1
|
Lapidus S, Goheen MM, Sy M, Deme AB, Ndiaye IM, Diedhiou Y, Mbaye AM, Hagadorn KA, Sene SD, Pouye MN, Thiam LG, Ba A, Guerra N, Mbengue A, Raduwan H, Gagnon J, Vigan-Womas I, Parikh S, Ko AI, Ndiaye D, Fikrig E, Chuang YM, Bei AK. Two Mosquito Salivary Antigens Demonstrate Promise as Biomarkers of Recent Exposure to Plasmodium falciparum-Infected Mosquito Bites. J Infect Dis 2025; 231:e570-e581. [PMID: 39475423 PMCID: PMC11911913 DOI: 10.1093/infdis/jiae525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Measuring malaria transmission intensity using the traditional entomological inoculation rate is difficult. Antibody responses to mosquito salivary proteins like SG6 have been used as biomarkers of exposure to Anopheles mosquito bites. Here, we investigate 4 mosquito salivary proteins as potential biomarkers of human exposure to mosquitoes infected with Plasmodium falciparum: mosGILT, SAMSP1, AgSAP, and AgTRIO. METHODS We tested population-level human immune responses in longitudinal and cross-sectional plasma from individuals with known P falciparum infection from low- and moderate-transmission areas in Senegal using a multiplexed magnetic bead-based assay. RESULTS AgSAP and AgTRIO were the best indicators of recent exposure to infected mosquitoes. Antibody responses to AgSAP, in a moderate-endemicity area, and to AgTRIO in both low- and moderate-endemicity areas, were significantly higher than nonendemic controls. No antibody responses significantly differed between low- and moderate-transmission areas, or between equivalent groups during and outside the malaria transmission seasons. AgSAP and AgTRIO reactivity peaked 2-4 weeks after clinical P falciparum infection and declined 3 months after infection. CONCLUSIONS Reactivity to AgSAP and AgTRIO reflects exposure to infectious mosquitoes or recent bites rather than general mosquito exposure, highlighting their promise for incorporation into multiplexed assays for serosurveillance of population-level changes in P falciparum-infected mosquito exposure.
Collapse
Affiliation(s)
- Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
| | - Morgan M Goheen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Kelly A Hagadorn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
| | - Seynabou Diouf Sene
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Mariama Nicole Pouye
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Laty Gaye Thiam
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Aboubacar Ba
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Noemi Guerra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
| | - Alassane Mbengue
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jacqueline Gagnon
- L2 Diagnostics, LLC, Department of Research and Development, New Haven, Connecticut
| | - Inés Vigan-Womas
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| |
Collapse
|
2
|
Mwesigwa A, Kiwuwa SM, Musinguzi B, Kawalya H, Katumba JD, Baguma A, Mutuku IM, Adebayo IA, Nsobya SL, Byakika-Kibwika P, Kalyango JN, Karamagi C, Nankabirwa JI. Temporal changes in Plasmodium falciparum genetic diversity and multiplicity of infection across three areas of varying malaria transmission intensities in Uganda. Trop Med Health 2024; 52:103. [PMID: 39734236 DOI: 10.1186/s41182-024-00672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Malaria is a significant public health challenge in Uganda, with Plasmodium falciparum (P. falciparum) responsible for most of malaria infections. The high genetic diversity and multiplicity of infection (MOI) associated with P. falciparum complicate treatment and prevention efforts. This study investigated temporal changes in P. falciparum genetic diversity and MOI across three sites with varying malaria transmission intensities. Understanding these changes is essential for informing effective malaria control strategies for the different malaria transmission settings. METHODS A total of 220 P. falciparum-positive dried blood spot (DBS) filter paper samples from participants in a study conducted during 2011-2012 and 2015-2016 were analyzed. Genotyping utilized seven polymorphic markers: Poly-α, TA1, TA109, PfPK2, 2490, C2M34-313, and C3M69-383. Genetic diversity metrics, including the number of alleles and expected heterozygosity, were calculated using GENALEX and ARLEQUIN software. MOI was assessed by counting distinct genotypes. Multi-locus linkage disequilibrium (LD) and genetic differentiation were evaluated using the standardized index of association (IAS) and Wright's fixation index (FST), respectively. Statistical comparisons were made using the Kruskal-Wallis test, and temporal trends were analyzed using the Jonckheere-Terpstra test, with statistical significance set at p < 0.05. RESULTS Of the 220 samples, 180 were successfully amplified. The majority of participants were males (50.6%) and children aged 5-11 years (46.7%). Genetic diversity remained high, with mean expected heterozygosity (He) showing a slight decrease over time (range: 0.73-0.82). Polyclonal infections exceeded 50% at all sites, and mean MOI ranged from 1.7 to 2.2, with a significant reduction in Tororo (from 2.2 to 2.0, p = 0.03). Linkage disequilibrium showed a slight increase, with Kanungu exhibiting the lowest IAS in 2011-2012 (0.0085) and Jinja the highest (0.0239) in 2015-2016. Overall genetic differentiation remained low, with slight increases in pairwise FST values over time, notably between Jinja and Tororo (from 0.0145 to 0.0353). CONCLUSIONS This study highlights the genetic diversity and MOI of P. falciparum in Uganda's malaria transmission settings, noting a slight decrease in both genetic diversity and MOI overtime. Continued surveillance and targeted control strategies are essential for monitoring the impact of malaria control efforts in Uganda.
Collapse
Affiliation(s)
- Alex Mwesigwa
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda.
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda.
| | - Steven M Kiwuwa
- Department of Biochemistry, School of Biomedical Sciences, College of Health Sciences, Makerere, University, P.O. Box 7072, Kampala, Uganda
| | - Benson Musinguzi
- Departent of Medical Laboratory Science, Faculty of Health Sciences, Muni University, P.O. Box 725, Arua, Uganda
| | - Hakiim Kawalya
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | | | - Andrew Baguma
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda
| | - Irene M Mutuku
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda
| | - Ismail Abiola Adebayo
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda
| | - Samuel L Nsobya
- Infectious Diseases Research Collaboration (IDRC), P.O. Box 7475, Kampala, Uganda
| | | | - Joan N Kalyango
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Charles Karamagi
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration (IDRC), P.O. Box 7475, Kampala, Uganda
| |
Collapse
|
3
|
da Silva C, Matambisso G, Boene S, Rovira-Vallbona E, Pujol A, Comiche K, Sánchez A, Greenhouse B, Chidimatembue A, Aranda-Díaz A, Arnaldo P, Ariani C, Walker P, Mbeve H, Ndimande N, Tembisse D, Ruybal-Pesántez S, Verity R, Rafael B, Candrinho B, Mayor A. Plasmodium falciparum molecular surveillance to inform the Mozambican National Malaria Control Programme strategy: protocol. BMJ Open 2024; 14:e092590. [PMID: 39581722 PMCID: PMC11590854 DOI: 10.1136/bmjopen-2024-092590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
INTRODUCTION Malaria molecular surveillance has the potential to generate information on biological threats that compromise the effectiveness of antimalarial interventions. This study aims to streamline surveillance activities to inform the new strategic plan of the Mozambican National Malaria Control Programme (2023-2030) for malaria control and elimination. METHODS AND ANALYSES This prospective genomic surveillance study aims to generate Plasmodium falciparum genetic data to monitor diagnostic failures due to pfhrp2/3 deletions and molecular markers of antimalarial drug resistance, to characterise transmission sources and to inform the implementation of new antimalarial approaches to be introduced in Mozambique (chemoprevention and child malaria vaccination). The study, to be conducted between 2024 and 2026, will use three sampling schemes: a multicluster probabilistic health facility survey in the 10 provinces of the country to detect pfhrp2/3 deletions and markers of antimalarial drug resistance; dense sampling of all clinical cases in representative districts in the south targeted for elimination to characterise malaria importation and identify sources of transmission; and testing of pregnant women for malaria at their first antenatal care visit to assess malaria burden and molecular trends. Using a multiplex amplicon-based sequencing approach, the study will target microhaplotypes informative of genomic diversity and relatedness, as well as key drug resistance-associated genes, pfhrp2/3 deletion and malaria vaccine targets. Key genomic information will be visualised in a dashboard integrated into the District Health Information System V.2-based Malaria Information Storage System for programmatic use. ETHICS AND DISSEMINATION The protocol was reviewed and approved by the national ethics committee of Mozambique (Comité Nacional de Bioética para Saúde, Ref: 680/CNBS/23). Project results will be presented to all stakeholders using study-specific brochures and published in open-access journals. TRIAL REGISTRATION NUMBER NCT06529237.
Collapse
Affiliation(s)
- Clemente da Silva
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Gloria Matambisso
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Simone Boene
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | | | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | | - Patrick Walker
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Henriques Mbeve
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Nelo Ndimande
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Dário Tembisse
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Bernardete Rafael
- National Malaria Control Program, Ministry of Health, Maputo, Mozambique
| | - Baltazar Candrinho
- National Malaria Control Program, Ministry of Health, Maputo, Mozambique
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Chen Y, Ng PY, Garcia D, Elliot A, Palmer B, Assunção Carvalho RMCD, Tseng LF, Lee CS, Tsai KH, Greenhouse B, Chang HH. Genetic surveillance reveals low, sustained malaria transmission with clonal replacement in Sao Tome and Principe. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24309968. [PMID: 39072035 PMCID: PMC11275696 DOI: 10.1101/2024.07.15.24309968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite efforts to eliminate malaria in Sao Tome and Principe (STP), cases have recently increased. Understanding residual transmission structure is crucial for developing effective elimination strategies. This study collected surveillance data and generated amplicon sequencing data from 980 samples between 2010 and 2016 to examine the genetic structure of the parasite population. The mean multiplicity of infection (MOI) was 1.3, with 11% polyclonal infections, indicating low transmission intensity. Temporal trends of these genetic metrics did not align with incidence rates, suggesting that changes in genetic metrics may not straightforwardly reflect changes in transmission intensity, particularly in low transmission settings where genetic drift and importation have a substantial impact. While 88% of samples were genetically linked, continuous turnover in genetic clusters and changes in drug-resistance haplotypes were observed. Principal component analysis revealed some STP samples were genetically similar to those from Central and West Africa, indicating possible importation. These findings highlight the need to prioritize several interventions such as targeted interventions against transmission hotspots, reactive case detection, and strategies to reduce the introduction of new parasites into this island nation as it approaches elimination. This study also serves as a case study for implementing genetic surveillance in a low transmission setting.
Collapse
Affiliation(s)
- Ying‑An Chen
- EPPIcenter Research Program, Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, United States
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Peng-Yin Ng
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Daniel Garcia
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Bioinformatics Program, Institute of Statistical Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Aaron Elliot
- EPPIcenter Research Program, Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, United States
| | - Brian Palmer
- EPPIcenter Research Program, Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, United States
| | | | - Lien-Fen Tseng
- Taiwan Anti-Malarial Advisory Mission, São Tomé, Democratic Republic of São Tomé and Príncipe
| | - Cheng-Sheng Lee
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Kun-Hsien Tsai
- Taiwan Anti-Malarial Advisory Mission, São Tomé, Democratic Republic of São Tomé and Príncipe
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, United States
| | - Hsiao-Han Chang
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Badiane AS, Ngom B, Ndiaye T, Cunningham D, Campbell J, Gaye A, Sène A, Sy M, Ndiaye D, Nwakanma D, Langhorne J. Evidence of Plasmodium vivax circulation in western and eastern regions of Senegal: implications for malaria control. Malar J 2024; 23:149. [PMID: 38750583 PMCID: PMC11097470 DOI: 10.1186/s12936-024-04932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Malaria elimination in Senegal requires accurate diagnosis of all Plasmodium species. Plasmodium falciparum is the most prevalent species in Senegal, although Plasmodium malariae, Plasmodium ovale, and recently Plasmodium vivax have also been reported. Nonetheless, most malaria control tools, such as Histidine Rich Protein 2 rapid diagnosis test (PfHRP2-RDT,) can only diagnose P. falciparum. Thus, PfHRP2-RDT misses non-falciparum species and P. falciparum infections that fall below the limit of detection. These limitations can be addressed using highly sensitive Next Generation Sequencing (NGS). This study assesses the burden of the four different Plasmodium species in western and eastern regions of Senegal using targeted PCR amplicon sequencing. METHODS Three thousand samples from symptomatic and asymptomatic individuals in 2021 from three sites in Senegal (Sessene, Diourbel region; Parcelles Assainies, Kaolack region; Gabou, Tambacounda region) were collected. All samples were tested using PfHRP2-RDT and photoinduced electron transfer polymerase chain reaction (PET-PCR), which detects all Plasmodium species. Targeted sequencing of the nuclear 18S rRNA and the mitochondrial cytochrome B genes was performed on PET-PCR positive samples. RESULTS Malaria prevalence by PfHRP2-RDT showed 9.4% (94/1000) and 0.2% (2/1000) in Diourbel (DBL) and Kaolack (KL), respectively. In Tambacounda (TAM) patients who had malaria symptoms and had a negative PfHRP2-RDT were enrolled. The PET-PCR had a positivity rate of 23.5% (295/1255) overall. The PET-PCR positivity rate was 37.6%, 12.3%, and 22.8% in Diourbel, Kaolack, and Tambacounda, respectively. Successful sequencing of 121/295 positive samples detected P. falciparum (93%), P. vivax (2.6%), P. malariae (4.4%), and P. ovale wallikeri (0.9%). Plasmodium vivax was co-identified with P. falciparum in thirteen samples. Sequencing also detected two PfHRP2-RDT-negative mono-infections of P. vivax in Tambacounda and Kaolack. CONCLUSION The findings demonstrate the circulation of P. vivax in western and eastern Senegal, highlighting the need for improved malaria control strategies and accurate diagnostic tools to better understand the prevalence of non-falciparum species countrywide.
Collapse
Affiliation(s)
- Aida S Badiane
- Laboratory of Parasitology and Mycology, Faculty of Medicine, Pharmacy and Odontology, Université Cheikh Anta Diop of Dakar, Darkar, Sénégal.
