1
|
Nicholson KR, Yin S, Edwards JL, Luan CH, Seifert HS. Natural compounds target the M23B zinc metallopeptidase Mpg to modulate Neisseria gonorrhoeae Type IV pilus expression. mBio 2025; 16:e0402724. [PMID: 39998224 PMCID: PMC11980366 DOI: 10.1128/mbio.04027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Neisseria gonorrhoeae uses the Type IV pilus (T4p) to colonize several sites within humans by adhering to host cells and tissues. Previously, we identified a periplasmic M23B zinc metallopeptidase, Mpg, that is necessary to protect from oxidative and nonoxidative killing and these phenotypes are mediated by Mpg activities on T4p expression. Here, we use a high-throughput, target-based screening approach to identify novel inhibitors of Mpg's enzymatic activity. We identified two natural compounds, punicalagin and chebulinic acid, which inhibit the peptidoglycan-hydrolyzing activity of Mpg in a dose-dependent manner. Moreover, treatment of N. gonorrhoeae with these compounds leads to a concomitant decrease in the number of T4p, similar to an mpg mutant. However, these compounds are not toxic to N. gonorrhoeae. These compounds exhibit activity against Mpg orthologs from other bacterial species. Notably, these natural compounds inhibit N. gonorrhoeae colonization and survival in cell culture models of infection. This work provides the characterization of two natural compounds with activity against N. gonorrhoeae T4p through the Mpg M23B class zinc metallopeptidase. IMPORTANCE Neisseria gonorrhoeae is a global health burden with high transmission rates and multidrug resistance. N. gonorrhoeae encodes a Type IV pilus (T4p), which is a major colonization and virulence factor. The importance of the T4p in multiple stages of infection makes it an attractive drug target. Previously, we identified an M23B zinc metallopeptidase, Mpg, important for T4p production and T4p-mediated resistance to neutrophil killing. In this study, we identified two natural compounds, punicalagin and chebulinic acid, as novel inhibitors of Mpg's enzymatic activity that thus inhibit T4p expression. These findings identify two potential anti-colonization and anti-virulence compounds and provide a framework to target T4p components for future screens, poising the field to potentially discover additional compounds to combat N. gonorrhoeae infection.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shaohui Yin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer L. Edwards
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Ghaly HKF, Younis FAAY, Soliman AM, El-Sabbagh SM. Phytochemical and antibacterial properties of calyces Hibiscus sabdariffa L.: an in vitro and in silico multitarget-mediated antibacterial study. BMC Complement Med Ther 2025; 25:62. [PMID: 39966872 PMCID: PMC11837655 DOI: 10.1186/s12906-025-04794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria pose a significant threat to human health worldwide by increasing the harmful impact of traditional synthetic antibiotics. Traditional medicinal plants have bioactive metabolites that can significantly modulate the growth rate, cell survival, and pathogenicity of antibiotic-resistant bacteria. Hibiscus sabdariffa L., known as Roselle or Karkade, belongs to the Malvaceae family. It is well-known for its edible aromatic red/purple calyces and is extensively utilized in the food industry and pharmacological applications. H. sabdariffa calyx bioactive phytocompounds have potent therapeutic activities such as antimicrobial, antidiabetic, antiobesity, antioxidant, anti-inflammatory, and anticancer properties. METHODS This study utilized gas chromatography-mass spectrometry (GC-MS) analysis to determine the volatile aromatic compounds that found in the hydroethanolic extract of Hibiscus sabdariffa calyces. The purpose was to verify the antibacterial properties of Roselle calyces against selective MDR clinical bacterial isolates, including A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa. RESULTS The GC-MS spectrum profile revealed the presence of twenty-seven volatile organic components, including organic fatty acid derivatives, ester compounds, sugar derivatives, and terpene components. The major GC-MS fractionations and the main active chemical compositions of the hydroethanolic extract of H. sabdariffa flowers were (E)-10-Octadecenoic acid methyl ester (59.23%), 8,11-Octadecadienoic acid, methyl ester (11.51%), Butanedioic acid, 3-hydroxy-2,2-dimethyl-, diethyl ester (6.22%), Diethyl succinate/Butanedioic acid, diethyl ester (2.35%), and Heptadecanoic acid, 16-methyl-, methyl ester/Methyl isostearate (2.31%). The hydroethanolic extract of H. sabdariffa dried calyces demonstrated potent antibacterial properties (zones diameter of inhibition growth, MIC, MBC, and MBC/MIC) against selective MDR clinical bacterial isolates, such as A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa, as determined by the phytochemical screening (TAC, TFC, and TPC) and antioxidant activity (DPPH). The surface morphological characteristics of the treated A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa clinical isolates have been affected in comparison to the untreated forms by the hydroethanolic extract of H. sabdariffa calyces, as determined by scanning electron microscopy (SEM). In silico predictive investigation revealed that the volatile aromatic components of the hydroethanolic extract of Roselle calyces exhibited significant scoring functions, binding affinities, and non-covalent intermolecular interactions with the MenB lyase and DNA gyrase targets of E. coli. These interactions significantly enhanced the activities of the volatile aromatic components against the bacterial pathogenicity, cell survival, growth, and differentiation of selective MDR clinical bacterial isolates. CONCLUSIONS According to the in vitro and in silico findings, the hydroethanolic extract of H. sabdariffa calyces has shown potentials as an effective antioxidant and antibacterial treatment. It contains volatile aromatic compounds that can modulate selective MDR Gram-negative clinical bacterial isolates.
Collapse
Affiliation(s)
- Hend Khairy Fekry Ghaly
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Fatema Aly Al-Yamany Younis
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt.
| | - Azza Mahmoud Soliman
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Sabha Mahmoud El-Sabbagh
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| |
Collapse
|
3
|
Zhou M, Sun Y, Mao Q, Luo L, Pan H, Zhang Q, Yu C. Comparative metabolomics profiling reveals the unique bioactive compounds and astringent taste formation of rosehips. Food Chem 2024; 452:139584. [PMID: 38735110 DOI: 10.1016/j.foodchem.2024.139584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.
Collapse
Affiliation(s)
- Meichun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yanlin Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qingyi Mao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Machingauta A, Mukanganyama S. Antibacterial Activity and Proposed Mode of Action of Extracts from Selected Zimbabwean Medicinal Plants against Acinetobacter baumannii. Adv Pharmacol Pharm Sci 2024; 2024:8858665. [PMID: 39220823 PMCID: PMC11364482 DOI: 10.1155/2024/8858665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii was identified by the WHO as a priority pathogen in which the research and development of new antibiotics is urgently needed. Plant phytochemicals have potential as sources of new antimicrobials. The objective of the study was to determine the antibacterial activity of extracts of selected Zimbabwean medicinal plants against A. baumannii and determine their possible mode of action. Extracts were prepared from the leaves of the eight plants including the bark of Erythrina abyssinica using solvents of different polarities. Antibacterial activity was evaluated using the microbroth dilution method coupled with the in vitro iodonitrotetrazolium colorimetric assay. The effect of the extracts on membrane integrity was determined by quantifying the amount of protein and nucleic acid leaked from the cells after exposure to the extracts. The effects of the extracts on biofilms were investigated. Toxicity studies were carried out using sheep erythrocytes and murine peritoneal cells. Seven out of eight evaluated plant extracts were found to have antibacterial activity. The Combretum apiculatum acetonie (CAA) extract showed the highest inhibitory activity against A. baumannii with a minimal inhibitory concentration of 125 µg/mL. The minimum inhibitory concentration (MIC) of the CAA extract caused a protein leakage of 32 µg/mL from A. baumannii. The Combretum apiculatum acetonie (CAA), C. apiculatum methanolic (CAM), Combretum zeyheri methanolic (CZM), and Erythrina abyssinica methanolic (EAM) extracts inhibited A. baumannii biofilm formation. The EAM extract was shown to disrupt mature biofilms. The potent extracts were nontoxic to sheep erythrocytes and mouse peritoneal cells. The activities shown by the extracts indicate that the plants have potential as sources of effective antibacterial and antibiofilm formation agents against A. baumannii.
