the influence of site water availability on P50 and Ks is low in European beech, and that the high degree of within-population variability for P50, partly due to variation in branch age, hampers the identification of a clear environmental signal.
Collapse
Affiliation(s)
- Greta Weithmann
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Roman M Link
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany.,Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz, 97082, Würzburg, Germany
| | - Bat-Enerel Banzragch
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Laura Würzberg
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany.,Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, 37075, Göttingen, Germany
| | - Bernhard Schuldt
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany. .,Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz, 97082, Würzburg, Germany.
| |
Collapse
|
16
|
Identifying Forest Structural Types along an Aridity Gradient in Peninsular Spain: Integrating Low-Density LiDAR, Forest Inventory, and Aridity Index. REMOTE SENSING 2022. [DOI: 10.3390/rs14010235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forest structure is a key driver of forest functional processes. The characterization of forest structure across spatiotemporal scales is essential for forest monitoring and management. LiDAR data have proven particularly useful for cost-effectively estimating forest structural attributes. This paper evaluates the ability of combined forest inventory data and low-density discrete return airborne LiDAR data to discriminate main forest structural types in the Mediterranean-temperate transition ecotone. Firstly, we used six structural variables from the Spanish National Forest Inventory (SNFI) and an aridity index in a k-medoids algorithm to define the forest structural types. These variables were calculated for 2770 SNFI plots. We identified the main species for each structural type using the SNFI. Secondly, we developed a Random Forest model to predict the spatial distribution of structural types and create wall-to-wall maps from LiDAR data. The k-medoids clustering algorithm enabled the identification of four clusters of forest structures. A total of six out of forty-one potential LiDAR metrics were utilized in our Random Forest, after evaluating their importance in the Random Forest model. Selected metrics were, in decreasing order of importance, the percentage of all returns above 2 m, mean height of the canopy profile, the difference between the 90th and 50th height percentiles, the area under the canopy curve, and the 5th and the 95th percentile of the return heights. The model yielded an overall accuracy of 64.18%. The producer’s accuracy ranged between 36.11% and 88.93%. Our results confirm the potential of this approximation for the continuous monitoring of forest structures, which is key to guiding forest management in this region.
Collapse
|
17
|
Drought Drives Growth and Mortality Rates in Three Pine Species under Mediterranean Conditions. FORESTS 2021. [DOI: 10.3390/f12121700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drought constrains tree growth in regions with seasonal water deficit where growth decline can lead to tree death. This has been observed in regions such as the western Mediterranean Basin, which is a climate-warming hotspot. However, we lack information on intra- and inter-specific comparisons of growth rates and responses to water shortage in these hotspots, considering tree species with different drought tolerance. We sampled several sites located in north-eastern Spain showing dieback and high mortality rates of three pine species (Pinus sylvestris, Pinus pinaster, Pinus halepensis). We dated death years and reconstructed the basal area increment of coexisting living and recently dead trees using tree ring data. Then, we calculated bootstrapped Pearson correlations between a drought index and growth. Finally, we used linear mixed-effects models to determine differences in growth trends and the response to drought of living and dead trees. Mortality in P. sylvestris and P. pinaster peaked in response to the 2012 and 2017 droughts, respectively, and in sites located near the species’ xeric distribution limits. In P. halepensis, tree deaths occurred most years. Dead trees showed lower growth rates than living trees in five out of six sites. There was a strong growth drop after the 1980s when climate shifted towards warmer and drier conditions. Tree growth responded positively to wet climate conditions, particularly in the case of living trees. Accordingly, growth divergence between living and dead trees during dry periods reflected cumulative drought impacts on trees. If aridification continues, tree drought mortality would increase, particularly in xeric distribution limits of tree species.
Collapse
|
18
|
Peters JMR, López R, Nolf M, Hutley LB, Wardlaw T, Cernusak LA, Choat B. Living on the edge: A continental-scale assessment of forest vulnerability to drought. GLOBAL CHANGE BIOLOGY 2021; 27:3620-3641. [PMID: 33852767 DOI: 10.1111/gcb.15641] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Globally, forests are facing an increasing risk of mass tree mortality events associated with extreme droughts and higher temperatures. Hydraulic dysfunction is considered a key mechanism of drought-triggered dieback. By leveraging the climate breadth of the Australian landscape and a national network of research sites (Terrestrial Ecosystem Research Network), we conducted a continental-scale study of physiological and hydraulic traits of 33 native tree species from contrasting environments to disentangle the complexities of plant response to drought across communities. We found strong relationships between key plant hydraulic traits and site aridity. Leaf turgor loss point and xylem embolism resistance were correlated with minimum water potential experienced by each species. Across the data set, there was a strong coordination between hydraulic traits, including those linked to hydraulic safety, stomatal regulation and the cost of carbon investment into woody tissue. These results illustrate that aridity has acted as a strong selective pressure, shaping hydraulic traits of tree species across the Australian landscape. Hydraulic safety margins were constrained across sites, with species from wetter sites tending to have smaller safety margin compared with species at drier sites, suggesting trees are operating close to their hydraulic thresholds and forest biomes across the spectrum may be susceptible to shifts in climate that result in the intensification of drought.
Collapse
Affiliation(s)
- Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Rosana López
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Markus Nolf
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Lindsay B Hutley
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Tim Wardlaw
- ARC Centre for Forest Value, University of Tasmania, Hobart, Tas, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
19
|
Masaki T, Kitagawa R, Nakashizuka T, Shibata M, Tanaka H. Interspecific variation in mortality and growth and changes in their relationship with size class in an old-growth temperate forest. Ecol Evol 2021; 11:8869-8881. [PMID: 34257933 PMCID: PMC8258222 DOI: 10.1002/ece3.7720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding trade-offs between demographic parameters is crucial when investigating community assembly rules in high-diversity forests. To this end, we estimated mortality and growth parameters, and correlations among them, across entire size classes for 17 tree species (Betula, Carpinus, Fagus, Quercus, Castanea, Acer, Cerasus, Swida, Kalopanax, and Styrax) using a dataset over 18 years obtained from an old-growth forest in Japan.Size classes were represented by 12 categories determined by age, height, and diameter at breast height (DBH) from new seedlings to stems of DBH >85 cm. We derived the annual mortality and growth for each species and class using estimates of transition probabilities between classes. Trade-offs or synergies in growth and survival among species per size class were analyzed with and without the inclusion of phylogenetic relationships.Annual mortality showed U-shaped patterns across size classes for species that could potentially reach a DBH ≥55 cm: 0.2-0.98 for seedlings, 0.002-0.01 at DBH 35-45 cm, and ca. 0.01 at DBH ≥55 cm. Other species demonstrated monotonically decreasing mortality toward specific maximum size classes. When phylogenetic information was included in analyses, the correlations between survival and growth changed across size classes were significant for some classes: As an overall tendency, synergy was observed in growth and survival for seedling to sapling classes, trade-offs for juvenile to DBH 15-25 cm classes, and synergy again for larger classes. When phylogenetic information was not included, a significant trade-off was observed only at DBH 5-15 cm. Synthesis. Trade-offs at intermediate classes imply differentiation in demographic characteristics related to life history strategies. However, evolutionarily obtained demographic characteristics are not substantial drivers of niche differentiation in the study area. The polylemma of mortality, growth, and other parameters such as the onset of reproduction may also be important factors driving species-specific demographic traits.
