1
|
Laxton CS, Toekiran FL, Lin TY, Lomeda BD, Hislop MS, Keller L, Allicock OM, Wyllie AL. An abundance of aliC and aliD genes were identified in saliva using a novel multiplex qPCR to characterize group II non-encapsulated pneumococci with improved specificity. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40279151 DOI: 10.1099/mic.0.001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pneumococcal surveillance studies are reporting increasing prevalence of non-encapsulated pneumococci (NESp). NESp are an important reservoir for genetic exchange among streptococci, including for antimicrobial resistance, and are increasingly implicated in disease. Disease-associated NESp commonly carries the virulence genes pspK, or aliC and aliD in their cps locus instead of capsule genes. While molecular methods targeting the cps region are widely used for serotyping encapsulated strains, there are few assays available for the classification of NESp, meaning it is not widely undertaken. Therefore, we exploited these genes as targets for a novel qPCR assay for detecting and classifying NESp strains with improved efficiency and specificity. We conducted bioinformatic analysis on sequences from 402 NESp and 45 other mitis-group streptococci and developed a multiplex-qPCR, targeting pspK, aliD and two regions of aliC. The assay was validated using 16 previously identified NESp isolates. We then applied the assay to DNA extracted from culture-enriched saliva and isolated and characterized suspected NESp colonies, with confirmation by whole genome sequencing. Bioinformatic analyses demonstrated that previously published primers for aliC and aliD had low pneumococcal specificity but indicated that targeting two regions of aliC would improve species specificity, without compromising sensitivity. Our novel multiplex assay accurately typed all isolates. When screening saliva, we found a high prevalence of aliC and aliD, even in samples negative for pneumococcal genes lytA and piaB. Isolated colonies which were aliC and aliD positive could be differentiated as non-pneumococcal streptococci using our assay. Our multiplex-qPCR assay can be used to efficiently screen even highly polymicrobial samples, such as saliva, for NESp genes, to detect and differentiate potentially pathogenic NESp clades from closely related mitis-group streptococci. This will allow for a better understanding of the true prevalence of NESp and its impact on pneumococcal carriage and disease.
Collapse
Affiliation(s)
- Claire S Laxton
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Femke L Toekiran
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Tzu-Yi Lin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Beta D Lomeda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Maikel S Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Lance Keller
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
2
|
Waghela P, Davis R, Campbell M, Datta R, Hislop MS, Vega NJ, Wurst L, Yolda-Carr D, Couch L, Hernandez M, Grant LR, Alexander-Parrish R, Arguedas A, Gessner BD, Martinello RA, Weinberger DM, Wyllie AL. Detection of Pneumococcal Carriage in Asymptomatic Healthcare Workers. Open Forum Infect Dis 2025; 12:ofaf008. [PMID: 39917332 PMCID: PMC11800483 DOI: 10.1093/ofid/ofaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/05/2025] [Indexed: 02/09/2025] Open
Abstract
Background Healthcare workers are at increased risk of exposure to respiratory pathogens including Streptococcus pneumoniae (pneumococcus). While little asymptomatic carriage has been reported in young-to-middle-aged adults, this may be due to nonsensitive diagnostic methods. The aim of the current study was to investigate the rates of pneumococcal carriage in a large cohort of healthcare workers, using saliva as a respiratory specimen. Methods We evaluated pneumococcal carriage in convenience samples of saliva, self-collected from asymptomatic healthcare workers (Connecticut, USA) who were testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from 30 March to 11 June 2020. DNA extracted from the culture-enriched saliva was later tested using quantitative polymerase chain reaction for piaB, lytA, and serotype. Saliva samples were considered positive for pneumococcus when the piaB cycle threshold value was <40. Results Study participants were 22-74 years old (mean age, 38.5 years), 75% female, 75% white, and with occupations including registered nurses (48%), medical doctors (23%), and patient care assistants (5%). Overall, 138 of 1241 samples (11%) from 86 of 392 individuals (21%) tested piaB positive at some point during the 4-month study period, with 28 (33%) colonized individuals positive at multiple time points. Carriers reflected the overall study population. No significant demographic characteristics were associated with detection of pneumococcus. Colonized individuals primarily carried serotypes 19F (25.6%) and 3 (12.8%). Conclusions During a period of mandatory masking, we identified a cumulative pneumococcal carriage prevalence of 21% among healthcare workers. This study highlights that healthcare workers may act as unrecognized reservoirs of pneumococcus in the population. Despite long-standing pediatric immunization programs, vaccine-targeted serotypes continue to be prevalent among the adult population.
Collapse
Affiliation(s)
- Pari Waghela
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Raechel Davis
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Melissa Campbell
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Rupak Datta
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maikel S Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Noel J Vega
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Loren Wurst
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Luke Couch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Michael Hernandez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Lindsay R Grant
- Global Respiratory Vaccines, Pfizer, Inc., Collegeville, Pennsylvania, USA
| | | | - Adriano Arguedas
- Global Respiratory Vaccines, Pfizer, Inc., Collegeville, Pennsylvania, USA
| | - Bradford D Gessner
- Global Respiratory Vaccines, Pfizer, Inc., Collegeville, Pennsylvania, USA
| | - Richard A Martinello
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Kalinich CC, Gonzalez FL, Osmaston A, Breban MI, Distefano I, Leon C, Sheen P, Zimic M, Coronel J, Tan G, Crudu V, Ciobanu N, Codreanu A, Solano W, Ráez J, Allicock OM, Chaguza C, Wyllie AL, Brandt M, Weinberger DM, Sobkowiak B, Cohen T, Grandjean L, Grubaugh ND, Redmond SN. Tiled Amplicon Sequencing Enables Culture-free Whole-Genome Sequencing of Pathogenic Bacteria From Clinical Specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629550. [PMID: 39763738 PMCID: PMC11702625 DOI: 10.1101/2024.12.19.629550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing. The speed, reliability, and cost-effectiveness of this method led to its implementation in academic and public health laboratories across the world and adaptation to a broad range of viral pathogens. However, similar methods are not available for larger bacterial genomes, for which whole-genome sequencing typically requires in vitro culture. This increases costs, error rates and turnaround times. The need to culture poses particular problems for medically important bacteria such as Mycobacterium tuberculosis, which are slow to grow and challenging to culture. As a proof of concept, we developed two novel whole-genome amplicon panels for M. tuberculosis and Streptococcus pneumoniae. Applying our amplicon panels to clinical samples, we show the ability to classify pathogen subgroups and to reliably identify markers of drug resistance without culturing. Development of this work in clinical settings has the potential to dramatically reduce the time of diagnosis of drug resistance for multiple drugs in parallel, enabling earlier intervention for high priority pathogens.
Collapse
Affiliation(s)
- Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Freddy L Gonzalez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Alice Osmaston
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isabel Distefano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Candy Leon
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Mirko Zimic
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Grace Tan
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
| | | | | | | | | | - Jimena Ráez
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Benjamin Sobkowiak
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Louis Grandjean
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Seth N Redmond
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Ho EC, Olson KE, Butler M, Birkholz M, Miller K, MacBrayne CE, Jung S, Messacar K, Asturias EJ, Dominguez SR. Clinical Impact of Pleural Fluid Streptococcus pneumoniae Polymerase Chain Reaction Testing in Children With Complicated Pneumonia. Clin Infect Dis 2024; 79:1487-1494. [PMID: 39207213 DOI: 10.1093/cid/ciae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND While Streptococcus pneumoniae (Spn) is the leading cause of pediatric complicated community-acquired pneumonia (cCAP), it is infrequently recovered by culture-based methods. We studied the real-world clinical impact of an Spn polymerase chain reaction (PCR) assay for pleural fluid. METHODS This pre-post quasi-experimental cohort study compared pathogen detection, antibiotic usage, and outcomes in children hospitalized with cCAP requiring pleural effusion or empyema drainage at Children's Hospital Colorado between 2016 and 2023. Patients were compared across 2 diagnostic periods: pre-Spn PCR and post-Spn PCR. Cox proportional hazard models compared time from admission to pathogen detection, optimal therapy (narrowest pathogen-directed or guideline-recommended empiric therapy), and methicillin-resistant Staphylococcus aureus (MRSA) therapy discontinuation between periods. RESULTS Compared to the pre-Spn PCR cohort (n = 149), the post-Spn PCR cohort (n = 79) was more likely to have a pathogen detected (73.4% post-PCR vs 38.9% pre-PCR, P < .001), driven by more Spn detections (45.6% vs 14.1%, P < .001). Time to pathogen detection during hospitalization was shorter in the post-Spn PCR period (P < .001). The post-PCR cohort was more likely to receive optimal therapy (84.8% vs 53.0%, P < .001), with shorter median times to optimal antibiotics (4.9 vs 10.0 days, P < .001) and MRSA therapy discontinuation (1.5 vs 2.5 days, P = .03). There were no differences in hospital length of stay or readmissions. CONCLUSIONS Spn molecular testing of pleural fluid in children with cCAP resulted in significantly more microbiologic diagnoses and was associated with the optimization of antibiotics and decreased exposure to MRSA therapy, suggesting its clinical impact for pediatric complicated pneumonia.
Collapse
Affiliation(s)
- Erin C Ho
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases and Epidemiology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kaitlin E Olson
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Molly Butler
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Meghan Birkholz
- Section of Infectious Diseases and Epidemiology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kristen Miller
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Sarah Jung
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kevin Messacar
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases and Epidemiology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Edwin J Asturias
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases and Epidemiology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Samuel R Dominguez
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases and Epidemiology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
5
|
Nicholson LK, Kofonow JM, Robertson CE, Wright T, Li Q, Gardner EM, Frank DN, Janoff EN. Clinical and Microbial Determinants of Upper Respiratory Colonization With Streptococcus pneumoniae and Native Microbiota in People With Human Immunodeficiency Virus Type 1 and Control Adults. J Infect Dis 2024; 230:1456-1465. [PMID: 38718217 PMCID: PMC11646594 DOI: 10.1093/infdis/jiae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/06/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND The substantial risk for respiratory and invasive infections with Streptococcus pneumoniae (Spn) among people with HIV-1 (PWH) begins with asymptomatic colonization. The frequency of Spn colonization among US adults with and without HIV-1 infection is not well characterized in the conjugate vaccine era. METHODS We determined Spn colonization frequency by culture and specific lytA gene quantitative polymerase chain reaction (PCR) and microbiota profile by 16S ribosomal RNA gene sequencing in nasopharyngeal (NP) and oropharyngeal (OP) DNA from 138 PWH and 93 control adults and associated clinical characteristics. RESULTS The frequencies of Spn colonization among PWH and controls did not differ (11.6% vs 8.6%, respectively; P = .46) using combined results of culture and PCR, independent of vaccination or behavioral risks. PWH showed altered microbiota composition (ie, β-diversity; NP: P = .0028, OP: P = .0098), decreased α-diversity (NP: P = .024, OP: P = .0045), and differences in the relative abundance of multiple bacterial taxa. Spn colonization was associated with altered β-diversity in the nasopharynx (P = .011) but not oropharynx (P = .21). CONCLUSIONS Despite widespread conjugate vaccine and antiretroviral use, frequencies of Spn colonization among PWH and controls are currently consistent with those reported in the preconjugate era. The persistently increased risk of pneumococcal disease despite antiretroviral therapy may relate to behavioral and immunologic variables other than colonization.
Collapse
Affiliation(s)
- Lindsay K Nicholson
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Eastern Colorado Healthcare System, Department of Medicine, Aurora, Colorado
| | - Jennifer M Kofonow
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
| | - Charles E Robertson
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
| | - Timothy Wright
- Denver Health and Hospital Authority, Infectious Disease Department, Denver, Colorado
| | - Qing Li
- San Diego State University, School of Public Health, Center of Behavioral Epidemiology and Community Health, San Diego, California
| | - Edward M Gardner
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
- Denver Health and Hospital Authority, Infectious Disease Department, Denver, Colorado
| | - Daniel N Frank
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), Aurora, Colorado
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Eastern Colorado Healthcare System, Department of Medicine, Aurora, Colorado
| |
Collapse
|
6
|
Lansbury L, McKeever TM, Lawrence H, Pick H, Baskaran V, Edwards-Pritchard RC, Ashton D, Rodrigo C, Daniel P, Litt D, Eletu S, Parmar H, Sheppard CL, Ladhani S, Trotter C, Lim WS. Carriage of Streptococcus pneumoniae in adults hospitalised with community-acquired pneumonia. J Infect 2024; 89:106277. [PMID: 39306250 DOI: 10.1016/j.jinf.2024.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES We aimed to determine the prevalence of and risk factors for nasopharyngeal and oral pneumococcal carriage in adults with community-acquired pneumonia (CAP), and the relationship between carried and disease-causing serotypes. METHODS Between 2016 and 2018, nasopharyngeal swabs, oral-fluid, and urine were collected from hospitalised adults recruited into a prospective cohort study of CAP. Pneumococcal carriage was detected by semi-quantitative real-time PCR of direct and culture-enriched nasopharyngeal swabs and culture-enriched oral-fluid. LytA and piaB positive/indeterminate samples underwent semi-quantitative serotype/serogroup-specific real-time-PCR. Serotypes in urine were identified using a 24-valent serotype-specific urinary-antigen assay. RESULTS We included 465 CAP patients. Nasopharyngeal carriage was detected in 34/103 (33.0%) swabbed pneumococcal pneumonia patients and oral carriage in 18/155 (12%) of sampled pneumococcal pneumonia patients. Concordance between nasopharyngeal/urine serotypes and oral/urine serotypes was 70.6% and 50% respectively. Serotypes 3 (26%, 22.2%), 8 (19.7%, 19.4%), non-typeable (11.6%, 13.9%) and 19A/F (7.5%, 8.3%) were most prevalent in urine and nasopharyngeal swabs respectively, with non-typeable (35%) and 15A/F (17%) most prevalent in oral-fluid. Pneumococcal carriage was significantly associated with pneumococcal pneumonia (nasopharyngeal adjusted odds ratio [aOR] 8.1, 95% confidence interval [CI] 3.8-17.2; oral aOR 5.5, 95% CI 2.1-13.3). All-cause CAP patients ≥65 years had lower odds of nasopharyngeal carriage (aOR 0.47, 95% CI 0.24-0.91) and current smokers had higher odds of oral carriage (aOR 2.69, 95% CI 1.10-6.60). CONCLUSIONS The association between nasopharyngeal carriage and pneumococcal CAP was strong. Adult carriage and disease from serotypes 8 and 19A may support direct protection of adults with PCV vaccines.