Collapse
Affiliation(s)
- Auxillia Machingauta
- Bio-Molecular Interactions Analyses GroupDepartment of Biotechnology and BiochemistryUniversity of Zimbabwe, Mt Pleasant, P.O. Box 167, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of TherapeuticsNatural Products Research UnitAfrican Institute of Biomedical Science and TechnologyWilkins Hospital, Block C, Corner J. Tongogara and R. Tangwena, Harare, Zimbabwe
| |
Collapse
|
5
|
Sivarajan K, Ravindhiran R, Sekar JN, Murugesan R, Chidambaram K, Dhandapani K. Deciphering the impact of Acinetobacter baumannii on human health, and exploration of natural compounds as efflux pump inhibitors to treat multidrug resistance. J Med Microbiol 2024; 73. [PMID: 39212030 DOI: 10.1099/jmm.0.001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an ESKAPE pathogen and threatens human health by generating infections with high fatality rates. A. baumannii leads to a spectrum of infections such as skin and wound infections, endocarditis, meningitis pneumonia, septicaemia and urinary tract infections. Recently, strains of A. baumannii have emerged as multidrug-resistant (MDR), meaning they are resistant to at least three different classes of antibiotics. MDR development is primarily intensified by widespread antibiotic misuse and inadequate stewardship. The World Health Organization (WHO) declared A. baumannii a precarious MDR species. A. baumannii maintains the MDR phenotype via a diverse array of antimicrobial metabolite-hydrolysing enzymes, efflux of antibiotics, impermeability and antibiotic target modification, thereby complicating treatment. Hence, a deeper understanding of the resistance mechanisms employed by MDR A. baumannii can give possible approaches to treat antimicrobial resistance. Resistance-nodulation-cell division (RND) efflux pumps have been identified as the key contributors to MDR determinants, owing to their capacity to force a broad spectrum of chemical substances out of the bacterial cell. Though synthetic inhibitors have been reported previously, their efficacy and safety are of debate. As resistance-modifying agents, phytochemicals are ideal choices. These natural compounds could eliminate the bacteria or interact with pathogenicity events and reduce the bacteria's ability to evolve resistance. This review aims to highlight the mechanism behind the multidrug resistance in A. baumannii and elucidate the utility of natural compounds as efflux pump inhibitors to deal with the infections caused by A. baumannii.
Collapse
Affiliation(s)
- Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, School of Pharmacy, King Khalid University, Abha 652529, Saudi Arabia
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| |
Collapse
|
6
|
Liu C, Hou J, Ren X, Guo X, Wang B, Song W, Wang L, Wang G. Norwogonin aids in fighting MRSA-induced pneumonia by targeting agrA C to inhibit α-hemolysin production. World J Microbiol Biotechnol 2024; 40:265. [PMID: 38990361 DOI: 10.1007/s11274-024-04052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
The increasing prevalence of infections related to methicillin-resistant Staphylococcus aureus (MRSA) necessitates the exploration of innovative therapeutic strategies that diverge from conventional antibiotic treatments. This is imperative to effectively combat resistance and manage these infections. The adoption of antivirulence strategies has emerged as a particularly promising avenue. This approach applies a heightened selective pressure on pathogens, thereby diminishing the likelihood of bacteria evolving resistance to antibiotics. In our pursuit of novel therapeutics for treating MRSA infections, we have focused on agents that inhibit the virulence of S. aureus without impeding its growth, aiming to minimize the development of drug resistance. α-Hemolysin, a critical virulence factor encoded by the hla gene, is a cytotoxin that forms pores in host cell membranes and plays a pivotal role in the progression of disease during bacterial infections. Herein, we identified that norwogonin could effectively inhibit Hla production via targeting agrAC, a crucial protein in quorum sensing, resulting in dose-dependent inhibition of hemolytic activity without suppressing S. aureus growth. In vitro assays illustrated that norwogonin decreased the thermal stability of agrAC, providing evidence of interaction between norwogonin and agrAC. Meanwhile, norwogonin alleviated Hla-mediated A549 cell damage and reduced lactate dehydrogenase release. In vivo studies suggested that norwogonin treatment blocked the establishment of a mouse model of pneumonia caused by S. aureus USA300. Notably, norwogonin enhanced the antibacterial potency of oxacillin. In conclusion, norwogonin is a promising candidate for treating S. aureus infections, offering a novel alternative to traditional antibiotics by targeting virulence factors and enhancing the efficacy of existing treatments.
Collapse
Affiliation(s)
- Chang Liu
- Jilin University School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Juan Hou
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Ren
- Jilin University School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xuerui Guo
- Jilin University School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
| | - Guangshu Wang
- Jilin University School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Molnar M, Jakovljević Kovač M, Pavić V. A Comprehensive Analysis of Diversity, Structure, Biosynthesis and Extraction of Biologically Active Tannins from Various Plant-Based Materials Using Deep Eutectic Solvents. Molecules 2024; 29:2615. [PMID: 38893491 PMCID: PMC11173854 DOI: 10.3390/molecules29112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.
Collapse
Affiliation(s)
- Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| |
Collapse
|
8
|
Uc-Cachón AH, Dzul-Beh A, González-Cortázar M, Zamilpa-Álvarez A, Molina-Salinas GM. Investigating the anti-growth, anti-resistance, and anti-virulence activities of Schoepfia schreberi J.F.Gmel. against the superbug Acinetobacter baumannii. Heliyon 2024; 10:e31420. [PMID: 38813144 PMCID: PMC11133943 DOI: 10.1016/j.heliyon.2024.e31420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Schoepfia schreberi has been used in Mayan folk medicine to treat diarrhea and cough. This study aimed to determine the anti-growth, anti-resistance, and/or anti-virulence activities of S. schreberi extracts against Acinetobacter baumannii, a pathogen leader that causes healthcare-associated infections with high rates of drug-resistant including carbapenems, the last line of antibiotics known as superbugs, and analyze their composition using HPLC-DAD. Ethyl acetate (SSB-3) and methanol (SSB-4) bark extracts exhibit antimicrobial and biocidal effects against drug-susceptible and drug-resistant A. baumannii. Chemical analysis revealed that SSB-3 and SSB-4 contained of gallic and ellagic acids derivatives. The anti-resistance activity of the extracts revealed that SSB-3 or SSB-4, combined with imipenem, exhibited potent antibiotic reversal activity against A. baumannii by acting as pump efflux modulators. The extracts also displayed activity against surface motility of A. baumannii and its capacity to survive reactive oxygen species. This study suggests that S. schreberi can be considered a source of antibiotics, even adjuvanted compounds, as anti-resistant or anti-virulence agents against A. baumannii, contributing to ethnopharmacological knowledge and reappraisal of Mayan medicinal flora, and supporting the traditional use of the bark of the medicinal plant S. schreberi for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| | - Angel Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Manases González-Cortázar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Alejandro Zamilpa-Álvarez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| |
Collapse
|
9
|
Baibuch SY, Schelegueda LI, Bonifazi E, Cabrera G, Mondragón Portocarrero AC, Franco CM, Malec LS, Campos CA. Argentinian Rose Petals as a Source of Antioxidant and Antimicrobial Compounds. Foods 2024; 13:977. [PMID: 38611283 PMCID: PMC11012100 DOI: 10.3390/foods13070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The total phenolic, flavonoid, and anthocyanin contents were evaluated in 11 cultivars of Argentinian roses of different colors. HPLC-ESI-QTOF/MS was used to identify the components where ellagic and quinic acids, quercetin, and kaempferol glycosylated derivatives were found. The phenolic contents ranged from 78.8 ± 3.2 to 203.4 ± 3.1 mg GAE/g dw, the flavonoid content ranged from 19.1 ± 3.8 to 125.9 ± 6.5 mg QE/g dw, and the anthocyanin content ranged from less than 0.01 to 5.8 ± 0.1 mg CE/g dw. The dark red cultivars exhibited the greatest levels of the analyzed compounds and of the antioxidant activities, even higher than those of certain plants known for their high phenolic contents and antioxidant activity. Moreover, the addition of these extracts decreased the population of L. innocua and P. aeruginosa to undetectable levels 24 h after inoculation. Rose petal extracts, mainly those with a dark red color, can be used as natural additives in food, feed, and cosmetics, as they contain a high proportion of bioactive compounds with antioxidant and antimicrobial effects.