Collapse
Affiliation(s)
- Takashi Masaki
- Forestry and Forest Products Research InstituteTsukubaJapan
| | - Ryo Kitagawa
- Kansai Research CenterForestry and Forest Products Research InstituteKyotoJapan
| | | | - Mitsue Shibata
- Forestry and Forest Products Research InstituteTsukubaJapan
| | | |
Collapse
|
20
|
Fiedler S, Monteiro JAF, Hulvey KB, Standish RJ, Perring MP, Tietjen B. Global change shifts trade‐offs among ecosystem functions in woodlands restored for multifunctionality. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sebastian Fiedler
- Freie Universität Berlin Theoretical Ecology Institute of Biology Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Department of Ecological Modelling University Bayreuth Bayreuth Germany
| | - José A. F. Monteiro
- Freie Universität Berlin Theoretical Ecology Institute of Biology Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Statistical Office Basel‐Stadt Basel Switzerland
| | | | - Rachel J. Standish
- Environmental and Conservation Sciences Murdoch University Murdoch WA Australia
| | - Michael P. Perring
- Forest & Nature Lab Ghent University Gontrode‐Melle Belgium
- Ecosystem Restoration and Intervention Ecology Research Group School of Biological Sciences The University of Western Australia Crawley WA Australia
- UKCEH (UK Centre for Ecology and Hydrology)Environment Centre Wales Bangor UK
| | - Britta Tietjen
- Freie Universität Berlin Theoretical Ecology Institute of Biology Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| |
Collapse
|
21
|
Guan H, Dong X, Yan G, Searls T, Bourque CPA, Meng FR. Conditional inference trees in the assessment of tree mortality rates in the transitional mixed forests of Atlantic Canada. PLoS One 2021; 16:e0250991. [PMID: 34143806 PMCID: PMC8213180 DOI: 10.1371/journal.pone.0250991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Long-term predictions of forest dynamics, including forecasts of tree growth and mortality, are central to sustainable forest-management planning. Although often difficult to evaluate, tree mortality rates under different abiotic and biotic conditions are vital in defining the long-term dynamics of forest ecosystems. In this study, we have modeled tree mortality rates using conditional inference trees (CTREE) and multi-year permanent sample plot data sourced from an inventory with coverage of New Brunswick (NB), Canada. The final CTREE mortality model was based on four tree- and three stand-level terms together with two climatic terms. The correlation coefficient (R2) between observed and predicted mortality rates was 0.67. High cumulative annual growing degree-days (GDD) was found to lead to increased mortality in 18 tree species, including Betula papyrifera, Picea mariana, Acer saccharum, and Larix laricina. In another ten species, including Abies balsamea, Tsuga canadensis, Fraxinus americana, and Fagus grandifolia, mortality rates tended to be higher in areas with high incident solar radiation. High amounts of precipitation in NB’s humid maritime climate were also found to contribute to heightened tree mortality. The relationship between high GDD, solar radiation, and high mortality rates was particularly strong when precipitation was also low. This would suggest that although excessive soil water can contribute to heightened tree mortality by reducing the supply of air to the roots, occasional drought in NB can also contribute to increased mortality events. These results would have significant implications when considered alongside regional climate projections which generally entail both components of warming and increased precipitation.
Collapse
Affiliation(s)
- Huiwen Guan
- College of Economics & Management, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, China
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Xibin Dong
- College of Engineering and Technology, Northeast Forestry University, Harbin, Heilongjiang, China
- * E-mail: (FRM); (XD)
| | - Guohua Yan
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Tyler Searls
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Charles P. -A. Bourque
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Fan-Rui Meng
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
- * E-mail: (FRM); (XD)
| |
Collapse
|
22
|
Huber N, Bugmann H, Cailleret M, Bircher N, Lafond V. Stand-scale climate change impacts on forests over large areas: transient responses and projection uncertainties. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02313. [PMID: 33630399 PMCID: PMC8243936 DOI: 10.1002/eap.2313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The increasing impacts of climate change on forest ecosystems have triggered multiple model-based impact assessments for the future, which typically focused either on a small number of stand-scale case studies or on large scale analyses (i.e., continental to global). Therefore, substantial uncertainty remains regarding the local impacts over large areas (i.e., regions to countries), which is particularly problematic for forest management. We provide a comprehensive, high-resolution assessment of the climate change sensitivity of managed Swiss forests (~10,000 km2 ), which cover a wide range of environmental conditions. We used a dynamic vegetation model to project the development of typical forest stands derived from a stratification of the Third National Forest Inventory until the end of the 22nd century. Two types of simulations were conducted: one limited to using the extant local species, the other enabling immigration of potentially more climate-adapted species. Moreover, to assess the robustness of our projections, we quantified and decomposed the uncertainty in model projections resulting from the following sources: (1) climate change scenarios, (2) local site conditions, and (3) the dynamic vegetation model itself (i.e., represented by a set of model versions), an aspect hitherto rarely taken into account. The simulations showed substantial changes in basal area and species composition, with dissimilar sensitivity to climate change across and within elevation zones. Higher-elevation stands generally profited from increased temperature, but soil conditions strongly modulated this response. Low-elevation stands were increasingly subject to drought, with strong negative impacts on forest growth. Furthermore, current stand structure had a strong effect on the simulated response. The admixture of drought-tolerant species was found advisable across all elevations to mitigate future adverse climate-induced effects. The largest uncertainty in model projections was associated with climate change scenarios. Uncertainty induced by the model version was generally largest where overall simulated climate change impacts were small, thus corroborating the utility of the model for making projections into the future. Yet, the large influence of both site conditions and the model version on some of the projections indicates that uncertainty sources other than climate change scenarios need to be considered in climate change impact assessments.