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal.
| | - Bassirou Ngom
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Tolla Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Deirdre Cunningham
- Malaria Immunology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James Campbell
- Bioinformatics and Biostatistics Science Technology Platforms (STP), The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Amy Gaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Aita Sène
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Mouhamad Sy
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Faculty of Medicine, Pharmacy and Odontology, Université Cheikh Anta Diop of Dakar, Darkar, Sénégal
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Jean Langhorne
- Malaria Immunology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
6
|
Lapidus S, Goheen MM, Sy M, Deme AB, Ndiaye IM, Diedhiou Y, Mbaye AM, Hagadorn KA, Sene SD, Pouye MN, Thiam LG, Ba A, Guerra N, Mbengue A, Raduwan H, Vigan-Womas I, Parikh S, Ko AI, Ndiaye D, Fikrig E, Chuang YM, Bei AK. Two mosquito salivary antigens demonstrate promise as biomarkers of recent exposure to P. falciparum infected mosquito bites. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.20.24305430. [PMID: 38712295 PMCID: PMC11071555 DOI: 10.1101/2024.04.20.24305430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Measuring malaria transmission intensity using the traditional entomological inoculation rate is difficult. Antibody responses to mosquito salivary proteins such as SG6 have previously been used as biomarkers of exposure to Anopheles mosquito bites. Here, we investigate four mosquito salivary proteins as potential biomarkers of human exposure to mosquitoes infected with P. falciparum: mosGILT, SAMSP1, AgSAP, and AgTRIO. Methods We tested population-level human immune responses in longitudinal and cross-sectional plasma samples from individuals with known P. falciparum infection from low and moderate transmission areas in Senegal using a multiplexed magnetic bead-based assay. Results AgSAP and AgTRIO were the best indicators of recent exposure to infected mosquitoes. Antibody responses to AgSAP, in a moderate endemic area, and to AgTRIO in both low and moderate endemic areas, were significantly higher than responses in a healthy non-endemic control cohort (p-values = 0.0245, 0.0064, and <0.0001 respectively). No antibody responses significantly differed between the low and moderate transmission area, or between equivalent groups during and outside the malaria transmission seasons. For AgSAP and AgTRIO, reactivity peaked 2-4 weeks after clinical P. falciparum infection and declined 3 months after infection. Discussion Reactivity to both AgSAP and AgTRIO peaked after infection and did not differ seasonally nor between areas of low and moderate transmission, suggesting reactivity is likely reflective of exposure to infectious mosquitos or recent biting rather than general mosquito exposure. Kinetics suggest reactivity is relatively short-lived. AgSAP and AgTRIO are promising candidates to incorporate into multiplexed assays for serosurveillance of population-level changes in P. falciparum-infected mosquito exposure.
Collapse
Affiliation(s)
- Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Morgan M Goheen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Kelly A Hagadorn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Seynabou Diouf Sene
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mariama Nicole Pouye
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Noemi Guerra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Hamidah Raduwan
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Inés Vigan-Womas
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Erol Fikrig
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Yu-Min Chuang
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
7
|
Wong W, Schaffner SF, Thwing J, Seck MC, Gomis J, Diedhiou Y, Sy N, Ndiop M, Ba F, Diallo I, Sene D, Diallo MA, Ndiaye YD, Sy M, Sene A, Sow D, Dieye B, Tine A, Ribado J, Suresh J, Lee A, Battle KE, Proctor JL, Bever CA, MacInnis B, Ndiaye D, Hartl DL, Wirth DF, Volkman SK. Evaluating the performance of Plasmodium falciparum genetic metrics for inferring National Malaria Control Programme reported incidence in Senegal. Malar J 2024; 23:68. [PMID: 38443939 PMCID: PMC10916253 DOI: 10.1186/s12936-024-04897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. METHODS This study examined parasites from 3147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. RESULTS Model-predicted incidence was compared with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (< 10/1000/annual [‰]). CONCLUSIONS When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence > 10‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was < 10‰, many of the correlations between parasite genetics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Stephen F Schaffner
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Julie Thwing
- Malaria Branch, Division of Parasitic Diseases and Malaria, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mame Cheikh Seck
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Jules Gomis
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Younouss Diedhiou
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Ngayo Sy
- Section de Lutte Anti-Parasitaire (SLAP) Clinic, Thies, Senegal
| | - Medoune Ndiop
- Programme National de Lutte contre le Paludisme (PNLP), Dakar, Senegal
| | - Fatou Ba
- Programme National de Lutte contre le Paludisme (PNLP), Dakar, Senegal
| | - Ibrahima Diallo
- Programme National de Lutte contre le Paludisme (PNLP), Dakar, Senegal
| | - Doudou Sene
- Programme National de Lutte contre le Paludisme (PNLP), Dakar, Senegal
| | - Mamadou Alpha Diallo
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Yaye Die Ndiaye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Mouhamad Sy
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Aita Sene
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Djiby Sow
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Baba Dieye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Abdoulaye Tine
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Jessica Ribado
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Joshua Suresh
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Albert Lee
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Katherine E Battle
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Joshua L Proctor
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Caitlin A Bever
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Bronwyn MacInnis
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Daouda Ndiaye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA.
| |
Collapse
|
8
|
Wong W, Schaffner SF, Thwing J, Seck MC, Gomis J, Diedhiou Y, Sy N, Ndiop M, Ba F, Diallo I, Sene D, Diallo MA, Ndiaye YD, Sy M, Sene A, Sow D, Dieye B, Tine A, Ribado J, Suresh J, Lee A, Battle KE, Proctor JL, Bever CA, MacInnis B, Ndiaye D, Hartl DL, Wirth DF, Volkman SK. Evaluating the performance of Plasmodium falciparum genetics for inferring National Malaria Control Program reported incidence in Senegal. RESEARCH SQUARE 2023:rs.3.rs-3516287. [PMID: 37961451 PMCID: PMC10635402 DOI: 10.21203/rs.3.rs-3516287/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programs (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. Here, we examined parasites from 3,147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, we constructed a series of Poisson generalized linear mixed-effects models to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. We compared the model-predicted incidence with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (<10/1000/annual [‰]). When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence >10 ‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was <10 ‰, we found that many of the correlations between parasite genetics and incidence were reversed, which we hypothesize reflects the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.
Collapse
Affiliation(s)
| | | | | | - Mame Cheikh Seck
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Jules Gomis
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Younouss Diedhiou
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Ngayo Sy
- Section de Lutte Anti-Parasitaire (SLAP) Clinic
| | | | - Fatou Ba
- Programme National de Lutte Contre le Paludisme
| | - Ibrahima Diallo
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Doudou Sene
- Programme National de Lutte Contre le Paludisme
| | - Mamadou Alpha Diallo
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Yaye Die Ndiaye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Mouhamad Sy
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Aita Sene
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Djiby Sow
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Baba Dieye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Abdoulaye Tine
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | - Jessica Ribado
- Institute for Disease Modeling, Bill and Melinda Gates Foundation
| | - Joshua Suresh
- Institute for Disease Modeling, Bill and Melinda Gates Foundation
| | - Albert Lee
- Institute for Disease Modeling, Bill and Melinda Gates Foundation
| | | | - Joshua L Proctor
- Institute for Disease Modeling, Bill and Melinda Gates Foundation
| | - Caitlin A Bever
- Institute for Disease Modeling, Bill and Melinda Gates Foundation
| | | | - Daouda Ndiaye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS)
| | | | | | | |
Collapse
|
9
|
Argyropoulos DC, Tan MH, Adobor C, Mensah B, Labbé F, Tiedje KE, Koram KA, Ghansah A, Day KP. Performance of SNP barcodes to determine genetic diversity and population structure of Plasmodium falciparum in Africa. Front Genet 2023; 14:1071896. [PMID: 37323661 PMCID: PMC10267394 DOI: 10.3389/fgene.2023.1071896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been proposed to be an economical method to fast-track the population genetic analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used successfully in low-transmission areas where infections are monoclonal and highly related, we present the first study to evaluate the performance of these 24- and 96-SNP molecular barcodes in African countries, characterised by moderate-to-high transmission, where multiclonal infections are prevalent. For SNP barcodes it is generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele frequency greater than 0.10, and iii) are independently segregating, to minimise bias in the analysis of genetic diversity and population structure. Further, to be standardised and used in many population genetic studies, these barcodes should maintain characteristics i) to iii) across various iv) geographies and v) time points. Using haplotypes generated from the MalariaGEN P. falciparum Community Project version six database, we investigated the ability of these two barcodes to fulfil these criteria in moderate-to-high transmission African populations in 25 sites across 10 countries. Predominantly clinical infections were analysed, with 52.3% found to be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate thereby impeding haplotype construction. Of the 24- and 96-SNPs, loci were removed if they were not biallelic and had low minor allele frequencies in all study populations, resulting in 20- and 75-SNP barcodes respectively for downstream population genetics analysis. Both SNP barcodes had low expected heterozygosity estimates in these African settings and consequently biased analyses of similarity. Both minor and major allele frequencies were temporally unstable. These SNP barcodes were also shown to identify weak genetic differentiation across large geographic distances based on Mantel Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to ascertainment bias and as such cannot be used as a standardised approach for malaria surveillance in moderate-to-high transmission areas in Africa, where the greatest genomic diversity of P. falciparum exists at local, regional and country levels.
Collapse
Affiliation(s)
- Dionne C. Argyropoulos
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Courage Adobor
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benedicta Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frédéric Labbé
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Ghansah A, Tiedje KE, Argyropoulos DC, Onwona CO, Deed SL, Labbé F, Oduro AR, Koram KA, Pascual M, Day KP. Comparison of molecular surveillance methods to assess changes in the population genetics of Plasmodium falciparum in high transmission. FRONTIERS IN PARASITOLOGY 2023; 2:1067966. [PMID: 38031549 PMCID: PMC10686283 DOI: 10.3389/fpara.2023.1067966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/14/2023] [Indexed: 12/01/2023]
Abstract
A major motivation for developing molecular methods for malaria surveillance is to measure the impact of control interventions on the population genetics of Plasmodium falciparum as a potential marker of progress towards elimination. Here we assess three established methods (i) single nucleotide polymorphism (SNP) barcoding (panel of 24-biallelic loci), (ii) microsatellite genotyping (panel of 12-multiallelic loci), and (iii) varcoding (fingerprinting var gene diversity, akin to microhaplotyping) to identify changes in parasite population genetics in response to a short-term indoor residual spraying (IRS) intervention. Typical of high seasonal transmission in Africa, multiclonal infections were found in 82.3% (median 3; range 1-18) and 57.8% (median 2; range 1-12) of asymptomatic individuals pre- and post-IRS, respectively, in Bongo District, Ghana. Since directly phasing multilocus haplotypes for population genetic analysis is not possible for biallelic SNPs and microsatellites, we chose ~200 low-complexity infections biased to single and double clone infections for analysis. Each genotyping method presented a different pattern of change in diversity and population structure as a consequence of variability in usable data and the relative polymorphism of the molecular markers (i.e., SNPs < microsatellites < var). Varcoding and microsatellite genotyping showed the overall failure of the IRS intervention to significantly change the population structure from pre-IRS characteristics (i.e., many diverse genomes of low genetic similarity). The 24-SNP barcode provided limited information for analysis, largely due to the biallelic nature of SNPs leading to a high proportion of double-allele calls and a view of more isolate relatedness compared to microsatellites and varcoding. Relative performance, suitability, and cost-effectiveness of the methods relevant to sample size and local malaria elimination in high-transmission endemic areas are discussed.
Collapse
Affiliation(s)
- Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Dionne C. Argyropoulos
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Christiana O. Onwona
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samantha L. Deed
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Frédéric Labbé
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mercedes Pascual
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Kattenberg JH, Van Dijk NJ, Fernández-Miñope CA, Guetens P, Mutsaers M, Gamboa D, Rosanas-Urgell A. Molecular Surveillance of Malaria Using the PF AmpliSeq Custom Assay for Plasmodium falciparum Parasites from Dried Blood Spot DNA Isolates from Peru. Bio Protoc 2023; 13:e4621. [PMID: 36908639 PMCID: PMC9993081 DOI: 10.21769/bioprotoc.4621] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Malaria molecular surveillance has great potential to support national malaria control programs (NMCPs), informing policy for its control and elimination. Here, we present a new three-day workflow for targeted resequencing of markers in 13 resistance-associated genes, histidine rich protein 2 and 3 (hrp2&3), a country (Peru)-specific 28 SNP-barcode for population genetic analysis, and apical membrane antigen 1 (ama1), using Illumina short-read sequencing technology. The assay applies a multiplex PCR approach to amplify all genomic regions of interest in a rapid and easily standardizable procedure and allows simultaneous amplification of a high number of targets at once, therefore having great potential for implementation into routine surveillance practice by NMCPs. The assay can be performed on routinely collected filter paper blood spots and can be easily adapted to different regions to investigate either regional trends or in-country epidemiological changes.
Collapse
Affiliation(s)
| | - Norbert J Van Dijk
- Biomedical Sciences Department, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Carlos A Fernández-Miñope
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Mathijs Mutsaers
- Biomedical Sciences Department, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Huwe T, Kibria MG, Johora FT, Phru CS, Jahan N, Hossain MS, Khan WA, Price RN, Ley B, Alam MS, Koepfli C. Heterogeneity in prevalence of subclinical Plasmodium falciparum and Plasmodium vivax infections but no parasite genomic clustering in the Chittagong Hill Tracts, Bangladesh. Malar J 2022; 21:218. [PMID: 35836171 PMCID: PMC9281141 DOI: 10.1186/s12936-022-04236-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Malaria remains endemic in Bangladesh, with the majority of cases occurring in forested, mountainous region in the Chittagong Hill Tracts (CHT). This area is home to Bengali and diverse groups of indigenous people (Pahari) residing largely in mono-ethnic villages. METHODS 1002 individuals of the 9 most prominent Pahari and the Bengali population were randomly selected and screened by RDT and qPCR. Parasites were genotyped by msp2 and deep sequencing of 5 amplicons (ama1-D3, cpmp, cpp, csp, and msp7) for Plasmodium falciparum (n = 20), and by microsatellite (MS) typing of ten loci and amplicon sequencing of msp1 for Plasmodium vivax (n = 21). Population structure was analysed using STRUCTURE software. Identity-by-state (IBS) was calculated as a measure of parasite relatedness and used to generate relatedness networks. RESULTS The prevalence of P. falciparum and P. vivax infection was 0.7% by RDT (P. falciparum 6/1002; P. vivax 0/1002, mixed: 1/1002) and 4% by qPCR (P. falciparum 21/1002; P. vivax 16/1002, mixed: 5/1002). Infections were highly clustered, with 64% (27/42) of infections occurring in only two Pahari groups, the Khumi and Mro. Diversity was high; expected heterozygosity was 0.93 for P. falciparum and 0.81 for P. vivax. 85.7% (18/21) of P. vivax and 25% (5/20) of P. falciparum infections were polyclonal. No population structure was evident for either species, suggesting high transmission and gene flow among Pahari groups. CONCLUSIONS High subclinical infection prevalence and genetic diversity mirror ongoing transmission. Control activities should be specifically directed to Pahari groups at greatest risk.
Collapse
Affiliation(s)
- Tiffany Huwe
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
- Georgia State University, Atlanta, GA, USA
| | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Nusrat Jahan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Mohammad Sharif Hossain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia.