Collapse
Affiliation(s)
- Louise Lansbury
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK.
| | - Tricia M McKeever
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Hannah Lawrence
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Harry Pick
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Vadsala Baskaran
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Rochelle C Edwards-Pritchard
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Deborah Ashton
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Chamira Rodrigo
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Priya Daniel
- Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK; Immunisation and Vaccine Preventable Diseases, UK Health Security Agency, Colindale, UK
| | - Seyi Eletu
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Hanshi Parmar
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Carmen L Sheppard
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Shamez Ladhani
- Immunisation and Vaccine Preventable Diseases, UK Health Security Agency, Colindale, UK
| | - Caroline Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Wei Shen Lim
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK; Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
7
|
Peno C, Lin TY, Hislop MS, Yolda-Carr D, Farjado K, York A, Pitzer VE, Weinberger DM, Bei AK, Allicock OM, Wyllie AL. A low-cost culture- and DNA extraction-free method for the molecular detection of pneumococcal carriage in saliva. Microbiol Spectr 2024; 12:e0059124. [PMID: 39028185 PMCID: PMC11370248 DOI: 10.1128/spectrum.00591-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/05/2024] [Indexed: 07/20/2024] Open
Abstract
Molecular methods have improved the sensitivity of the detection of pneumococcal carriage in saliva. However, they typically require sample culture enrichment and nucleic acid extraction prior to performing the detection assay and may limit scalability for extensive surveillance of pneumococcus, particularly in low-resource settings. We evaluated the performance of a DNA-extraction-free method for the detection of pneumococcus in saliva. We developed a streamlined qPCR-based protocol for the detection of pneumococcus, omitting culture enrichment and DNA extraction. Using saliva samples collected from children attending childcare centers (New Haven, CT, USA), we evaluated the detection of pneumococcus using saliva lysates as compared to purified DNA extracted from culture-enriched aliquots of the paired samples using qPCR targeting the pneumococcal piaB gene. Of the 759 saliva samples tested from 92 children [median age 3.65 years; IQR (2.46-4.78)], pneumococcus was detected in 358 (47.2%) saliva lysates prepared using the extraction-free protocol and in 369 (48.6%) DNA extracted from culture-enriched samples. We observed near-perfect agreement between the two protocols (Cohen's kappa: 0.92; 95% CI: 0.90-0.95). Despite a high correlation between CT values generated by the two methods (r = 0.93, P < 0.0001), the CT values generated from saliva lysates were higher (lower concentration) than those from culture-enriched samples (ΔCT = 6.69, P < 0.00001). The cost of detecting pneumococcus using saliva lysates was at least fivefold lower (US$2.53) compared to the cost of the culture-enriched method (range: US$13.60-US$19.46). For pneumococcal carriage surveillance in children, our findings suggest that a DNA extraction-free approach may offer a cost-effective alternative to the resource-intensive culture-enrichment method.IMPORTANCESurveillance for carriage of pneumococcus is a key component of evaluating the performance of pneumococcal vaccines and informing new vaccination strategies. To improve the scalability of pneumococcal carriage surveillance, we show that molecular detection of pneumococcus in saliva from children can be performed without culture enrichment and DNA extraction. Our findings show that using the extraction-free method can improve surveillance efforts for pneumococcal carriage in children, overcoming the resource-intensive hurdle that comes with the use of molecular methods, particularly in low-resource settings.
Collapse
Affiliation(s)
- Chikondi Peno
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Tzu-Yi Lin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Maikel S. Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Katherine Farjado
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anna York
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Virginia E. Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Amy K. Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M. Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Odendaal ML, de Steenhuijsen Piters WAA, Franz E, Chu MLJN, Groot JA, van Logchem EM, Hasrat R, Kuiling S, Pijnacker R, Mariman R, Trzciński K, van der Klis FRM, Sanders EAM, Smit LAM, Bogaert D, Bosch T. Host and environmental factors shape upper airway microbiota and respiratory health across the human lifespan. Cell 2024; 187:4571-4585.e15. [PMID: 39094567 DOI: 10.1016/j.cell.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - James A Groot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elske M van Logchem
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Raiza Hasrat
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Krzysztof Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Debby Bogaert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
9
|
Miellet WR, Mariman R, van Veldhuizen J, Badoux P, Wijmenga-Monsuur AJ, Litt D, Bosch T, Miller E, Fry NK, van Houten MA, Rots NY, Sanders EAM, Trzciński K. Impact of age on pneumococcal colonization of the nasopharynx and oral cavity: an ecological perspective. ISME COMMUNICATIONS 2024; 4:ycae002. [PMID: 38390521 PMCID: PMC10881297 DOI: 10.1093/ismeco/ycae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Pneumococcal carriage studies have suggested that pneumococcal colonization in adults is largely limited to the oral cavity and oropharynx. In this study, we used total abundance-based β-diversity (dissimilarity) and β-diversity components to characterize age-related differences in pneumococcal serotype composition of respiratory samples. quantitative PCR (qPCR) was applied to detect pneumococcal serotypes in nasopharyngeal samples collected from 946 toddlers and 602 adults, saliva samples collected from a subset of 653 toddlers, and saliva and oropharyngeal samples collected from a subset of 318 adults. Bacterial culture rates from nasopharyngeal samples were used to characterize age-related differences in rates of colonizing bacteria. Dissimilarity in pneumococcal serotype composition was low among saliva and nasopharyngeal samples from children. In contrast, respiratory samples from adults exhibited high serotype dissimilarity, which predominantly consisted of abundance gradients and was associated with reduced nasopharyngeal colonization. Age-related serotype dissimilarity was high among nasopharyngeal samples and relatively low for saliva samples. Reduced nasopharyngeal colonization by pneumococcal serotypes coincided with significantly reduced Moraxella catarrhalis and Haemophilus influenzae and increased Staphylococcus aureus nasopharyngeal colonization rates among adults. Findings from this study suggest that within-host environmental conditions, utilized in the upper airways by pneumococcus and other bacteria, undergo age-related changes. It may result in a host-driven ecological succession of bacterial species colonizing the nasopharynx and lead to competitive exclusion of pneumococcus from the nasopharynx but not from the oral habitat. This explains the poor performance of nasopharyngeal samples for pneumococcal carriage among adults and indicates that in adults saliva more accurately represents the epidemiology of pneumococcal carriage than nasopharyngeal samples.
Collapse
Affiliation(s)
- Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Paul Badoux
- Regional Laboratory of Public Health (Streeklab) Haarlem, Haarlem, 2035 RC, The Netherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU) and Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Thijs Bosch
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Elizabeth Miller
- School of Hygiene and Tropical Medicine, Department of Infectious Disease Epidemiology, London, WC1E 7HT, United Kingdom
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU) and Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | | | - Nynke Y Rots
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
10
|
Butler M, Breazeale G, Mwangi E, Dowell E, Dominguez SR, Lamberth L, Hultén KG, Jung SA. Development and validation of a multiplex real-time PCR assay for detection and quantification of Streptococcus pneumoniae in pediatric respiratory samples. Microbiol Spectr 2023; 11:e0211823. [PMID: 37937989 PMCID: PMC10715132 DOI: 10.1128/spectrum.02118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (Spn) is the world's leading cause of lower respiratory tract infection morbidity and mortality in children. However, current clinical microbiological methods have disadvantages. Spn can be difficult to grow in laboratory conditions if a patient is pre-treated, and Spn antigen testing has unclear clinical utility in children. Syndromic panel testing is less cost-effective than targeted PCR if clinical suspicion is high for a single pathogen. Also, such testing entails a full, expensive validation for each panel target if used for multiple respiratory sources. Therefore, better diagnostic modalities are needed. Our study validates a multiplex PCR assay with three genomic targets for semi-quantitative and quantitative Spn molecular detection from lower respiratory sources for clinical testing and from upper respiratory sources for research investigation.
Collapse
Affiliation(s)
- Molly Butler
- Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Garrett Breazeale
- Children’s Hospital Colorado, Aurora, Colorado, USA
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric Mwangi
- Children’s Hospital Colorado, Aurora, Colorado, USA
| | | | - Samuel R. Dominguez
- Children’s Hospital Colorado, Aurora, Colorado, USA
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Kristina G. Hultén
- Texas Children’s Hospital, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
11
|
Wyllie AL, Rots NY, Wijmenga-Monsuur AJ, van Houten MA, Sanders EAM, Trzciński K. Saliva as an alternative sample type for detection of pneumococcal carriage in young children. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001394. [PMID: 37819029 PMCID: PMC10634364 DOI: 10.1099/mic.0.001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
For children, the gold standard for the detection of pneumococcal carriage is conventional culture of a nasopharyngeal swab. Saliva, however, has a history as one of the most sensitive methods for surveillance of pneumococcal colonization and has recently been shown to improve carriage detection in older age groups. Here, we compared the sensitivity of paired nasopharyngeal and saliva samples from PCV7-vaccinated 24-month-old children for pneumococcal carriage detection using conventional and molecular detection methods. Nasopharyngeal and saliva samples were collected from 288 24-month-old children during the autumn/winter, 2012/2013. All samples were first processed by conventional diagnostic culture. Next, DNA extracted from all plate growth was tested by qPCR for the presence of the pneumococcal genes piaB and lytA and a subset of serotypes. By culture, 161/288 (60 %) nasopharyngeal swabs tested positive for pneumococcus, but detection was not possible from saliva due to abundant polymicrobial growth on culture plates. By qPCR, 155/288 (54 %) culture-enriched saliva samples and 187/288 (65 %) nasopharyngeal swabs tested positive. Altogether, 219/288 (76 %) infants tested positive for pneumococcus, with qPCR-based carriage detection of culture-enriched nasopharyngeal swabs detecting significantly more carriers compared to either conventional culture (P<0.001) or qPCR detection of saliva (P=0.002). However, 32/219 (15 %) carriers were only positive in saliva, contributing significantly to the overall number of carriers detected (P=0.002). While testing nasopharyngeal swabs by qPCR proved most sensitive for pneumococcal detection in infants, saliva sampling could be considered as complementary to provide additional information on carriage and serotypes that may not be detected in the nasopharynx and may be particularly useful in longitudinal studies, requiring repeated sampling of study participants.
Collapse
Affiliation(s)
- Anne L. Wyllie
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Elisabeth A. M. Sanders
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Krzysztof Trzciński
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Paulo AC, Lança J, Almeida ST, Hilty M, Sá-Leão R. The upper respiratory tract microbiota of healthy adults is affected by Streptococcus pneumoniae carriage, smoking habits, and contact with children. MICROBIOME 2023; 11:199. [PMID: 37658443 PMCID: PMC10474643 DOI: 10.1186/s40168-023-01640-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The microbiota of the upper respiratory tract is increasingly recognized as a gatekeeper of respiratory health. Despite this, the microbiota of healthy adults remains understudied. To address this gap, we investigated the composition of the nasopharyngeal and oropharyngeal microbiota of healthy adults, focusing on the effect of Streptococcus pneumoniae carriage, smoking habits, and contact with children. RESULTS Differential abundance analysis indicated that the microbiota of the oropharynx was significantly different from that of the nasopharynx (P < 0.001) and highly discriminated by a balance between the classes Negativicutes and Bacilli (AUC of 0.979). Moreover, the oropharynx was associated with a more homogeneous microbiota across individuals, with just two vs. five clusters identified in the nasopharynx. We observed a shift in the nasopharyngeal microbiota of carriers vs. noncarriers with an increased relative abundance of Streptococcus, which summed up to 30% vs. 10% in noncarriers and was not mirrored in the oropharynx. The oropharyngeal microbiota of smokers had a lower diversity than the microbiota of nonsmokers, while no differences were observed in the nasopharyngeal microbiota. In particular, the microbiota of smokers, compared with nonsmokers, was enriched (on average 16-fold) in potential pathogenic taxa involved in periodontal diseases of the genera Bacillus and Burkholderia previously identified in metagenomic studies of cigarettes. The microbiota of adults with contact with children resembled the microbiota of children. Specifically, the nasopharyngeal microbiota of these adults had, on average, an eightfold increase in relative abundance in Streptococcus sp., Moraxella catarrhalis, and Haemophilus influenzae, pathobionts known to colonize the children's upper respiratory tract, and a fourfold decrease in Staphylococcus aureus and Staphylococcus lugdunensis. CONCLUSIONS Our study showed that, in adults, the presence of S. pneumoniae in the nasopharynx is associated with a shift in the microbiota and dominance of the Streptococcus genus. Furthermore, we observed that smoking habits are associated with an increase in bacterial genera commonly linked to periodontal diseases. Interestingly, our research also revealed that adults who have regular contact with children have a microbiota enriched in pathobionts frequently carried by children. These findings collectively contribute to a deeper understanding of how various factors influence the upper respiratory tract microbiota in adults. Video Abstract.
Collapse
Affiliation(s)
- A Cristina Paulo
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - João Lança
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sónia T Almeida
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Markus Hilty
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
13
|
Tinggaard M, Slotved HC, Petersen RF, Hovmand N, Benfield T. Decreased Pneumococcal Carriage Among Older Adults in Denmark During the COVID-19 Lockdown. Open Forum Infect Dis 2023; 10:ofad365. [PMID: 37559754 PMCID: PMC10407463 DOI: 10.1093/ofid/ofad365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
Background COVID-19 containment measures reduced the burden of invasive pneumococcal disease. Data on pneumococcal carriage rates among adults during the pandemic are scarce. Methods Naso- and oropharyngeal swabs and questionnaires were collected during January 2019 to December 2021 from adults ≥64 years of age. Carriage was determined by lytA/piaB PCR. Results A total of 1556 participants provided paired naso- and oropharyngeal swabs. Their median age was 74 years (IQR, 70-79). Streptococcus pneumoniae DNA was detected in 146 (9.4%) oropharyngeal swabs and 34 (2.2%) nasopharyngeal. The carriage rate decreased from 12.9% (95% CI, 10.1%-16.1%, n = 66/511) prelockdown (January 2019-February 2020) to 4.2% (95% CI, 2.0%-7.5%, n = 10/240) during lockdown (March 2020-February 2021) and increased to 12.1% (95% CI, 9.8%-14.7%, n = 87/719) with the reopening of society (March 2021-December 2021; P = .0009). Conclusions Pneumococcal carriage prevalence declined significantly during pandemic mitigation measures and rebounded to prepandemic levels as measures were lifted.