Collapse
Affiliation(s)
- Nica Huber
- Forest EcologyDepartment of Environmental Systems ScienceInstitute of Terrestrial EcosystemsETH ZurichUniversitätstrasse 16Zurich8092Switzerland
- Remote SensingSwiss Federal Research Institute WSLZürcherstrasse 111Birmensdorf8903Switzerland
| | - Harald Bugmann
- Forest EcologyDepartment of Environmental Systems ScienceInstitute of Terrestrial EcosystemsETH ZurichUniversitätstrasse 16Zurich8092Switzerland
| | - Maxime Cailleret
- Forest EcologyDepartment of Environmental Systems ScienceInstitute of Terrestrial EcosystemsETH ZurichUniversitätstrasse 16Zurich8092Switzerland
- INRAEUMR RECOVERAix‐Marseille University3275 route de CézanneAix‐en‐Provence cedex 5CS40061France
| | - Nicolas Bircher
- Forest EcologyDepartment of Environmental Systems ScienceInstitute of Terrestrial EcosystemsETH ZurichUniversitätstrasse 16Zurich8092Switzerland
| | - Valentine Lafond
- Forest EcologyDepartment of Environmental Systems ScienceInstitute of Terrestrial EcosystemsETH ZurichUniversitätstrasse 16Zurich8092Switzerland
- Department of Forest Resources ManagementFaculty of ForestryForest Sciences CentreUniversity of British Columbia2424 Main MallVancouverBritish ColumbiaV6T 1Z4Canada
| |
Collapse
|
23
|
The Effects of Biotic and Abiotic Factors on the Community Dynamics in a Mountain Subtropical Forest. FORESTS 2021. [DOI: 10.3390/f12040427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
From supporting wood production to mitigating climate change, forest ecosystem services are crucial to the well-being of humans. Understanding the mechanisms that drive forest dynamics can help us infer how to maintain forest ecosystem services and how to improve predictions of forest dynamics under climate change. Despite the growing number of studies exploring above ground biomass (AGB) dynamics, questions of dynamics in biodiversity and in number of individuals still remain unclear. Here, we first explored the patterns of community dynamics in different aspects (i.e., AGB, density and biodiversity) based on short-term (five years) data from a 25-ha permanent plot in a subtropical forest in central China. Second, we examined the relationships between community dynamics and biodiversity and functional traits. Third, we identified the key factors affecting different aspects of community dynamics and quantified their relative contributions. We found that in the short term (five years), net above ground biomass change (ΔAGB) and biodiversity increased, while the number of individuals decreased. Resource-conservation traits enhanced the ΔAGB and reduced the loss in individuals, while the resource-acquisition traits had the opposite effect. Furthermore, the community structure contributed the most to ΔAGB; topographic variables and soil nutrients contributed the most to the number of individuals; demographic process contributed the most to biodiversity. Our results indicate that biotic factors mostly affected the community dynamics of ΔAGB and biodiversity, while the number of individuals was mainly shaped by abiotic factors. Our work highlighted that the factors influencing different aspects of community dynamics vary. Therefore, forest management practices should be formulated according to a specific protective purpose.
Collapse
|
24
|
Acácio V, Dias FS, Catry FX, Bugalho MN, Moreira F. Canopy Cover Loss of Mediterranean Oak Woodlands: Long-term Effects of Management and Climate. Ecosystems 2021. [DOI: 10.1007/s10021-021-00617-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Díaz M, Sánchez-Mejía T, Morán-López T. Long-Term Tree Regeneration of Fragmented Agroforestry Systems Under Varying Climatic Conditions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iberian dehesas and montados are agroforestry systems protected by the European Habitats Directive due to high levels of biological diversity associated to their savannah-like structure. Tree scattering in dehesas, montados and other agroforestry systems is, however, known to compromise tree regeneration, although recent work suggests that it may protect tree populations from climate warming by alleviating plant-plant competition. We analyze how climatic conditions, tree isolation and their interactions influence the outcomes of regeneration stages, from flower production to early seedling establishment, using data gathered during the long-term monitoring (2001–2018) of ca. 300 Holm oak Quercus ilex trees located in central Spain. Holm oak reproductive effort, predispersal seed losses, and early seedling recruitment were sensitive to climate change, especially to year-round drought. Effort and early seedling recruitment decreased, while abortion and predispersal seed predation increased, with higher drought intensity. Spring warming increases pollination effectiveness, but had no further effect on acorn crops. Forest clearing seemed to have little scope to ameliorate these negative effects, as shown by weak or no interactive effects between the spatial configuration of trees (cover or isolation) and climate variables (spring temperature or drought intensity). Forest opening aimed at decreasing adult tree mortality under climate change scenarios would then have little or no effects on tree recruitment. Landscape-scale rotations alternating shrub encroachment and thinning along periods adapted to changing climate are proposed as the main management option to preserve both oak forests and dehesas in the long term.
Collapse
|
26
|
Diez JM, Boone R, Bohner T, Godoy O. Frequency-dependent tree growth depends on climate. Ecology 2021; 102:e03284. [PMID: 33464571 DOI: 10.1002/ecy.3284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022]
Abstract
Climate and competition interact to affect species' performance, such as growth and survival, and help determine species distributions and coexistence. However, it is unclear how climatic conditions modulate frequency-dependent performance, that is, how performance changes as a species becomes locally rare or common. This is critical because declines in performance as a species becomes more common (negative frequency dependence) is a signature of niche differences among species that stabilize coexistence, whereas positive frequency dependence leads to priority effects and hampers species coexistence. Here, we used dendrochronology and hierarchical models to test whether frequency-dependent growth of sugar pine (Pinus lambertiana) depends on climatic conditions. We found that growth rates were strongly dependent on annual precipitation, but no frequency dependence was evident across all years. However, there was a strong interaction between precipitation and frequency dependence, revealing stabilizing niche differences in dry years but positive frequency dependence in wet years. These differences emerged because of precipitation-driven changes in the direction and strength of both con- and heterospecific competition. Overall, these results show how stabilizing and destabilizing effects can be temporally dynamic for long-lived species and interact with climate variation.
Collapse
Affiliation(s)
- Jeffrey M Diez
- Department of Botany and Plant Sciences, University of California, Riverside, California, 92501, USA
| | - Rohan Boone
- Department of Botany and Plant Sciences, University of California, Riverside, California, 92501, USA.,School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, 86001, USA
| | - Teresa Bohner
- Department of Botany and Plant Sciences, University of California, Riverside, California, 92501, USA
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, E-11510, Spain
| |
Collapse
|
27
|
Ecological Diversity within Rear-Edge: A Case Study from Mediterranean Quercus pyrenaica Willd. FORESTS 2020. [DOI: 10.3390/f12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the ecology of populations located in the rear edge of their distribution is key to assessing the response of the species to changing environmental conditions. Here, we focus on rear-edge populations of Quercus pyrenaica in Sierra Nevada (southern Iberian Peninsula) to analyze their ecological and floristic diversity. We perform multivariate analyses using high-resolution environmental information and forest inventories to determine how environmental variables differ among oak populations, and to identify population groups based on environmental and floristic composition. We find that water availability is a key variable in explaining the distribution of Q. pyrenaica and the floristic diversity of their accompanying communities within its rear edge. Three cluster of oak populations were identified based on environmental variables. We found differences among these clusters regarding plant diversity, but not for forest attributes. A remarkable match between the populations clustering derived from analysis of environmental variables and the ordination of the populations according to species composition was found. The diversity of ecological behaviors for Q. pyrenaica populations in this rear edge are consistent with the high genetic diversity shown by populations of this oak in the Sierra Nevada. The identification of differences between oak populations within the rear-edge with respect to environmental variables can aid with planning the forest management and restoration actions, particularly considering the importance of some environmental factors in key ecological aspects.
Collapse
|
28
|
Khoury S, Coomes DA. Resilience of Spanish forests to recent droughts and climate change. GLOBAL CHANGE BIOLOGY 2020; 26:7079-7098. [PMID: 32894633 DOI: 10.1111/gcb.15268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A widespread increase in forest cover is underway in northern Mediterranean forests because of land abandonment and decreased wood demand, but the resilience of these successional forests to climate change remains unresolved. Here we use 18-year time series of canopy greenness derived from satellite imagery (NDVI) to evaluate the impacts of climate change on Spain's forests. Specifically, we analyzed how NDVI was influenced by the climatic water balance (i.e. Standardized Precipitation-Evapotranspiration Index, SPEI), using monthly time-series extracted from 3,100 pixels of forest, categorized into ten forest types. The forests increased in leaf area index by 0.01 per year on average (from 1.7 in 2000 to 1.9 in 2017) but there was enormous variation among years related to climatic water balance. Forest types varied in response to drought events: those dominated by drought-avoiding species showed strong covariance between greenness and SPEI, while those dominated by drought-tolerant species showed weak covariance. Native forests usually recovered more than 80% of greenness within the 18 months and the remainder within 5 years, but plantations of Eucalyptus were less resilient. Management to increase the resilience of forests-a key goal of forestry in the Mediterranean region-appears to have had a positive effect: canopy greenness within protected forests was more resilient to drought than within non-protected forests. In conclusion, many of Spain's successional forests have been resilient to drought over the past 18 years, from the perspective of space. Future studies will need to combine remote sensing with field-based analyses of physiological tolerances and mortality processes to understand how Mediterranean forests will respond to the rapid climate change predicted for this region in the coming decades.