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh.
| | - Cristian Koepfli
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA.
| |
Collapse
|
13
|
Mayor A, da Silva C, Rovira-Vallbona E, Roca-Feltrer A, Bonnington C, Wharton-Smith A, Greenhouse B, Bever C, Chidimatembue A, Guinovart C, Proctor JL, Rodrigues M, Canana N, Arnaldo P, Boene S, Aide P, Enosse S, Saute F, Candrinho B. Prospective surveillance study to detect antimalarial drug resistance, gene deletions of diagnostic relevance and genetic diversity of Plasmodium falciparum in Mozambique: protocol. BMJ Open 2022; 12:e063456. [PMID: 35820756 PMCID: PMC9274532 DOI: 10.1136/bmjopen-2022-063456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Genomic data constitute a valuable adjunct to routine surveillance that can guide programmatic decisions to reduce the burden of infectious diseases. However, genomic capacities remain low in Africa. This study aims to operationalise a functional malaria molecular surveillance system in Mozambique for guiding malaria control and elimination. METHODS AND ANALYSES This prospective surveillance study seeks to generate Plasmodium falciparum genetic data to (1) monitor molecular markers of drug resistance and deletions in rapid diagnostic test targets; (2) characterise transmission sources in low transmission settings and (3) quantify transmission levels and the effectiveness of antimalarial interventions. The study will take place across 19 districts in nine provinces (Maputo city, Maputo, Gaza, Inhambane, Niassa, Manica, Nampula, Zambézia and Sofala) which span a range of transmission strata, geographies and malaria intervention types. Dried blood spot samples and rapid diagnostic tests will be collected across the study districts in 2022 and 2023 through a combination of dense (all malaria clinical cases) and targeted (a selection of malaria clinical cases) sampling. Pregnant women attending their first antenatal care visit will also be included to assess their value for molecular surveillance. We will use a multiplex amplicon-based next-generation sequencing approach targeting informative single nucleotide polymorphisms, gene deletions and microhaplotypes. Genetic data will be incorporated into epidemiological and transmission models to identify the most informative relationship between genetic features, sources of malaria transmission and programmatic effectiveness of new malaria interventions. Strategic genomic information will be ultimately integrated into the national malaria information and surveillance system to improve the use of the genetic information for programmatic decision-making. ETHICS AND DISSEMINATION The protocol was reviewed and approved by the institutional (CISM) and national ethics committees of Mozambique (Comité Nacional de Bioética para Saúde) and Spain (Hospital Clinic of Barcelona). Project results will be presented to all stakeholders and published in open-access journals. TRIAL REGISTRATION NUMBER NCT05306067.
Collapse
Affiliation(s)
- Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Clemente da Silva
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | - Eduard Rovira-Vallbona
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Caitlin Bever
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | | - Caterina Guinovart
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | - Simone Boene
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde, Maputo, Mozambique
| | | | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | | |
Collapse
|
14
|
Kimenyi KM, Wamae K, Ngoi JM, de Laurent ZR, Ndwiga L, Osoti V, Obiero G, Abdi AI, Bejon P, Ochola-Oyier LI. Maintenance of high temporal Plasmodium falciparum genetic diversity and complexity of infection in asymptomatic and symptomatic infections in Kilifi, Kenya from 2007 to 2018. Malar J 2022; 21:192. [PMID: 35725456 PMCID: PMC9207840 DOI: 10.1186/s12936-022-04213-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background High levels of genetic diversity are common characteristics of Plasmodium falciparum parasite populations in high malaria transmission regions. There has been a decline in malaria transmission intensity over 12 years of surveillance in the community in Kilifi, Kenya. This study sought to investigate whether there was a corresponding reduction in P. falciparum genetic diversity, using msp2 as a genetic marker. Methods Blood samples were obtained from children (< 15 years) enrolled into a cohort with active weekly surveillance between 2007 and 2018 in Kilifi, Kenya. Asymptomatic infections were defined during the annual cross-sectional blood survey and the first-febrile malaria episode was detected during the weekly follow-up. Parasite DNA was extracted and successfully genotyped using allele-specific nested polymerase chain reactions for msp2 and capillary electrophoresis fragment analysis. Results Based on cross-sectional surveys conducted in 2007–2018, there was a significant reduction in malaria prevalence (16.2–5.5%: P-value < 0.001), however msp2 genetic diversity remained high. A high heterozygosity index (He) (> 0.95) was observed in both asymptomatic infections and febrile malaria over time. About 281 (68.5%) asymptomatic infections were polyclonal (> 2 variants per infection) compared to 46 (56%) polyclonal first-febrile infections. There was significant difference in complexity of infection (COI) between asymptomatic 2.3 [95% confidence interval (CI) 2.2–2.5] and febrile infections 2.0 (95% CI 1.7–2.3) (P = 0.016). Majority of asymptomatic infections (44.2%) carried mixed alleles (i.e., both FC27 and IC/3D7), while FC27 alleles were more frequent (53.3%) among the first-febrile infections. Conclusions Plasmodium falciparum infections in Kilifi are still highly diverse and polyclonal, despite the reduction in malaria transmission in the community. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04213-7.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Department of Biochemistry, University of Nairobi, Nairobi, Kenya.
| | - Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce M Ngoi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,West Africa Centre for Cell Biology and Infectious Pathogen, Accra, Ghana
| | | | | | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Wu L, Hsiang MS, Prach LM, Schrubbe L, Ntuku H, Dufour MSK, Whittemore B, Scott V, Yala J, Roberts KW, Patterson C, Biggs J, Hall T, Tetteh KK, Gueye CS, Greenhouse B, Bennett A, Smith JL, Katokele S, Uusiku P, Mumbengegwi D, Gosling R, Drakeley C, Kleinschmidt I. Serological evaluation of the effectiveness of reactive focal mass drug administration and reactive vector control to reduce malaria transmission in Zambezi Region, Namibia: Results from a secondary analysis of a cluster randomised trial. EClinicalMedicine 2022; 44:101272. [PMID: 35198913 PMCID: PMC8851292 DOI: 10.1016/j.eclinm.2022.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Due to challenges in measuring changes in malaria at low transmission, serology is increasingly being used to complement clinical and parasitological surveillance. Longitudinal studies have shown that serological markers, such as Etramp5.Ag1, can reflect spatio-temporal differences in malaria transmission. However, these markers have yet to be used as endpoints in intervention trials. METHODS Based on data from a 2017 cluster randomised trial conducted in Zambezi Region, Namibia, evaluating the effectiveness of reactive focal mass drug administration (rfMDA) and reactive vector control (RAVC), this study conducted a secondary analysis comparing antibody responses between intervention arms as trial endpoints. Antibody responses were measured on a multiplex immunoassay, using a panel of eight serological markers of Plasmodium falciparum infection - Etramp5.Ag1, GEXP18, HSP40.Ag1, Rh2.2030, EBA175, PfMSP119, PfAMA1, and PfGLURP.R2. FINDINGS Reductions in sero-prevalence to antigens Etramp.Ag1, PfMSP119, Rh2.2030, and PfAMA1 were observed in study arms combining rfMDA and RAVC, but only effects for Etramp5.Ag1 were statistically significant. Etramp5.Ag1 sero-prevalence was significantly lower in all intervention arms. Compared to the reference arms, adjusted prevalence ratio (aPR) for Etramp5.Ag1 was 0.78 (95%CI 0.65 - 0.91, p = 0.0007) in the rfMDA arms and 0.79 (95%CI 0.67 - 0.92, p = 0.001) in the RAVC arms. For the combined rfMDA plus RAVC intervention, aPR was 0.59 (95%CI 0.46 - 0.76, p < 0.0001). Significant reductions were also observed based on continuous antibody responses. Sero-prevalence as an endpoint was found to achieve higher study power (99.9% power to detect a 50% reduction in prevalence) compared to quantitative polymerase chain reaction (qPCR) prevalence (72.9% power to detect a 50% reduction in prevalence). INTERPRETATION While the observed relative reduction in qPCR prevalence in the study was greater than serology, the use of serological endpoints to evaluate trial outcomes measured effect size with improved precision and study power. Serology has clear application in cluster randomised trials, particularly in settings where measuring clinical incidence or infection is less reliable due to seasonal fluctuations, limitations in health care seeking, or incomplete testing and reporting. FUNDING This study was supported by Novartis Foundation (A122666), the Bill & Melinda Gates Foundation (OPP1160129), and the Horchow Family Fund (5,300,375,400).
Collapse
Affiliation(s)
- Lindsey Wu
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Michelle S. Hsiang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Lisa M. Prach
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Leah Schrubbe
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Mi-Suk Kang Dufour
- Division of Prevention Science, University of California San Francisco, San Francisco, CA, USA
| | - Brooke Whittemore
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Valerie Scott
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Joy Yala
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Kathryn W. Roberts
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Catriona Patterson
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Joseph Biggs
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Tom Hall
- St. George's University of London, London, UK
| | - Kevin K.A. Tetteh
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Cara Smith Gueye
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Bryan Greenhouse
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Jennifer L. Smith
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Stark Katokele
- National Vector-Borne Diseases Control Programme, Namibia Ministry of Health and Social Services, Windhoek, Namibia
| | - Petrina Uusiku
- National Vector-Borne Diseases Control Programme, Namibia Ministry of Health and Social Services, Windhoek, Namibia
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, United States of America
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, Faculty of Infectious Tropical Diseases, Department of Infection Biology, London, United Kingdom of Great Britain
| | - Immo Kleinschmidt
- London School of Hygiene and Tropical Medicine, Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London, UK
- Research Council Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Wits Institute for Malaria Research, Faculty of Health Science, University of Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| |
Collapse
|
16
|
Chen YA, Shiu TJ, Tseng LF, Cheng CF, Shih WL, de Assunção Carvalho AV, Tsai KH. Dynamic changes in genetic diversity, drug resistance mutations, and treatment outcomes of falciparum malaria from the low-transmission to the pre-elimination phase on the islands of São Tomé and Príncipe. Malar J 2021; 20:467. [PMID: 34906134 PMCID: PMC8672503 DOI: 10.1186/s12936-021-04007-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background With effective vector control and case management, substantial progress has been made towards eliminating malaria on the islands of São Tomé and Príncipe (STP). This study assessed the dynamic changes in the genetic diversity of Plasmodium falciparum, the anti-malarial drug resistance mutations, and malaria treatment outcomes between 2010 and 2016 to provide insights for the prevention of malaria rebounding. Methods Polymorphic regions of merozoite surface proteins 1 and 2 (msp1 and msp2) were sequenced in 118 dried blood spots (DBSs) collected from malaria patients who had visited the Central Hospital in 2010–2016. Mutations in the multi-drug resistance I (pfmdr1), chloroquine resistance transporter (pfcrt), and kelch 13 (pfk13) genes were analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) and sequencing in 111 DBSs. A total of 7482 cases that completed a 28-day follow-up were evaluated for treatment outcomes based on the microscopic results. Regression models were used to characterize factors associated with levels of parasite density and treatment failures. Results Parasite strains in STP showed significant changes during and after the peak incidence in 2012. The prevalent allelic type in msp1 changed from K1 to MAD20, and that in msp2 changed from 3D7/IC to FC27. The dominant alleles of drug-resistance markers were pfmdr1 86Y, 184F, D1246, and pfcrt 76 T (Y-F-D-T, 51.4%). The average parasite density in malaria cases declined threefold from low-transmission (2010–2013) to pre-elimination period (2014–2016). Logistic regression models showed that patients with younger age (OR for age = 0.97–0.98, p < 0.001), higher initial parasite density (log10-transformed, OR = 1.44, p < 0.001), and receiving quinine treatment (compared to artemisinin-based combination therapy, OR = 1.91–1.96, p < 0.001) were more likely to experience treatment failures during follow-up. Conclusions Plasmodium falciparum in STP had experienced changes in prevalent strains, and increased mutation frequencies in drug-resistance genes from the low-transmission to the pre-elimination settings. Notably, patients with younger age and receiving quinine treatment were more likely to show parasitological treatment failure during follow-up. Therapeutic efficacy should be carefully monitored to inform future treatment policy in STP. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04007-3.
Collapse
Affiliation(s)
- Ying-An Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsen-Ju Shiu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Lien-Fen Tseng
- Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe
| | - Chien-Fu Cheng
- Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan. .,Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe. .,Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan. .,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
17
|
Hendry JA, Kwiatkowski D, McVean G. Elucidating relationships between P.falciparum prevalence and measures of genetic diversity with a combined genetic-epidemiological model of malaria. PLoS Comput Biol 2021; 17:e1009287. [PMID: 34411093 PMCID: PMC8407561 DOI: 10.1371/journal.pcbi.1009287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 08/31/2021] [Accepted: 07/19/2021] [Indexed: 12/05/2022] Open
Abstract
There is an abundance of malaria genetic data being collected from the field, yet using these data to understand the drivers of regional epidemiology remains a challenge. A key issue is the lack of models that relate parasite genetic diversity to epidemiological parameters. Classical models in population genetics characterize changes in genetic diversity in relation to demographic parameters, but fail to account for the unique features of the malaria life cycle. In contrast, epidemiological models, such as the Ross-Macdonald model, capture malaria transmission dynamics but do not consider genetics. Here, we have developed an integrated model encompassing both parasite evolution and regional epidemiology. We achieve this by combining the Ross-Macdonald model with an intra-host continuous-time Moran model, thus explicitly representing the evolution of individual parasite genomes in a traditional epidemiological framework. Implemented as a stochastic simulation, we use the model to explore relationships between measures of parasite genetic diversity and parasite prevalence, a widely-used metric of transmission intensity. First, we explore how varying parasite prevalence influences genetic diversity at equilibrium. We find that multiple genetic diversity statistics are correlated with prevalence, but the strength of the relationships depends on whether variation in prevalence is driven by host- or vector-related factors. Next, we assess the responsiveness of a variety of statistics to malaria control interventions, finding that those related to mixed infections respond quickly (∼months) whereas other statistics, such as nucleotide diversity, may take decades to respond. These findings provide insights into the opportunities and challenges associated with using genetic data to monitor malaria epidemiology.
Collapse
Affiliation(s)
- Jason A. Hendry
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Dominic Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Medical Research Council Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Medical Research Council Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Ralinoro F, Rakotomanga TA, Rakotosaona R, Doll Rakoto DA, Menard D, Jeannoda V, Ratsimbasoa A. Genetic diversity of Plasmodium falciparum populations in three malaria transmission settings in Madagascar. Malar J 2021; 20:239. [PMID: 34044837 PMCID: PMC8161981 DOI: 10.1186/s12936-021-03776-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Assessment of the genetic diversity of Plasmodium falciparum parasites from various malaria transmission settings could help to define tailored local strategies for malaria control and elimination. Such assessments are currently scarce in Madagascar. The study presented here aimed to bridge this gap by investigating the genetic diversity of P. falciparum populations in three epidemiological strata (Equatorial, Tropical and Fringes) in Madagascar. METHODS Two-hundred and sixty-six P. falciparum isolates were obtained from patients with uncomplicated malaria enrolled in clinical drug efficacy studies conducted at health centres in Tsaratanana (Equatorial stratum), Antanimbary (Tropical stratum) and Anjoma Ramartina (Fringes) in 2013 and 2016. Parasite DNA was extracted from blood samples collected before anti-malarial treatment. Plasmodium species were identified by nested PCR targeting the 18 S rRNA gene. The genetic profiles of P. falciparum parasites were defined by allele-specific nested PCR on the polymorphic regions of the msp-1 and msp-2 genes. RESULTS Fifty-eight alleles were detected in the P. falciparum samples tested: 18 alleles for msp-1 and 40 for msp-2. K1 (62.9%, 139/221) and FC27 (69.5%, 114/164) were the principal msp-1 and msp-2 allele families detected, although the proportions of the msp-1 and msp-2 alleles varied significantly between sites. Polyclonal infections were more frequent at sites in the Equatorial stratum (69.8%) than at sites in the Tropical stratum (60.5%) or Fringes (58.1%). Population genetics analyses showed that genetic diversity was similar between sites and that parasite flow within sites was limited. CONCLUSIONS This study provides recent information about the genetic diversity of P. falciparum populations in three transmission strata in Madagascar, and valuable baseline data for further evaluation of the impact of the control measures implemented in Madagascar.