Collapse
Affiliation(s)
- Michaela Tinggaard
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Randi Føns Petersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Nichlas Hovmand
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Tinggaard M, Slotved HC, Jørgensen CS, Kronborg G, Benfield T. Predictors of serological non-response to the 13-valent pneumococcal conjugate vaccine followed by the 23-valent polysaccharide vaccine among adults living with HIV. Vaccine 2023; 41:4414-4421. [PMID: 37316406 DOI: 10.1016/j.vaccine.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND People living with HIV (PLWH) have higher incidence of pneumococcal disease compared to people without HIV. Immunization with pneumococcal vaccines is recommended, but serological non-response to pneumococcal vaccination is common for largely unknown reasons. METHODS PLWH on antiretroviral treatment and no prior pneumococcal vaccination received the 13-valent pneumococcal conjugate vaccine (PCV13) followed 60 days later by the 23-valent polysaccharide vaccine (PPV23). Serological response was evaluated 30 days post-PPV23 by antibodies against 12 serotypes covered by both PCV13 and PPV23. Seroprotection was defined as a ≥2-fold rise to a level above 1.3 µg/ml in geometric mean concentration (GMC) across all serotypes. Associations with non-responsiveness were evaluated by logistic regression. RESULTS Fifty-two virologically suppressed PLWH (median age of 50 years (IQR 44-55) and median CD4 count of 634 cells/mm3 (IQR 507-792)) were included. Forty-six percent (95 % CI 32-61, n = 24) achieved seroprotection. Serotypes 14, 18C and 19F had the highest, and serotypes 3, 4 and 6B the lowest GMCs. Pre-vaccination GMC levels less than 100 ng/ml were associated with increased odds of non-responsiveness compared to levels above 100 ng/ml (adjusted OR 8.7, 95 % CI 1.2-63.6, p = 0.0438). CONCLUSION Less than half of our study population achieved anti-pneumococcal seroprotective levels following PCV13 and PPV23 immunization. Low pre-vaccination GMC levels were associated with non-response. Further research is required to optimize vaccination strategies that achieve higher seroprotection in this high-risk group.
Collapse
Affiliation(s)
- Michaela Tinggaard
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Gitte Kronborg
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Hislop MS, Allicock OM, Thammavongsa DA, Mbodj S, Nelson A, Shaw AC, Weinberger DM, Wyllie AL. High Levels of Detection of Nonpneumococcal Species of Streptococcus in Saliva from Adults in the United States. Microbiol Spectr 2023; 11:e0520722. [PMID: 37067447 PMCID: PMC10269540 DOI: 10.1128/spectrum.05207-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
While the sensitivity of detection of pneumococcal carriage can be improved by testing respiratory tract samples with quantitative PCR (qPCR), concerns have been raised regarding the specificity of this approach. We therefore investigated the reliability of the widely used lytA qPCR assay when applied to saliva samples from older adults in relation to a more specific qPCR assay (piaB). During the autumn/winter seasons of 2018/2019 and 2019/2020, saliva was collected at multiple time points from 103 healthy adults aged 21 to 39 (n = 34) and >64 (n = 69) years (n = 344 total samples). Following culture enrichment, extracted DNA was tested using qPCR for piaB and lytA. By sequencing the variable region of rpsB (S2 typing), we identified the species of bacteria isolated from samples testing lytA-positive only. While 30 of 344 (8.7%) saliva samples (16.5% individuals) tested qPCR-positive for both piaB and lytA, 52 (15.1%) samples tested lytA-positive only. No samples tested piaB-positive only. Through extensive reculture attempts of the lytA-positive samples collected in 2018/2019, we isolated 23 strains (in 8 samples from 5 individuals) that were also qPCR-positive for only lytA. Sequencing determined that Streptococcus mitis and Streptococcus infantis were predominantly responsible for this lytA-positive qPCR signal. We identified a comparatively large proportion of samples generating positive signals with the widely used lytA qPCR and identified nonpneumococcal Streptococcus species responsible for this signal. This highlights the importance of testing for the presence of multiple gene targets in tandem for reliable and specific detection of pneumococcus in polymicrobial respiratory tract samples. IMPORTANCE Testing saliva samples with quantitative PCR (qPCR) improves the sensitivity of detection of pneumococcal carriage. The qPCR assay targeting lytA, the gene encoding the major pneumococcal autolysin, has become widely accepted for the identification of pneumococcus and is even considered the "gold standard" by many. However, when applying this approach to investigate the prevalence of pneumococcal carriage in adults in New Haven, CT, USA, we identified nonpneumococcal Streptococcus spp. that generate positive signals in this widely used assay. By testing also for piaB (encoding the iron acquisition ABC transporter lipoprotein, PiaB), our findings demonstrate the importance of testing for the presence of multiple gene targets in tandem for reliable molecular detection of pneumococcus in respiratory tract samples; targeting only lytA may lead to an overestimation of true carriage rates.
Collapse
Affiliation(s)
- Maikel S. Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M. Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Darani A. Thammavongsa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sidiya Mbodj
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Allison Nelson
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Albert C. Shaw
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Wyllie AL, Mbodj S, Thammavongsa DA, Hislop MS, Yolda-Carr D, Waghela P, Nakahata M, Stahlfeld AE, Vega NJ, York A, Allicock OM, Wilkins G, Ouyang A, Siqueiros L, Strong Y, Anastasio K, Alexander-Parrish R, Arguedas A, Gessner BD, Weinberger DM. Persistence of Pneumococcal Carriage among Older Adults in the Community despite COVID-19 Mitigation Measures. Microbiol Spectr 2023; 11:e0487922. [PMID: 37036377 PMCID: PMC10269788 DOI: 10.1128/spectrum.04879-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Reported rates of invasive pneumococcal disease were markedly lower than normal during the 2020/2021 winter in the Northern Hemisphere, the first year after the start of the COVID-19 pandemic. However, little is known about rates of carriage of pneumococcus among adults during this period. Between October 2020-August 2021, couples in the Greater New Haven Area, USA, were enrolled if both individuals were aged 60 years and above and did not have any individuals under the age of 60 years living in the household. Saliva samples and questionnaires regarding social activities and contacts and medical history were obtained every 2 weeks for a period of 10 weeks. Following culture-enrichment, extracted DNA was tested using qPCR for pneumococcus-specific sequences piaB and lytA. Individuals were considered positive for pneumococcal carriage when Ct values for piaB were ≤40. Results. We collected 567 saliva samples from 95 individuals (47 household pairs and 1 singleton). Of those, 7.1% of samples tested positive for pneumococcus, representing 22/95 (23.2%) individuals and 16/48 (33.3%) households. Study participants attended few social events during this period. However, many participants continued to have regular contact with children. Individuals who had regular contact with preschool and school-aged children (i.e., 2 to 9 year olds) had a higher prevalence of carriage (15.9% versus 5.4%). Despite COVID-19-related disruptions, a large proportion of older adults continued to carry pneumococcus. Prevalence was particularly high among those who had contact with school-aged children, but carriage was not limited to this group. IMPORTANCE Carriage of Streptococcus pneumoniae (pneumococcus) in the upper respiratory tract is considered a prerequisite to invasive pneumococcal disease. During the first year of the COVID-19 pandemic, markedly lower rates of invasive pneumococcal disease were reported worldwide. Despite this, by testing saliva samples with PCR, we found that older adults continued to carry pneumococcus at pre-pandemic levels. Importantly, this study was conducted during a period when transmission mitigation measures related to the COVID-19 pandemic were in place. However, our observations are in line with reports from Israel and Belgium where carriage was also found to persist in children. In line with this, we observed that carriage prevalence was particularly high among the older adults in our study who maintained contact with school-aged children.
Collapse
Affiliation(s)
- Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sidiya Mbodj
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Darani A. Thammavongsa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Maikel S. Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Pari Waghela
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Maura Nakahata
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne E. Stahlfeld
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Noel J. Vega
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anna York
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M. Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Geisa Wilkins
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Andrea Ouyang
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Laura Siqueiros
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Yvette Strong
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Kelly Anastasio
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | | | - Adriano Arguedas
- Medical and Scientific Affairs, Pfizer Inc, Collegeville, Pennsylvania, USA
| | | | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
17
|
York A, Huynh E, Mbodj S, Yolda-Carr D, Hislop MS, Echlin H, Rosch JW, Weinberger DM, Wyllie AL. Magnetic bead-based separation of pneumococcal serotypes. CELL REPORTS METHODS 2023; 3:100410. [PMID: 36936076 PMCID: PMC10014298 DOI: 10.1016/j.crmeth.2023.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/18/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
The separation of pneumococcal serotypes from a complex polymicrobial mixture may be required for different applications. For instance, a minority strain could be present at a low frequency in a clinical sample, making it difficult to identify and isolate by traditional culture-based methods. We therefore developed an assay to separate mixed pneumococcal samples using serotype-specific antiserum and a magnetic bead-based separation method. Using qPCR and colony counting methods, we first show that serotypes (12F, 23F, 3, 14, 19A, and 15A) present at ∼0.1% of a dual serotype mixture can be enriched to between 10% and 90% of the final sample. We demonstrate two applications for this method: extraction of known pneumococcal serotypes from saliva samples and efficient purification of capsule switch variants from experimental transformation experiments. This method may have further laboratory or clinical applications when the selection of specific serotypes is required.
Collapse
Affiliation(s)
- Anna York
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Emily Huynh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sidiya Mbodj
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Maikel S. Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Life Sciences and Chemistry, Utrecht University of Applied Sciences, 3584 CS Utrecht, the Netherlands
| | - Haley Echlin
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jason W. Rosch
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Miellet WR, Almeida ST, Trzciński K, Sá-Leão R. Streptococcus pneumoniae carriage studies in adults: Importance, challenges, and key issues to consider when using quantitative PCR-based approaches. Front Microbiol 2023; 14:1122276. [PMID: 36910231 PMCID: PMC9994646 DOI: 10.3389/fmicb.2023.1122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Streptococcus pneumoniae causes significant morbidity and mortality among older adults. Detection of pneumococcal carriage is an accepted endpoint in pneumococcal conjugate vaccine studies. However, low sensitivity of culture-based approaches and nasopharyngeal samples have hampered adult S. pneumoniae carriage studies in the past. In contrast, detection of adult S. pneumoniae carriers with qPCR-based approaches can achieve high sensitivity and specificity and qPCR-based testing of oral samples improves accuracy of adult carriage detection. In this Viewpoint we outline a strategy for accurate qPCR-based testing. We recommend a dual-target approach for S. pneumoniae qPCR detection as no genetic target is universally present among or solely unique to it. Furthermore, we advise the evaluation of concordance among quantified qPCR targets to improve the accuracy of S. pneumoniae testing and qPCR-based serotyping. We do not recommend omission of qPCR-based oral sample testing as it will likely result in an underestimation of true adult carrier rates.
Collapse
Affiliation(s)
- Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sónia T Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
19
|
Litt D, Slack MPE, Nakamura T, Gray S, Seaton S, Fagan EJ, Sheppard C, Mwenda JM, Rey-Benito G, Ghoniem A, Videbaek D, Tondo E, Grabovac V, Serhan F. Evaluation of the World Health Organization Global Invasive Bacterial Vaccine-Preventable Disease (IB-VPD) Surveillance Network's Laboratory External Quality Assessment Programme, 2014-2019. J Med Microbiol 2023; 72. [PMID: 36748422 DOI: 10.1099/jmm.0.001644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction. In 2009, the World Health Organization (WHO) established the Global Invasive Bacterial Vaccine Preventable Disease (IB-VPD) Surveillance Network (GISN) to monitor the global burden and aetiology of bacterial meningitis, pneumonia and sepsis caused by Haemophilus influenzae (Hi), Neisseria meningitidis (Nm) and Streptococcus pneumoniae (Sp).Hypothesis/Gap Statement. The GISN established an external quality assessment (EQA) programme for the characterization of Hi, Nm and Sp by culture and diagnostic PCR.Aim. To assess the performance of sentinel site laboratories (SSLs), national laboratories (NLs) and regional reference laboratories (RRLs) between 2014 and 2019 in the EQA programme.Methodology. Test samples consisted of bacterial smears for Gram-staining, viable isolates for identification and serotyping or serogrouping (ST/SG), plus simulated cerebrospinal fluid (CSF) samples for species detection and ST/SG by PCR. SSLs and NLs were only required to analyse the slides for Gram staining and identify the species of the live isolates. RRLs, and any SLs and NLs that had the additional laboratory capacity, were also required to ST/SG the viable isolates and analyse the simulated CSF samples.Results. Across the period, 69-112 SS/NL labs and eight or nine RRLs participated in the EQA exercise. Most participants correctly identified Nm and Sp in Gram-stained smears but were less successful with Hi and other species. SSLs/NLs identified the Hi, Nm and Sp cultures well and also submitted up to 56 % of Hi, 62 % of Nm and 33 % of Sp optional ST/SG results each year. There was an increasing trend in the proportion of correct results submitted over the 6 years for Nm and Sp. Some SSLs/NLs also performed the optional detection and ST/SG of the three organisms by PCR in simulated CSF from 2015 onwards; 89-100 % of the CSF samples were correctly identified and 76-93 % of Hi-, 90-100 % of Nm- and 75-100 % of Sp-positive samples were also correctly ST/SG across the distributions. The RRLs performed all parts of the EQA to a very high standard, with very few errors across all aspects of the EQA.Conclusion. The EQA has been an important tool in maintaining high standards of laboratory testing and building of laboratory capacity in the GISN.