Collapse
Affiliation(s)
- Sabrina Y. Baibuch
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.Y.B.); (L.I.S.)
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (E.B.); (G.C.); (L.S.M.)
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1428EGA, Argentina
| | - Laura I. Schelegueda
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.Y.B.); (L.I.S.)
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1428EGA, Argentina
| | - Evelyn Bonifazi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (E.B.); (G.C.); (L.S.M.)
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Gabriela Cabrera
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (E.B.); (G.C.); (L.S.M.)
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Alicia C. Mondragón Portocarrero
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Veterinarias, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (A.C.M.P.); (C.M.F.)
| | - Carlos M. Franco
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Veterinarias, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (A.C.M.P.); (C.M.F.)
| | - Laura S. Malec
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (E.B.); (G.C.); (L.S.M.)
| | - Carmen A. Campos
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.Y.B.); (L.I.S.)
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
10
|
Sharma A, Anurag, Kaur J, Kesharwani A, Parihar VK. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med Chem 2024; 20:576-596. [PMID: 38584534 DOI: 10.2174/0115734064277579240328142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, 226002, UP, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| |
Collapse
|
11
|
de Jesus GS, Silva Trentin D, Barros TF, Ferreira AMT, de Barros BC, de Oliveira Figueiredo P, Garcez FR, Dos Santos ÉL, Micheletti AC, Yoshida NC. Medicinal plant Miconia albicans synergizes with ampicillin and ciprofloxacin against multi-drug resistant Acinetobacter baumannii and Staphylococcus aureus. BMC Complement Med Ther 2023; 23:374. [PMID: 37872494 PMCID: PMC10594757 DOI: 10.1186/s12906-023-04147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Given the rising occurrence of antibiotic resistance due to the existence and ongoing development of resistant bacteria and phenotypes, the identification of new treatments and sources of antimicrobial agents is of utmost urgency. An important strategy for tackling bacterial resistance involves the utilization of drug combinations, and natural products derived from plants hold significant potential as a rich source of bioactive compounds that can act as effective adjuvants. This study, therefore, aimed to assess the antibacterial potential and the chemical composition of Miconia albicans, a Brazilian medicinal plant used to treat various diseases. METHODS Ethanolic extracts from leaves and stems of M. albicans were obtained and subsequently partitioned to give the corresponding hexane, chloroform, ethyl acetate, and hydromethanolic phases. All extracts and phases had their chemical constitution investigated by HPLC-DAD-MS/MS and GC-MS and were assessed for their antibiofilm and antimicrobial efficacy against Staphylococcus aureus. Furthermore, their individual effects and synergistic potential in combination with antibiotics were examined against clinical strains of both S. aureus and Acinetobacter baumannii. In addition, 10 isolated compounds were obtained from the leaves phases and used for confirmation of the chemical profiles and for antibacterial assays. RESULTS Based on the chemical profile analysis, 32 compounds were successfully or tentatively identified, including gallic and ellagic acid derivatives, flavonol glycosides, triterpenes and pheophorbides. Extracts and phases obtained from the medicinal plant M. albicans demonstrated synergistic effects when combined with the commercial antibiotics ampicillin and ciprofloxacin, against multi-drug resistant bacteria S. aureus and A. baumannii, restoring their antibacterial efficacy. Extracts and phases also exhibited antibiofilm property against S. aureus. Three key compounds commonly found in the samples, namely gallic acid, quercitrin, and corosolic acid, did not exhibit significant antibacterial activity when assessed individually or in combination with antibiotics against clinical bacterial strains. CONCLUSIONS Our findings reveal that M. albicans exhibits remarkable adjuvant potential for enhancing the effectiveness of antimicrobial drugs against resistant bacteria.
Collapse
Affiliation(s)
- Genilson Silva de Jesus
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos (BACMEA), Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Thayná Fernandes Barros
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos (BACMEA), Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Bruna Castro de Barros
- Instituto de Biociências, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Patrícia de Oliveira Figueiredo
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Fernanda Rodrigues Garcez
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Érica Luiz Dos Santos
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Ana Camila Micheletti
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
| | - Nidia Cristiane Yoshida
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
| |
Collapse
|
12
|
Manso T, Lores M, Rama JLR, Villarino RA, Calvo LG, Castillo A, Celeiro M, de Miguel T. Antibacterial Activity against Clinical Strains of a Natural Polyphenolic Extract from Albariño White Grape Marc. Pharmaceuticals (Basel) 2023; 16:950. [PMID: 37513862 PMCID: PMC10383933 DOI: 10.3390/ph16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are becoming increasingly frequent and sometimes difficult to treat due to the limited number of antibiotics active against them. In addition, they can spread between countries and/or continents, which is a problem of great relevance worldwide. It is, therefore, urgent to find alternatives to treat infections caused by multidrug-resistant bacteria. This study aimed at exploring a possible therapeutic alternative in the fight against antibiotic resistance. Based on the known antibacterial capacity of polyphenols, we tested the antimicrobial activity of a polyphenolic extract of Albariño white grape marc on clinical strains since research on such bacteria has been very scarce until now. First, the extract was obtained using a medium-scale ambient temperature (MSAT) system, which is an efficient and sustainable extractive method. The determinations of the polyphenolic content of the extract and its antioxidant capacity showed good results. Using chromatographic and mass spectrometric tools, 13 remarkable polyphenols were detected in the extract. The antibacterial activity of our grape marc extract against nineteen clinical strain isolates, some of which are multidrug-resistant, was evaluated by means of the calculation of half of the maximum inhibitory concentration (IC50) and the value of the minimum bactericidal concentrations (MBCs). In conclusion, the extract showed effectiveness against all clinical strains tested, regardless of their level of antibiotic resistance, and shows promise in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Tamara Manso
- Complejo Hospitalario Universitario de Ferrol, E-15405 Ferrol, Spain
| | - Marta Lores
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- i-Grape Laboratory, Emprendia, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Rosa-Antía Villarino
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Lorena G Calvo
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Aly Castillo
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- i-Grape Laboratory, Emprendia, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - María Celeiro
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Trinidad de Miguel
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Sehim AE, Amin BH, Yosri M, Salama HM, Alkhalifah DH, Alwaili MA, Abd Elghaffar RY. GC-MS Analysis, Antibacterial, and Anticancer Activities of Hibiscus sabdariffa L. Methanolic Extract: In Vitro and In Silico Studies. Microorganisms 2023; 11:1601. [PMID: 37375103 DOI: 10.3390/microorganisms11061601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of bacteria that are resistant to several antibiotics has represented a serious hazard to human health globally. Bioactive metabolites from medicinal plants have a wide spectrum of therapeutic possibilities against resistant bacteria. Therefore, this study was performed to investigate the antibacterial efficacy of various extracts of three medicinal plants as Salvia officinalis L., Ziziphus spina-christi L., and Hibiscus sabdariffa L. against pathogenic Gram-negative Enterobacter cloacae (ATCC13047), Pseudomonas aeruginosa (RCMB008001), Escherichia coli (RCMB004001), and Gram-positive Staphylococcus aureus (ATCC 25923), bacteria using the agar-well diffusion method. Results revealed that, out of the three examined plant extracts, the methanol extract of H. sabdariffa L. was the most effective against all tested bacteria. The highest growth inhibition (39.6 ± 0.20 mm) was recorded against E. coli. Additionally, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the methanol extract of H. sabdariffa were detected in the case of all tested bacteria. Moreover, an antibiotic susceptibility test revealed that all tested bacteria showed multidrug resistance (MDR). While 50% of tested bacteria were sensitive and 50% were intermediately sensitive to piperacillin/tazobactam (TZP) based on the inhibition zone but still less than the extract. Synergistic assay demonstrated the promising role of using a combination of H. sabdariffa L. and (TZP) against tested bacteria. A surface investigation using a scanning electron microscope of the E. coli treated with TZP, extract, or a combination of the two revealed extremely considerable bacterial cell death. In addition, H. sabdariffa L. has a promising anticancer role versus Caco-2 cells with IC50 of 17.51 ± 0.07 µg/mL and minimal cytotoxicity upon testing versus Vero cells with CC50 of 165.24 ± 0.89 µg/mL. Flow cytometric analysis confirmed that H. sabdariffa extract significantly increased the apoptotic rate of Caco-2-treated cells compared to the untreated group. Furthermore, GC-MS analysis confirmed the existence of various bioactive components in the methanol hibiscus extract. Utilizing molecular docking with the MOE-Dock tool, binding interactions between n-Hexadecanoic acid, hexadecanoic acid-methyl ester, and oleic acid, 3-hydroxypropyl ester were evaluated against the target crystal structures of E. coli (MenB) (PDB ID:3T88) and the structure of cyclophilin of a colon cancer cell line (PDB ID: 2HQ6). The observed results provide insight into how molecular modeling methods might inhibit the tested substances, which may have applications in the treatment of E. coli and colon cancer. Thus, H. sabdariffa methanol extract is a promising candidate to be further investigated for developing alternative natural therapies for infection treatment.