Collapse
Affiliation(s)
- Fanomezantsoa Ralinoro
- National Malaria Control Programme of Madagascar, Androhibe, Antananarivo, Madagascar. .,Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar.
| | - Tovonahary Angelo Rakotomanga
- National Malaria Control Programme of Madagascar, Androhibe, Antananarivo, Madagascar.,Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar
| | | | | | - Didier Menard
- Malaria Genetics and Resistance Unit and INSERM U1201, Institut Pasteur Paris, Paris, France
| | - Victor Jeannoda
- Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar
| | - Arsene Ratsimbasoa
- National Malaria Control Programme of Madagascar, Androhibe, Antananarivo, Madagascar. .,Faculty of Medicine, University of Fianarantsoa, Fianarantsoa, Madagascar.
| |
Collapse
|
19
|
Amoah LE, Abukari Z, Dawson-Amoah ME, Dieng CC, Lo E, Afrane YA. Population structure and diversity of Plasmodium falciparum in children with asymptomatic malaria living in different ecological zones of Ghana. BMC Infect Dis 2021; 21:439. [PMID: 33985447 PMCID: PMC8120845 DOI: 10.1186/s12879-021-06120-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic diversity in Plasmodium falciparum populations can be used to describe the resilience and spatial distribution of the parasite in the midst of intensified intervention efforts. This study used microsatellite analysis to evaluate the genetic diversity and population dynamics of P. falciparum parasites circulating in three ecological zones of Ghana. METHODS A total of 1168 afebrile children aged between 3 to 13 years were recruited from five (5) Primary schools in 3 different ecological zones (Sahel (Tamale and Kumbungu), Forest (Konongo) and Coastal (Ada and Dodowa)) of Ghana. Asymptomatic malaria parasite carriage was determined using microscopy and PCR, whilst fragment analysis of 6 microsatellite loci was used to determine the diversity and population structure of P. falciparum parasites. RESULTS Out of the 1168 samples examined, 16.1 and 39.5% tested positive for P. falciparum by microscopy and nested PCR respectively. The genetic diversity of parasites in the 3 ecological zones was generally high, with an average heterozygosity (He) of 0.804, 0.787 and 0.608 the rainy (peak) season for the Sahel, Forest and Coastal zones respectively. The mean He for the dry (off-peak) season were 0.562, 0.693 and 0.610 for the Sahel, Forest and Coastal zones respectively. Parasites from the Forest zone were more closely related to those from the Sahel than from the Coastal zone, despite the Coastal zone being closer in physical distance to the Forest zone. The fixation indexes among study sites ranged from 0.049 to 0.112 during the rainy season and 0.112 to 0.348 during the dry season. CONCLUSION A large asymptomatic parasite reservoir was found in the school children during both rainy and dry seasons, especially those in the Forest and Sahel savannah zones where parasites were also found to be related compared to those from the Coastal zone. Further studies are recommended to understand why despite the roll out of several malaria interventions in Ghana, high transmission still persist.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Zakaria Abukari
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Maame Esi Dawson-Amoah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Cheikh Cambel Dieng
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
20
|
Mitchell RM, Zhou Z, Sheth M, Sergent S, Frace M, Nayak V, Hu B, Gimnig J, Ter Kuile F, Lindblade K, Slutsker L, Hamel MJ, Desai M, Otieno K, Kariuki S, Vigfusson Y, Shi YP. Development of a new barcode-based, multiplex-PCR, next-generation-sequencing assay and data processing and analytical pipeline for multiplicity of infection detection of Plasmodium falciparum. Malar J 2021; 20:92. [PMID: 33593329 PMCID: PMC7885407 DOI: 10.1186/s12936-021-03624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Simultaneous infection with multiple malaria parasite strains is common in high transmission areas. Quantifying the number of strains per host, or the multiplicity of infection (MOI), provides additional parasite indices for assessing transmission levels but it is challenging to measure accurately with current tools. This paper presents new laboratory and analytical methods for estimating the MOI of Plasmodium falciparum. METHODS Based on 24 single nucleotide polymorphisms (SNPs) previously identified as stable, unlinked targets across 12 of the 14 chromosomes within P. falciparum genome, three multiplex PCRs of short target regions and subsequent next generation sequencing (NGS) of the amplicons were developed. A bioinformatics pipeline including B4Screening pathway removed spurious amplicons to ensure consistent frequency calls at each SNP location, compiled amplicons by SNP site diversity, and performed algorithmic haplotype and strain reconstruction. The pipeline was validated by 108 samples generated from cultured-laboratory strain mixtures in different proportions and concentrations, with and without pre-amplification, and using whole blood and dried blood spots (DBS). The pipeline was applied to 273 smear-positive samples from surveys conducted in western Kenya, then providing results into StrainRecon Thresholding for Infection Multiplicity (STIM), a novel MOI estimator. RESULTS The 24 barcode SNPs were successfully identified uniformly across the 12 chromosomes of P. falciparum in a sample using the pipeline. Pre-amplification and parasite concentration, while non-linearly associated with SNP read depth, did not influence the SNP frequency calls. Based on consistent SNP frequency calls at targeted locations, the algorithmic strain reconstruction for each laboratory-mixed sample had 98.5% accuracy in dominant strains. STIM detected up to 5 strains in field samples from western Kenya and showed declining MOI over time (q < 0.02), from 4.32 strains per infected person in 1996 to 4.01, 3.56 and 3.35 in 2001, 2007 and 2012, and a reduction in the proportion of samples with 5 strains from 57% in 1996 to 18% in 2012. CONCLUSION The combined approach of new multiplex PCRs and NGS, the unique bioinformatics pipeline and STIM could identify 24 barcode SNPs of P. falciparum correctly and consistently. The methodology could be applied to field samples to reliably measure temporal changes in MOI.
Collapse
Affiliation(s)
- Rebecca M Mitchell
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
- Department of Computer Science, Emory University, Atlanta, USA
- School of Nursing, Emory University, Atlanta, USA
| | - Zhiyong Zhou
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, CDC, Atlanta, USA
| | - Sheila Sergent
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Michael Frace
- Biotechnology Core Facility Branch, Division of Scientific Resources, CDC, Atlanta, USA
| | - Vishal Nayak
- Office of Infectious Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, USA
| | - Bin Hu
- Office of Infectious Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, USA
| | - John Gimnig
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | | | - Kim Lindblade
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Laurence Slutsker
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Mary J Hamel
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Meghna Desai
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA
| | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ymir Vigfusson
- Department of Computer Science, Emory University, Atlanta, USA.
| | - Ya Ping Shi
- Division of Parasitic Diseases, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, USA.
| |
Collapse
|
21
|
Gwarinda HB, Tessema SK, Raman J, Greenhouse B, Birkholtz LM. Parasite genetic diversity reflects continued residual malaria transmission in Vhembe District, a hotspot in the Limpopo Province of South Africa. Malar J 2021; 20:96. [PMID: 33593382 PMCID: PMC7885214 DOI: 10.1186/s12936-021-03635-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND South Africa aims to eliminate malaria transmission by 2023. However, despite sustained vector control efforts and case management interventions, the Vhembe District remains a malaria transmission hotspot. To better understand Plasmodium falciparum transmission dynamics in the area, this study characterized the genetic diversity of parasites circulating within the Vhembe District. METHODS A total of 1153 falciparum-positive rapid diagnostic tests (RDTs) were randomly collected from seven clinics within the district, over three consecutive years (2016, 2017 and 2018) during the wet and dry malaria transmission seasons. Using 26 neutral microsatellite markers, differences in genetic diversity were described using a multiparameter scale of multiplicity of infection (MOI), inbreeding metric (Fws), number of unique alleles (A), expected heterozygosity (He), multilocus linkage disequilibrium (LD) and genetic differentiation, and were associated with temporal and geospatial variances. RESULTS A total of 747 (65%) samples were successfully genotyped. Moderate to high genetic diversity (mean He = 0.74 ± 0.03) was observed in the parasite population. This was ascribed to high allelic richness (mean A = 12.2 ± 1.2). The majority of samples (99%) had unique multi-locus genotypes, indicating high genetic diversity in the sample set. Complex infections were observed in 66% of samples (mean MOI = 2.13 ± 0.04), with 33% of infections showing high within-host diversity as described by the Fws metric. Low, but significant LD (standardised index of association, ISA = 0.08, P < 0.001) was observed that indicates recombination of distinct clones. Limited impact of temporal (FST range - 0.00005 to 0.0003) and spatial (FST = - 0.028 to 0.023) variation on genetic diversity existed during the sampling timeframe and study sites respectively. CONCLUSIONS Consistent with the Vhembe District's classification as a 'high' transmission setting within South Africa, P. falciparum diversity in the area was moderate to high and complex. This study showed that genetic diversity within the parasite population reflects the continued residual transmission observed in the Vhembe District. This data can be used as a reference point for the assessment of the effectiveness of on-going interventions over time, the identification of imported cases and/or outbreaks, as well as monitoring for the potential spread of anti-malarial drug resistance.
Collapse
Affiliation(s)
- Hazel B Gwarinda
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Sofonias K Tessema
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Gauteng, South Africa.,Wits Research Institute for Malaria, Faculty of Health Sciences,, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Bryan Greenhouse
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Lyn-Marié Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| |
Collapse
|
22
|
Watson OJ, Okell LC, Hellewell J, Slater HC, Unwin HJT, Omedo I, Bejon P, Snow RW, Noor AM, Rockett K, Hubbart C, Nankabirwa JI, Greenhouse B, Chang HH, Ghani AC, Verity R. Evaluating the Performance of Malaria Genetics for Inferring Changes in Transmission Intensity Using Transmission Modeling. Mol Biol Evol 2021; 38:274-289. [PMID: 32898225 PMCID: PMC7783189 DOI: 10.1093/molbev/msaa225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relationships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.
Collapse
Affiliation(s)
- Oliver J Watson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Joel Hellewell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Hannah C Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - H Juliette T Unwin
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Irene Omedo
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Robert W Snow
- Population Health Unit, Kenya Medical Research Institute—Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Kirk Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Amegashie EA, Amenga-Etego L, Adobor C, Ogoti P, Mbogo K, Amambua-Ngwa A, Ghansah A. Population genetic analysis of the Plasmodium falciparum circumsporozoite protein in two distinct ecological regions in Ghana. Malar J 2020; 19:437. [PMID: 33246470 PMCID: PMC7694917 DOI: 10.1186/s12936-020-03510-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Background Extensive genetic diversity in the Plasmodium falciparum circumsporozoite protein (PfCSP) is a major contributing factor to the moderate efficacy of the RTS,S/AS01 vaccine. The transmission intensity and rates of recombination within and between populations influence the extent of its genetic diversity. Understanding the extent and dynamics of PfCSP genetic diversity in different transmission settings will help to interpret the results of current RTS,S efficacy and Phase IV implementation trials conducted within and between populations in malaria-endemic areas such as Ghana. Methods Pfcsp sequences were retrieved from the Illumina-generated paired-end short-read sequences of 101 and 131 malaria samples from children aged 6–59 months presenting with clinical malaria at health facilities in Cape Coast (in the coastal belt) and Navrongo (Guinea savannah region), respectively, in Ghana. The sequences were mapped onto the 3D7 reference strain genome to yield high-quality genome-wide coding sequence data. Following data filtering and quality checks to remove missing data, 220 sequences were retained and analysed for the allele frequency spectrum, genetic diversity both within the host and between populations and signatures of selection. Population genetics tools were used to determine the extent and dynamics of Pfcsp diversity in P. falciparum from the two geographically distinct locations in Ghana. Results Pfcsp showed extensive diversity at the two sites, with the higher transmission site, Navrongo, exhibiting higher within-host and population-level diversity. The vaccine strain C-terminal epitope of Pfcsp was found in only 5.9% and 45.7% of the Navrongo and Cape Coast sequences, respectively. Between 1 and 6 amino acid variations were observed in the TH2R and TH3R epitope regions of PfCSP. Tajima’s D was negatively skewed, especially for the population from Cape Coast, given the expected historical population expansion. In contrast, a positive Tajima’s D was observed for the Navrongo P. falciparum population, consistent with balancing selection acting on the immuno-dominant TH2R and TH3R vaccine epitopes. Conclusion The low frequencies of the Pfcsp vaccine haplotype in the analysed populations indicate a need for additional molecular and immuno-epidemiological studies with broader temporal and geographic sampling in endemic populations targeted for RTS,S application. These results have implications for the efficacy of the vaccine in Ghana and will inform the choice of alleles to be included in future multivalent or chimeric vaccines.
Collapse
Affiliation(s)
- Elikplim A Amegashie
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Lucas Amenga-Etego
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Courage Adobor
- Parasitology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, , Legon, Ghana
| | - Peter Ogoti
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Kevin Mbogo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination, Medical Research Council Unit, The Gambia Unit, Bakau, The Gambia
| | - Anita Ghansah
- Parasitology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, , Legon, Ghana.
| |
Collapse
|
24
|
Ndiaye T, Sy M, Gaye A, Siddle KJ, Park DJ, Bei AK, Deme AB, Mbaye A, Dieye B, Ndiaye YD, Ndiaye IM, Diallo MA, Diongue K, Volkman SK, Badiane AS, Ndiaye D. Molecular epidemiology of Plasmodium falciparum by multiplexed amplicon deep sequencing in Senegal. Malar J 2020; 19:403. [PMID: 33172455 PMCID: PMC7654156 DOI: 10.1186/s12936-020-03471-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum, which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. METHODS Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. RESULTS A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1, a high positive Tajima's D (TD) value was observed in the South (D = 2.0453) while negative TD value was recorded in the North (D = - 1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2, non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas (p = 0.001). CONCLUSION This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.