Collapse
Affiliation(s)
- David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, United Kingdom Health Security Agency (formerly Public Health England), London, UK.,World Health Organization Collaborating Centre for Haemophilus influenzae and Streptococcus pneumoniae, United Kingdom Health Security Agency (formerly Public Health England), London, UK
| | - Mary P E Slack
- Respiratory and Vaccine Preventable Bacteria Reference Unit, United Kingdom Health Security Agency (formerly Public Health England), London, UK.,School of Medicine & Dentistry, Griffith University Gold Coast Campus, Queensland 4222, Australia
| | - Tomoka Nakamura
- Present address: Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.,Present address: Nagasaki University, Tropical Medicine and Global Health, Nagasaki, Japan.,Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Steve Gray
- Meningococcal Reference Unit, United Kingdom Health Security Agency (formerly Public Health England), Manchester, UK
| | - Shila Seaton
- United Kingdom National External Quality Assessment Service (UK NEQAS) for Microbiology, United Kingdom Health Security Agency (formerly Public Health England), London, UK
| | - Elizabeth J Fagan
- United Kingdom National External Quality Assessment Service (UK NEQAS) for Microbiology, United Kingdom Health Security Agency (formerly Public Health England), London, UK
| | - Carmen Sheppard
- Respiratory and Vaccine Preventable Bacteria Reference Unit, United Kingdom Health Security Agency (formerly Public Health England), London, UK.,World Health Organization Collaborating Centre for Haemophilus influenzae and Streptococcus pneumoniae, United Kingdom Health Security Agency (formerly Public Health England), London, UK
| | - Jason M Mwenda
- Department of Vaccine Preventable Diseases Program, World Health Organization Regional Office for Africa, Brazzaville, Congo Republic
| | - Gloria Rey-Benito
- Pan American Health Organization/Department of Family, Gender, and Life Course, Comprehensive Family Immunization Unit, World Health Organization Regional Office for the Americas, Washington DC, USA
| | - Amany Ghoniem
- Department of Communicable Diseases, Immunization, Vaccines and Biologicals Unit, World Health Organization Eastern Mediterranean Office, Cairo, Egypt
| | - Dovile Videbaek
- Division of Country Health Programmes, Vaccine-Preventable Diseases and Immunization Unit, World Health Organization European Regional Office, Copenhagen, Denmark
| | - Emanuel Tondo
- Department of Immunization and Vaccine Development, World Health Organization South-East Asia Regional Office, New Delhi, India
| | - Varja Grabovac
- Division of Programmes for Diseases Control, Vaccine Preventable Diseases and Immunization, World Health Organization Western Pacific Regional Office, Manila, Philippines
| | - Fatima Serhan
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| |
Collapse
|
20
|
Miellet WR, van Veldhuizen J, Litt D, Mariman R, Wijmenga-Monsuur AJ, Nieuwenhuijsen T, Christopher J, Thombre R, Eletu S, Bosch T, Rots NY, van Houten MA, Miller E, Fry NK, Sanders EAM, Trzciński K. A spitting image: molecular diagnostics applied to saliva enhance detection of Streptococcus pneumoniae and pneumococcal serotype carriage. Front Microbiol 2023; 14:1156695. [PMID: 37138599 PMCID: PMC10149683 DOI: 10.3389/fmicb.2023.1156695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background Despite strong historical records on the accuracy of saliva testing, oral fluids are considered poorly suited for pneumococcal carriage detection. We evaluated an approach for carriage surveillance and vaccine studies that increases the sensitivity and specificity of pneumococcus and pneumococcal serotype detection in saliva samples. Methods Quantitative PCR (qPCR)-based methods were applied to detect pneumococcus and pneumococcal serotypes in 971 saliva samples collected from 653 toddlers and 318 adults. Results were compared with culture-based and qPCR-based detection in nasopharyngeal samples collected from children and in nasopharyngeal and oropharyngeal samples collected from adults. Optimal C q cut-offs for positivity in qPCRs were determined via receiver operating characteristic curve analysis and accuracy of different approaches was assessed using a composite reference for pneumococcal and for serotype carriage based on isolation of live pneumococcus from the person or positivity of saliva samples determined with qPCR. To evaluate the inter-laboratory reproducibility of the method, 229 culture-enriched samples were tested independently in the second center. Results In total, 51.5% of saliva samples from children and 31.8% of saliva samples from adults were positive for pneumococcus. Detection of pneumococcus by qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to diagnostic culture of nasopharyngeal samples in children (Cohen's κ: 0.69-0.79 vs. 0.61-0.73) and in adults (κ: 0.84-0.95 vs. 0.04-0.33) and culture of oropharyngeal samples in adults (κ: 0.84-0.95 vs. -0.12-0.19). Similarly, detection of serotypes with qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to nasopharyngeal culture in children (κ: 0.73-0.82 vs. 0.61-0.73) and adults (κ: 0.90-0.96 vs. 0.00-0.30) and oropharyngeal culture in adults (κ: 0.90-0.96 vs. -0.13 to 0.30). However, results of qPCRs targeting serotype 4, 5, and 17F and serogroups 9, 12, and 35 were excluded due to assays' lack of specificity. We observed excellent quantitative agreement for qPCR-based detection of pneumococcus between laboratories. After exclusion of serotype/serogroup-specific assays with insufficient specificity, moderate agreement (κ 0.68, 95% CI 0.58-0.77) was observed. Conclusion Molecular testing of culture-enriched saliva samples improves the sensitivity of overall surveillance of pneumococcal carriage in children and adults, but limitations of qPCR-based approaches for pneumococcal serotypes carriage detection should be considered.
Collapse
Affiliation(s)
- Willem R. Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Willem R. Miellet,
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Tessa Nieuwenhuijsen
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jennifer Christopher
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Rebecca Thombre
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Seyi Eletu
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Elizabeth Miller
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Norman K. Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
- Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, United Kingdom
| | - Elisabeth A. M. Sanders
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Krzysztof Trzciński,
| |
Collapse
|
21
|
Allicock OM, York A, Waghela P, Yolda-Carr D, Weinberger DM, Wyllie AL. Impact of Temporary Storage Conditions on the Viability of Streptococcus pneumoniae in Saliva. mSphere 2022; 7:e0033122. [PMID: 36409104 PMCID: PMC9769876 DOI: 10.1128/msphere.00331-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Nasopharyngeal swabs are considered the gold-standard sample type for the detection of Streptococcus pneumoniae carriage, but recent studies have demonstrated the utility of saliva in improving the detection of carriage in adults. Saliva is generally collected in its raw, unsupplemented state, unlike nasopharyngeal swabs, which are collected into stabilizing transport media. Few data exist regarding the stability of pneumococci in unsupplemented saliva during transport and laboratory storage. We therefore evaluated the effect of storage conditions on the detection of pneumococci in saliva samples using strains representing eight pneumococcal serotypes. The bacteria were spiked into raw saliva from asymptomatic individuals, and we assessed sample viability after storage at 4°C, room temperature, and 30°C for up to 72 h; at 40°C for 24 h; and following three freeze-thaw cycles. We observed little decrease in pneumococcal detection following culture enrichment and quantitative PCR (qPCR) detection of the piaB and lytA genes compared to testing fresh samples, indicating the prolonged viability of pneumococci in neat saliva samples. This sample stability makes saliva a viable sample type for pneumococcal carriage studies conducted in remote or low-resource settings and provides insight into the effect of the storage of saliva samples in the laboratory. IMPORTANCE For pneumococcal carriage studies, saliva is a sample type that can overcome some of the issues typically seen with nasopharyngeal and oropharyngeal swabs. Understanding the limitations of saliva as a sample type is important for maximizing its use. This study sought to better understand how different storage conditions and freeze-thaw cycles affect pneumococcal survival over time. These findings support the use of saliva as an alternative sample type for pneumococcal carriage studies, particularly in remote or low-resource settings with reduced access to health care facilities.
Collapse
Affiliation(s)
- Orchid M. Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anna York
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Pari Waghela
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Robinson RE, Mitsi E, Nikolaou E, Pojar S, Chen T, Reiné J, Nyazika TK, Court J, Davies K, Farrar M, Gonzalez-Dias P, Hamilton J, Hill H, Hitchins L, Howard A, Hyder-Wright A, Lesosky M, Liatsikos K, Matope A, McLenaghan D, Myerscough C, Murphy A, Solórzano C, Wang D, Burhan H, Gautam M, Begier E, Theilacker C, Beavon R, Anderson AS, Gessner BD, Gordon SB, Collins AM, Ferreira DM. Human Infection Challenge with Serotype 3 Pneumococcus. Am J Respir Crit Care Med 2022; 206:1379-1392. [PMID: 35802840 DOI: 10.1164/rccm.202112-2700oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Streptococcus pneumoniae serotype 3 (SPN3) is a cause of invasive pneumococcal disease and associated with low carriage rates. Following the introduction of pediatric 13-valent pneumococcal conjugate vaccine (PCV13) programs, SPN3 declines are less than other vaccine serotypes and incidence has increased in some populations coincident with a shift in predominant circulating SPN3 clade, from I to II. A human challenge model provides an effective means for assessing the impact of PCV13 on SPN3 in the upper airway. Objectives: To establish SPN3's ability to colonize the nasopharynx using different inoculum clades and doses, and the safety of an SPN3 challenge model. Methods: In a human challenge study involving three well-characterized and antibiotic-sensitive SPN3 isolates (PFESP306 [clade Ia], PFESP231 [no clade], and PFESP505 [clade II]), inoculum doses (10,000, 20,000, 80,000, and 160,000 cfu/100 μl) were escalated until maximal colonization rates were achieved, with concurrent acceptable safety. Measurement and Main Results: Presence and density of experimental SPN3 nasopharyngeal colonization in nasal wash samples, assessed using microbiological culture and molecular methods, on Days 2, 7, and 14 postinoculation. A total of 96 healthy participants (median age 21, interquartile range 19-25) were inoculated (n = 6-10 per dose group, 10 groups). Colonization rates ranged from 30.0-70.0% varying with dose and isolate. 30.0% (29/96) reported mild symptoms (82.8% [24/29] developed a sore throat); one developed otitis media requiring antibiotics. No serious adverse events occurred. Conclusions: An SPN3 human challenge model is feasible and safe with comparable carriage rates to an established Serotype 6B human challenge model. SPN3 carriage may cause mild upper respiratory symptoms.
Collapse
Affiliation(s)
- Ryan E Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Elena Mitsi
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sherin Pojar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tao Chen
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tinashe K Nyazika
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - James Court
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kelly Davies
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lisa Hitchins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Maia Lesosky
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Agnes Matope
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniella McLenaghan
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Annabel Murphy
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Duolao Wang
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hassan Burhan
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Manish Gautam
- Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | | | | | | | | | | | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Daniela M Ferreira
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
23
|
Stahlfeld A, Glick LR, Ott IM, Craft SB, Yolda-Carr D, Harden CA, Nakahata M, Farhadian SF, Grant LR, Alexander-Parrish R, Arguedas A, Gessner BD, Weinberger DM, Wyllie AL. Detection of pneumococcus during hospitalization for SARS-CoV-2. FEMS MICROBES 2022; 3:xtac026. [PMID: 37332510 PMCID: PMC10117745 DOI: 10.1093/femsmc/xtac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 10/22/2023] Open
Abstract
Background Infections with respiratory viruses [e.g. influenza and respiratory syncytial virus (RSV)] can increase the risk of severe pneumococcal infections. Likewise, pneumococcal coinfection is associated with poorer outcomes in viral respiratory infection. However, there are limited data describing the frequency of pneumococcus and SARS-CoV-2 coinfection and the role of coinfection in influencing COVID-19 severity. We, therefore, investigated the detection of pneumococcus in COVID-19 inpatients during the early pandemic period. Methods The study included patients aged 18 years and older, admitted to the Yale-New Haven Hospital who were symptomatic for respiratory infection and tested positive for SARS-CoV-2 during March-August 2020. Patients were tested for pneumococcus through culture-enrichment of saliva followed by RT-qPCR (to identify carriage) and serotype-specific urine antigen detection (UAD) assays (to identify presumed lower respiratory tract pneumococcal disease). Results Among 148 subjects, the median age was 65 years; 54.7% were male; 50.7% had an ICU stay; 64.9% received antibiotics; and 14.9% died while admitted. Pneumococcal carriage was detected in 3/96 (3.1%) individuals tested by saliva RT-qPCR. Additionally, pneumococcus was detected in 14/127 (11.0%) individuals tested by UAD, and more commonly in severe than moderate COVID-19 [OR: 2.20; 95% CI: (0.72, 7.48)]; however, the numbers were small with a high degree of uncertainty. None of the UAD-positive individuals died. Conclusions Pneumococcal lower respiratory tract infection (LRTI), as detected by positive UAD, occurred in patients hospitalized with COVID-19. Moreover, pneumococcal LRTI was more common in those with more serious COVID-19 outcomes. Future studies should assess how pneumococcus and SARS-CoV-2 interact to influence COVID-19 severity in hospitalized patients.
Collapse
Affiliation(s)
- Anne Stahlfeld
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, LEPH823, 60 College St, New Haven, CT 06510, United States
| | - Laura R Glick
- Yale School of Medicine, 333 Cedar St, New Haven, CT 06511, United States
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, LEPH823, 60 College St, New Haven, CT 06510, United States
| | - Samuel B Craft
- Yale School of Medicine, 333 Cedar St, New Haven, CT 06511, United States
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, LEPH823, 60 College St, New Haven, CT 06510, United States
| | - Christina A Harden
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, LEPH823, 60 College St, New Haven, CT 06510, United States
| | - Maura Nakahata
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, LEPH823, 60 College St, New Haven, CT 06510, United States
| | - Shelli F Farhadian
- Yale School of Medicine, 333 Cedar St, New Haven, CT 06511, United States
| | - Lindsay R Grant
- Medical and Scientific Affairs, Pfizer Inc, 500 Arcola Rd, Collegeville, PA 19426, United States
| | - Ronika Alexander-Parrish
- Medical and Scientific Affairs, Pfizer Inc, 500 Arcola Rd, Collegeville, PA 19426, United States
| | - Adriano Arguedas
- Medical and Scientific Affairs, Pfizer Inc, 500 Arcola Rd, Collegeville, PA 19426, United States
| | - Bradford D Gessner
- Medical and Scientific Affairs, Pfizer Inc, 500 Arcola Rd, Collegeville, PA 19426, United States
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, LEPH823, 60 College St, New Haven, CT 06510, United States
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, LEPH823, 60 College St, New Haven, CT 06510, United States
| |
Collapse
|
24
|
Pneumococcal carriage in adults aged 50 years and older in outpatient health care facility during pandemic COVID-19 in Novi Sad, Serbia. PLoS One 2022; 17:e0274674. [PMID: 36223392 PMCID: PMC9555667 DOI: 10.1371/journal.pone.0274674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
Background Data related to carriage of Streptococcus pneumoniae (Spn) and antimicrobial resistance patterns in middle-aged and older adults are limited. We assessed the carriage of Spn, and its antibiotic resistance patterns, among participants ≥50 years of age living in the city of Novi Sad during the second year of COVID-19 pandemic. Methods Analysis of prospectively collected data among participants with or without symptoms of upper respiratory tract infection who visited their elected physicians in the Primary Health Care Centre of Novi Sad (outpatient facility) was conducted from May 18, 2021 to December 7, 2021. Both nasopharyngeal (NP) and oropharyngeal (OP) samples from each participant were collected. Results A total of 1042 samples from 521 study subjects (1 NP and 1 OP sample from each person) were collected. Sixteen samples from the same number of persons (3.1%, 95% confidence interval: 1.76%-4.94%) were culture positive for the presence of Spn. Overall, the median age of study participants was 71 years (range, 50–93 years; 90th percentile, 77 years), and most (197/521, 37.8%) of them were 70–79 years of age. A majority of the study subjects were: females (324/521; 62.2%), sampled during May and June 2021 (376/521, 72.2%), those who did not have contact with children aged 0–10 years in the family (403/521; 77.4%), without smokers in the household (443/521; 85.0%), and those who did not receive vaccine against Spn (519/521; 99.6%). Out of 16 Spn positive samples, for six participants, Spn carriage serotypes were obtained and there were four vaccine (6A, 11A, 15B, and 18C) serotypes, and two (6C and 35F) non-vaccine serotypes. Remaining 10 (62.50%) samples were non-typeable isolates of pneumococci. Among four vaccine serotypes, two (6A and 18C) were represented in PCV13, and 18C along with the other two (11A and 15B) in PPSV23 vaccine. The highest level of resistance of Spn isolates was observed for erythromycin, (10 or 62.50%), and tetracycline, (7 or 43.75%), one isolate showed resistance to penicillin, ampicillin, and amoxicillin/amoxicillin-clavulanic acid, while none of them were resistant to ceftriaxone, trimethoprim/sulfamethoxazole and levofloxacin. There were three multi-drug resistant isolates; one was identified as 6C (non-vaccine serotype), and two other were non-typeable isolates of Spn. Conclusions In this first study conducted in Serbia on Spn carriage in adults ≥50 years of age, we found low prevalence of Spn carriage and identified 6 serotypes of Spn, four of which were represented in vaccines. These results may support future Spn colonization studies among middle-aged and older adults.