Collapse
Affiliation(s)
- Sacha Khoury
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge Conservation Research Institute, Cambridge, UK
| | - David A Coomes
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge Conservation Research Institute, Cambridge, UK
| |
Collapse
|
29
|
Tepley AJ, Hood SM, Keyes CR, Sala A. Forest restoration treatments in a ponderosa pine forest enhance physiological activity and growth under climatic stress. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02188. [PMID: 32492227 DOI: 10.1002/eap.2188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
As the climate warms, drought will increasingly occur under elevated temperatures, placing forest ecosystems at growing risk of extensive dieback and mortality. In some cases, increases in tree density following early 20th-century fire suppression may exacerbate this risk. Treatments designed to restore historical stand structure and enhance resistance to high-severity fire might also alleviate drought stress by reducing competition, but the duration of these effects and the underlying mechanisms remain poorly understood. To elucidate these mechanisms, we evaluate tree growth, mortality, and tree-ring stable-carbon isotope responses to stand-density reduction treatments with and without prescribed fire in a ponderosa pine forest of western Montana. Moderate and heavier cutting experiments (basal area reductions of 35% and 56%, respectively) were initiated in 1992, followed by prescribed burning in a subset of the thinned units. All treatments led to a growth release that persisted to the time of resampling. The treatments had little effect on climate-growth relationships, but they markedly altered seasonal carbon isotope signals and their relationship to climate. In burned and unburned treatments, carbon isotope discrimination (Δ13 C) increased in the earlywood (EW) and decreased in the latewood (LW) relative to the control. The sensitivity of LW Δ13 C to late-summer climate also increased in all treatments, but not in the control. Such increased sensitivity indicates that the reduction in competition enabled trees to continue to fix carbon for new stem growth, even when the climate became sufficiently stressful to stop new assimilation in slower-growing trees in untreated units. These findings would have been masked had we not separated EW and LW. The importance of faster growth and enhanced carbon assimilation under late-summer climatic stress became evident in the second decade post-treatment, when mountain pine beetle activity increased locally, and tree mortality rates in the controls of both experiments increased to more than twice those in their respective treatments. These findings highlight that, when thinning is used to restore historical forest structure or increase resistance to high-severity fire, there will likely be additional benefits of enhanced growth and physiological activity under climatic stress, and the effects may persist for more than two decades.
Collapse
Affiliation(s)
- Alan J Tepley
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
- W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, 59812, USA
| | - Sharon M Hood
- Fire, Fuel and Smoke Science Program, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, 59808, USA
| | - Christopher R Keyes
- W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, 59812, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
- W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, 59812, USA
| |
Collapse
|
30
|
Goszka AR, Snell RS. Seed quality and seed quantity in red maple depends on weather and individual tree characteristics. Ecol Evol 2020; 10:13109-13121. [PMID: 33304521 PMCID: PMC7713923 DOI: 10.1002/ece3.6900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/08/2022] Open
Abstract
Under future climate change, plant species are expected to shift their ranges in response to increasing temperatures and altered precipitation patterns. As seeds represent the single opportunity for plants to move, it is critical to quantify the factors that influence reproduction. While total seed production is clearly important, seed quality is equally as critical and often overlooked. Thus, to quantify how environmental and tree-level characteristics affect seed quality and quantity, the reproductive output of red maple (Acer rubrum) was measured along an elevation gradient in the Monongahela National Forest, WV. A variety of individual-level characteristics were measured (e.g., DBH, canopy area, height, and tree cores were taken to quantify growth), and seed traps were placed under seed-bearing trees to collect samaras and quantify total seed production. A random subsample of collected seeds from each tree was micro-CT scanned to determine embryo volume, photographed for morphology measurements, and used for germination trials. The number of seeds produced was negatively affected by frost events during flowering, and stand density. The trees with the most seeds also showed reduced growth in recent years. Only 63% of scanned seeds showed embryo development, and of those seeds-only 23% germinated. The likelihood of embryo presence increased as growth rate decreased, while embryo size increased with tree height, smaller DBH, and in areas dominated by hemlock. Both larger embryo volume and larger overall seed size increased the likelihood of germination. The results highlight the importance of including seed quality in addition to seed quantity for a more complete representation of reproductive output.
Collapse
Affiliation(s)
- Abigail R. Goszka
- Department of Environmental and Plant BiologyOhio UniversityAthensOHUSA
| | - Rebecca S. Snell
- Department of Environmental and Plant BiologyOhio UniversityAthensOHUSA
| |
Collapse
|
31
|
Analyzing the Joint Effect of Forest Management and Wildfires on Living Biomass and Carbon Stocks in Spanish Forests. FORESTS 2020. [DOI: 10.3390/f11111219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This is the first study that has considered forest management and wildfires in the balance of living biomass and carbon stored in Mediterranean forests. Background and Objectives: The Kyoto Protocol and Paris Agreement request countries to estimate and report carbon emissions and removals from the forest in a transparent and reliable way. The aim of this study is to forecast the carbon stored in the living biomass of Spanish forests for the period 2000–2050 under two forest management alternatives and three forest wildfires scenarios. Materials and Methods: To produce these estimates, we rely on data from the Spanish National Forest Inventory (SNFI) and we use the European Forestry Dynamics Model (EFDM). SNFI plots were classified according to five static (forest type, known land-use restrictions, ownership, stand structure and bioclimatic region) and two dynamic factors (quadratic mean diameter and total volume). The results were validated using data from the latest SNFI cycle (20-year simulation). Results: The increase in wildfire occurrence will lead to a decrease in biomass/carbon between 2000 and 2050 of up to 22.7% in the medium–low greenhouse gas emissions scenario (B2 scenario) and of up to 32.8% in the medium–high greenhouse gas emissions scenario (A2 scenario). Schoolbook allocation management could buffer up to 3% of wildfire carbon loss. The most stable forest type under both wildfire scenarios are Dehesas. As regards bioregions, the Macaronesian area is the most affected and the Alpine region, the least affected. Our validation test revealed a total volume underestimation of 2.2% in 20 years. Conclusions: Forest wildfire scenarios provide more realistic simulations in Mediterranean forests. The results show the potential benefit of forest management, with slightly better results in schoolbook forest management compared to business-as-usual forest management. The EFDM harmonized approach simulates the capacity of forests to store carbon under different scenarios at national scale in Spain, providing important information for optimal decision-making on forest-related policies.