Collapse
Affiliation(s)
- Tolla Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal.
| | - Mouhamad Sy
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Amy Gaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | | | - Daniel J Park
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy K Bei
- Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Awa B Deme
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Aminata Mbaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Baba Dieye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Yaye Die Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Khadim Diongue
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Sarah K Volkman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard University, Cambridge, MA, USA
| | - Aida Sadikh Badiane
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
- Department of Immunology and Infectious Diseases, Harvard University, Cambridge, MA, USA
| |
Collapse
|
25
|
Daniels RF, Schaffner SF, Bennett A, Porter TR, Yukich JO, Mulube C, Mambwe B, Mwenda MC, Chishimba S, Bridges DJ, Moonga H, Hamainza B, Chizema Kawesha E, Miller JM, Steketee RW, Wirth DF, Eisele TP, Hartl DL, Volkman SK. Evidence for Reduced Malaria Parasite Population after Application of Population-Level Antimalarial Drug Strategies in Southern Province, Zambia. Am J Trop Med Hyg 2020; 103:66-73. [PMID: 32618255 PMCID: PMC7416975 DOI: 10.4269/ajtmh.19-0666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A mass drug administration trial was carried out in Southern Province, Zambia, between 2014 and 2016, in conjunction with a standard of care package that included improved surveillance, increased access to malaria case management, and sustained high levels of vector control coverage. This was preceded by mass test and treatment in the same area from 2011 to 2013. Concordant decreases in malaria prevalence in Southern Province and deaths attributed to malaria in Zambia over this time suggest that these strategies successfully reduced the malaria burden. Genetic epidemiological studies were used to assess the consequences of these interventions on parasite population structure. Analysis of parasite material derived from 1,620 rapid diagnostic test (RDT)-positive individuals obtained from studies to evaluate trial outcomes revealed a reduction in the average complexity of infection and consequential increase in the proportion of infections that harbored a single parasite genome (monogenomic infections). Highly related parasites, consistent with inbreeding, were detected after interventions were deployed. Geographical analysis indicated that the highly related infections were both clustered focally and dispersed across the study area. These findings provide genetic evidence for a reduced parasite population, with indications of inbreeding following the application of comprehensive interventions, including drug-based campaigns, that reduced the malaria burden in Southern Province. Genetic data additionally revealed the relationship between individual infections in the context of these population-level patterns, which has the potential to provide useful data for stratification and targeting of interventions to reduce the malaria burden.
Collapse
Affiliation(s)
- Rachel F Daniels
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen F Schaffner
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California
| | - Travis R Porter
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Joshua O Yukich
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Conceptor Mulube
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Brenda Mambwe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Mulenga C Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Sandra Chishimba
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Daniel J Bridges
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Hawela Moonga
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | | | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | | | - Dyann F Wirth
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Daniel L Hartl
- Harvard University, Cambridge, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sarah K Volkman
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Simmons University, Boston, Massachusetts
| |
Collapse
|
26
|
Fola AA, Kattenberg E, Razook Z, Lautu-Gumal D, Lee S, Mehra S, Bahlo M, Kazura J, Robinson LJ, Laman M, Mueller I, Barry AE. SNP barcodes provide higher resolution than microsatellite markers to measure Plasmodium vivax population genetics. Malar J 2020; 19:375. [PMID: 33081815 PMCID: PMC7576724 DOI: 10.1186/s12936-020-03440-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Genomic surveillance of malaria parasite populations has the potential to inform control strategies and to monitor the impact of interventions. Barcodes comprising large numbers of single nucleotide polymorphism (SNP) markers are accurate and efficient genotyping tools, however may need to be tailored to specific malaria transmission settings, since 'universal' barcodes can lack resolution at the local scale. A SNP barcode was developed that captures the diversity and structure of Plasmodium vivax populations of Papua New Guinea (PNG) for research and surveillance. METHODS Using 20 high-quality P. vivax genome sequences from PNG, a total of 178 evenly spaced neutral SNPs were selected for development of an amplicon sequencing assay combining a series of multiplex PCRs and sequencing on the Illumina MiSeq platform. For initial testing, 20 SNPs were amplified in a small number of mono- and polyclonal P. vivax infections. The full barcode was then validated by genotyping and population genetic analyses of 94 P. vivax isolates collected between 2012 and 2014 from four distinct catchment areas on the highly endemic north coast of PNG. Diversity and population structure determined from the SNP barcode data was then benchmarked against that of ten microsatellite markers used in previous population genetics studies. RESULTS From a total of 28,934,460 reads generated from the MiSeq Illumina run, 87% mapped to the PvSalI reference genome with deep coverage (median = 563, range 56-7586) per locus across genotyped samples. Of 178 SNPs assayed, 146 produced high-quality genotypes (minimum coverage = 56X) in more than 85% of P. vivax isolates. No amplification bias was introduced due to either polyclonal infection or whole genome amplification (WGA) of samples before genotyping. Compared to the microsatellite panels, the SNP barcode revealed greater variability in genetic diversity between populations and geographical population structure. The SNP barcode also enabled assignment of genotypes according to their geographic origins with a significant association between genetic distance and geographic distance at the sub-provincial level. CONCLUSIONS High-throughput SNP barcoding can be used to map variation of malaria transmission dynamics at sub-national resolution. The low cost per sample and genotyping strategy makes the transfer of this technology to field settings highly feasible.
Collapse
Affiliation(s)
- Abebe A Fola
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Eline Kattenberg
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Zahra Razook
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Stuart Lee
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Somya Mehra
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James Kazura
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leanne J Robinson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
| | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Alyssa E Barry
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia.
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
27
|
Dewasurendra RL, Baniecki ML, Schaffner S, Siriwardena Y, Moon J, Doshi R, Gunawardena S, Daniels RF, Neafsey D, Volkman S, Chandrasekharan NV, Wirth DF, Karunaweera ND. Use of a Plasmodium vivax genetic barcode for genomic surveillance and parasite tracking in Sri Lanka. Malar J 2020; 19:342. [PMID: 32958025 PMCID: PMC7504840 DOI: 10.1186/s12936-020-03386-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/25/2020] [Indexed: 11/18/2022] Open
Abstract
Background Sri Lanka was certified as a malaria-free nation in 2016; however, imported malaria cases continue to be reported. Evidence-based information on the genetic structure/diversity of the parasite populations is useful to understand the population history, assess the trends in transmission patterns, as well as to predict threatening phenotypes that may be introduced and spread in parasite populations disrupting elimination programmes. This study used a previously developed Plasmodium vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics of P. vivax parasite isolates from Sri Lanka and to assess the ability of the SNP barcode for tracking the parasites to its origin. Methods A total of 51 P. vivax samples collected during 2005–2011, mainly from three provinces of the country, were genotyped for 40 previously identified P. vivax SNPs using a high-resolution melting (HRM), single-nucleotide barcode method. Minor allele frequencies, linkage disequilibrium, pair-wise FST values, and complexity of infection (COI) were evaluated to determine the genetic diversity. Structure analysis was carried out using STRUCTURE software (Version 2.3.4) and SNP barcode was used to identify the genetic diversity of the local parasite populations collected from different years. Principal component analysis (PCA) was used to determine the clustering according to global geographic regions. Results The proportion of multi-clone infections was significantly higher in isolates collected during an infection outbreak in year 2007. The minor allele frequencies of the SNPs changed dramatically from year to year. Significant linkage was observed in sample sub-sets from years 2005 and 2007. The majority of the isolates from 2007 consisted of at least two genetically distinct parasite strains. The overall percentage of multi-clone infections for the entire parasite sample was 39.21%. Analysis using STRUCTURE software (Version 2.3.4) revealed the high genetic diversity of the sample sub-set from year 2007. In-silico analysis of these data with those available from other global geographical regions using PCA showed distinct clustering of parasite isolates according to geography, demonstrating the usefulness of the barcode in determining an isolate to be indigenous. Conclusions Plasmodium vivax parasite isolates collected during a disease outbreak in year 2007 were more genetically diverse compared to those collected from other years. In-silico analysis using the 40 SNP barcode is a useful tool to track the origin of an isolate of uncertain origin, especially to differentiate indigenous from imported cases. However, an extended barcode with more SNPs may be needed to distinguish highly clonal populations within the country.
Collapse
Affiliation(s)
- Rajika L Dewasurendra
- Department of Parasitology, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Mary Lynn Baniecki
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Stephen Schaffner
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yamuna Siriwardena
- Department of Parasitology, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Jade Moon
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Boston, MA, 02138, USA
| | - R Doshi
- Department of Public Health, John Hopkins University, Baltimore, MD, 21218, USA
| | - Sharmini Gunawardena
- Department of Parasitology, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Sarah Volkman
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Dyann F Wirth
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo 8, Sri Lanka.
| |
Collapse
|
28
|
Papa Mze N, Bogreau H, Diedhiou CK, Herdell V, Rahamatou S, Bei AK, Volkman SK, Basco L, Mboup S, Ahouidi AD. Genetic diversity of Plasmodium falciparum in Grande Comore Island. Malar J 2020; 19:320. [PMID: 32883282 PMCID: PMC7469287 DOI: 10.1186/s12936-020-03384-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022] Open
Abstract
Background Despite several control interventions resulting in a considerable decrease in malaria prevalence in the Union of the Comoros, the disease remains a public health problem with high transmission in Grande Comore compared to neighbouring islands. In this country, only a few studies investigating the genetic diversity of Plasmodium falciparum have been performed so far. For this reason, this study aims to examine the genetic diversity of P. falciparum by studying samples collected in Grande Comore in 2012 and 2013, using merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2) and single nucleotide polymorphism (SNP) genetic markers. Methods A total of 162 positive rapid diagnostic test (RDT) samples from Grande Comore were used to extract parasite DNA. Allelic families K1, Mad20 and RO33 of the msp1 gene as well as allelic families IC3D7 and FC37 of the msp2 gene were determined by using nested PCR. Additionally, 50 out of 151 samples were genotyped to study 24 SNPs by using high resolution melting (HRM). Results Two allelic families were predominant, the K1 family of msp1 gene (55%) and the FC27 family of msp2 gene (47.4%). Among 50 samples genotyped for 24 SNPs, 42 (84%) yielded interpretable results. Out of these isolates, 36 (85%) were genetically unique and 6 (15%) grouped into two clusters. The genetic diversity of P. falciparum calculated from msp1 and msp2 genes and SNPs was 0.82 and 0.61, respectively. Conclusion In summary, a large genetic diversity of P. falciparum was observed in Grande Comore. This may favour persistence of malaria and might be one of the reasons for the high malaria transmission compared to neighbouring islands. Further surveillance of P. falciparum isolates, mainly through environmental management and vector control, is warranted until complete elimination is attained.
Collapse
Affiliation(s)
- Nasserdine Papa Mze
- Laboratory of Bacteriology-Virology, Hospital Aristide Le Dantec, BP 7325, Dakar, Senegal. .,Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formations, Arrondissement 4 Rue 2D1 Pôle Urbain de Diamniadio, Dakar, Senegal. .,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France. .,Laboratory of National Malaria Control Program, Moroni, Comoros.
| | - Hervé Bogreau
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Cyrille K Diedhiou
- Laboratory of Bacteriology-Virology, Hospital Aristide Le Dantec, BP 7325, Dakar, Senegal.,Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formations, Arrondissement 4 Rue 2D1 Pôle Urbain de Diamniadio, Dakar, Senegal
| | - Vendela Herdell
- Karolinska Institutet, Berzelius väg 3, 17177, Stockholm, Sweden
| | - Silai Rahamatou
- Laboratory of National Malaria Control Program, Moroni, Comoros
| | - Amy K Bei
- Laboratory of Bacteriology-Virology, Hospital Aristide Le Dantec, BP 7325, Dakar, Senegal.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Sarah K Volkman
- Broad Institute: The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Leonardo Basco
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Souleymane Mboup
- Laboratory of Bacteriology-Virology, Hospital Aristide Le Dantec, BP 7325, Dakar, Senegal.,Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formations, Arrondissement 4 Rue 2D1 Pôle Urbain de Diamniadio, Dakar, Senegal
| | - Ambroise D Ahouidi
- Laboratory of Bacteriology-Virology, Hospital Aristide Le Dantec, BP 7325, Dakar, Senegal. .,Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formations, Arrondissement 4 Rue 2D1 Pôle Urbain de Diamniadio, Dakar, Senegal.
| |
Collapse
|
29
|
Daniels RF, Schaffner SF, Dieye Y, Dieng G, Hainsworth M, Fall FB, Diouf CN, Ndiop M, Cisse M, Gueye AB, Sarr O, Guinot P, Deme AB, Bei AK, Sy M, Thwing J, MacInnis B, Earle D, Guinovart C, Sene D, Hartl DL, Ndiaye D, Steketee RW, Wirth DF, Volkman SK. Genetic evidence for imported malaria and local transmission in Richard Toll, Senegal. Malar J 2020; 19:276. [PMID: 32746830 PMCID: PMC7397603 DOI: 10.1186/s12936-020-03346-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/25/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Malaria elimination efforts can be undermined by imported malaria infections. Imported infections are classified based on travel history. METHODS A genetic strategy was applied to better understand the contribution of imported infections and to test for local transmission in the very low prevalence region of Richard Toll, Senegal. RESULTS Genetic relatedness analysis, based upon molecular barcode genotyping data derived from diagnostic material, provided evidence for both imported infections and ongoing local transmission in Richard Toll. Evidence for imported malaria included finding that a large proportion of Richard Toll parasites were genetically related to parasites from Thiès, Senegal, a region of moderate transmission with extensive available genotyping data. Evidence for ongoing local transmission included finding parasites of identical genotype that persisted across multiple transmission seasons as well as enrichment of highly related infections within the households of non-travellers compared to travellers. CONCLUSIONS These data indicate that, while a large number of infections may have been imported, there remains ongoing local malaria transmission in Richard Toll. These proof-of-concept findings underscore the value of genetic data to identify parasite relatedness and patterns of transmission to inform optimal intervention selection and placement.
Collapse
Affiliation(s)
- Rachel F. Daniels
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.34Broad Institute, Cambridge, MA USA
| | | | | | | | | | - Fatou B. Fall
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | - Medoune Ndiop
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | | | - Oumar Sarr
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | - Awa B. Deme
- Dantec Teaching and Research Hospital, Dakar, Senegal
| | - Amy K. Bei
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA
| | - Mouhamad Sy
- Dantec Teaching and Research Hospital, Dakar, Senegal
| | - Julie Thwing
- grid.416738.f0000 0001 2163 0069Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | | | | | - Doudou Sene
- Senegal National Malaria Control Programme, Dakar, Senegal
| | - Daniel L. Hartl
- grid.38142.3c000000041936754XHarvard University, Cambridge, MA USA
| | - Daouda Ndiaye
- grid.8191.10000 0001 2186 9619Cheikh Anta Diop University, Dakar, Senegal
| | | | - Dyann F. Wirth
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.34Broad Institute, Cambridge, MA USA
| | - Sarah K. Volkman
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.34Broad Institute, Cambridge, MA USA ,grid.28203.3b0000 0004 0378 6053Simmons University, Boston, MA USA
| |
Collapse
|
30
|
Abamecha A, El-Abid H, Yilma D, Addisu W, Ibenthal A, Bayih AG, Noedl H, Yewhalaw D, Moumni M, Abdissa A. Genetic diversity and genotype multiplicity of Plasmodium falciparum infection in patients with uncomplicated malaria in Chewaka district, Ethiopia. Malar J 2020; 19:203. [PMID: 32513191 PMCID: PMC7281928 DOI: 10.1186/s12936-020-03278-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/03/2022] Open
Abstract
Background Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of P. falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. This study investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia. Methods A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged 6 months to 60 years, who visited the health facilities during study evaluating the efficacy of artemether-lumefantrine from September–December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis. Results Of 80 qPCR-positive samples analysed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95% and 98.8%, respectively. Allelic variation of 90% (72/80) for msp-1 and 86.2% (69/80) for msp-2 were observed. K1 was the predominant msp-1 allelic family detected in 20.8% (15/72) of the samples followed by MAD20 and RO33. Within msp-2, allelic family FC27 showed a higher frequency (26.1%) compared to IC/3D7 (15.9%). Ten different alleles were observed in msp-1 with 6 alleles for K1, 3 alleles for MAD20 and 1 allele for RO33. In msp-2, 19 individual alleles were detected with 10 alleles for FC27 and 9 alleles for 3D7. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI 2.87–3.46). The heterozygosity indices were 0.43 and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density. Conclusions The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia, suggesting that both endemicity level and malaria transmission remain high and that strengthened control efforts are needed in Ethiopia.