Collapse
|
25
|
Pausder A, Mras P, Hoenicke L, Waldburg N, Lesker TR, Schreiber J, Strowig T, Boehme JD, Bruder D. Altered nasal microbiota in asthmatic patients is not related to changes in secretory immunity in the nasopharynx. Clin Exp Allergy 2022; 52:1213-1218. [PMID: 35819876 DOI: 10.1111/cea.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,ESF Graduate School ABINEP, Magdeburg, Germany
| | - Paula Mras
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.,Pneumological Practice, Magdeburg, Germany
| | - Lisa Hoenicke
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Schreiber
- Department of Pneumology, University Hospital, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
26
|
Turner P, Sá-Leão R, Greenhill A, Leach A, Satzke C. World Health Organization (WHO) Standard Methods for Pneumococcal Carriage Studies. Clin Infect Dis 2022; 75:924-925. [PMID: 35314867 PMCID: PMC9477444 DOI: 10.1093/cid/ciac221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Raquel Sá-Leão
- Molecular Microbiology of Human Pathogens Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Andrew Greenhill
- Life Sciences, School of Science, Psychology and Sport, Federation University, Churchill, Australia
| | - Amanda Leach
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Catherine Satzke
- Translational Microbiology Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Kremer PHC, Ferwerda B, Bootsma HJ, Rots NY, Wijmenga-Monsuur AJ, Sanders EAM, Trzciński K, Wyllie AL, Turner P, van der Ende A, Brouwer MC, Bentley SD, van de Beek D, Lees JA. Pneumococcal genetic variability in age-dependent bacterial carriage. eLife 2022; 11:e69244. [PMID: 35881438 PMCID: PMC9395192 DOI: 10.7554/elife.69244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
The characteristics of pneumococcal carriage vary between infants and adults. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen sequence variation is currently less well-known. Identification of age-associated pathogen genetic factors could leadto improved vaccine formulations. We therefore performed genome sequencing in a large carriage cohort of children and adults and combined this with data from an existing age-stratified carriage study. We compiled a dictionary of pathogen genetic variation, including serotype, strain, sequence elements, single-nucleotide polymorphisms (SNPs), and clusters of orthologous genes (COGs) for each cohort - all of which were used in a genome-wide association with host age. Age-dependent colonization showed weak evidence of being heritable in the first cohort (h2 = 0.10, 95% CI 0.00-0.69) and stronger evidence in the second cohort (h2 = 0.56, 95% CI 0.23-0.87). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 95% CI 0.04-0.14 and h2GPSC = 0.06, 95% CI 0.03-0.13) and the second cohort (h2serotype = 0.11, 95% CI 0.05-0.21 and h2GPSC = 0.20, 95% CI 0.12-0.31). In a meta-analysis of these cohorts, we found one candidate association (p=1.2 × 10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find a small effect of pathogen genome variation on pneumococcal carriage between child and adult hosts, this was variable between populations and does not appear to be caused by strong effects of individual genes. This supports proposals for adaptive future vaccination strategies that are primarily targeted at dominant circulating serotypes and tailored to the composition of the pathogen populations.
Collapse
Affiliation(s)
- Philip HC Kremer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Bart Ferwerda
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of AmsterdamAmsterdamNetherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Nienke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Elisabeth AM Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
- Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMCAmsterdamNetherlands
- The Netherlands Reference Laboratory for Bacterial MeningitisAmsterdamNetherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - John A Lees
- European Molecular Biology Laboratory–European Bioinformatics InstituteCambridgeUnited Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
28
|
Miellet WR, van Veldhuizen J, Litt D, Mariman R, Wijmenga-Monsuur AJ, Badoux P, Nieuwenhuijsen T, Thombre R, Mayet S, Eletu S, Sheppard C, van Houten MA, Rots NY, Miller E, Fry NK, Sanders EAM, Trzciński K. It Takes Two to Tango: Combining Conventional Culture With Molecular Diagnostics Enhances Accuracy of Streptococcus pneumoniae Detection and Pneumococcal Serogroup/Serotype Determination in Carriage. Front Microbiol 2022; 13:859736. [PMID: 35509314 PMCID: PMC9060910 DOI: 10.3389/fmicb.2022.859736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background The specificity of molecular methods for the detection of Streptococcus pneumoniae carriage is under debate. We propose a procedure for carriage surveillance and vaccine impact studies that increases the accuracy of molecular detection of live pneumococci in polymicrobial respiratory samples. Methods Culture and qPCR methods were applied to detect pneumococcus and pneumococcal serotypes in 1,549 nasopharyngeal samples collected in the Netherlands (n = 972) and England (n = 577) from 946 toddlers and 603 adults, and in paired oropharyngeal samples collected exclusively from 319 Dutch adults. Samples with no live pneumococci isolated at primary diagnostic culture yet generating signal specific for pneumococcus in qPCRs were re-examined with a second, qPCR-guided culture. Optimal Cq cut-offs for positivity in qPCRs were determined via receiver operating characteristic (ROC) curve analysis using isolation of live pneumococci from the primary and qPCR-guided cultures as reference. Results Detection of pneumococcus and pneumococcal serotypes with qPCRs in cultured (culture-enriched) nasopharyngeal samples exhibited near-perfect agreement with conventional culture (Cohen's kappa: 0.95). Molecular methods displayed increased sensitivity of detection for multiple serotype carriage, and implementation of qPCR-guided culturing significantly increased the proportion of nasopharyngeal and oropharyngeal samples from which live pneumococcus was recovered (p < 0.0001). For paired nasopharyngeal and oropharyngeal samples from adults none of the methods applied to a single sample type exhibited good agreement with results for primary and qPCR-guided nasopharyngeal and oropharyngeal cultures combined (Cohens kappa; 0.13-0.55). However, molecular detection of pneumococcus displayed increased sensitivity with culture-enriched oropharyngeal samples when compared with either nasopharyngeal or oropharyngeal primary cultures (p < 0.05). Conclusion The accuracy of pneumococcal carriage surveillance can be greatly improved by complementing conventional culture with qPCR and vice versa, by using results of conventional and qPCR-guided cultures to interpret qPCR data. The specificity of molecular methods for the detection of live pneumococci can be enhanced by incorporating statistical procedures based on ROC curve analysis. The procedure we propose for future carriage surveillance and vaccine impact studies improves detection of pneumococcal carriage in adults in particular and enhances the specificity of serotype carriage detection.
Collapse
Affiliation(s)
- Willem R. Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Paul Badoux
- Regional Laboratory of Public Health (Streeklab) Haarlem, Haarlem, Netherlands
| | - Tessa Nieuwenhuijsen
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - Rebecca Thombre
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | - Sanaa Mayet
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | - Seyi Eletu
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | - Carmen Sheppard
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | | | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Elizabeth Miller
- Immunisation and Countermeasures Division, Public Health England (PHE) – National Infection Service, London, United Kingdom
| | - Norman K. Fry
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
- Immunisation and Countermeasures Division, Public Health England (PHE) – National Infection Service, London, United Kingdom
| | - Elisabeth A. M. Sanders
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| |
Collapse
|
29
|
Wróbel-Pawelczyk I, Ronkiewicz P, Wanke-Rytt M, Rykowska D, Górska-Kot A, Włodkowska K, Topczewska-Cabanek A, Jackowska T, Chruszcz J, Marchut W, Mastalerz-Migas A, Korzeniewski K, Skoczyńska A, Trzciński K. Pneumococcal carriage in unvaccinated children at the time of vaccine implementation into the national immunization program in Poland. Sci Rep 2022; 12:5858. [PMID: 35393439 PMCID: PMC8991213 DOI: 10.1038/s41598-022-09488-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
We investigated pneumococcal carriage among unvaccinated children under five years of age at a time when the conjugate polysaccharide vaccine (PCV) was introduced in Poland into the national immunization program (NIP). Paired nasopharyngeal swab (NPS) and saliva samples collected between 2016 and 2020 from n = 394 children were tested with conventional culture and using qPCR. The carriage rate detected by culture was 25.4% (97 of 394), by qPCR 39.1% (155 of 394), and 40.1% (158 of 394) overall. The risk of carriage was significantly elevated among day care center attendees, and during autumn/winter months. Among isolates cultured, the most common serotypes were: 23A, 6B, 15BC, 10A, 11A. The coverage of PCV10 and PCV13 was 23.2% (23 of 99) and 26.3% (26 of 99), respectively. Application of qPCR lead to detection of 168 serotype carriage events, with serogroups 15, 6, 9 and serotype 23A most commonly detected. Although the highest number of carriers was identified by testing NPS with qPCR, saliva significantly contributed to the overall number of detected carriers. Co-carriage of multiple serotypes was detected in 25.3% (40 of 158) of carriers. The results of this study represent a baseline for the future surveillance of effects of pneumococcal vaccines in NIP in Poland.
Collapse
Affiliation(s)
- Izabela Wróbel-Pawelczyk
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Patrycja Ronkiewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Monika Wanke-Rytt
- Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Rykowska
- Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Teresa Jackowska
- Department of Pediatrics, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Joanna Chruszcz
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Krzysztof Korzeniewski
- Department of Epidemiology and Tropical Medicine, Military Institute of Medicine, Warsaw, Poland
- Department of Tropical Medicine and Epidemiology, Institute Maritime and Tropical Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Mitsi E, Reiné J, Urban BC, Solórzano C, Nikolaou E, Hyder-Wright AD, Pojar S, Howard A, Hitchins L, Glynn S, Farrar MC, Liatsikos K, Collins AM, Walker NF, Hill HC, German EL, Cheliotis KS, Byrne RL, Williams CT, Cubas-Atienzar AI, Fletcher TE, Adams ER, Draper SJ, Pulido D, Beavon R, Theilacker C, Begier E, Jodar L, Gessner BD, Ferreira DM. Streptococcus pneumoniae colonization associates with impaired adaptive immune responses against SARS-CoV-2. J Clin Invest 2022; 132:e157124. [PMID: 35139037 PMCID: PMC8970672 DOI: 10.1172/jci157124] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundAlthough recent epidemiological data suggest that pneumococci may contribute to the risk of SARS-CoV-2 disease, cases of coinfection with Streptococcus pneumoniae in patients with coronavirus disease 2019 (COVID-19) during hospitalization have been reported infrequently. This apparent contradiction may be explained by interactions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pneumococci in the upper airway, resulting in the escape of SARS-CoV-2 from protective host immune responses.MethodsHere, we investigated the relationship of these 2 respiratory pathogens in 2 distinct cohorts of health care workers with asymptomatic or mildly symptomatic SARS-CoV-2 infection identified by systematic screening and patients with moderate to severe disease who presented to the hospital. We assessed the effect of coinfection on host antibody, cellular, and inflammatory responses to the virus.ResultsIn both cohorts, pneumococcal colonization was associated with diminished antiviral immune responses, which primarily affected mucosal IgA levels among individuals with mild or asymptomatic infection and cellular memory responses in infected patients.ConclusionOur findings suggest that S. pneumoniae impair host immunity to SARS-CoV-2 and raise the question of whether pneumococcal carriage also enables immune escape of other respiratory viruses and facilitates reinfection.Trial registrationISRCTN89159899 (FASTER study) and ClinicalTrials.gov NCT03502291 (LAIV study).
Collapse
Affiliation(s)
- Elena Mitsi
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Britta C. Urban
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carla Solórzano
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elissavet Nikolaou
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Sherin Pojar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Howard
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lisa Hitchins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sharon Glynn
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Madlen C. Farrar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Andrea M. Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Naomi F. Walker
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen C. Hill
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Esther L. German
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Rachel L. Byrne
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Ana I. Cubas-Atienzar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tom E. Fletcher
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily R. Adams
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon J. Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Pulido
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Luis Jodar
- Pfizer Vaccines, Collegeville, Pennsylvania, USA
| | | | - Daniela M. Ferreira
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
31
|
Molecular surveillance of pneumococcal carriage following completion of immunization with the 13-valent pneumococcal conjugate vaccine administered in a 3 + 1 schedule. Sci Rep 2021; 11:24534. [PMID: 34969968 PMCID: PMC8718523 DOI: 10.1038/s41598-021-03720-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
In a cross-sectional study, with the use of molecular methods, we aimed to gain insight into oropharyngeal pneumococcal colonization over time in 1212 Greek children recruited in general pediatric settings throughout the country; they were fully vaccinated with PCV13 (3 + 1 schedule). A single sample was obtained from each child at a time interval of 26 days to 70 months after administration of the 4th (booster) PCV13 dose; sampling time was divided into six time intervals. Carriage of Streptococcus pneumoniae was detected by real-time PCR targeting the lytA gene and isolates were serotyped by singleplex real-time PCR assays. Multiple control procedures to avoid false-positive results were applied. We showed an overall S. pneumoniae carriage rate of 48.6%. Serotyping identified typeable isolates in 82% of the total lytA-positive samples. Non-PCV13 serotypes represented 83.8% of total isolates when excluding serogroups with mixed PCV13 and non-PCV13 serotypes. In multivariate analysis daycare/school attendance emerged as the main contributing factor. Notably, serotypes 19A and 3 were the only two PCV13 serotypes the colonization rate of which increased over time (χ2 for trend P < 0.001 and P = 0.012, respectively). The application of the SP2020 gene on lytA-positive serotyped samples showed pneumococcal colonization in 97% of cases, and the overall colonization profile over time closely resembled that of the lytA gene. With the provisions of the methodological approach and age group of our study, the use of the oropharynx emerges as a reliable alternative to the nasopharynx in estimating pneumococcal carriage in epidemiological studies.