Collapse
Affiliation(s)
- Amira E Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Hanaa M Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
| | - Dalal Hussien Alkhalifah
- Department of Biology, Collage of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, Collage of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rasha Y Abd Elghaffar
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
14
|
Jadimurthy R, Jagadish S, Nayak SC, Kumar S, Mohan CD, Rangappa KS. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life (Basel) 2023; 13:948. [PMID: 37109477 PMCID: PMC10145550 DOI: 10.3390/life13040948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Swamy Jagadish
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | | |
Collapse
|
15
|
Herman A, Herman AP. Herbal Products and Their Active Constituents Used Alone and in Combination with Antibiotics against Multidrug-Resistant Bacteria. PLANTA MEDICA 2023; 89:168-182. [PMID: 35995069 DOI: 10.1055/a-1890-5559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The purpose of this review is to summarize the current knowledge acquired on herbal products and their active constituents with antimicrobial activity used alone and in combination with antibiotics against multidrug-resistant bacteria. The most promising herbal products and active constituents used alone against multidrug-resistant bacteria are Piper betle (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, extended-spectrum beta-lactamase, Acinetobacter baumannii, Pseudomonas aeruginosa), Glycyrrhiza glabra (methicillin-resistant S. aureus, vancomycin-resistant Enterococcus, P. aeruginosa), and berberine (methicillin-resistant S. aureus, A. baumannii, P. aeruginosa), respectively. The synergistic effect of the combination of herbal products and their active constituents with antibiotics against multidrug-resistant bacteria are also described. These natural antibacterial agents can be promising sources of inhibitors, which can modulate antibiotic activity against multidrug-resistant bacteria, especially as efflux pump inhibitors. Other possible mechanisms of action of herbal therapy against multidrug-resistant bacteria including modification of the bacterial cell wall and/or membrane, inhibition of the cell division protein filamenting temperature sensitive Z-ring, and inhibition of protein synthesis and gene expression, all of which will also be discussed. Our review suggests that combination herbal therapy and antibiotics can be effectively used to expand the spectrum of their antimicrobial action. Therefore, combination therapy against multidrug-resistant bacteria may enable new choices for the treatment of infectious diseases and represents a potential area for future research.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Warsaw, Poland
| | - Andrzej P Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna near Warsaw, Poland
| |
Collapse
|
16
|
Multidrug-Resistant Acinetobacter baumannii Infections in the United Kingdom versus Egypt: Trends and Potential Natural Products Solutions. Antibiotics (Basel) 2023; 12:antibiotics12010077. [PMID: 36671278 PMCID: PMC9854726 DOI: 10.3390/antibiotics12010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Acinetobacter baumannii is a problematic pathogen of global concern. It causes multiple types of infection, especially among immunocompromised individuals in intensive care units. One of the most serious concerns related to this pathogen is its ability to become resistant to almost all the available antibiotics used in clinical practice. Moreover, it has a great tendency to spread this resistance at a very high rate, crossing borders and affecting healthcare settings across multiple economic levels. In this review, we trace back the reported incidences in the PubMed and the Web of Science databases of A. baumannii infections in both the United Kingdom and Egypt as two representative examples for countries of two different economic levels: high and low-middle income countries. Additionally, we compare the efforts made by researchers from both countries to find solutions to the lack of available treatments by looking into natural products reservoirs. A total of 113 studies reporting infection incidence were included, with most of them being conducted in Egypt, especially the recent ones. On the one hand, this pathogen was detected in the UK many years before it was reported in Egypt; on the other hand, the contribution of Egyptian researchers to identifying a solution using natural products is more notable than that of researchers in the UK. Tracing the prevalence of A. baumannii infections over the years showed that the infections are on the rise, especially in Egypt vs. the UK. Further concerns are linked to the spread of antibiotic resistance among the isolates collected from Egypt reaching very alarming levels. Studies conducted in the UK showed earlier inclusion of high-throughput technologies in the tracking and detection of A. baumannii and its resistance than those conducted in Egypt. Possible explanations for these variations are analyzed and discussed.