Collapse
Affiliation(s)
- Abdulhakim Abamecha
- School of Medical Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia. .,Department of Biomedical, College of Public Health and Medical Science, Mettu University, Mettu, Ethiopia. .,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia.
| | - Hassan El-Abid
- Laboratory of Cellular Genomics and Molecular Techniques for Investigation, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
| | - Daniel Yilma
- Department of Internal Medicine, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Wondimagegn Addisu
- School of Medical Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Achim Ibenthal
- Faculty of Science and Art, HAWK University, Gottingen, Germany
| | | | - Harald Noedl
- Malaria Research Initiative Bandarban (MARIB), Vienna, Austria
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Mohieddine Moumni
- Laboratory of Cellular Genomics and Molecular Techniques for Investigation, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
| | - Alemseged Abdissa
- School of Medical Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
31
|
Wohlfeil CK, Godfrey SS, Leu ST, Clayton J, Gardner MG. Spatial proximity and asynchronous refuge sharing networks both explain patterns of tick genetic relatedness among lizards, but in different years. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Caroline K. Wohlfeil
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | | | - Stephan T. Leu
- School of Animal and Veterinary Sciences University of Adelaide Adelaide South Australia Australia
| | - Jessica Clayton
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Michael G. Gardner
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
- Evolutionary Biology Unit South Australian Museum Adelaide South Australia Australia
| |
Collapse
|
32
|
Pava Z, Puspitasari AM, Rumaseb A, Handayuni I, Trianty L, Utami RAS, Tirta YK, Burdam F, Kenangalem E, Wirjanata G, Kho S, Trimarsanto H, Anstey NM, Poespoprodjo JR, Noviyanti R, Price RN, Marfurt J, Auburn S. Molecular surveillance over 14 years confirms reduction of Plasmodium vivax and falciparum transmission after implementation of Artemisinin-based combination therapy in Papua, Indonesia. PLoS Negl Trop Dis 2020; 14:e0008295. [PMID: 32379762 PMCID: PMC7237043 DOI: 10.1371/journal.pntd.0008295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 05/19/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023] Open
Abstract
Genetic epidemiology can provide important insights into parasite transmission that can inform public health interventions. The current study compared long-term changes in the genetic diversity and structure of co-endemic Plasmodium falciparum and P. vivax populations. The study was conducted in Papua Indonesia, where high-grade chloroquine resistance in P. falciparum and P. vivax led to a universal policy of Artemisinin-based Combination Therapy (ACT) in 2006. Microsatellite typing and population genetic analyses were undertaken on available isolates collected between 2004 and 2017 from patients with uncomplicated malaria (n = 666 P. falciparum and n = 615 P. vivax). The proportion of polyclonal P. falciparum infections fell from 28% (38/135) before policy change (2004-2006) to 18% (22/125) at the end of the study (2015-2017); p<0.001. Over the same period, polyclonal P. vivax infections fell from 67% (80/119) to 35% (33/93); p<0.001. P. falciparum strains persisted for up to 9 years compared to 3 months for P. vivax, reflecting higher rates of outbreeding in the latter. Sub-structure was observed in the P. falciparum population, but not in P. vivax, confirming different patterns of outbreeding. The P. falciparum population exhibited 4 subpopulations that changed in frequency over time. Notably, a sharp rise was observed in the frequency of a minor subpopulation (K2) in the late post-ACT period, accounting for 100% of infections in late 2016-2017. The results confirm epidemiological evidence of reduced P. falciparum and P. vivax transmission over time. The smaller change in P. vivax population structure is consistent with greater outbreeding associated with relapsing infections and highlights the need for radical cure to reduce recurrent infections. The study emphasizes the challenge in disrupting P. vivax transmission and demonstrates the potential of molecular data to inform on the impact of public health interventions.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - Faustina Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Jeanne Rini Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Pediatric Research Office, Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Abstract
Malaria is a vector-borne disease that involves multiple parasite species in a variety of ecological settings. However, the parasite species causing the disease, the prevalence of subclinical infections, the emergence of drug resistance, the scale-up of interventions, and the ecological factors affecting malaria transmission, among others, are aspects that vary across areas where malaria is endemic. Such complexities have propelled the study of parasite genetic diversity patterns in the context of epidemiologic investigations. Importantly, molecular studies indicate that the time and spatial distribution of malaria cases reflect epidemiologic processes that cannot be fully understood without characterizing the evolutionary forces shaping parasite population genetic patterns. Although broad in scope, this review in the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology highlights the need for understanding population genetic concepts when interpreting parasite molecular data. First, we discuss malaria complexity in terms of the parasite species involved. Second, we describe how molecular data are changing our understanding of malaria incidence and infectiousness. Third, we compare different approaches to generate parasite genetic information in the context of epidemiologically relevant questions related to malaria control. Finally, we describe a few Plasmodium genomic studies as evidence of how these approaches will provide new insights into the malaria disease dynamics. *This article is part of a curated collection.
Collapse
|
34
|
Bridges DJ, Chishimba S, Mwenda M, Winters AM, Slawsky E, Mambwe B, Mulube C, Searle KM, Hakalima A, Mwenechanya R, Larsen DA. The use of spatial and genetic tools to assess Plasmodium falciparum transmission in Lusaka, Zambia between 2011 and 2015. Malar J 2020; 19:20. [PMID: 31941493 PMCID: PMC6964105 DOI: 10.1186/s12936-020-3101-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zambia has set itself the ambitious target of eliminating malaria by 2021. To continue tracking transmission to zero, new interventions, tools and approaches are required. METHODS Urban reactive case detection (RCD) was performed in Lusaka city from 2011 to 2015 to better understand the location and drivers of malaria transmission. Briefly, index cases were followed to their home and all consenting individuals living in the index house and nine proximal houses were tested with a malaria rapid diagnostic test and treated if positive. A brief survey was performed and for certain responses, a dried blood spot sample collected for genetic analysis. Aggregate health facility data, individual RCD response data and genetic results were analysed spatially and against environmental correlates. RESULTS Total number of malaria cases remained relatively constant, while the average age of incident cases and the proportion of incident cases reporting recent travel both increased. The estimated R0 in Lusaka was < 1 throughout the study period. RCD responses performed within 250 m of uninhabited/vacant land were associated with a higher probability of identifying additional infections. CONCLUSIONS Evidence suggests that the majority of malaria infections are imported from outside Lusaka. However there remains some level of local transmission occurring on the periphery of urban settlements, namely in the wet season. Unfortunately, due to the higher-than-expected complexity of infections and the small number of samples tested, genetic analysis was unable to identify any meaningful trends in the data.
Collapse
Affiliation(s)
- Daniel J Bridges
- PATH MACEPA, National Malaria Elimination Centre, Gt East Rd, Lusaka, Zambia. .,Akros, 45A Roan Road, Lusaka, Zambia.
| | - Sandra Chishimba
- PATH MACEPA, National Malaria Elimination Centre, Gt East Rd, Lusaka, Zambia.,Akros, 45A Roan Road, Lusaka, Zambia
| | - Mulenga Mwenda
- PATH MACEPA, National Malaria Elimination Centre, Gt East Rd, Lusaka, Zambia.,Akros, 45A Roan Road, Lusaka, Zambia
| | - Anna M Winters
- Akros, 45A Roan Road, Lusaka, Zambia.,School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Erik Slawsky
- Department of Public Health, Syracuse University, Syracuse, NY, USA
| | - Brenda Mambwe
- PATH MACEPA, National Malaria Elimination Centre, Gt East Rd, Lusaka, Zambia
| | - Conceptor Mulube
- PATH MACEPA, National Malaria Elimination Centre, Gt East Rd, Lusaka, Zambia
| | - Kelly M Searle
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Aves Hakalima
- Lusaka District Health Management Team, Ministry of Health, Lusaka, Zambia
| | - Roy Mwenechanya
- Akros, 45A Roan Road, Lusaka, Zambia.,Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - David A Larsen
- Akros, 45A Roan Road, Lusaka, Zambia.,Department of Public Health, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
35
|
Malinga J, Mogeni P, Omedo I, Rockett K, Hubbart C, Jeffreys A, Williams TN, Kwiatkowski D, Bejon P, Ross A. Investigating the drivers of the spatio-temporal patterns of genetic differences between Plasmodium falciparum malaria infections in Kilifi County, Kenya. Sci Rep 2019; 9:19018. [PMID: 31836742 PMCID: PMC6911066 DOI: 10.1038/s41598-019-54348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023] Open
Abstract
Knowledge of how malaria infections spread locally is important both for the design of targeted interventions aiming to interrupt malaria transmission and the design of trials to assess the interventions. A previous analysis of 1602 genotyped Plasmodium falciparum parasites in Kilifi, Kenya collected over 12 years found an interaction between time and geographic distance: the mean number of single nucleotide polymorphism (SNP) differences was lower for pairs of infections which were both a shorter time interval and shorter geographic distance apart. We determine whether the empiric pattern could be reproduced by a simple model, and what mean geographic distances between parent and offspring infections and hypotheses about genotype-specific immunity or a limit on the number of infections would be consistent with the data. We developed an individual-based stochastic simulation model of households, people and infections. We parameterized the model for the total number of infections, and population and household density observed in Kilifi. The acquisition of new infections, mutation, recombination, geographic location and clearance were included. We fit the model to the observed numbers of SNP differences between pairs of parasite genotypes. The patterns observed in the empiric data could be reproduced. Although we cannot rule out genotype-specific immunity or a limit on the number of infections per individual, they are not necessary to account for the observed patterns. The mean geographic distance between parent and offspring malaria infections for the base model was 0.5 km (95% CI 0.3-1.5), for a distribution with 68% of distances shorter than the mean. Very short mean distances did not fit well, but mixtures of distributions were also consistent with the data. For a pathogen which undergoes meiosis in a setting with moderate transmission and a low coverage of infections, analytic methods are limited but an individual-based model can be used with genotyping data to estimate parameter values and investigate hypotheses about underlying processes.
Collapse
Affiliation(s)
- Josephine Malinga
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Polycarp Mogeni
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Irene Omedo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anne Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Dominic Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Philip Bejon
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Pringle JC, Wesolowski A, Berube S, Kobayashi T, Gebhardt ME, Mulenga M, Chaponda M, Bobanga T, Juliano JJ, Meshnick S, Moss WJ, Carpi G, Norris DE. High Plasmodium falciparum genetic diversity and temporal stability despite control efforts in high transmission settings along the international border between Zambia and the Democratic Republic of the Congo. Malar J 2019; 18:400. [PMID: 31801548 PMCID: PMC6894251 DOI: 10.1186/s12936-019-3023-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/21/2019] [Indexed: 01/25/2023] Open
Abstract
Background While the utility of parasite genotyping for malaria elimination has been extensively documented in low to moderate transmission settings, it has been less well-characterized in holoendemic regions. High malaria burden settings have received renewed attention acknowledging their critical role in malaria elimination. Defining the role for parasite genomics in driving these high burden settings towards elimination will enhance future control programme planning. Methods Amplicon deep sequencing was used to characterize parasite population genetic diversity at polymorphic Plasmodium falciparum loci, Pfama1 and Pfcsp, at two timepoints in June–July 2016 and January–March 2017 in a high transmission region along the international border between Luapula Province, Zambia and Haut-Katanga Province, the Democratic Republic of the Congo (DRC). Results High genetic diversity was observed across both seasons and in both countries. No evidence of population structure was observed between parasite populations on either side of the border, suggesting that this region may be one contiguous transmission zone. Despite a decline in parasite prevalence at the sampling locations in Haut-Katanga Province, no genetic signatures of a population bottleneck were detected, suggesting that larger declines in transmission may be required to reduce parasite genetic diversity. Analysing rare variants may be a suitable alternative approach for detecting epidemiologically important genetic signatures in highly diverse populations; however, the challenge is distinguishing true signals from potential artifacts introduced by small sample sizes. Conclusions Continuing to explore and document the utility of various parasite genotyping approaches for understanding malaria transmission in holoendemic settings will be valuable to future control and elimination programmes, empowering evidence-based selection of tools and methods to address pertinent questions, thus enabling more efficient resource allocation.
Collapse
Affiliation(s)
- Julia C Pringle
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Sophie Berube
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mary E Gebhardt
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | | | - Thierry Bobanga
- Université Protestante au Congo and University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jonathan J Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Steven Meshnick
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Ndiaye T, Sy M, Gaye A, Ndiaye D. Genetic polymorphism of Merozoite Surface Protein 1 (msp1) and 2 (msp2) genes and multiplicity of Plasmodium falciparum infection across various endemic areas in Senegal. Afr Health Sci 2019; 19:2446-2456. [PMID: 32127816 PMCID: PMC7040301 DOI: 10.4314/ahs.v19i3.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Despite a significant decline in Senegal, malaria remains a burden in various parts of the country. Assessment of multiplicity of Plasmodium falciparum infection and genetic diversity of parasites population could help in monitoring of malaria control. OBJECTIVE To assess genetic diversity and multiplicity of infection in P. falciparum isolates from three areas in Senegal with different malaria transmissions. METHODS 136 blood samples were collected from patients with uncomplicated P. falciparum malaria in Pikine, Kedougou and Thies. Polymorphic loci of msp1 and 2 (Merozoite surface protein-1 and 2) genes were amplified by nested PCR. RESULTS For msp1gene, K1 allelic family was predominant with frequency of 71%. Concerning msp2 gene, IC3D7 allelic family was the most represented with frequency of 83%. Multiclonal isolates found were 36% and 31% for msp1et msp2 genes respectively. The MOI found in all areas was 2.56 and was statistically different between areas (P=0.024). Low to intermediate genetic diversity were found with heterozygosity range (He=0,394-0,637) and low genetic differentiation (Fst msp1= 0.011; Fst msp2=0.017) were observed between P. falciparum population within the country. CONCLUSION Low to moderate genetic diversity of P.falciparum strains and MOI disparities were found in Senegal.
Collapse
Affiliation(s)
- Tolla Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mouhamad Sy
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Amy Gaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
38
|
Stresman G, Bousema T, Cook J. Malaria Hotspots: Is There Epidemiological Evidence for Fine-Scale Spatial Targeting of Interventions? Trends Parasitol 2019; 35:822-834. [PMID: 31474558 DOI: 10.1016/j.pt.2019.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
As data at progressively granular spatial scales become available, the temptation is to target interventions to areas with higher malaria transmission - so-called hotspots - with the aim of reducing transmission in the wider community. This paper reviews literature to determine if hotspots are an intrinsic feature of malaria epidemiology and whether current evidence supports hotspot-targeted interventions. Hotspots are a consistent feature of malaria transmission at all endemicities. The smallest spatial unit capable of supporting transmission is the household, where peri-domestic transmission occurs. Whilst the value of focusing interventions to high-burden areas is evident, there is currently limited evidence that local-scale hotspots fuel transmission. As boundaries are often uncertain, there is no conclusive evidence that hotspot-targeted interventions accelerate malaria elimination.