Collapse
|
32
|
PCR and Culture Analysis of Streptococcus pneumoniae Nasopharyngeal Carriage in Healthy Children. Microorganisms 2021; 9:microorganisms9102116. [PMID: 34683437 PMCID: PMC8538797 DOI: 10.3390/microorganisms9102116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Invasive Streptococcus pneumoniae disease is preceded by asymptomatic nasopharyngeal carriage. Measuring carriage in healthy populations provides data on what serotypes are present in communities, which is of interest in the era of polyvalent pneumococcal conjugate vaccines. Nasopharyngeal swabs from a survey of 682 and 800 healthy children in 2016 and 2018, respectively, were analyzed by culture and Quellung reaction to determine rates of carriage and serotypes. All swabs from 2016 and 300 randomly selected swabs from 2018 were then analyzed using real-time semi-quantitative PCR (qPCR) to detect S. pneumoniae gene targets lytA, piaA, and SP2020 and determine serotype. There were 71 (10.4%) and 68 (8.5%) culture positive samples in 2016 and 2018, respectively. All of these were also positive by qPCR except one that was equivocal. In total, 46.0% of 2016 swabs were positive by qPCR. In 2018, results from the selected sample extrapolated to the complete sample showed 49.0% positive by qPCR. PCV13 serotypes were detected in 29.3% and 21.7% of S. pneumoniae qPCR positive samples from 2016 and 2018, respectively; compared with only 8.4% and 6.0% PCV13 serotypes detected by Quellung reaction in culture positive samples. Compared with culture, qPCR detected S. pneumoniae more frequently. Further, qPCR serotyping detected PCV13 serotypes in a larger proportion of samples than culture and Quellung reaction did, showing that, despite established universal childhood PCV13 immunization, vaccine serotypes can still be detected in a large proportion of young children.
Collapse
|
33
|
Ikken Y, Charof R, Elouennass M, Sekhsokh Y. The novel biphasic medium for transport, culture and conservation at an ambient temperature of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. World J Microbiol Biotechnol 2021; 37:187. [PMID: 34586515 DOI: 10.1007/s11274-021-03149-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Bacterial meningitis remains a very important disease worldwide, and the major causative pathogens were Neisseria meningitidis (N. meningitidis), Streptococcus pneumoniae (S. pneumoniae) and Haemophilus influenzae (H. influenzae). In our context, the technical difficulties encountered in the routine practice were associated with the fragility of these bacteria, the high rates of negative culture and the demanding transport conditions. That's why the need to look for a solution to its technical problems and to propose a new proper solution with the local situation. The aim of this study was to develop, perform and evaluate a novel biphasic medium used for the transport, culture and conservation at an ambient temperature of N. meningitidis, S. pneumoniae and H. influenzae. The results showed that this biphasic medium provided more, novels and easy nutriments through the addition of liquid phase and solid phase medium and it was found to be conducive to the growth and conservation of N. meningitidis, S. pneumoniae and H. influenzae at an ambient temperature of a minimum of 40 days. And the ingredients used in the medium are readily available at a low cost as well as the components prepared in large quantities, they could be stored at + 4 ± 1 °C for 2 years without significantly altering their growth and conservation supporting their potential. The survival and recovery for the fastidious bacteria on the biphasic medium and the other media used for comparison in this study were significantly different (P < 0.05). In addition, the Sensitivity, Specificity, Positive and Negative Predictive Value of biphasic medium showed highest among the three bacteria at least 40 days of storage at room temperature in this study. In conclusion, we found the biphasic medium to be low cost and suitable for previously mentioned bacteria from suspected meningitis patients, offering an optimal condition and an increase in the viability of the isolates at ambient temperature. And it was concluded that this biphasic medium could be used as a technical solution in laboratories for the management of meningitis.
Collapse
Affiliation(s)
- Youssef Ikken
- Biosafety Level 3 and Research Laboratory, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 000, Rabat, Morocco.
- Laboratory of Medical Bacteriology, National Institute of Hygiene in Rabat, 27, Avenue Ibn Batouta, B.P. 769, 10 000, Rabat, Morocco.
| | - Réda Charof
- Laboratory of Medical Bacteriology, National Institute of Hygiene in Rabat, 27, Avenue Ibn Batouta, B.P. 769, 10 000, Rabat, Morocco
| | - Mostafa Elouennass
- Laboratory of Bacteriology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 000, Rabat, Morocco
| | - Yassine Sekhsokh
- Biosafety Level 3 and Research Laboratory, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 000, Rabat, Morocco
| |
Collapse
|
34
|
Napolean M, Rosemol V, John M, Varghese AM, Periyasamy J, Balaji V, Naina P. Nasopharyngeal colonization of otopathogens in South Indian children with acute otitis media - A case control pilot study. J Otol 2021; 16:220-224. [PMID: 34548867 PMCID: PMC8438633 DOI: 10.1016/j.joto.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Acute otitis media (AOM) is an inflammatory disease of the middle ear causing significant morbidity in early childhood. A pilot study was undertaken to identify the role of various risk factors South Indian children with AOM, especially the role of nasopharyngeal otopathogens. Methodology A prospective case control pilot study was conducted in children aged below six years, presenting to a single tertiary care from 2018 to 2019. Fifty cases with AOM and 45 age and gender matched controls were recruited. Two nasopharyngeal swabs were collected, one was processed for bacterial culture. The other swab was processed according to the CDC recommended broth enrichment method to identify carriage of S. pneumoniae. Subsequent serotyping was done by Quellung method and conventional sequential multiplex PCR. Result Otalgia was the major presentation seen in 92% of the children with AOM. None of the clinical and demographic characteristics were found to be statistically significant between the cases and controls. The most common otopathogen was S. pneumoniae (55%) followed by H. influenza (29%). The common S. pneumoniae serotypes encountered were 11A and 19F.Nasopharyngeal colonization with S. pneumoniae [OR 6.57, p < 0.003] and H. influenzae [OR14.18, p < 0.003] were significant risk factors for AOM in children. The risk increased with co-colonization (OR 13.89,p < 0.003). Conclusion This study strengthens the significant association between nasopharyngeal colonization of otopathogens and AOM as a risk factor that is enhanced by co-colonization.S. pneumoniae was the main otopathogen in this population, serotypes 11A and 19F being the most common.
Collapse
Affiliation(s)
- M Napolean
- Department of ENT, Christian Medical College, Vellore, Tamil Nadu, India
| | - V Rosemol
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - M John
- Department of ENT, Christian Medical College, Vellore, Tamil Nadu, India
| | - A M Varghese
- Department of ENT, Christian Medical College, Vellore, Tamil Nadu, India
| | - J Periyasamy
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - V Balaji
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - P Naina
- Department of ENT, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
35
|
Nikolaou E, German EL, Blizard A, Howard A, Hitchins L, Chen T, Chadwick J, Pojar S, Mitsi E, Solórzano C, Sunny S, Dunne F, Gritzfeld JF, Adler H, Hinds J, Gould KA, Rylance J, Collins AM, Gordon SB, Ferreira DM. The nose is the best niche for detection of experimental pneumococcal colonisation in adults of all ages, using nasal wash. Sci Rep 2021; 11:18279. [PMID: 34521967 PMCID: PMC8440778 DOI: 10.1038/s41598-021-97807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Previous studies have suggested that the pneumococcal niche changes from the nasopharynx to the oral cavity with age. We use an Experimental Human Pneumococcal Challenge model to investigate pneumococcal colonisation in different anatomical niches with age. Healthy adults (n = 112) were intranasally inoculated with Streptococcus pneumoniae serotype 6B (Spn6B) and were categorised as young 18-55 years (n = 57) or older > 55 years (n = 55). Colonisation status (frequency and density) was determined by multiplex qPCR targeting the lytA and cpsA-6A/B genes in both raw and culture-enriched nasal wash and oropharyngeal swab samples collected at 2-, 7- and 14-days post-exposure. For older adults, raw and culture-enriched saliva samples were also assessed. 64% of NW samples and 54% of OPS samples were positive for Spn6B in young adults, compared to 35% of NW samples, 24% of OPS samples and 6% of saliva samples in older adults. Many colonisation events were only detected in culture-enriched samples. Experimental colonisation was detected in 72% of young adults by NW and 63% by OPS. In older adults, this was 51% by NW, 36% by OPS and 9% by saliva. The nose, as assessed by nasal wash, is the best niche for detection of experimental pneumococcal colonisation in both young and older adults.
Collapse
Affiliation(s)
- Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.
| | - Esther L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Lisa Hitchins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Jim Chadwick
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Syba Sunny
- Medical Microbiology, Royal Liverpool University Hospital, Liverpool, UK
| | - Felicity Dunne
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jenna F Gritzfeld
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,Institute of Life Course and Medical Sciences, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Jason Hinds
- Infection and Immunity Research Institute, St George's University London, London, UK
| | - Katherine A Gould
- Infection and Immunity Research Institute, St George's University London, London, UK
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,College of Medicine, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| |
Collapse
|
36
|
Lomardo PG, Cardoso-Marques NT, Motta LA, Aguiar TRS, Neves FPG, Aguiar-Alves F, Calasans-Maia MD, Quinelato V, Casado PL. Streptococcus pneumoniae prevalence in nasopharynx, oropharynx and gingival sulcus in Brazilian adults:A preliminary study. Microb Pathog 2021; 156:104924. [PMID: 33992738 DOI: 10.1016/j.micpath.2021.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
AIM This study aimed to evaluate the prevalence of S. pneumoniae colonization in three different sites in healthy adults: nasopharynx, oropharynx and gingival sulcus. METHODS Two-hundred and sixty five adults, aged 20-60 years, who attended dental clinics in one public university (n = 106) and one military institution (n = 159) were enrolled in this study. Pneumococcal detection was performed by direct culture (DC) and PCR for lytA gene after a broth enrichment step. Capsular types were determined by sequential multiplex PCR. RESULTS We identified 18 (6.8%) pneumococcal carriers among 265 adults by PCR, but only one (0.4%) pneumococcal strain was isolated by DC method. Oropharynx (17; 6.4%) was the main source of S. pneumoniae. Colonization of gingival sulcus and nasopharynx was found in 4 (1.5%) and 2 (0.8%) adults, respectively. Nine distinct capsular types were detected from 9 adults and co-colonization with 2 serotypes was confirmed in 4 (1.5%) subjects. Factors associated with carriage were being females, low level of schooling, non-military and regular medication. We observed a low (6.8%) pneumococcal carriage prevalence, but oropharyngeal samples yielded more sensitive results, especially by the PCR-based detection methodology. CONCLUSION Gingival sulcus was found to be a possible reservoir for S. pneumoniae independently of the oropharynx or nasopharynx colonization.
Collapse
Affiliation(s)
- P G Lomardo
- Post-graduation in Dentistry, School of Dentistry, Universidade Federal Fluminense, Brazil
| | - N T Cardoso-Marques
- Department of Microbiology and Parasitology, Biomedical Institute, Universidade Federal Fluminense, Brazil
| | - L A Motta
- Post-graduation in Dentistry, School of Dentistry, Universidade Federal Fluminense, Brazil
| | - T R S Aguiar
- Post-graduation in Implant Dentistry, School of Dentistry, Universidade Federal Fluminense, Brazil
| | - F P G Neves
- Department of Microbiology and Parasitology, Biomedical Institute, Universidade Federal Fluminense, Brazil
| | - F Aguiar-Alves
- Post-graduation Program in Applied Microbiology and Parasitology, Universidade Federal Fluminense, Brazil
| | - M D Calasans-Maia
- Post-graduation in Dentistry, School of Dentistry, Universidade Federal Fluminense, Brazil
| | - V Quinelato
- Post-graduation in Implant Dentistry, School of Dentistry, Universidade Federal Fluminense, Brazil
| | - P L Casado
- Post-graduation in Dentistry, School of Dentistry, Universidade Federal Fluminense, Brazil; Post-graduation in Implant Dentistry, School of Dentistry, Universidade Federal Fluminense, Brazil.
| |
Collapse
|
37
|
Dion SB, Major M, Gabriela Grajales A, Nepal RM, Cane A, Gessner B, Vojicic J, Suaya JA. Invasive pneumococcal disease in Canada 2010-2017: The role of current and next-generation higher-valent pneumococcal conjugate vaccines. Vaccine 2021; 39:3007-3017. [PMID: 33824041 DOI: 10.1016/j.vaccine.2021.02.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND In 2010-2011, the 13-valent pneumococcal conjugate vaccine (PCV13) replaced the 7- or 10-valent vaccine (PCV7 and PCV10, respectively) in pediatric immunization programs across Canada. For adults aged ≥65 years, the 23-valent pneumococcal polysaccharide vaccine (PPSV23) has been publicly funded for several decades; PCV13 funding was not recommended in this population, partly due to expected ongoing vaccine-serotype disease decline stemming from herd effects of the pediatric program. Higher-valent PCVs (ie, 15- and 20-valent PCVs [PCV15 and PCV20, respectively]) currently in development may become available in Canada in the coming years. METHODS Using the National Microbiology Laboratory surveillance reports, annual case counts and serotype distribution of invasive pneumococcal disease (IPD) from 2010 to 2017 in Canada were examined to assess the impact of existing programs on PCV13-serotype IPD and determine the proportion of IPD that can potentially be prevented by current and forthcoming higher-valent PCVs. RESULTS The percentages of PCV13-serotype IPD decreased from 55% [1492/2708] in 2010 to 30% [902/3006] in 2017 in all age groups combined, including a decline from 67% [221/331] to 18% [40/219] in children aged <5 years and from 50% [487/967] to 23% [287/1238] in adults aged ≥65 years. Overall, IPD cases declined mainly before 2014 and have plateaued since then. In 2017, PCV15- and PCV20-serotypes (inclusive of PCV13 serotypes) accounted for 42% and 58% of IPD cases, respectively, in all ages. CONCLUSIONS In Canada, publicly funded pediatric PCV13 use was associated with large declines in IPD due to vaccine serotypes. Substantial residual PCV13-serotype IPD proportions observed among all ages imply limits to indirect protection afforded by the pediatric PCV13 program at the current uptake level and suggest the adult PPSV23 program alone is insufficient. Higher-valent PCVs have the potential to address a substantial proportion of remaining IPD cases among all age groups.