Collapse
|
17
|
Tiwari P, Sharma P, Kumar M, Kapil A, Abdul Samath E, Kaur P. Identification of novel natural MurD ligase inhibitors as potential antimicrobial agents targeting Acinetobacter baumannii: In silico screening and biological evaluation. J Biomol Struct Dyn 2022; 40:14051-14066. [PMID: 34766874 DOI: 10.1080/07391102.2021.2000497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The increased multidrug resistance in Acinetobacter baumannii (A. baumannii) to the present-day known antibiotics has stimulated academic and industrial efforts globally for the development of novel antibacterial agents. Natural compounds as potential drug leads are gaining significant attention due to their less toxic and more tolerant nature. In the current study, the natural product-based compounds were explored as probable inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate (MurD) ligase from A.baumannii (AbMurD) to provide a new class of drug leads. The prepared natural library of 3,16,714 compounds from ZINC database was screened into the active site of AbMurD using in silico high-throughput virtual screening which resulted in 100 compounds having high binding affinities. Further screening through flexible molecular docking yielded four potential compounds selected on the basis of estimated binding affinity (ΔG) and favorable protein-ligand interactions. MD simulation of these four compounds under physiological conditions and free binding energy calculations using MM/PBSA (molecular mechanics with Poisson- Boltzmann and surface area solvation) approach revealed three compounds ZINC08879777, ZINC30726863, and ZINC95486217 as potential binders of AbMurD. The calculated physicochemical and ADME properties of these compounds revealed that they can be exploited and modified to improve their binding affinity with the enzyme. Two compounds were purchased and tested against bacterial cell cultures of A. baumannii, Salmonella Typhi, and Staphylococcus aureus to determine their broad-spectrum antibacterial activity. The results suggest that the identified compounds can be exploited as potential herbal leads to target both Gram-positive and Gram-negative pathogens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, da Silva LCN, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol 2022; 13:1029098. [PMID: 36560948 PMCID: PMC9763703 DOI: 10.3389/fmicb.2022.1029098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biofilm-associated bacteria, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), are a serious challenge worldwide. Due to the lack of discovery of novel antibiotics, in the past two decades, it has become necessary to search for new antibiotics or to study synergy with the existing antibiotics so as to counter life-threatening infections. Nature-derived compounds/based products are more efficient than the chemically synthesized ones with less resistance and lower side effects. In this descriptive review, we discuss the most promising therapeutics for the treatment of ESKAPE-related biofilms. The first aspect includes different types of natural agents [botanical drugs, essential oils (EOs), antimicrobial peptides, bacteriophages, and endolysins] effective against ESKAPE pathogens. The second part of the review deals with special references to EOs/essential oil components (EOCs) (with some exclusive examples), mode of action (via interfering in the quorum-sensing pathways, disruption of biofilm and their inhibitory concentrations, expression of genes that are involved, other virulence factors), existing in literature so far. Moreover, different essential oils and their major constituents were critically discussed using in vivo models to target ESKAPE pathogens along with the studies involving existing antibiotics.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Centre of Environment Studies, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Shasank Sekhar Swain
- Division of Microbiology and Noncommunicable Diseases (NCDs), Indian Council of Medical Research (ICMR)–Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
19
|
Phytochemistry and Pharmacology of Medicinal Plants Used by the Tenggerese Society in Java Island of Indonesia. Molecules 2022; 27:molecules27217532. [DOI: 10.3390/molecules27217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The archipelagic country of Indonesia is inhabited by 300 ethnic groups, including the indigenous people of Tengger. Based on the reported list of medicinal plants used by the Tengger community, we have reviewed each of them for their phytochemical constituents and pharmacological activities. Out of a total of 41 medicinal plants used by the Tengerrese people, 33 species were studied for their phytochemical and pharmacological properties. More than 554 phytochemicals with diverse molecular structures belonging to different chemical classes including flavonoids, terpenoids, saponins and volatiles were identified from these studied 34 medicinal plants. Many of these medicinal plants and their compounds have been tested for various pharmacological activities including anti-inflammatory, antimicrobial, wound healing, headache, antimalarial and hypertension. Five popularly used medicinal plants by the healers were Garcinia mangostana, Apium graveolens, Cayratia clematidea, Drymocallis arguta and Elaeocarpus longifolius. Only A. graviolens were previously studied, with the outcomes supporting the pharmacological claims to treat hypertension. Few unexplored medicinal plants are Physalis lagascae, Piper amplum, Rosa tomentosa and Tagetes tenuifolia, and they present great potential for biodiscovery and drug lead identification.
Collapse
|
20
|
Elmaidomy AH, Shady NH, Abdeljawad KM, Elzamkan MB, Helmy HH, Tarshan EA, Adly AN, Hussien YH, Sayed NG, Zayed A, Abdelmohsen UR. Antimicrobial potentials of natural products against multidrug resistance pathogens: a comprehensive review. RSC Adv 2022; 12:29078-29102. [PMID: 36320761 PMCID: PMC9558262 DOI: 10.1039/d2ra04884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Antibiotic resistance is one of the critical issues, describing a significant social health complication globally. Hence, the discovery of novel antibiotics has acquired an increased attention particularly against drug-resistant pathogens. Natural products have served as potent therapeutics against pathogenic bacteria since the glorious age of antibiotics of the mid 20th century. This review outlines the various mechanistic candidates for dealing with multi-drug resistant pathogens and explores the terrestrial phytochemicals isolated from plants, lichens, insects, animals, fungi, bacteria, mushrooms, and minerals with reported antimicrobial activity, either alone or in combination with conventional antibiotics. Moreover, newly established tools are presented, including prebiotics, probiotics, synbiotics, bacteriophages, nanoparticles, and bacteriocins, supporting the progress of effective antibiotics to address the emergence of antibiotic-resistant infectious bacteria. Therefore, the current article may uncover promising drug candidates that can be used in drug discovery in the future.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
| | - Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | | | | | - Hussein Hykel Helmy
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Emad Ashour Tarshan
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Abanoub Nabil Adly
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | | | - Nesma Gamal Sayed
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus) Tanta 31527 Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern Gottlieb-Daimler-Str. 49 Kaiserslautern 67663 Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
21
|
Dolma KG, Khati R, Paul AK, Rahmatullah M, de Lourdes Pereira M, Wilairatana P, Khandelwal B, Gupta C, Gautam D, Gupta M, Goyal RK, Wiart C, Nissapatorn V. Virulence Characteristics and Emerging Therapies for Biofilm-Forming Acinetobacter baumannii: A Review. BIOLOGY 2022; 11:biology11091343. [PMID: 36138822 PMCID: PMC9495682 DOI: 10.3390/biology11091343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Acinetobacter baumannii (A. baumannii) is one of the ESKAPE organisms and has the competency to build biofilms. These biofilms account for the most nosocomial infections all over the world. This review reflects on the various physicochemical and environmental factors such as adhesion, pili expression, growth surfaces, drug-resistant genes, and virulence factors that profoundly affect its resistant forte. Emerging drug-resistant issues and limitations to newer drugs are other factors affecting the hospital environment. Here, we discuss newer and alternative methods that can significantly enhance the susceptibility to Acinetobacter spp. Many new antibiotics are under trials, such as GSK-3342830, The Cefiderocol (S-649266), Fimsbactin, and similar. On the other hand, we can also see the impact of traditional medicine and the secondary metabolites of these natural products’ application in searching for new treatments. The field of nanoparticles has demonstrated effective antimicrobial actions and has exhibited encouraging results in the field of nanomedicine. The use of various phages such as vWUPSU and phage ISTD as an alternative treatment for its specificity and effectiveness is being investigated. Cathelicidins obtained synthetically or from natural sources can effectively produce antimicrobial activity in the micromolar range. Radioimmunotherapy and photodynamic therapy have boundless prospects if explored as a therapeutic antimicrobial strategy. Abstract Acinetobacter species is one of the most prevailing nosocomial pathogens with a potent ability to develop antimicrobial resistance. It commonly causes infections where there is a prolonged utilization of medical devices such as CSF shunts, catheters, endotracheal tubes, and similar. There are several strains of Acinetobacter (A) species (spp), among which the majority are pathogenic to humans, but A. baumannii are entirely resistant to several clinically available antibiotics. The crucial mechanism that renders them a multidrug-resistant strain is their potent ability to synthesize biofilms. Biofilms provide ample opportunity for the microorganisms to withstand the harsh environment and further cause chronic infections. Several studies have enumerated multiple physiological and virulence factors responsible for the production and maintenance of biofilms. To further enhance our understanding of this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.
Collapse
Affiliation(s)
- Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Rachana Khati
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Chamma Gupta
- Department of Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Deepan Gautam
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
22
|
Kakar MU, Li J, Mehboob MZ, Sami R, Benajiba N, Ahmed A, Nazir A, Deng Y, Li B, Dai R. Purification, characterization, and determination of biological activities of water-soluble polysaccharides from Mahonia bealei. Sci Rep 2022; 12:8160. [PMID: 35581215 PMCID: PMC9114413 DOI: 10.1038/s41598-022-11661-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Mahonia bealei is one of the important members of the genus Mahonia and Traditional Chinese Medicine (TCM). Several compounds isolated from this plant have exhibited useful biological activities. Polysaccharides, an important biomacromolecule have been underexplored in case of M. bealei. In this study, hot water extraction and ethanol precipitation were used for the extraction of polysaccharides from the stem of M. bealei, and then extract was purified using ultrafiltration membrane at 50,000 Da cut off value. Characterization of the purified M. bealei polysaccharide (MBP) was performed using Fourier Transform Infrared Spectroscopy (FT-IR), along with Scanning Electron Microscopy (SEM), X-ray crystallography XRD analysis and Thermal gravimetric analysis (TGA). The purified polysaccharide MBP was tested for antioxidant potential by determining its reducing power, besides determining the DPPH, ABTS, superoxide radical, and hydroxyl radical scavenging along with ferrous ion chelating activities. An increased antioxidant activity of the polysaccharide was reported with increase in concentration (0.5 to 5 mg/ml) for all the parameters. Antimicrobial potential was determined against gram positive and gram-negative bacteria. 20 µg/ml MBP was found appropriate with 12 h incubation period against Escherichia coli and Bacillus subtilis bacteria. We conclude that polysaccharides from M. bealei possess potential ability of biological importance; however, more studies are required for elucidation of their structure and useful activities.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China.,Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Jingyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China
| | - Muhammad Zubair Mehboob
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aziz Ahmed
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Jinan, Shandong Province, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China. .,Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China.