Collapse
|
32
|
Astigarraga J, Andivia E, Zavala MA, Gazol A, Cruz-Alonso V, Vicente-Serrano SM, Ruiz-Benito P. Evidence of non-stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests. GLOBAL CHANGE BIOLOGY 2020; 26:5063-5076. [PMID: 32479675 DOI: 10.1111/gcb.15198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non-stationary (i.e. non-time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above-ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above-ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non-stationary relationships between climate, forest structure and demography. Above-ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.
Collapse
Affiliation(s)
- Julen Astigarraga
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
| | - Enrique Andivia
- Department of Biodiversity, Ecology & Evolution, Complutense University of Madrid, Madrid, Spain
| | - Miguel A Zavala
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- Franklin Institute, University of Alcala, Alcalá de Henares, Spain
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | - Verónica Cruz-Alonso
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola de Vallès, Spain
| | | | - Paloma Ruiz-Benito
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- Environmental Remote Sensing Group, Department of Geology, Geography and Environment, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
33
|
Madrigal‐González J, Ballesteros‐Cánovas JA, Zavala MA, Morales‐Molino C, Stoffel M. Forest stocks control long‐term climatic mortality risks in Scots pine dry‐edge forests. Ecosphere 2020. [DOI: 10.1002/ecs2.3201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jaime Madrigal‐González
- Climate Change Impacts and Risks in the Anthropocene (C‐CIA) Institute for Environmental Sciences (ISE) University of Geneva Boulevard Carl Vogt 66 Geneva1205Switzerland
| | - Juan A. Ballesteros‐Cánovas
- Climate Change Impacts and Risks in the Anthropocene (C‐CIA) Institute for Environmental Sciences (ISE) University of Geneva Boulevard Carl Vogt 66 Geneva1205Switzerland
- Department of Earth Sciences University of Geneva rue des Maraîchers 13 GenevaCH‐1205Switzerland
| | - Miguel A. Zavala
- Ecología Forestal y Restauración Departamento de Ciencias de la Vida Universidad de Alcalá, ctra. Madrid‐Barcelona km 33.4 Alcalá de Henares28005Spain
| | - César Morales‐Molino
- Paleoecology Section Institute of Plant Sciences and Oeschger Centre for Climate Change Research University of Bern Altenbergrain 21 Bern3013Switzerland
| | - Markus Stoffel
- Climate Change Impacts and Risks in the Anthropocene (C‐CIA) Institute for Environmental Sciences (ISE) University of Geneva Boulevard Carl Vogt 66 Geneva1205Switzerland
- Department of Earth Sciences University of Geneva rue des Maraîchers 13 GenevaCH‐1205Switzerland
- Department F.‐A. Forel for Environmental and Aquatic Sciences University of Geneva Boulevard Carl Vogt 66 Geneva1205Switzerland
| |
Collapse
|
34
|
Huber N, Bugmann H, Lafond V. Capturing ecological processes in dynamic forest models: why there is no silver bullet to cope with complexity. Ecosphere 2020. [DOI: 10.1002/ecs2.3109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Nica Huber
- Forest Ecology Institute of Terrestrial Ecosystems Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Harald Bugmann
- Forest Ecology Institute of Terrestrial Ecosystems Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Valentine Lafond
- Forest Ecology Institute of Terrestrial Ecosystems Department of Environmental Systems Science ETH Zurich Zurich Switzerland
- Faculty of Forestry Department of Forest Resources Management University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
35
|
Cailleret M, Bircher N, Hartig F, Hülsmann L, Bugmann H. Bayesian calibration of a growth-dependent tree mortality model to simulate the dynamics of European temperate forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02021. [PMID: 31605557 DOI: 10.1002/eap.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Dynamic vegetation models (DVMs) are important tools to understand and predict the functioning and dynamics of terrestrial ecosystems under changing environmental conditions. In these models, uncertainty in the description of demographic processes, in particular tree mortality, is a persistent problem. Current mortality formulations lack realism and are insufficiently constrained by empirical evidence. It has been suggested that empirically estimated mortality submodels would enhance DVM performance, but due to the many processes and interactions within a DVM, the claim has rarely been tested. Here, we compare the performance of three alternative growth-dependent tree mortality submodels in the DVM ForClim: (1) a mortality function with theoretical foundation (ForClim v3.3); (2) a mortality function with parameters directly estimated based on forest inventory data; and (3) the same function, but with parameters estimated using an inverse approach through Bayesian calibration (BC). Time series of inventory data from 30 ecologically distinct Swiss natural forest reserves collected over 35+ yr, including the main tree species of Central Europe, were used for the calibration and subsequent validation of the mortality functions and the DVM. The recalibration resulted in mortality parameters that differed from the direct empirical estimates, particularly for the relationship between tree size and mortality. The calibrated parameters outperformed the direct estimates, and to a lesser extent the original mortality function, for predicting decadal-scale forest dynamics at both calibration and validation sites. The same pattern was observed regarding the plausibility of their long-term projections under contrasting environmental conditions. Our results demonstrate that inverse calibration may be useful even when direct empirical estimates of DVM parameters are available, as structural model deficiencies or data problems can result in discrepancies between direct and inverse estimates. Thus, we interpret the good performance of the inversely calibrated model for long-term projections (which were not a calibration target) as evidence that the calibration did not compensate for model errors. Rather, we surmise that the discrepancy was mainly caused by a lack of representativeness of the mortality data. Our results underline the potential for learning more about elusive processes, such as tree mortality or recruitment, through data integration in DVMs.
Collapse
Affiliation(s)
- Maxime Cailleret
- Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Sciences, Swiss Federal Institute of Technology ETH, Universitätsstrasse 22, 8092, Zürich, Switzerland
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- UMR RECOVER, Aix Marseille University, IRSTEA, 3275 Route de Cézanne, 13182, Aix-en-Provence, France
| | - Nicolas Bircher
- Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Sciences, Swiss Federal Institute of Technology ETH, Universitätsstrasse 22, 8092, Zürich, Switzerland
| | - Florian Hartig
- Department of Biometry and Environmental System Analysis, Albert-Ludwigs-University Freiburg, TennenbacherStraße 4, 79106, Freiburg, Germany
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lisa Hülsmann
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Forest Resources and Management, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Harald Bugmann
- Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Sciences, Swiss Federal Institute of Technology ETH, Universitätsstrasse 22, 8092, Zürich, Switzerland
| |
Collapse
|
36
|
Carbon Limitation and Drought Sensitivity at Contrasting Elevation and Competition of Abies pinsapo Forests. Does Experimental Thinning Enhance Water Supply and Carbohydrates? FORESTS 2019. [DOI: 10.3390/f10121132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stand-level competition and local climate influence tree responses to increased drought at the regional scale. To evaluate stand density and elevation effects on tree carbon and water balances, we monitored seasonal changes in sap-flow density (SFD), gas exchange, xylem water potential, secondary growth, and non-structural carbohydrates (NSCs) in Abies pinsapo. Trees were subjected to experimental thinning within a low-elevation stand (1200 m), and carbon and water balances were compared to control plots at low and high elevation (1700 m). The hydraulic conductivity and the resistance to cavitation were also characterized, showing relatively high values and no significant differences among treatments. Trees growing at higher elevations presented the highest SFD, photosynthetic rates, and secondary growth, mainly because their growing season was extended until summer. Trees growing at low elevation reduced SFD during late spring and summer while SFD and secondary growth were significantly higher in the thinned stands. Declining NSC concentrations in needles, branches, and sapwood suggest drought-induced control of the carbon supply status. Our results might indicate potential altitudinal shifts, as better performance occurs at higher elevations, while thinning may be suitable as adaptive management to mitigate drought effects in endangered Mediterranean trees.