Collapse
Affiliation(s)
- Gillian Stresman
- Infection Biology Department, London School of Hygiene and Tropical Medicine, London, UK.
| | - Teun Bousema
- Radboud University Medical Centre, Department of Microbiology, HB Nijmegen, The Netherlands.
| | - Jackie Cook
- Medical Research Council (MRC) Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
39
|
Diédhiou CK, Moussa RA, Bei AK, Daniels R, Papa Mze N, Ndiaye D, Faye N, Wirth D, Amambua-Ngwa A, Mboup S, Ahouidi AD. Temporal changes in Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) in Senegal and The Gambia. Malar J 2019; 18:239. [PMID: 31311552 PMCID: PMC6636118 DOI: 10.1186/s12936-019-2868-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) is an important P. falciparum merozoite ligand that mediates invasion of erythrocytes by interacting with a chymotrypsin-sensitive "receptor Z". A large deletion polymorphism is found in the c-terminal ectodomain of this protein in many countries around the world, resulting in a truncated, but expressed protein. The varying frequencies by region suggest that there could be region specific immune selection at this locus. Therefore, this study was designed to determine temporal changes in the PfRh2b deletion polymorphism in infected individuals from Thiès (Senegal) and Western Gambia (The Gambia). It was also sought to determine the selective pressures acting at this locus and whether prevalence of the deletion in isolates genotyped by a 24-SNP molecular barcode is linked to background genotype or whether there might be independent selection acting at this locus. METHODS Infected blood samples were sourced from archives of previous studies conducted between 2007 and 2013 at SLAP clinic in Thiès and from 1984 to 2013 in Western Gambia by MRC Unit at LSHTM, The Gambia. A total of 1380 samples were screened for the dimorphic alleles of the PfRh2b using semi-nested Polymerase Chain Reaction PCR. Samples from Thiès were previously barcoded. RESULTS In Thiès, a consistent trend of decreasing prevalence of the PfRh2b deletion over time was observed: from 66.54% in 2007 and to 38.1% in 2013. In contrast, in Western Gambia, the frequency of the deletion fluctuated over time; it increased between 1984 and 2005 from (58.04%) to (69.33%) and decreased to 47.47% in 2007. Between 2007 and 2012, the prevalence of this deletion increased significantly from 47.47 to 83.02% and finally declined significantly to 57.94% in 2013. Association between the presence of this deletion and age was found in Thiès, however, not in Western Gambia. For the majority of isolates, the PfRh2b alleles could be tracked with specific 24-SNP barcoded genotype, indicating a lack of independent selection at this locus. CONCLUSION PfRh2b deletion was found in the two countries with varying prevalence during the study period. However, these temporal and spatial variations could be an obstacle to the implementation of this protein as a potential vaccine candidate.
Collapse
Affiliation(s)
- Cyrille K Diédhiou
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal.,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Rahama A Moussa
- Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Amy K Bei
- Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal.,Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA.,Laboratory of Parasitology Mycology, Aristide Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 5005, Dakar, Senegal
| | - Rachel Daniels
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Nasserdine Papa Mze
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal.,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology Mycology, Aristide Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 5005, Dakar, Senegal
| | - Ngor Faye
- Faculty of Sciences and Technologies, University Cheikh Anta Diop, Dakar, PO Box 5005, Dakar, Senegal
| | - Dyann Wirth
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at LSHTM, Fajara, Banjul, The Gambia
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Ambroise D Ahouidi
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal. .,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal.
| |
Collapse
|
40
|
Redmond SN, MacInnis BM, Bopp S, Bei AK, Ndiaye D, Hartl DL, Wirth DF, Volkman SK, Neafsey DE. De Novo Mutations Resolve Disease Transmission Pathways in Clonal Malaria. Mol Biol Evol 2019; 35:1678-1689. [PMID: 29722884 PMCID: PMC5995194 DOI: 10.1093/molbev/msy059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Detecting de novo mutations in viral and bacterial pathogens enables researchers to reconstruct detailed networks of disease transmission and is a key technique in genomic epidemiology. However, these techniques have not yet been applied to the malaria parasite, Plasmodium falciparum, in which a larger genome, slower generation times, and a complex life cycle make them difficult to implement. Here, we demonstrate the viability of de novo mutation studies in P. falciparum for the first time. Using a combination of sequencing, library preparation, and genotyping methods that have been optimized for accuracy in low-complexity genomic regions, we have detected de novo mutations that distinguish nominally identical parasites from clonal lineages. Despite its slower evolutionary rate compared with bacterial or viral species, de novo mutation can be detected in P. falciparum across timescales of just 1–2 years and evolutionary rates in low-complexity regions of the genome can be up to twice that detected in the rest of the genome. The increased mutation rate allows the identification of separate clade expansions that cannot be found using previous genomic epidemiology approaches and could be a crucial tool for mapping residual transmission patterns in disease elimination campaigns and reintroduction scenarios.
Collapse
Affiliation(s)
- Seth N Redmond
- Broad Institute of MIT and Harvard, Cambridge, MA.,Harvard T.H. Chan School of Public Health, Boston, MA
| | - Bronwyn M MacInnis
- Broad Institute of MIT and Harvard, Cambridge, MA.,Harvard T.H. Chan School of Public Health, Boston, MA
| | - Selina Bopp
- Broad Institute of MIT and Harvard, Cambridge, MA.,Harvard T.H. Chan School of Public Health, Boston, MA
| | - Amy K Bei
- Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Daouda Ndiaye
- Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Daniel L Hartl
- Broad Institute of MIT and Harvard, Cambridge, MA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Dyann F Wirth
- Broad Institute of MIT and Harvard, Cambridge, MA.,Harvard T.H. Chan School of Public Health, Boston, MA
| | - Sarah K Volkman
- Broad Institute of MIT and Harvard, Cambridge, MA.,Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nursing, School of Nursing and Health Sciences, Simmons College, Boston, MA, 02115
| | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, MA.,Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
41
|
Mohammed H, Kassa M, Mekete K, Assefa A, Taye G, Commons RJ. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates in Northwest Ethiopia. Malar J 2018; 17:386. [PMID: 30359280 PMCID: PMC6203214 DOI: 10.1186/s12936-018-2540-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/20/2018] [Indexed: 11/30/2022] Open
Abstract
Background Determination of the genetic diversity of malaria parasites can inform the intensity of transmission and identify potential deficiencies in malaria control programmes. This study was conducted to characterize the genetic diversity and allele frequencies of Plasmodium falciparum in Northwest Ethiopia along the Eritrea and Sudan border. Methods A total of 90 isolates from patients presenting to the local health centre with uncomplicated P. falciparum were collected from October 2014 to January 2015. DNA was extracted and the polymorphic regions of the msp-1, msp-2 and glurp loci were genotyped by nested polymerase chain reactions followed by gel electrophoresis for fragment analysis. Results Allelic variation in msp-1, msp-2 and glurp were identified in 90 blood samples. A total of 34 msp alleles (12 for msp-1 and 22 for msp-2) were detected. For msp-1 97.8% (88/90), msp-2 82.2% (74/90) and glurp 46.7% (42/90) were detected. In msp-1, MAD20 was the predominant allelic family detected in 47.7% (42/88) of the isolates followed by RO33 and K1. For msp-2, the frequency of FC27 and IC/3D7 were 77% (57/74) and 76% (56/74), respectively. Nine glurp RII region genotypes were identified. Seventy percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 2.6 (95% CI 2.25–2.97). The heterozygosity index was 0.82, 0.62 and 0.20 for msp-1, msp-2 and glurp, respectively. There was no significant association between multiplicity of infection and age or parasite density. Conclusions There was a high degree of genetic diversity with multiple clones in P. falciparum isolates from Northwest Ethiopia suggesting that there is a need for improved malaria control efforts in this region. Electronic supplementary material The online version of this article (10.1186/s12936-018-2540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hussein Mohammed
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Moges Kassa
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kalkidan Mekete
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girum Taye
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Robert J Commons
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| |
Collapse
|
42
|
Wesolowski A, Taylor AR, Chang HH, Verity R, Tessema S, Bailey JA, Alex Perkins T, Neafsey DE, Greenhouse B, Buckee CO. Mapping malaria by combining parasite genomic and epidemiologic data. BMC Med 2018; 16:190. [PMID: 30333020 PMCID: PMC6193293 DOI: 10.1186/s12916-018-1181-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recent global progress in scaling up malaria control interventions has revived the goal of complete elimination in many countries. Decreasing transmission intensity generally leads to increasingly patchy spatial patterns of malaria transmission in elimination settings, with control programs having to accurately identify remaining foci in order to efficiently target interventions. FINDINGS The role of connectivity between different pockets of local transmission is of increasing importance as programs near elimination since humans are able to transfer parasites beyond the limits of mosquito dispersal, thus re-introducing parasites to previously malaria-free regions. Here, we discuss recent advances in the quantification of spatial epidemiology of malaria, particularly Plasmodium falciparum, in the context of transmission reduction interventions. Further, we highlight the challenges and promising directions for the development of integrated mapping, modeling, and genomic approaches that leverage disparate datasets to measure both connectivity and transmission. CONCLUSION A more comprehensive understanding of the spatial transmission of malaria can be gained using a combination of parasite genetics and epidemiological modeling and mapping. However, additional molecular and quantitative methods are necessary to answer these public health-related questions.
Collapse
Affiliation(s)
- Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Aimee R Taylor
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
| | - Hsiao-Han Chang
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Robert Verity
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - Sofonias Tessema
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Caroline O Buckee
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA. .,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
43
|
Oyebola KM, Aina OO, Idowu ET, Olukosi YA, Ajibaye OS, Otubanjo OA, Awolola TS, Awandare GA, Amambua-Ngwa A. A barcode of multilocus nuclear DNA identifies genetic relatedness in pre- and post-Artemether/Lumefantrine treated Plasmodium falciparum in Nigeria. BMC Infect Dis 2018; 18:392. [PMID: 30103683 PMCID: PMC6205152 DOI: 10.1186/s12879-018-3314-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 08/06/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The decline in the efficacy of artemisinin-based combination treatment (ACT) in some endemic regions threatens the progress towards global elimination of malaria. Molecular surveillance of drug resistance in malaria-endemic regions is vital to detect the emergence and spread of mutant strains. METHODS We observed 89 malaria patients for the efficacy of artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum infections in Lagos, Nigeria and determined the prevalence of drug resistant strains in the population. Parasite clearance rates were determined by microscopy and the highly sensitive var gene acidic terminal sequence (varATS) polymerase chain reaction for 65 patients with samples on days 0, 1, 3, 7, 14, 21 and 28 after commencement of treatment. The genomic finger print of parasite DNA from pre- and post-treatment samples were determined using 24 nuclear single nucleotide polymorphisms (SNP) barcode for P. falciparum. Drug resistance associated alleles in chloroquine resistance transporter gene (crt-76), multidrug resistance genes (mdr1-86 and mdr1-184), dihydropteroate synthase (dhps-540), dihydrofolate reductase (dhfr-108) and kelch domain (K-13580) were genotyped by high resolution melt analysis of polymerase chain reaction (PCR) fragments. RESULTS By varATS qPCR, 12 (18.5%) of the participants had detectable parasite DNA in their blood three days after treatment, while eight (12.3%) individuals presented with genotypable day 28 parasitaemia. Complexity of infection (CoI) was 1.30 on day 0 and 1.34 on day 28, the mean expected heterozygosity (HE) values across all barcodes were 0.50 ± 0.05 and 0.56 ± 0.05 on days 0 and 28 respectively. Barcode (π) pairwise comparisons showed high genetic relatedness of day 0 and day 28 parasite isolates in three (37.5%) of the eight individuals who presented with re-appearing infections. Crt-76 mutant allele was present in 38 (58.5%) isolates. The mdr1-86 mutant allele was found in 56 (86.2%) isolates. No mutation in the K-13580 was observed. CONCLUSIONS Persistence of DNA-detectable parasitaemia in more than 18% of cases after treatment and indications of genetic relatedness between pre- and post-treatment infections warrants further investigation of a larger population for signs of reduced ACT efficacy in Nigeria.
Collapse
Affiliation(s)
- Kolapo Muyiwa Oyebola
- Medical Research Council Unit of The London School of Hygiene and Tropical Medicine, Bakau, The Gambia
- Parasitology and Bioinformatics, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra Ghana
| | | | - Emmanuel Taiwo Idowu
- Parasitology and Bioinformatics, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Yetunde Adeola Olukosi
- Parasitology and Bioinformatics, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
- Malaria Research Group, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | - Olubunmi Adetoro Otubanjo
- Parasitology and Bioinformatics, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | | | - Gordon Akanzuwine Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra Ghana
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit of The London School of Hygiene and Tropical Medicine, Bakau, The Gambia
| |
Collapse
|
44
|
Parobek CM, Parr JB, Brazeau NF, Lon C, Chaorattanakawee S, Gosi P, Barnett EJ, Norris LD, Meshnick SR, Spring MD, Lanteri CA, Bailey JA, Saunders DL, Lin JT, Juliano JJ. Partner-Drug Resistance and Population Substructuring of Artemisinin-Resistant Plasmodium falciparum in Cambodia. Genome Biol Evol 2018; 9:1673-1686. [PMID: 28854635 PMCID: PMC5522704 DOI: 10.1093/gbe/evx126] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum in western Cambodia has developed resistance to artemisinin and its partner drugs, causing frequent treatment failure. Understanding this evolution can inform the deployment of new therapies. We investigated the genetic architecture of 78 falciparum isolates using whole-genome sequencing, correlating results to in vivo and ex vivo drug resistance and exploring the relationship between population structure, demographic history, and partner drug resistance. Principle component analysis, network analysis and demographic inference identified a diverse central population with three clusters of clonally expanding parasite populations, each associated with specific K13 artemisinin resistance alleles and partner drug resistance profiles which were consistent with the sequential deployment of artemisinin combination therapies in the region. One cluster displayed ex vivo piperaquine resistance and mefloquine sensitivity with a high rate of in vivo failure of dihydroartemisinin-piperaquine. Another cluster displayed ex vivo mefloquine resistance and piperaquine sensitivity with high in vivo efficacy of dihydroartemisinin-piperaquine. The final cluster was clonal and displayed intermediate sensitivity to both drugs. Variations in recently described piperaquine resistance markers did not explain the difference in mean IC90 or clinical failures between the high and intermediate piperaquine resistance groups, suggesting additional loci may be involved in resistance. The results highlight an important role for partner drug resistance in shaping the P. falciparum genetic landscape in Southeast Asia and suggest that further work is needed to evaluate for other mutations that drive piperaquine resistance.