Collapse
|
38
|
Bhatnagar J, Gary J, Reagan-Steiner S, Estetter LB, Tong S, Tao Y, Denison AM, Lee E, DeLeon-Carnes M, Li Y, Uehara A, Paden CR, Leitgeb B, Uyeki TM, Martines RB, Ritter JM, Paddock CD, Shieh WJ, Zaki SR. Evidence of Severe Acute Respiratory Syndrome Coronavirus 2 Replication and Tropism in the Lungs, Airways, and Vascular Endothelium of Patients With Fatal Coronavirus Disease 2019: An Autopsy Case Series. J Infect Dis 2021; 223:752-764. [PMID: 33502471 PMCID: PMC7928839 DOI: 10.1093/infdis/jiab039] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic continues to produce substantial morbidity and mortality. To understand the reasons for the wide-spectrum complications and severe outcomes of COVID-19, we aimed to identify cellular targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and replication in various tissues. Methods We evaluated RNA extracted from formalin-fixed, paraffin-embedded autopsy tissues from 64 case patients (age range, 1 month to 84 years; 21 COVID-19 confirmed, 43 suspected COVID-19) by SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR). For cellular localization of SARS-CoV-2 RNA and viral characterization, we performed in situ hybridization (ISH), subgenomic RNA RT-PCR, and whole-genome sequencing. Results SARS-CoV-2 was identified by RT-PCR in 32 case patients (21 COVID-19 confirmed, 11 suspected). ISH was positive in 20 and subgenomic RNA RT-PCR was positive in 17 of 32 RT-PCR–positive case patients. SARS-CoV-2 RNA was localized by ISH in hyaline membranes, pneumocytes, and macrophages of lungs; epithelial cells of airways; and endothelial cells and vessel walls of brain stem, leptomeninges, lung, heart, liver, kidney, and pancreas. The D614G variant was detected in 9 RT-PCR–positive case patients. Conclusions We identified cellular targets of SARS-CoV-2 tropism and replication in the lungs and airways and demonstrated its direct infection in vascular endothelium. This work provides important insights into COVID-19 pathogenesis and mechanisms of severe outcomes.
Collapse
Affiliation(s)
- Julu Bhatnagar
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Correspondence: Julu Bhatnagar, PhD, Infectious Diseases Pathology Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H18-SB, Atlanta, GA 30329-4027 ()
| | - Joy Gary
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah Reagan-Steiner
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lindsey B Estetter
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Suxiang Tong
- Respiratory Viruses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ying Tao
- Respiratory Viruses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amy M Denison
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth Lee
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marlene DeLeon-Carnes
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yan Li
- Respiratory Viruses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anna Uehara
- Respiratory Viruses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Clinton R Paden
- Respiratory Viruses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brooke Leitgeb
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy M Uyeki
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Roosecelis B Martines
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher D Paddock
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wun-Ju Shieh
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Miellet WR, van Veldhuizen J, Nicolaie MA, Mariman R, Bootsma HJ, Bosch T, Rots NY, Sanders EAM, van Beek J, Trzciński K. Influenza-like Illness Exacerbates Pneumococcal Carriage in Older Adults. Clin Infect Dis 2020; 73:e2680-e2689. [PMID: 33124669 DOI: 10.1093/cid/ciaa1551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In older adults pneumococcal disease is strongly associated with respiratory viral infections, but the impact of viruses on Streptococcus pneumoniae carriage prevalence and load remains poorly understood. Here, we investigated the effects of influenza-like illness (ILI) on pneumococcal carriage in community-dwelling older adults. METHODS We investigated the presence of pneumococcal DNA in saliva samples collected in the 2014/2015 influenza season from 232 individuals aged ≥60 years at ILI-onset, followed by sampling 2-3 weeks and 7-9 weeks after the first sample. We also sampled 194 age-matched controls twice 2-3 weeks apart. Pneumococcal DNA was detected with quantitative-PCRs targeting piaB and lytA genes in raw and in culture-enriched saliva. Bacterial and pneumococcal abundances were determined in raw saliva with 16S and piaB quantification. RESULTS The prevalence of pneumococcus-positive samples was highest at onset of ILI (18% or 42/232) and lowest among controls (13% or 26/194, and 11% or 22/194, at the first and second sampling moment, respectively), though these differences were not significant. Pneumococcal carriage was associated with exposure to young children (OR:2.71, 95%CI 1.51-5.02, p<0.001), and among asymptomatic controls with presence of rhinovirus infection (OR:4.23; 95%CI 1.16-14.22, p<0.05). When compared with carriers among controls, pneumococcal absolute abundances were significantly higher at onset of ILI (p<0.01), and remained elevated beyond recovery from ILI (p<0.05). Finally, pneumococcal abundances were highest in carriage events newly-detected after ILI-onset (estimated geometric mean 1.21E -5, 95%CI 2.48E -7-2.41E -5, compared with pre-existing carriage). CONCLUSIONS ILI exacerbates pneumococcal colonization of the airways in older adults, and this effect persists beyond recovery from ILI.
Collapse
Affiliation(s)
- Willem R Miellet
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mioara A Nicolaie
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Centre for Nutrition, Prevention and Care, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Thijs Bosch
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
40
|
Almeida ST, Paulo AC, Froes F, de Lencastre H, Sá-Leão R. Dynamics of Pneumococcal Carriage in Adults: A New Look at an Old Paradigm. J Infect Dis 2020; 223:1590-1600. [PMID: 32877517 DOI: 10.1093/infdis/jiaa558] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Limited information is available on pneumococcal colonization among adults. We studied pneumococcal carriage dynamics in healthy adults using high-sensitivity approaches. METHODS Eighty-seven adults (25-50 years old) were followed for 6 months in Portugal. Nasopharyngeal, oropharyngeal, and saliva samples were obtained monthly; pneumococcal carriers were also sampled weekly. Carriage was investigated by quantitative polymerase chain reaction (targeting lytA and piaB) and culture. Positive samples were serotyped. RESULTS Approximately 20% of the adults were intermittent carriers; 10% were persistent carriers (>4 months). Pneumococcal acquisition and clearance rates were 16.5 (95% confidence interval [CI], 11.2-24.2) and 95.9 (95% CI, 62.3-145.0) cases/1000 person-weeks, respectively. Living with children increased pneumococcal acquisition (hazard ratio, 9.7 [95% CI, 2.6-20.5]; P < .001). Median duration of carriage was 7 weeks and did not depend on regular contact with children. CONCLUSIONS The pneumococcal carrier state in healthy adults is more dynamic than generally assumed: Acquisition is frequent and duration of carriage is often long. This suggests that some adults may act as reservoirs of pneumococci and hence, depending on the social structure of a community, the magnitude of herd effects potentially attainable through children vaccination may vary. These findings are important when designing strategies to prevent pneumococcal disease in adults.
Collapse
Affiliation(s)
- Sónia T Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Cristina Paulo
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipe Froes
- Unidade de Cuidados Intensivos Médico-Cirúrgicos, Departamento do Tórax, Hospital Pulido Valente Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
41
|
Martines RB, Ritter JM, Matkovic E, Gary J, Bollweg BC, Bullock H, Goldsmith CS, Silva-Flannery L, Seixas JN, Reagan-Steiner S, Uyeki T, Denison A, Bhatnagar J, Shieh WJ, Zaki SR. Pathology and Pathogenesis of SARS-CoV-2 Associated with Fatal Coronavirus Disease, United States. Emerg Infect Dis 2020; 26:2005-2015. [PMID: 32437316 PMCID: PMC7454055 DOI: 10.3201/eid2609.202095] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An ongoing pandemic of coronavirus disease (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Characterization of the histopathology and cellular localization of SARS-CoV-2 in the tissues of patients with fatal COVID-19 is critical to further understand its pathogenesis and transmission and for public health prevention measures. We report clinicopathologic, immunohistochemical, and electron microscopic findings in tissues from 8 fatal laboratory-confirmed cases of SARS-CoV-2 infection in the United States. All cases except 1 were in residents of long-term care facilities. In these patients, SARS-CoV-2 infected epithelium of the upper and lower airways with diffuse alveolar damage as the predominant pulmonary pathology. SARS-CoV-2 was detectable by immunohistochemistry and electron microscopy in conducting airways, pneumocytes, alveolar macrophages, and a hilar lymph node but was not identified in other extrapulmonary tissues. Respiratory viral co-infections were identified in 3 cases; 3 cases had evidence of bacterial co-infection.
Collapse
|
42
|
Farrar JL, Odiembo H, Odoyo A, Bigogo G, Kim L, Lessa FC, Feikin DR, Breiman RF, Whitney CG, Carvalho MG, Pimenta FC. Limited Added Value of Oropharyngeal Swabs for Detecting Pneumococcal Carriage in Adults. Open Forum Infect Dis 2020; 7:ofaa368. [PMID: 32995349 PMCID: PMC7505525 DOI: 10.1093/ofid/ofaa368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 11/14/2022] Open
Abstract
We compared pneumococcal isolation rates and evaluated the benefit of using oropharyngeal (OP) specimens in addition to nasopharyngeal (NP) specimens collected from adults in rural Kenya. Of 846 adults, 52.1% were colonized; pneumococci were detected from both NP and OP specimens in 23.5%, NP only in 22.9%, and OP only in 5.7%. Ten-valent pneumococcal conjugate vaccine strains were detected from both NP and OP in 3.4%, NP only in 4.1%, and OP only in 0.7%. Inclusion of OP swabs increased carriage detection by 5.7%; however, the added cost of collecting and processing OP specimens may justify exclusion from future carriage studies among adults.
Collapse
Affiliation(s)
- Jennifer L Farrar
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Herine Odiembo
- Global Disease Detection Division (GDD) and International Emerging Infections Program (IEIP), Kenya Medical Research Institute (KEMRI)/CDC Public Health and Research Collaboration, Kisumu, Kenya
| | - Arthur Odoyo
- Global Disease Detection Division (GDD) and International Emerging Infections Program (IEIP), Kenya Medical Research Institute (KEMRI)/CDC Public Health and Research Collaboration, Kisumu, Kenya
| | - Godfrey Bigogo
- Global Disease Detection Division (GDD) and International Emerging Infections Program (IEIP), Kenya Medical Research Institute (KEMRI)/CDC Public Health and Research Collaboration, Kisumu, Kenya
| | - Lindsay Kim
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fernanda C Lessa
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Daniel R Feikin
- Global Disease Detection Division (GDD) and International Emerging Infections Program (IEIP), Kenya Medical Research Institute (KEMRI)/CDC Public Health and Research Collaboration, Kisumu, Kenya
| | - Robert F Breiman
- Emory Global Health Institute, Emory University, Atlanta, Georgia, USA
| | - Cynthia G Whitney
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria G Carvalho
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fabiana C Pimenta
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Abstract
Streptococcus pneumoniae (the pneumococcus) carriage is commonly used to measure effects of pneumococcal vaccines. Based on findings from culture-based studies, the World Health Organization recommends both nasopharyngeal (NP) and oropharyngeal (OP) sampling for detecting adult carriage. Given evidence of potential confounding by other streptococci, we evaluated molecular methods for pneumococcal identification and serotyping from 250 OP samples collected from adults in Fiji, using paired NP samples for comparison. Samples were screened using lytA quantitative PCR (qPCR), as well as pneumococcal identification and serotyping conducted by DNA microarray. A subset of OP samples were characterized by latex sweep agglutination and multiplex PCR. Alternate qPCR assays (piaB and bguR) for pneumococcal identification were evaluated. The lytA qPCR was less specific and had poor positive predictive value (PPV) in OP samples (88% and 26%, respectively) compared with NP samples (95% and 64%, respectively). Using additional targets piaB and/or bguR improved qPCR specificity in OP, although the PPV (42 to 53%) was still poor. Using microarray, we found that 102/107 (95%) of OP samples contained nonpneumococcal streptococci with partial or divergent complements of pneumococcal capsule genes. We explored 91 colonies isolated from 11 OP samples using various techniques, including multiplex PCR, latex agglutination, and microarray. We found that nonpneumococcal streptococci contribute to false positives in pneumococcal serotyping and may also contribute to spurious identification by qPCR. Our results highlight that molecular approaches should include multiple loci to minimize false-positive results when testing OP samples. Regardless of method, pneumococcal identification and serotyping results from OP samples should be interpreted with caution.IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a significant global pathogen. Accurate identification and serotyping are vital. In contrast with World Health Organization recommendations based on culture methods, we demonstrate that pneumococcal identification and serotyping with molecular methods are affected by sample type. Results from oropharyngeal samples from adults were often inaccurate. This is particularly important for assessment of vaccine impact using carriage studies, particularly in low- and middle-income countries where there are significant barriers for disease surveillance.
Collapse
|
44
|
Almeida ST, Pedro T, Paulo AC, de Lencastre H, Sá-Leão R. Re-evaluation of Streptococcus pneumoniae carriage in Portuguese elderly by qPCR increases carriage estimates and unveils an expanded pool of serotypes. Sci Rep 2020; 10:8373. [PMID: 32433504 PMCID: PMC7239868 DOI: 10.1038/s41598-020-65399-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of infections worldwide. Disease is preceded by asymptomatic colonization of the upper respiratory tract. Classical culture-based methods (CCBM) suggest that colonization in the elderly is <5%. Recently, use of qPCR has challenged these observations. We estimated pneumococcal carriage prevalence and serotypes among Portuguese elderly using qPCR and compared results with those obtained by CCBM. Nasopharyngeal and oropharyngeal paired samples (599 each) of individuals over 60 years living in nursing (n = 299) or family (n = 300) homes were screened for the presence of pneumococci by qPCR targeting lytA and piaB. Positive samples were molecular serotyped. Use of qPCR improved detection of pneumococci in oropharyngeal samples compared to CCBM: from 0.7% to 10.4% (p < 0.001) in the nursing home collection, and from 0.3% to 5.0% (p < 0.001) in the family home collection. No significant differences were observed between both methods in nasopharyngeal samples (5.4% vs. 5.4% in the nursing homes; and 4.3% vs. 4.7% in the family homes). Twenty-one serotypes/serogroups were detected by qPCR compared to 14 by CCBM. In conclusion, use of qPCR suggests that pneumococcal carriage in Portuguese elderly is approximately 10%, and unveiled a large pool of serotypes. These results are important to understand progression to disease and impact of pneumococcal vaccines in the elderly.
Collapse
Affiliation(s)
- Sónia T Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tânia Pedro
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - A Cristina Paulo
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
45
|
Arguedas A, Trzciński K, O'Brien KL, Ferreira DM, Wyllie AL, Weinberger D, Danon L, Pelton SI, Azzari C, Hammitt LL, Sá-Leão R, Brandileone MCC, Saha S, Suaya J, Isturiz R, Jodar L, Gessner BD. Upper respiratory tract colonization with Streptococcus pneumoniae in adults. Expert Rev Vaccines 2020; 19:353-366. [PMID: 32237926 DOI: 10.1080/14760584.2020.1750378] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Most of the current evidence regarding pneumococcal upper respiratory colonization in adults suggests that despite high disease burden, carriage prevalence is low. Contemporary studies on adult pneumococcal colonization have largely followed the pediatric approach by which samples are obtained mostly from the nasopharynx and bacterial detection is evaluated by routine culture alone. Recent evidence suggests that the 'pediatric approach' may be insufficient in adults and pneumococcal detection in this population may be improved by longitudinal studies that include samples from additional respiratory sites combined with more extensive laboratory testing. AREAS COVERED In this article, relevant literature published in peer review journals on adult pneumococcal colonization, epidemiology, detection methods, and recommendations were reviewed. EXPERT OPINION Respiratory carriage of Streptococcus pneumoniae has been underestimated in adults. Contemporary pneumococcal carriage studies in adults that collect samples from alternative respiratory sites such as the oropharynx, saliva, or nasal wash; are culture-enriched for pneumococcus; and use molecular diagnostic methods designed to target two pneumococcal DNA sequences should enhance pneumococcal detection in the adult respiratory tract. This finding may have implications for the interpretation of dynamics of pneumococcal transmission and vaccination.