Collapse
|
37
|
Lo YH, Blanco JA, González de Andrés E, Imbert JB, Castillo FJ. CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Chen Y, Uriarte M, Wright SJ, Yu S. Effects of neighborhood trait composition on tree survival differ between drought and postdrought periods. Ecology 2019; 100:e02766. [PMID: 31161620 DOI: 10.1002/ecy.2766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Although direct tree demographic responses to drought are widely recognized, studies of drought-mediated changes in tree interactions are rare. We hypothesize that drought exacerbates soil-water limitation and intensifies competition for water, but reduces light limitation and competition for light. We predict that competition would be stronger for trees (1) consuming more water or more susceptible to water deficits during drought and (2) intercepting more light or more susceptible to shade during postdrought periods. We tested these predictions in a 50-ha tropical forest plot by quantifying the effects of neighborhood mean trait values on tree survival during versus after a severe drought. We used wood density (WD) and leaf mass per area (LMA) as proxies for water and light use strategies, respectively. Tree survival was lower, canopy loss was greater, and sapling recruitment was greater during the drought relative to postdrought census intervals. This suggests that drought pushed water deficits to lethal extremes and increased understory light availability. Relationships between survival and neighborhood WD were independent of drought, which is inconsistent with our first prediction. In contrast, relationships between survival and neighborhood LMA differed strongly with drought. Survival time was unaffected by neighborhood LMA during drought, but was longer for trees of all sizes in low-LMA neighborhoods in the postdrought census interval, consistent with the prediction of reduced competition for light during drought. Our results suggest that severe drought might increase light availability and reduce competition for light in moist tropical forests.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterhurerstrasse 190, Zurich, CH-8057, Switzerland
| | - María Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | | | - Shixiao Yu
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
39
|
Productivity Estimations for Monospecific and Mixed Pine Forests along the Iberian Peninsula Aridity Gradient. FORESTS 2019. [DOI: 10.3390/f10050430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
National Forest Inventories (NFIs) are the primary source of information to fulfill international requirements, such as growing stock volume. However, NFI cycles may be “out of phase” in terms of the information required, so prediction techniques are needed. To disentangle the effects of climate and competition on stand productivity and to estimate the volume of stocks at national scale, it is important to recognize that growth and competition are species-specific and vary along climatic gradients. In this study, we estimate the productivity of five pine species (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus nigra and Pinus pinaster), growing in monospecific stands or in mixtures along an aridity gradient in the Iberian Peninsula, based on Spanish NFI data. We study the stand volume growth efficiency (VGE), since it allows the comparison of volume growth in monospecific and mixed stands. The results reveal the importance of considering the aridity when assessing VGE. Moreover, it was found that, in general, admixture among pine species leads to modifications in the VGE, which can vary from negative to positive effects depending on species composition, and that this is always influenced by the aridity. Finally, we provide simple growth efficiency models for the studied pines species which are valid for both monospecific and mixed stands along the aridity gradient of the Iberian Peninsula.
Collapse
|
40
|
Taccoen A, Piedallu C, Seynave I, Perez V, Gégout-Petit A, Nageleisen LM, Bontemps JD, Gégout JC. Background mortality drivers of European tree species: climate change matters. Proc Biol Sci 2019; 286:20190386. [PMID: 30966984 DOI: 10.1098/rspb.2019.0386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increases in tree mortality rates have been highlighted in different biomes over the past decades. However, disentangling the effects of climate change on the temporal increase in tree mortality from those of management and forest dynamics remains a challenge. Using a modelling approach taking tree and stand characteristics into account, we sought to evaluate the impact of climate change on background mortality for the most common European tree species. We focused on background mortality, which is the mortality observed in a stand in the absence of abrupt disturbances, to avoid confusion with mortality events unrelated to long-term changes in temperature and rainfall. We studied 372 974 trees including 7312 dead trees from forest inventory data surveyed across France between 2009 and 2015. Factors related to competition, stand characteristics, management intensity, and site conditions were the expected preponderant drivers of mortality. Taking these main drivers into account, we detected a climate change signal on 45% of the 43 studied species, explaining an average 6% of the total modelled mortality. For 18 out of the 19 species sensitive to climate change, we evidenced greater mortality with increasing temperature or decreasing rainfall. By quantifying the mortality excess linked to the current climate change for European temperate forest tree species, we provide new insights into forest vulnerability that will prove useful for adapting forest management to future conditions.
Collapse
Affiliation(s)
- Adrien Taccoen
- 1 Université de Lorraine, AgroParisTech, INRA, Silva , 54000 Nancy , France
| | - Christian Piedallu
- 1 Université de Lorraine, AgroParisTech, INRA, Silva , 54000 Nancy , France
| | - Ingrid Seynave
- 1 Université de Lorraine, AgroParisTech, INRA, Silva , 54000 Nancy , France
| | - Vincent Perez
- 1 Université de Lorraine, AgroParisTech, INRA, Silva , 54000 Nancy , France
| | | | - Louis-Michel Nageleisen
- 1 Université de Lorraine, AgroParisTech, INRA, Silva , 54000 Nancy , France.,3 Ministère de l'Agriculture, de l'Alimentation et de la Forêt, Département Santé des Forêts , 54280 Champenoux , France
| | | | - Jean-Claude Gégout
- 1 Université de Lorraine, AgroParisTech, INRA, Silva , 54000 Nancy , France
| |
Collapse
|
41
|
A Multifactorial Approach to Value Supporting Ecosystem Services in Spanish Forests and Its Implications in a Warming World. SUSTAINABILITY 2019. [DOI: 10.3390/su11020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbon storage and sequestration are key ecosystem services critical to human well-being and biodiversity conservation. In a warming context, the quantification and valuation of carbon storage and sequestration is important in ensuring that effective incentives are put in place to tackle climate change. The quantification and valuation of ES such as carbon storage and sequestration requires the calculus of actual values and prediction, however, it usually does not include key processes that can indirectly influence carbon dynamics (i.e., risk, conservation or management). Here, we define a multifactorial approach to value ecosystem services based on two stages: (1) a biophysical approximation that integrates yearly supporting ecosystem services (i.e., quantification of carbon storage and sequestration) and (2) a weighing approach including factors that indirectly influence carbon storage and sequestration or that deserve specific attention (i.e., risk, conservation or management factors). The quantification of carbon storage and sequestration indicated that Spanish forests store on average 43 Mg C ha−1 and sequestrate on average 1.02 Mg C ha−1 year−1. Forest structure was a strong determinant of carbon storage and sequestration in Iberian forests, hence there was a strong spatial variation in the carbon sink. We adapted the weighting values to a financial cap and the monetary value of carbon increased more than four times when the weighting factors were taken into account. Finally, we argue that a multifactorial approach to value supporting ecosystem services incorporating aspects related to conservation and risk prevention can facilitate ecosystem service valuation and assist policy makers and stakeholders to establish payment service policies.