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China.
| |
Collapse
|
23
|
Manso T, Lores M, de Miguel T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics (Basel) 2021; 11:antibiotics11010046. [PMID: 35052923 PMCID: PMC8773215 DOI: 10.3390/antibiotics11010046] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a growing global problem that affects people, animals, the environment, and the economy. Many clinically relevant bacteria have become resistant to antibiotics, and this fact is emerging as one of the major threats to public health. The lack of new antibiotics, which is due to their time-consuming and costly development, exacerbates the problem. Therefore, it is necessary to identify new antimicrobial agents to treat bacterial and fungal infections. Plant extracts, which are valuable sources of bioactive compounds, mainly polyphenols, play an important role as a new strategy to combat pathogenic microorganisms. There is an extensive body of supporting evidence for the potent antibacterial and antifungal activities of polyphenols. Furthermore, some polyphenols show a synergistic effect when combined with antibiotics and antifungals, suggesting a promising alternative for therapeutic strategies against antibiotic resistance. However, only a few articles are found when searching the antibacterial or antifungal activities of polyphenols employing clinical isolates. Hence, this review focuses on the antimicrobial activity of polyphenols and extracts rich in polyphenols on clinical isolates, organized according to the World Health Organization priority pathogens classification.
Collapse
Affiliation(s)
- Tamara Manso
- Hospital Público da Mariña, E-27880 Burela, Spain;
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Marta Lores
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Trinidad de Miguel
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
- Correspondence:
| |
Collapse
|
24
|
Dassanayake MK, Khoo TJ, An J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Ann Clin Microbiol Antimicrob 2021; 20:79. [PMID: 34856999 PMCID: PMC8641154 DOI: 10.1186/s12941-021-00485-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
25
|
Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima A. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3663315. [PMID: 34447454 PMCID: PMC8384518 DOI: 10.1155/2021/3663315] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.
Collapse
Affiliation(s)
- Najwan Jubair
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
26
|
Millar BC, Rao JR, Moore JE. Fighting antimicrobial resistance (AMR): Chinese herbal medicine as a source of novel antimicrobials - an update. Lett Appl Microbiol 2021; 73:400-407. [PMID: 34219247 DOI: 10.1111/lam.13534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) has now emerged as a global public health crisis, requiring the discovery of new and novel antimicrobial compounds, that may be precursors of future therapeutic antibiotics. Chinese Herbal Medicine (CHM) comes with a rich pedigree of holistic and empirical usage in Asia for the last 5000 years. Extracts of Anemarrhena asphodeloides Bunge, Angelica sinensis (Oliv.) Diels, Dianthus superbus L. Forsythiae fructus (Lian Qiao), Lonicerae flos (Jin Yin Hua), Naemorhedi cornu, Platycladus orientalis Franco, Polygonum aviculare, Polygonum cuspidatum, Poria cocos (Schw.), Rehmannia glutinosa (Gaertn.) DC, Rheum palmatum, Salvia miltiorrhiza Bunge, Scutellaria barbata, Scutellariae radix (Huang Qin) and Ursi fel (Xiong Dan) have shown to have antimicrobial properties against clinically significant Gram-negative and Gram-positive bacterial pathogens, as well as the mycobacteria (TB and non-tuberculous mycobacteria). Evidence is now beginning to emerge through systematic reviews of the outcomes of clinical studies employing CHM to treat infections. Of the 106 Cochrane systematic reviews on CHM, 16 (ca 15%) reviews examine CHM in the context of treating a specific infection disease or state. This update examines direct antimicrobial effect of CHM on bacterial pathogens, as well as synergistic effects of combining CHM with conventional antibiotics.
Collapse
Affiliation(s)
- B C Millar
- Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, UK.,School of Medicine, Dentistry and Biomedical Science, The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - J R Rao
- Plant Pathology, AgriFood & Biosciences Institute (AFBI), Belfast, UK
| | - J E Moore
- Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, UK.,School of Medicine, Dentistry and Biomedical Science, The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
27
|
Jing L, Gao R, Zhang J, Zhang D, Shao J, Jia Z, Ma H. Norwogonin attenuates hypoxia-induced oxidative stress and apoptosis in PC12 cells. BMC Complement Med Ther 2021; 21:18. [PMID: 33413359 PMCID: PMC7791982 DOI: 10.1186/s12906-020-03189-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
Background Norwogonin is a natural flavone with three phenolic hydroxyl groups in skeletal structure and has excellent antioxidant activity. However, the neuroprotective effect of norwogonin remains unclear. Here, we investigated the protective capacity of norwogonin against oxidative damage elicited by hypoxia in PC12 cells. Methods The cell viability and apoptosis were examined by MTT assay and Annexin V-FITC/PI staining, respectively. Reactive oxygen species (ROS) content was measured using DCFH-DA assay. Lactate dehydrogenase (LDH), malondialdehyde (MDA) and antioxidant enzyme levels were determined using commercial kits. The expression of related genes and proteins was measured by real-time quantitative PCR and Western blotting, respectively. Results We found that norwogonin alleviated hypoxia-induced injury in PC12 cells by increasing the cell viability, reducing LDH release, and ameliorating the changes of cell morphology. Norwogonin also acted as an antioxidant by scavenging ROS, reducing MDA production, maintaining the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and decreasing the expression levels of HIF-1α and VEGF. In addition, norwogonin prevented cell apoptosis via inhibiting the expression levels of caspase-3, cytochrome c and Bax, while increasing the expression levels of Bcl-2 and the ratio of Bcl-2/Bax. Conclusions Norwogonin attenuates hypoxia-induced injury in PC12 cells by quenching ROS, maintaining the activities of antioxidant enzymes, and inhibiting mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Linlin Jing
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Rongmin Gao
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Jie Zhang
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Dongmei Zhang
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Jin Shao
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Zhengping Jia
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Huiping Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
28
|
Evidence of TCM Theory in Treating the Same Disease with Different Methods: Treatment of Pneumonia with Ephedra sinica and Scutellariae Radix as an Example. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8873371. [PMID: 33354223 PMCID: PMC7737398 DOI: 10.1155/2020/8873371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Pneumonia is a serious global health problem and the leading cause of mortality in children. Antibiotics are the main treatment for bacterial pneumonia, but there are serious drug resistance problems. Traditional Chinese medicine (TCM) has been used to treat diseases for thousands of years and has a unique theory. This article takes the treatment of pneumonia with Ephedra sinica as a representative hot medicine and Scutellariae Radix as a representative cold medicine as an example. We explore and explain the theory of treating the same disease with different TCM treatments. Using transcriptomics and network pharmacology methods, GO, KEGG enrichment, and PPI network construction were carried out, demonstrating that Ephedra sinica plays a therapeutic role through the NF-κB and apoptosis signaling pathways targeting PLAU, CD40LG, BLC2L1, CASP7, and CXCL8. The targets of Scutellariae Radix through the IL-17 signaling pathway are MMP9, CXCL8, and MAPK14. Molecular docking technology was also used to verify the results. In short, our results provide evidence for the theory of treating the same disease with different treatments, and we also discuss future directions for traditional Chinese medicine.