Collapse
Affiliation(s)
- Adriano Arguedas
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , Collegeville, PA, USA
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Katherine L O'Brien
- Department of International Health, Johns Hopkins Bloomberg School of Public Health , Baltimore, MD, USA
| | | | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health , New Haven, CT, USA
| | - Daniel Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health , New Haven, CT, USA
| | | | - Stephen I Pelton
- Pediatric Infectious Diseases, Department of Pediatrics, Maxwell Finland Laboratory for Infectious Diseases, Boston Medical Center , Boston, MA, USA
| | - Chiara Azzari
- Meyer Children's Hospital and University of Florence , Florence, Italy
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health , Baltimore, MD, USA
| | - Raquel Sá-Leão
- Instituto De Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras, Portugal
| | | | - Samir Saha
- Child Health Research Foundation , Matuail, Dhaka, Bangladesh
| | - Jose Suaya
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , New York, NY, USA
| | - Raul Isturiz
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , Collegeville, PA, USA
| | - Luis Jodar
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , Collegeville, PA, USA
| | - Bradford D Gessner
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , Collegeville, PA, USA
| |
Collapse
|
46
|
Adams W, Bhowmick R, Bou Ghanem EN, Wade K, Shchepetov M, Weiser JN, McCormick BA, Tweten RK, Leong JM. Pneumolysin Induces 12-Lipoxygenase-Dependent Neutrophil Migration during Streptococcus pneumoniae Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:101-111. [PMID: 31776202 PMCID: PMC7195902 DOI: 10.4049/jimmunol.1800748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
Streptococcus pneumoniae is a major cause of pneumonia, wherein infection of respiratory mucosa drives a robust influx of neutrophils. We have previously shown that S. pneumoniae infection of the respiratory epithelium induces the production of the 12-lipoxygenase (12-LOX)-dependent lipid inflammatory mediator hepoxilin A3, which promotes recruitment of neutrophils into the airways, tissue damage, and lethal septicemia. Pneumolysin (PLY), a member of the cholesterol-dependent cytolysin (CDC) family, is a major S. pneumoniae virulence factor that generates ∼25-nm diameter pores in eukaryotic membranes and promotes acute inflammation, tissue damage, and bacteremia. We show that a PLY-deficient S. pneumoniae mutant was impaired in triggering human neutrophil transepithelial migration in vitro. Ectopic production of PLY endowed the nonpathogenic Bacillus subtilis with the ability to trigger neutrophil recruitment across human-cultured monolayers. Purified PLY, several other CDC family members, and the α-toxin of Clostridium septicum, which generates pores with cross-sectional areas nearly 300 times smaller than CDCs, reproduced this robust neutrophil transmigration. PLY non-pore-forming point mutants that are trapped at various stages of pore assembly did not recruit neutrophils. PLY triggered neutrophil recruitment in a 12-LOX-dependent manner in vitro. Instillation of wild-type PLY but not inactive derivatives into the lungs of mice induced robust 12-LOX-dependent neutrophil migration into the airways, although residual inflammation induced by PLY in 12-LOX-deficient mice indicates that 12-LOX-independent pathways also contribute to PLY-triggered pulmonary inflammation. These data indicate that PLY is an important factor in promoting hepoxilin A3-dependent neutrophil recruitment across pulmonary epithelium in a pore-dependent fashion.
Collapse
Affiliation(s)
- Walter Adams
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192
| | - Rudra Bhowmick
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Kristin Wade
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Mikhail Shchepetov
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; and
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111;
| |
Collapse
|
47
|
Sutcliffe CG, Grant LR, Cloessner E, Klugman KP, Vidal JE, Reid R, Colelay J, Weatherholtz RC, Chochua S, Jacobs MR, Santosham M, O’Brien KL, Hammitt LL. Association of Laboratory Methods, Colonization Density, and Age With Detection of Streptococcus pneumoniae in the Nasopharynx. Am J Epidemiol 2019; 188:2110-2119. [PMID: 31509184 PMCID: PMC7036660 DOI: 10.1093/aje/kwz191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/19/2019] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Culture-based methods for detecting Streptococcus pneumoniae in the nasopharynx lack sensitivity. In this study, we aimed to compare the performance of culture and molecular methods in detecting pneumococcus in the nasopharynx of healthy individuals and to evaluate the associations of age and colonization density with detection. Between 2010 and 2012, nasopharyngeal specimens were collected from healthy individuals living on Navajo Nation and White Mountain Apache Tribal lands in the United States. Pneumococci were detected by means of broth-enrichment culture and autolysin-encoding gene (lytA) quantitative polymerase chain reaction (qPCR). Among 982 persons evaluated (median age, 18.7 years; 47% male), 35% were culture-positive and an additional 27% were qPCR-positive. Agreement between culture and qPCR was 70.9% but was higher among children (age <18 years) (75.9%-84.4%) than among adults (age ≥18 years) (61.0%-74.6%). The mean density of colonization was lower for culture-negative samples (3.14 log10 copies/mL) than for culture-positive samples (5.02 log10 copies/mL), overall and for all age groups. The percent culture-positive increased with increasing density, exceeding 80% at densities of ≥10,000 copies/mL. Mean colonization density decreased with age. Use of qPCR improved detection of pneumococcus in the nasopharynx of healthy individuals. This finding was most notable among adults, probably because of improved detection of low-density colonization.
Collapse
Affiliation(s)
- Catherine G Sutcliffe
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lindsay R Grant
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Emily Cloessner
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jorge E Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Raymond Reid
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Janene Colelay
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Robert C Weatherholtz
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Sopio Chochua
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Michael R Jacobs
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mathuram Santosham
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Katherine L O’Brien
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Laura L Hammitt
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
48
|
van Deursen AMM, van Houten MA, Webber C, Patton M, Scott D, Patterson S, Jiang Q, Gruber WC, Schmoele-Thoma B, Grobbee DE, Bonten MJM, Sanders EAM. The Impact of the 13-Valent Pneumococcal Conjugate Vaccine on Pneumococcal Carriage in the Community Acquired Pneumonia Immunization Trial in Adults (CAPiTA) Study. Clin Infect Dis 2019; 67:42-49. [PMID: 29324986 DOI: 10.1093/cid/ciy009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Abstract
Background The impact of pneumococcal conjugate vaccination on the prevalence of nasopharyngeal carriage with pneumococci and other bacteria in adults is unknown. The direct effects of the 13-valent pneumococcal conjugate vaccine (PCV13) in community dwelling older adults was investigated as part of the randomized controlled Community Acquired Pneumonia immunization Trial in Adults (CAPiTA). Methods We determined the carriage of Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis before and 6, 12, and 24 months after vaccination using polymerase chain reaction (PCR)-based methods and conventional cultures of nasopharyngeal and oropharyngeal swab samples in 1006 PCV13 recipients and 1005 controls. Serotyping of the 13 vaccine-type (VT) pneumococci was performed by PCR targeting capsular synthesis genes and Quellung reaction of isolates. Results Before randomization and based on PCR, 339 of 1891 subjects had nasopharyngeal carriage with any pneumococci (17.9%), and 114 of 1891 (6.0%) carried VT pneumococci. At 6 months after vaccination, VT pneumococcal carriage was significantly lower in PCV13 recipients than in the placebo group (relative risk, 0.53; 95% confidence interval, .35-.80; P = .04). There was no difference between the groups at 12 and 24 months after vaccination. Carriage of non-VT pneumococci, S. aureus, H. influenzae, and M. catarrhalis did not change between groups. Conclusions In community-dwelling adults aged ≥65 years, a single dose of PCV13 seems to elicit a small and temporary reduction in VT carriage 6 months after vaccination. Neither replacement by non-VT serotypes nor impact on other nasopharyngeal bacteria was observed.
Collapse
Affiliation(s)
- Anna M M van Deursen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands.,Department of Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands.,Spaarne Gasthuis Academy, Hoofddorp
| | | | - Chris Webber
- Pfizer Vaccine Clinical Research & Development, Pearl River, New York
| | - Michael Patton
- Pfizer Vaccine Clinical Research & Development, Hurley, United Kingdom
| | - Daniel Scott
- Pfizer Vaccine Clinical Research & Development, Pearl River, New York
| | - Scott Patterson
- Pfizer Vaccine Clinical Research & Development, Collegeville, Pennsylvania
| | - Qin Jiang
- Pfizer Vaccine Clinical Research & Development, Collegeville, Pennsylvania
| | - William C Gruber
- Pfizer Vaccine Clinical Research & Development, Pearl River, New York
| | | | - Diederick E Grobbee
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands.,Julius Clinical, Zeist, the Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, the Netherlands
| | - Elisabeth A M Sanders
- Department of Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
49
|
Peela SCM, Sistla S, Tamilarasu K, Krishnamurthy S, Adhishivam B. Validation of pneumococcal iron acquisition ( piaA) gene for accurate identification of Streptococcus pneumoniae. Indian J Med Microbiol 2019; 36:504-507. [PMID: 30880696 DOI: 10.4103/ijmm.ijmm_18_274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Purpose The pneumococcal iron acquisition (piaA) gene is found to be highly specific and hence proposed as a diagnostic marker for identification of pneumococci. The objective of the present study was to evaluate the piaA gene as a genetic marker for the identification of pneumococci. Methods Twenty isolates were initially sequenced for lytA gene using published primers. PiaA-PCR (piaA polymerase chain reaction) was performed using in-house primers and protocol. Based on the sensitivity and specificity results, a final sample of 30 pneumococcal isolates and 11 non-pneumococcal isolates confirmed with lytA- sequencing were selected. Statistical analyses were performed using OpenEpi v3.01 and GraphPad Quickcalc at P < 0.05 as the level of statistical significance. Results Of the initial 20 samples tested, piaA PCR was positive in only 71.43% (10/14) of the pneumococcal isolates but was 100% specific (0/6 non-pneumococcal isolates) P = 0.011. When the PCR was performed on 41 samples, the sensitivity increased to 73.33% (95% of confidence interval [CI] = 55.55-85.82) and specificity remained the same P < 0.001. The level of agreement between the PCR and lytA-sequencing was found to be moderate (κ = 0.694; 95% CI = 0.432-0.955). Conclusions PiaA-PCR can be used as a specific marker for the identification of pneumococcus, though it is less sensitive. As the level of agreement was moderate, further analyses on a large number of samples can give conclusive evidence for its use as a diagnostic marker for pneumococcus.
Collapse
Affiliation(s)
- Sreeram Chandra Murthy Peela
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sujatha Sistla
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Kadhiravan Tamilarasu
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sriram Krishnamurthy
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - B Adhishivam
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
50
|
Sutcliffe CG, Shet A, Varghese R, Veeraraghavan B, Manoharan A, Wahl B, Chandy S, Sternal J, Khan R, Singh RK, Santosham M, Arora NK. Nasopharyngeal carriage of Streptococcus pneumoniae serotypes among children in India prior to the introduction of pneumococcal conjugate vaccines: a cross-sectional study. BMC Infect Dis 2019; 19:605. [PMID: 31291902 PMCID: PMC6621985 DOI: 10.1186/s12879-019-4254-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major cause of pneumonia, meningitis, and other serious infections among children in India. India introduced the 13-valent pneumococcal conjugate vaccine (PCV) in several states in 2017, and is expected to expand to nationwide coverage in the near future. To establish a baseline for measuring the impact of PCV in India, we assessed overall and serotype-specific nasopharyngeal carriage in two pediatric populations. METHODS A cross-sectional study was conducted in Palwal District, Haryana, from December 2016 to July 2017, prior to vaccine introduction. Children 2-59 months of age with clinical pneumonia seeking healthcare and those in the community with no clear illness were targeted for enrollment. A nasopharyngeal swab was collected and tested for pneumococcus using conventional culture and sequential multiplex PCR. Isolates were tested for antimicrobial resistance using an E test. Children were considered colonized if pneumococcus was isolated by culture or PCR. The prevalence of pneumococcal and serotype-specific colonization was compared between groups of children using log-binomial regression. RESULTS Among 601 children enrolled, 91 had clinical pneumonia and 510 were community children. The proportion colonized with S. pneumoniae was 74.7 and 54.5% among children with clinical pneumonia and community children, respectively (adjusted prevalence ratio: 1.38; 95% confidence interval: 1.19, 1.60). The prevalence of PCV13 vaccine-type colonization was similar between children with clinical pneumonia (31.9%) and community children (28.0%; p = 0.46). The most common colonizing serotypes were 6A, 6B, 14, 19A, 19F, and 23F, all of which are included in the PCV13 vaccine product. Antimicrobial resistance to at least one drug was similar between isolates from children with clinical pneumonia (66.1%) and community children (61.5%; p = 0.49); while resistance to at least two drugs was more common among isolates from children with clinical pneumonia (25.8% vs. 16.4%; p = 0.08). Resistance for all drugs was consistently higher for PCV13 vaccine-type serotypes compared to non-vaccine serotypes in both groups. CONCLUSION This study provides baseline information on the prevalence of serotype-specific pneumococcal colonization among children prior to the introduction of PCV in India. Our results suggest a role for pneumococcal vaccines in reducing pneumococcal colonization and antimicrobial resistant isolates circulating in India.
Collapse
Affiliation(s)
- Catherine G Sutcliffe
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Anita Shet
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Rosemol Varghese
- Christian Medical College, Ida Scudder Road, Vellore, Tamil Nadu, 632004, India
| | | | - Anand Manoharan
- The CHILDS Trust Medical Research Foundation, 12-A Nageswara Road, Nungambakkam, Chennai, 600034, India
| | - Brian Wahl
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Sara Chandy
- The CHILDS Trust Medical Research Foundation, 12-A Nageswara Road, Nungambakkam, Chennai, 600034, India
| | - Jack Sternal
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Raziuddin Khan
- The INCLEN Trust International, F-1/5, 2nd Floor, Okhla Industrial Area Phase - 1, New Delhi, 110020, India
| | - Rakesh Kumar Singh
- The INCLEN Trust International, F-1/5, 2nd Floor, Okhla Industrial Area Phase - 1, New Delhi, 110020, India
| | - Mathuram Santosham
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Narendra K Arora
- The INCLEN Trust International, F-1/5, 2nd Floor, Okhla Industrial Area Phase - 1, New Delhi, 110020, India.
| |
Collapse
|