Collapse
|
42
|
Etzold S, Ziemińska K, Rohner B, Bottero A, Bose AK, Ruehr NK, Zingg A, Rigling A. One Century of Forest Monitoring Data in Switzerland Reveals Species- and Site-Specific Trends of Climate-Induced Tree Mortality. FRONTIERS IN PLANT SCIENCE 2019; 10:307. [PMID: 30967884 PMCID: PMC6438887 DOI: 10.3389/fpls.2019.00307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 05/18/2023]
Abstract
Climate-induced tree mortality became a global phenomenon during the last century and it is expected to increase in many regions in the future along with a further increase in the frequency of drought and heat events. However, tree mortality at the ecosystem level remains challenging to quantify since long-term, tree-individual, reliable observations are scarce. Here, we present a unique data set of monitoring records from 276 permanent plots located in 95 forest stands across Switzerland, which include five major European tree species (Norway spruce, Scots pine, silver fir, European beech, and sessile and common oak) and cover a time span of over one century (1898-2013), with inventory periods of 5-10 years. The long-term average annual mortality rate of the investigated forest stands was 1.5%. In general, species-specific annual mortality rates did not consistently increase over the last decades, except for Scots pine forests at lower altitudes, which exhibited a clear increase of mortality since the 1960s. Temporal trends of tree mortality varied also depending on diameter at breast height (DBH), with large trees generally experiencing an increase in mortality, while mortality of small trees tended to decrease. Normalized mortality rates were remarkably similar between species and a modest, but a consistent and steady increasing trend was apparent throughout the study period. Mixed effects models revealed that gradually changing stand parameters (stand basal area and stand age) had the strongest impact on mortality rates, modulated by climate, which had increasing importance during the last decades. Hereby, recent climatic changes had highly variable effects on tree mortality rates, depending on the species in combination with abiotic and biotic stand and site conditions. This suggests that forest species composition and species ranges may change under future climate conditions. Our data set highlights the complexity of forest dynamical processes such as long-term, gradual changes of forest structure, demography and species composition, which together with climate determine mortality rates.
Collapse
Affiliation(s)
- Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- *Correspondence: Sophia Etzold,
| | - Kasia Ziemińska
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Brigitte Rohner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alessandra Bottero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| | - Arun K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Nadine K. Ruehr
- Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Andreas Zingg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Matías L, Abdelaziz M, Godoy O, Gómez‐Aparicio L. Disentangling the climatic and biotic factors driving changes in the dynamics of
Quercus suber
populations across the species‘ latitudinal range. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Luis Matías
- Departamento de Biología Animal, Biología Vegetal y Ecología Universidad de Jaén Jaén Spain
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC) Sevilla Spain
| | | | - Oscar Godoy
- Departamento de Biología, Facultad de Cc. del Mar y Ambientales Universidad de Cádiz Puerto Real Spain
| | - Lorena Gómez‐Aparicio
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC) Sevilla Spain
| |
Collapse
|
44
|
Hülsmann L, Bugmann H, Cailleret M, Brang P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:522-540. [PMID: 29266516 DOI: 10.1002/eap.1668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Dynamic Vegetation Models (DVMs) are designed to be suitable for simulating forest succession and species range dynamics under current and future conditions based on mathematical representations of the three key processes regeneration, growth, and mortality. However, mortality formulations in DVMs are typically coarse and often lack an empirical basis, which increases the uncertainty of projections of future forest dynamics and hinders their use for developing adaptation strategies to climate change. Thus, sound tree mortality models are highly needed. We developed parsimonious, species-specific mortality models for 18 European tree species using >90,000 records from inventories in Swiss and German strict forest reserves along a considerable environmental gradient. We comprehensively evaluated model performance and incorporated the new mortality functions in the dynamic forest model ForClim. Tree mortality was successfully predicted by tree size and growth. Only a few species required additional covariates in their final model to consider aspects of stand structure or climate. The relationships between mortality and its predictors reflect the indirect influences of resource availability and tree vitality, which are further shaped by species-specific attributes such as maximum longevity and shade tolerance. Considering that the behavior of the models was biologically meaningful, and that their performance was reasonably high and not impacted by changes in the sampling design, we suggest that the mortality algorithms developed here are suitable for implementation and evaluation in DVMs. In the DVM ForClim, the new mortality functions resulted in simulations of stand basal area and species composition that were generally close to historical observations. However, ForClim performance was poorer than when using the original, coarse mortality formulation. The difficulties of simulating stand structure and species composition, which were most evident for Fagus sylvatica L. and in long-term simulations, resulted from feedbacks between simulated growth and mortality as well as from extrapolation to very small and very large trees. Growth and mortality processes and their species-specific differences should thus be revisited jointly, with a particular focus on small and very large trees in relation to their shade tolerance.
Collapse
Affiliation(s)
- Lisa Hülsmann
- Forest Resources and Management, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Harald Bugmann
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Maxime Cailleret
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
- Forest Dynamics, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Peter Brang
- Forest Resources and Management, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
45
|
Martínez-Sancho E, Dorado-Liñán I, Gutiérrez Merino E, Matiu M, Helle G, Heinrich I, Menzel A. Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits. GLOBAL CHANGE BIOLOGY 2018; 24:1012-1028. [PMID: 29030903 DOI: 10.1111/gcb.13937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/26/2017] [Indexed: 05/08/2023]
Abstract
In forests, the increase in atmospheric CO2 concentrations (Ca ) has been related to enhanced tree growth and intrinsic water-use efficiency (iWUE). However, in drought-prone areas such as the Mediterranean Basin, it is not yet clear to what extent this "fertilizing" effect may compensate for drought-induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960-2012 using annually resolved tree-ring width and δ13 C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci ), and consequently iWUE. Different trends in the theoretical gas-exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca , except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca . Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%-71.4%) than in oak stands (15.8%-46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the "fertilizing" effect of rising Ca , whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter-annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean.
Collapse
Affiliation(s)
- Elisabet Martínez-Sancho
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| | - Isabel Dorado-Liñán
- Departamento de Silvicultura y Gestión de los Sistemas Forestales, CIFOR-INIA, Madrid, Spain
| | - Emilia Gutiérrez Merino
- Departament of Biological Evolution, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Michael Matiu
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| | - Gerhard Helle
- Climate Dynamics and Landscape Evolution, GFZ - German Research Centre for Geosciences, Potsdam, Germany
| | - Ingo Heinrich
- Climate Dynamics and Landscape Evolution, GFZ - German Research Centre for Geosciences, Potsdam, Germany
| | - Annette Menzel
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
46
|
Marqués L, Madrigal-González J, Zavala MA, Camarero JJ, Hartig F. Last-century forest productivity in a managed dry-edge Scots pine population: the two sides of climate warming. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:95-105. [PMID: 28944610 DOI: 10.1002/eap.1631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Climate change in the Mediterranean, associated with warmer temperatures and more frequent droughts, is expected to impact forest productivity and the functioning of forests ecosystems as carbon reservoirs in the region. Climate warming can positively affect forest growth by extending the growing season, whereas increasing summer drought generally reduces forest productivity and may cause growth decline, trigger dieback, hamper regeneration, and increase mortality. Forest management could potentially counteract such negative effects by reducing stand density and thereby competition for water. The effectiveness of such interventions, however, has so far mostly been evaluated for short time periods at the tree and stand levels, which limits our confidence regarding the efficacy of thinning interventions over longer time scales under the complex interplay between climate, stand structure, and forest management. In this study, we use a century-long historical data set to assess the effects of climate and management on forest productivity. We consider rear-edge Scots pine (Pinus sylvestris) populations covering continental and Mediterranean conditions along an altitudinal gradient in Central Spain. We use linear mixed-effects models to disentangle the effects of altitude, climate, and stand volume on forest growth and ingrowth (recruitment and young trees' growth). We find that warming tends to benefit these tree populations, warmer winter temperature has a significant positive effect on both forest growth and ingrowth, and the effect is more pronounced at low elevations. However, drought conditions severely reduce growth and ingrowth, in particular when competition (stand volume) is high. We conclude that summer droughts are the main threat to Scots pine populations in the region, and that a reduction of stand volume can partially mitigate the negative impacts of more arid conditions. Mitigation and adaptation measures could therefore manage stand structure to adopt for the anticipated impacts of climate change in Mediterranean forest ecosystems.