Collapse
Affiliation(s)
- Christian M Parobek
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill
| | - Jonathan B Parr
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Chanthap Lon
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panita Gosi
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Eric J Barnett
- School of Medicine, Upstate Medical University, State University of New York, Syracuse
| | - Lauren D Norris
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Michele D Spring
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Charlotte A Lanteri
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, Division of Transfusion Medicine, University of Massachusetts Medical School
| | - David L Saunders
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jessica T Lin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
| | - Jonathan J Juliano
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill.,Division of Infectious Diseases, University of North Carolina, Chapel Hill.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| |
Collapse
|
45
|
Bridges DJ, Miller JM, Chalwe V, Moonga H, Hamainza B, Steketee R, Silumbe K, Nyangu J, Larsen DA. Community-led Responses for Elimination (CoRE): a study protocol for a community randomized controlled trial assessing the effectiveness of community-level, reactive focal drug administration for reducing Plasmodium falciparum infection prevalence and incidence in Southern Province, Zambia. Trials 2017; 18:511. [PMID: 29096671 PMCID: PMC5667476 DOI: 10.1186/s13063-017-2249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Zambia is pushing for, and has made great strides towards, the elimination of malaria transmission in Southern Province. Reactive focal test and treat (RFTAT) using rapid diagnostic tests and artemether-lumefantrine (AL) has been key in making this progress. Reactive focal drug administration (RFDA) using dihydroartemisinin-piperaquine (DHAP), may be superior in accelerating clearance of the parasite reservoir in humans due to the provision of enhanced chemoprophylactic protection of at-risk populations against new infections. The primary aim of this study is to quantify the relative effectiveness of RFDA with DHAP against RFTAT with AL (standard of care) for reducing Plasmodium falciparum prevalence and incidence. Methods/design The study will be conducted in four districts in Southern Province, Zambia; an area of low malaria transmission and high coverage of vector control. A community randomized controlled trial of 16 health facility catchment areas will be used to evaluate the impact of sustained year-round routine RFDA for 2 years, relative to a control of year-round routine RFTAT. Reactive case detection will be triggered by a confirmed malaria case, e.g., by microscopy or rapid diagnostic test at any government health facility. Reactive responses will be performed by community health workers (CHW) within 7 days of the index case confirmation date. Responses will be performed out to a radius of 140 m from the index case household. A subset of responses will be followed longitudinally for 90 days to examine reinfection rates. Primary outcomes include a post-intervention survey of malaria seropositivity (n = 4800 children aged 1 month to under 5 years old) and a difference-in-differences analysis of malaria parasite incidence, as measured through routine passive case detection at health facilities enrolled in the study. The study is powered to detect approximately a 65% relative reduction in these outcomes between the intervention versus the control. Discussion Strengths of this trial include a robust study design and an endline cross-sectional parasite survey as well as a longitudinal sample. Primary limitations include statistical power to detect only a 65% reduction in primary outcomes, and the potential for contamination to dilute the effects of the intervention. Trial registration ClinicalTrials.gov, ID: NCT02654912. Registered on 12 November 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-2249-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel J Bridges
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Control Centre, Chainama Hospital College Grounds, Lusaka, Zambia.
| | - John M Miller
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Control Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Victor Chalwe
- Zambia Ministry of Health, Provincial Medical Office, Mansa, Luapula Province, Zambia
| | - Hawela Moonga
- National Malaria Control Centre, Zambia Ministry of Health, Chainama Hospital, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Control Centre, Zambia Ministry of Health, Chainama Hospital, Lusaka, Zambia
| | - Rick Steketee
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), 2201 Westlake Avenue, Seattle, WA, USA
| | - Kafula Silumbe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Control Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Jenala Nyangu
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Control Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - David A Larsen
- Syracuse University Department of Public Health, Food Studies and Nutrition, Syracuse, NY, USA
| |
Collapse
|
46
|
Richardson JB, Lee KY, Mireji P, Enyaru J, Sistrom M, Aksoy S, Zhao H, Caccone A. Genomic analyses of African Trypanozoon strains to assess evolutionary relationships and identify markers for strain identification. PLoS Negl Trop Dis 2017; 11:e0005949. [PMID: 28961238 PMCID: PMC5636163 DOI: 10.1371/journal.pntd.0005949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/11/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022] Open
Abstract
African trypanosomes of the sub-genus Trypanozoon) are eukaryotic parasitesthat cause disease in either humans or livestock. The development of genomic resources can be of great use to those interested in studying and controlling the spread of these trypanosomes. Here we present a large comparative analysis of Trypanozoon whole genomes, 83 in total, including human and animal infective African trypanosomes: 21 T. brucei brucei, 22 T. b. gambiense, 35 T. b. rhodesiense and 4 T. evansi strains, of which 21 were from Uganda. We constructed a maximum likelihood phylogeny based on 162,210 single nucleotide polymorphisms (SNPs.) The three Trypanosoma brucei sub-species and Trypanosoma evansi are not monophyletic, confirming earlier studies that indicated high similarity among Trypanosoma “sub-species”. We also used discriminant analysis of principal components (DAPC) on the same set of SNPs, identifying seven genetic clusters. These clusters do not correspond well with existing taxonomic classifications, in agreement with the phylogenetic analysis. Geographic origin is reflected in both the phylogeny and clustering analysis. Finally, we used sparse linear discriminant analysis to rank SNPs by their informativeness in differentiating the strains in our data set. As few as 84 SNPs can completely distinguish the strains used in our study, and discriminant analysis was still able to detect genetic structure using as few as 10 SNPs. Our results reinforce earlier results of high genetic similarity between the African Trypanozoon. Despite this, a small subset of SNPs can be used to identify genetic markers that can be used for strain identification or other epidemiological investigations. Trypanosomes are a major health threat to the people and livestock of Sub-Saharan Africa. Building genomic resources and understanding the genetic structure of these parasites will aid researchers trying to control their spread. To this end, we compared the genomes from 83 trypanosome strains, identifying 162,210 single nucleotide polymorphisms (SNPs) between them. Our analysis shows high genetic similarity between the trypanosomes, and confirms earlier results indicating that the traditional taxonomic classifications do not correspond well with genetic data. Further, we demonstrate that, despite the high genetic similarity, each strain in the study can be distinguished using as few as 84 SNPs, suggesting that a small number of SNPs can be useful for tracking and classifying populations of African trypanosomes.
Collapse
Affiliation(s)
- Joshua Brian Richardson
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
- * E-mail:
| | - Kuang-Yao Lee
- Yale School of Public Health, Yale University, New Haven, CT, United States of America
| | - Paul Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - John Enyaru
- School of Biological Sciences, Makerere University, Kampala, Uganda
| | - Mark Sistrom
- School of Natural Sciences, UC Merced, Merced, CA, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Yale University, New Haven, CT, United States of America
| | - Hongyu Zhao
- Yale School of Public Health, Yale University, New Haven, CT, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
- Yale School of Public Health, Yale University, New Haven, CT, United States of America
| |
Collapse
|
47
|
Ruybal-Pesántez S, Tiedje KE, Tonkin-Hill G, Rask TS, Kamya MR, Greenhouse B, Dorsey G, Duffy MF, Day KP. Population genomics of virulence genes of Plasmodium falciparum in clinical isolates from Uganda. Sci Rep 2017; 7:11810. [PMID: 28924231 PMCID: PMC5603532 DOI: 10.1038/s41598-017-11814-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
Plasmodium falciparum causes a spectrum of malarial disease from asymptomatic to uncomplicated through to severe. Investigations of parasite virulence have associated the expression of distinct variants of the major surface antigen of the blood stages known as Pf EMP1 encoded by up to 60 var genes per genome. Looking at the population genomics of var genes in cases of uncomplicated malaria, we set out to determine if there was any evidence of a selective sweep of specific var genes or clonal epidemic structure related to the incidence of uncomplicated disease in children. By sequencing the conserved DBLα domain of var genes from six sentinel sites in Uganda we found that the parasites causing uncomplicated P. falciparum disease in children were highly diverse and that every child had a unique var DBLα repertoire. Despite extensive var DBLα diversity and minimal overlap between repertoires, specific DBLα types and groups were conserved at the population level across Uganda. This pattern was the same regardless of the geographic distance or malaria transmission intensity. These data lead us to propose that any parasite can cause uncomplicated malarial disease and that these diverse parasite repertoires are composed of both upsA and non-upsA var gene groups.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | - Kathryn E Tiedje
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | | | - Thomas S Rask
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Michael F Duffy
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | - Karen P Day
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia.
- Department of Microbiology, New York University, New York, USA.
| |
Collapse
|
48
|
Neafsey DE, Volkman SK. Malaria Genomics in the Era of Eradication. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025544. [PMID: 28389516 DOI: 10.1101/cshperspect.a025544] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first reference genome assembly for the Plasmodium falciparum malaria parasite was completed over a decade ago, and the impact of this and other genomic resources on malaria research has been significant. Genomic resources for other malaria parasites are being established, even as P. falciparum continues to be the focus of development of new genomic methods and applications. Here we review the impact and applications of genomic data on malaria research, and discuss future needs and directions as genomic data generation becomes less expensive and more decentralized. Specifically, we focus on how population genomic strategies can be utilized to advance the malaria eradication agenda.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Sarah K Volkman
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,Infectious Disease Initiative, Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142.,School of Nursing and Health Sciences, Simmons College, Boston, MA 02115
| |
Collapse
|
49
|
Soe TN, Wu Y, Tun MW, Xu X, Hu Y, Ruan Y, Win AYN, Nyunt MH, Mon NCN, Han KT, Aye KM, Morris J, Su P, Yang Z, Kyaw MP, Cui L. Genetic diversity of Plasmodium falciparum populations in southeast and western Myanmar. Parasit Vectors 2017; 10:322. [PMID: 28676097 PMCID: PMC5496439 DOI: 10.1186/s13071-017-2254-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic diversity of malaria parasites reflects the complexity and size of the parasite populations. This study was designed to explore the genetic diversity of Plasmodium falciparum populations collected from two southeastern areas (Shwekyin and Myawaddy bordering Thailand) and one western area (Kyauktaw bordering Bangladesh) of Myanmar. METHODS A total of 267 blood samples collected from patients with acute P. falciparum infections during 2009 and 2010 were used for genotyping at the merozoite surface protein 1 (Msp1), Msp2 and glutamate-rich protein (Glurp) loci. RESULTS One hundred and eighty four samples were successfully genotyped at three genes. The allelic distributions of the three genes were all significantly different among three areas. MAD20 and 3D7 were the most prevalent alleles in three areas for Msp1 and Msp2, respectively. The Glurp allele with a bin size of 700-750 bp was the most prevalent both in Shwekyin and Myawaddy, whereas two alleles with bin sizes of 800-850 bp and 900-1000 bp were the most prevalent in the western site Kyauktaw. Overall, 73.91% of samples contained multiclonal infections, resulting in a mean multiplicity of infection (MOI) of 1.94. Interestingly, the MOI level presented a rising trend with the order of Myawaddy, Kyauktaw and Shwekyin, which also paralleled with the increasing frequencies of Msp1 RO33 and Msp2 FC27 200-250 bp alleles. Msp1 and Msp2 genes displayed higher levels of diversity and higher MOI rates than Glurp. PCR revealed four samples (two from Shwekyin and two from Myawaddy) with mixed infections of P. falciparum and P. vivax. CONCLUSIONS This study genotyped parasite clinical samples from two southeast regions and one western state of Myanmar at the Msp1, Msp2 and Glurp loci, which revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations at these sites. The results indicated that malaria transmission intensity in these regions remained high and more strengthened control efforts are needed. The genotypic data provided baseline information for monitoring the impacts of malaria elimination efforts in the region.
Collapse
Affiliation(s)
- Than Naing Soe
- Department of Public Health, Ministry of Health and Sports, Nay Pyi Taw, Myanmar
| | - Yanrui Wu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China.,Department of Cell Biology & Genetics, Kunming Medical University, Kunming, China
| | - Myo Win Tun
- Department of Medical Research, Yangon city, Myanmar
| | - Xin Xu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yue Hu
- Department of Pathology, Kunming Medical University, Kunming, China
| | - Yonghua Ruan
- Department of Pathology, Kunming Medical University, Kunming, China
| | | | | | | | - Kay Thwe Han
- Department of Medical Research, Yangon city, Myanmar
| | - Khin Myo Aye
- Department of Medical Research, Yangon city, Myanmar
| | - James Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA
| | - Pincan Su
- Transfusion Medicine Research Department, Yunnan Kunming Blood Center, Kunming, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China.
| | - Myat Phone Kyaw
- Department of Medical Research, Yangon city, Myanmar. .,Myanmar Medical Association, Yangon, Myanmar.
| | - Liwang Cui
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China. .,Department of Entomology, Pennsylvania State University, University Park city, PA, 16802, USA.
| |
Collapse
|
50
|
Day KP, Artzy-Randrup Y, Tiedje KE, Rougeron V, Chen DS, Rask TS, Rorick MM, Migot-Nabias F, Deloron P, Luty AJF, Pascual M. Evidence of strain structure in Plasmodium falciparum var gene repertoires in children from Gabon, West Africa. Proc Natl Acad Sci U S A 2017; 114:E4103-E4111. [PMID: 28461509 PMCID: PMC5441825 DOI: 10.1073/pnas.1613018114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Existing theory on competition for hosts between pathogen strains has proposed that immune selection can lead to the maintenance of strain structure consisting of discrete, weakly overlapping antigenic repertoires. This prediction of strain theory has conceptual overlap with fundamental ideas in ecology on niche partitioning and limiting similarity between coexisting species in an ecosystem, which oppose the hypothesis of neutral coexistence. For Plasmodium falciparum, strain theory has been specifically proposed in relation to the major surface antigen of the blood stage, known as PfEMP1 and encoded by the multicopy multigene family known as the var genes. Deep sampling of the DBLα domain of var genes in the local population of Bakoumba, West Africa, was completed to define whether patterns of repertoire overlap support a role of immune selection under the opposing force of high outcrossing, a characteristic of areas of intense malaria transmission. Using a 454 high-throughput sequencing protocol, we report extremely high diversity of the DBLα domain and a large parasite population with DBLα repertoires structured into nonrandom patterns of overlap. Such population structure, significant for the high diversity of var genes that compose it at a local level, supports the existence of "strains" characterized by distinct var gene repertoires. Nonneutral, frequency-dependent competition would be at play and could underlie these patterns. With a computational experiment that simulates an intervention similar to mass drug administration, we argue that the observed repertoire structure matters for the antigenic var diversity of the parasite population remaining after intervention.
Collapse
Affiliation(s)
- Karen P Day
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia;
- Department of Microbiology, New York University, New York, NY 10016
| | - Yael Artzy-Randrup
- Theoretical Ecology Group, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Kathryn E Tiedje
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Microbiology, New York University, New York, NY 10016
| | - Virginie Rougeron
- Department of Microbiology, New York University, New York, NY 10016
- Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 224-5290 CNRS, Institut de Recherche pour le Développement-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, 34394 Montpellier, France
| | - Donald S Chen
- Department of Microbiology, New York University, New York, NY 10016
- Department of Medicine, New York Medical College, Valhalla, NY 10595
| | - Thomas S Rask
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Microbiology, New York University, New York, NY 10016
| | - Mary M Rorick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| | - Florence Migot-Nabias
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Philippe Deloron
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Adrian J F Luty
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
- Santa Fe Institute, Santa Fe, NM 87501
| |
Collapse
|