Collapse
|
29
|
Farha AK, Yang QQ, Kim G, Li HB, Zhu F, Liu HY, Gan RY, Corke H. Tannins as an alternative to antibiotics. FOOD BIOSCI 2020; 38:100751. [DOI: 10.1016/j.fbio.2020.100751] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Corilagin Represses Epithelial to Mesenchymal Transition Process Through Modulating Wnt/β-Catenin Signaling Cascade. Biomolecules 2020; 10:biom10101406. [PMID: 33027960 PMCID: PMC7600105 DOI: 10.3390/biom10101406] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Corilagin (CLG), a major component of several medicinal plants, can exhibit diverse pharmacological properties including those of anti-cancer, anti-inflammatory, and hepatoprotective qualities. However, there are no prior studies on its potential impact on the epithelial-to-mesenchymal transition (EMT) process. EMT can lead to dissemination of tumor cells into other organs and promote cancer progression. Hence, we aimed to investigate the effect of CLG on EMT and its mechanism(s) of action in tumor cells. We noted that CLG reduced the expression of various epithelial markers and up-regulated the expression of Occludin and E-cadherin in both basal and TGFβ-stimulated tumor cells. CLG treatment also abrogated cellular invasion and migration in colon and prostate carcinoma cells. In addition, CLG effectively attenuated the Wnt/β-catenin signaling cascade in TGFβ-stimulated cells. Overall, our study suggests that CLG may function as and effective modulator of EMT and metastasis in neoplastic cells.
Collapse
|
31
|
Song JW, Long JY, Xie L, Zhang LL, Xie QX, Chen HJ, Deng M, Li XF. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chin Med 2020; 15:102. [PMID: 32994803 PMCID: PMC7517065 DOI: 10.1186/s13020-020-00384-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB's toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB's active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.
Collapse
Affiliation(s)
- Jia-Wen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Jia-Ying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Lin-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Qing-Xuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Hui-Juan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Xiao-Fang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| |
Collapse
|
32
|
Evaluation of Antimicrobial Activity of Triphala Constituents and Nanoformulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6976973. [PMID: 32831876 PMCID: PMC7422007 DOI: 10.1155/2020/6976973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
The prevalence of nosocomial infections due to multidrug resistant (MDR) bacterial strains is associated with high morbidity and mortality. Folk medicine and ethnopharmacological data can provide a broad range of plants with promising antimicrobial activity. Triphala, an Ayurvedic formula composed of three different plants: Terminalia chebula Retz., Terminalia bellirica (Gaertn.) Roxb. (Combretaceae), and Phyllanthus emblica L. (Phyllanthaceae), is used widely for various microbial infections. Various extraction techniques were applied in the extraction of the biologically active constituents of Triphala in order to compare their efficiency. Microwave-assisted extraction (MAE) was shown to be the most efficient method based on yield, extraction time, and selectivity. The Triphala hydroalcoholic extract (TAE) has been chemically characterized with spectroscopic and chromatographic techniques. Triphala hydroalcoholic extract was evaluated alone or with carvacrol. Different drug formulations including cream and nanoemulsion hydrogel were prepared to assess the antimicrobial activity against selected microorganism strains including Gram-positive and Gram-negative bacteria and fungi. We used a lipophilic oil of carvacrol (5 mg/mL) and a hydrophilic TAE (5 mg/mL) ingredient in a dosage form. Two solutions were created: hydrogel containing nanoemulsion as a lipophilic vector dispersed in the gel as a hydrophilic vehicle and a cream formulation, an oil-in-water emulsion. In both cases, the concentration was 250 mg of active ingredient in 50 mL of final formulation. The formulas developed were stable from a physical and chemical perspective. In the nanoemulsion hydrogel, the oil droplet size ranged from 124 to 129 nm, with low polydispersity index (PdI) 0.132 ± 0.013 and negative zeta potential -46.4 ± 4.3 mV. For the cream, the consistency factor (cetyl alcohol and white wax) induced immobilization of the matrix structure and the stability. Triphala hydroalcoholic extract in drug nanoformulation illustrated might be an adjuvant antimicrobial agent for treating various microbial infections.
Collapse
|
33
|
Fyhrquist P, Salih EYA, Helenius S, Laakso I, Julkunen-Tiitto R. HPLC-DAD and UHPLC/QTOF-MS Analysis of Polyphenols in Extracts of the African Species Combretum padoides, C. zeyheri and C. psidioides Related to Their Antimycobacterial Activity. Antibiotics (Basel) 2020; 9:E459. [PMID: 32751268 PMCID: PMC7460068 DOI: 10.3390/antibiotics9080459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Combretum padoides Engl. & Diels, C. psidioides Welv. and C. zeyheri Sond. are used forthe treatment of infections and tuberculosis related symptoms in African traditional medicine. In orderto verify these uses, extracts were screened for their growth inhibitory eects against M. smegmatisATCC 14468. Ultra-high pressure liquid chromatography coupled to quadrupole time-of-flightmass spectrometry (UHPLC/QTOF-MS) and GC-MS were used to investigate the polyphenoliccomposition in the active extracts. The lowest minimum inhibitory concentration (MIC), 625 g/mL,was shown by a methanol extract of the stem bark of C. psidioides. A butanol extract of C. psidioidesgave large inhibition zone diameters (IZD 21 mm) and inhibited 84% of the mycobacterial growthat 312 g/mL. Combretastatin B-2 and dihydrostilbene derivatives were present in the methanolextract of C. psidioides, whereas the butanol extract of this species contained punicalagin, corilagin,and sanguiin H-4. Methanol and butanol extracts of the stem bark of C. padoides gave large inhibitionzone diameters (IZD 26.5 mm) and MIC values of 1250 and 2500 g/mL, respectively. C. padoidescontained an ellagitannin with a mass identical to punicalagin ([M-H]- 1083.0587) and a corilaginlike derivative ([M-H]- 633.0750) as well as ellagic acid arabinoside and methyl ellagic acid xyloside.A butanol extract of the roots of C. zeyheri showed mild antimycobacterial activity and containeda gallotannin at m/z [M-H]- 647.0894 as the main compound along with punicalagin and threeunknown ellagitannins at m/z [M-H]- 763.0788, 765.0566, and 817.4212. Our results indicate thatthe studied species of Combretum contain phenolic and polyphenolic compounds with possiblepotential as leads for antimycobacterial drugs or as adjuvants for conventional anti-TB drugs.
Collapse
Affiliation(s)
- Pia Fyhrquist
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, P.O. Box 56, FIN-00014, University of Helsinki, 00100 Helsinki, Finland; (E.Y.A.S.); (S.H.); (I.L.)
| | - Enass Y. A. Salih
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, P.O. Box 56, FIN-00014, University of Helsinki, 00100 Helsinki, Finland; (E.Y.A.S.); (S.H.); (I.L.)
- Department of Forest Products and Industries, Shambat Campus, SUD-13314, University of Khartoum, Khartoum 11111, Sudan
| | - Satu Helenius
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, P.O. Box 56, FIN-00014, University of Helsinki, 00100 Helsinki, Finland; (E.Y.A.S.); (S.H.); (I.L.)
| | - Into Laakso
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, P.O. Box 56, FIN-00014, University of Helsinki, 00100 Helsinki, Finland; (E.Y.A.S.); (S.H.); (I.L.)
| | - Riitta Julkunen-Tiitto
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland;
| |
Collapse
|
34
|
Hou X, Cheng Z, Wang J. Preparative purification of corilagin from Phyllanthus by combining ionic liquid extraction, prep-HPLC, and precipitation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3382-3389. [PMID: 32930226 DOI: 10.1039/d0ay00860e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a green extraction and purification process for the rapid preparation of corilagin from Phyllanthus has been designed using an aqueous ionic liquid coupled with preparative high-performance liquid chromatography (prep-HPLC) and precipitation. The results showed that the optimum extraction process for corilagin involved mixing Phyllanthus tenellus Roxb. with 0.4 M [BMIm]Br at a liquid-solid ratio of 10 : 1 and dispersing the mixture by ultrasonication at 50 °C for 15 min. Macroporous resin D101 and prep-HPLC were employed for [BMIm]Br removal and corilagin separation to yield corilagin of 86.49% purity. Subsequently, corilagin was further purified by water precipitation to achieve 99.12% purity. The results indicated the successful development of a new rapid and green process to prepare corilagin on a large scale from plants using [BMIm]Br. This promising process can be applied for the preparative separation and purification of other active compounds from complex plant systems.