Collapse
Affiliation(s)
- Laura Marqués
- Forest Ecology and Restoration Group, Department of Life Sciences, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, 28871, Spain
| | - Jaime Madrigal-González
- Forest Ecology and Restoration Group, Department of Life Sciences, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, 28871, Spain
| | - Miguel A Zavala
- Forest Ecology and Restoration Group, Department of Life Sciences, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, 28871, Spain
| | - Jesús Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana, 1005, Zaragoza, 50192, Spain
| | - Florian Hartig
- Biometry and Environmental System Analysis, University of Freiburg, Tennenbacherstrasse 4, Freiburg, 79106, Germany
- Theoretical Ecology, Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstraße 3, Regensburg, 93053, Germany
| |
Collapse
|
47
|
Csilléry K, Kunstler G, Courbaud B, Allard D, Lassègues P, Haslinger K, Gardiner B. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains. GLOBAL CHANGE BIOLOGY 2017; 23:5092-5107. [PMID: 28580624 DOI: 10.1111/gcb.13773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Damage due to wind-storms and droughts is increasing in many temperate forests, yet little is known about the long-term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind-storms on adult tree mortality across a 31-year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind-storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave-one-out cross-validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind-storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms-1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind-loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind-storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these ecological interactions could also change.
Collapse
Affiliation(s)
- Katalin Csilléry
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, Zürich, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Bir mensdorf, Switzerland
| | - Georges Kunstler
- Ecosystèmes Montagnards (UR EMGR), Irstea, Université Grenoble Alpes, St-Martin-d'Hères, France
| | - Benoît Courbaud
- Ecosystèmes Montagnards (UR EMGR), Irstea, Université Grenoble Alpes, St-Martin-d'Hères, France
| | - Denis Allard
- Biostatistics and Spatial Processes (BioSP), INRA, Avignon, France
| | - Pierre Lassègues
- Développements et Etudes Climatologiques, Direction de la Climatologie et des Services Cli matiques (DCSC/DEC), Météo-France, Toulouse, France
| | - Klaus Haslinger
- Department of Climate Research, Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria
| | - Barry Gardiner
- UMR 1391 ISPA, INRA, Bordeaux Sciences Agro, Villenave d'Ornon, France
- EFI Atlantic, Cestas, France
| |
Collapse
|
48
|
Ruiz-Benito P, Ratcliffe S, Zavala MA, Martínez-Vilalta J, Vilà-Cabrera A, Lloret F, Madrigal-González J, Wirth C, Greenwood S, Kändler G, Lehtonen A, Kattge J, Dahlgren J, Jump AS. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. GLOBAL CHANGE BIOLOGY 2017; 23:4162-4176. [PMID: 28418105 DOI: 10.1111/gcb.13728] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/06/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Intense droughts combined with increased temperatures are one of the major threats to forest persistence in the 21st century. Despite the direct impact of climate change on forest growth and shifts in species abundance, the effect of altered demography on changes in the composition of functional traits is not well known. We sought to (1) quantify the recent changes in functional composition of European forests; (2) identify the relative importance of climate change, mean climate and forest development for changes in functional composition; and (3) analyse the roles of tree mortality and growth underlying any functional changes in different forest types. We quantified changes in functional composition from the 1980s to the 2000s across Europe by two dimensions of functional trait variation: the first dimension was mainly related to changes in leaf mass per area and wood density (partially related to the trait differences between angiosperms and gymnosperms), and the second dimension was related to changes in maximum tree height. Our results indicate that climate change and mean climatic effects strongly interacted with forest development and it was not possible to completely disentangle their effects. Where recent climate change was not too extreme, the patterns of functional change generally followed the expected patterns under secondary succession (e.g. towards late-successional short-statured hardwoods in Mediterranean forests and taller gymnosperms in boreal forests) and latitudinal gradients (e.g. larger proportion of gymnosperm-like strategies at low water availability in forests formerly dominated by broad-leaved deciduous species). Recent climate change generally favoured the dominance of angiosperm-like related traits under increased temperature and intense droughts. Our results show functional composition changes over relatively short time scales in European forests. These changes are largely determined by tree mortality, which should be further investigated and modelled to adequately predict the impacts of climate change on forest function.
Collapse
Affiliation(s)
- Paloma Ruiz-Benito
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Sophia Ratcliffe
- Department of Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Miguel A Zavala
- Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Jordi Martínez-Vilalta
- CREAF, Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
- Universidad Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | - Albert Vilà-Cabrera
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Francisco Lloret
- CREAF, Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
- Universidad Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | - Jaime Madrigal-González
- Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Christian Wirth
- Department of Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, UK
| | - Sarah Greenwood
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Gerald Kändler
- Forest Research Institute Baden-Wurttemberg, Freiburg, Germany
| | | | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, UK
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jonas Dahlgren
- Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alistair S Jump
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- CREAF, Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
| |
Collapse
|
49
|
Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez-Vilalta J, Lloret F. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. GLOBAL CHANGE BIOLOGY 2017; 23:3742-3757. [PMID: 28135022 DOI: 10.1111/gcb.13636] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 05/25/2023]
Abstract
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.
Collapse
Affiliation(s)
- Alistair S Jump
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Paloma Ruiz-Benito
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
- Forest Ecology and Restoration Group, Department of Life Sciences, Science Building, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Sarah Greenwood
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
| | - Craig D Allen
- U.S. Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, Los Alamos, NM, 87544, USA
| | - Thomas Kitzberger
- Laboratorio Ecotono, INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, 8400, Río Negro, Argentina
| | - Rod Fensham
- Queensland Herbarium, Environmental Protection Agency, Mt Coot-tha Road, Toowong, Qld, 4066, Australia
- School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Jordi Martínez-Vilalta
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
- Autonomous University of Barcelona, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Francisco Lloret
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
- Autonomous University of Barcelona, Cerdanyola del Vallès 08193, Catalonia, Spain
| |
Collapse
|
50
|
Bussotti F, Pollastrini M. Observing Climate Change Impacts on European Forests: What Works and What Does Not in Ongoing Long-Term Monitoring Networks. FRONTIERS IN PLANT SCIENCE 2017; 8:629. [PMID: 28487718 PMCID: PMC5404609 DOI: 10.3389/fpls.2017.00629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
|