Collapse
Affiliation(s)
- Xiaodong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Zitao Cheng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| | - Jiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
35
|
Kim G, Gan RY, Zhang D, Farha AK, Habimana O, Mavumengwana V, Li HB, Wang XH, Corke H. Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities. Pathogens 2020; 9:185. [PMID: 32143422 PMCID: PMC7157549 DOI: 10.3390/pathogens9030185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/10/2023] Open
Abstract
Novel alternative antibacterial compounds have been persistently explored from plants as natural sources to overcome antibiotic resistance leading to serious foodborne bacterial illnesses. In this study, the ethanolic extracts from 239 traditional Chinese medicinal plants (TCMP)' materials were screened to discover promising candidates that have strong antibacterial properties against multidrug-resistant Staphylococcus (S.) aureus and low cytotoxicity. The results revealed that 74 extracts exhibited good antibacterial activities (diameter of inhibition zone (DIZ) ≥ 15 mm). Furthermore, 18 extracts (DIZ ≥ 20 mm) were determined their minimum inhibitory concentrations (MIC) and minimum bactericide concentrations (MBC), ranging from 0.1 to 12.5 mg/mL and 0.78 to 25 mg/mL, respectively. In addition, most of the 18 extracts showed relatively low cytotoxicity (a median lethal concentration (LC50) >100 µg/mL). The 18 extracts were further determined to estimate possible correlation of their phenolic contents with antibacterial activity, and the results did not show any significant correlation. In conclusion, this study selected out some promising antibacterial TCMP extracts with low cytotoxicity, including Rhus chinensis Mill., Ilex rotunda Thunb., Leontice kiangnanensis P.L.Chiu, Oroxylum indicum Vent., Isatis tinctorial L., Terminalia chebula Retz., Acacia catechu (L.f.) Willd., Spatholobus suberectus Dunn, Rabdosia rubescens (Hemsl.) H.Hara, Salvia miltiorrhiza Bunge, Fraxinus fallax Lingelsh, Coptis chinensis Franch., Agrimonia Pilosa Ledeb., and Phellodendron chinense C.K.Schneid.
Collapse
Affiliation(s)
- Gowoon Kim
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Dan Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
| | - Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
| | - Olivier Habimana
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China;
| | - Vuyo Mavumengwana
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Xiao-Hong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
| |
Collapse
|
36
|
Abundant Extractable Metabolites from Temperate Tree Barks: The Specific Antimicrobial Activity of Prunus Avium Extracts. Antibiotics (Basel) 2020; 9:antibiotics9030111. [PMID: 32143394 PMCID: PMC7148530 DOI: 10.3390/antibiotics9030111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Tree barks are mainly considered as wood wastes from forestry activities, but represent valuable resources as they may contain antimicrobial compounds. Here, we aimed to evaluate the possible antimicrobial activities of bark extracts and to characterize the chemical composition of the most active extract. Ten methanol bark extracts were tested in vitro against 17 bacterial strains and 5 yeast strains, through minimum inhibitory concentration (MIC) and minimum bactericidal (or fungicidal) concentration (MBC/MFC) assays. The extract from Prunus avium (E2-4) displayed the largest bactericidal activity against Gram-positive bacteria, with a lethal effect on 6 out of 8 strains. Antibiofilm assays of E2-4 were performed by crystal violet staining and enumeration of adhered bacteria. Assays demonstrated a biofilm inhibitory effect of E2-4 against Staphylococcus aureus CIP 53.154 at concentrations equal to or higher than 250 µg/mL. Chemical profiling of E2-4 by 13C nuclear magnetic resonance (NMR) revealed the presence of dihydrowogonin as a major constituent of the extract. E2-4 was fractionated by centrifugal partition chromatography and the three fractions containing dihydrowogonin were tested for their antibacterial and antibiofilm activities, revealing similar activities to those of E2-4. Dihydrowogonin was positively assessed as an interesting antimicrobial compound, which could be valued from wastes of Prunus avium barks.
Collapse
|
37
|
Tang SW, Tang WH, Leonard BE. Herbal medicine for psychiatric disorders: Psychopharmacology and neuroscience-based nomenclature. World J Biol Psychiatry 2019. [PMID: 28649903 DOI: 10.1080/15622975.2017.1346279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Herbs are frequently and concurrently used with prescribed drugs by patients worldwide. While clinical trials have found some herbs to be as useful as standard psychiatric drugs, most clinicians are unaware of their pharmacological mechanisms.Methods: We searched English language and other language literature with English abstracts listed in PubMed website, supplemented by additional through Google Scholar's free academic paper abstract website for publications on herbs, focussing on their clinical use in mental disorders, their neurobiology and their pharmacology.Results: A major reason for herbs remaining outside of mainstream psychiatry is that the terminology and concepts in herbal medicine are not familiar to psychiatrists in general. Many publications regarding the use of herbal medicine for psychiatric disorders are deficient in details regarding diagnosis, criteria for response and the neurobiology details compared with publications on standard psychotropic drugs. Nomenclature for herbal medicine is usually confusing and is not conducive to an easy understanding of their mode of action in psychiatric disorders.Conclusions: The recent neuroscience-based nomenclature (NbN) for psychotropics methodology would be a logical application to herbal medicine in facilitating a better understanding of the use of herbal medicine in psychiatry.
Collapse
Affiliation(s)
- Siu W Tang
- Department of Psychiatry, University of California, Irvine, CA, USA.,Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Wayne H Tang
- Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, Hong Kong.,Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
38
|
Gupta A, Singh AK, Kumar R, Ganguly R, Rana HK, Pandey PK, Sethi G, Bishayee A, Pandey AK. Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms. Molecules 2019; 24:E3399. [PMID: 31546767 PMCID: PMC6767293 DOI: 10.3390/molecules24183399] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), an ellagitannin, is one of the major bioactive compounds present in various plants. Ellagitannins belong to the hydrolyzable tannins, a group of polyphenols. Corilagin shows broad-spectrum biological, and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, and antitumor actions. Natural compounds possessing antitumor activities have attracted significant attention for treatment of cancer. Corilagin has shown inhibitory activity against the growth of numerous cancer cells by prompting cell cycle arrest at the G2/M phase and augmented apoptosis. Corilagin-induced apoptosis and autophagic cell death depends on production of intracellular reactive oxygen species in breast cancer cell line. It blocks the activation of both the canonical Smad and non-canonical extracellular-signal-regulated kinase/Akt (protein kinase B) pathways. The potential apoptotic action of corilagin is mediated by altered expression of procaspase-3, procaspase-8, procaspase-9, poly (ADP ribose) polymerase, and Bcl-2 Bax. In nude mice, corilagin suppressed cholangiocarcinoma growth and downregulated the expression of Notch1 and mammalian target of rapamycin. The aim of this review is to summarize the anticancer efficacy of corilagin with an emphasis on the molecular mechanisms involving various signaling pathways in tumor cells.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Prabhash Kumar Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| |
Collapse
|
39
|
Amoako DG, Somboro AM, Abia ALK, Allam M, Ismail A, Bester L, Essack SY. Genomic analysis of methicillin-resistant Staphylococcus aureus isolated from poultry and occupational farm workers in Umgungundlovu District, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:704-716. [PMID: 30909047 DOI: 10.1016/j.scitotenv.2019.03.110] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
This study detected methicillin-resistant Staphylococcus aureus (MRSA) isolates circulating in poultry and farm workers at an intensive poultry production system in uMgungundlovu, South Africa and established the genetic relatedness and characteristics of the isolates using whole genome sequencing (WGS). A total of 145 S. aureus were isolated from poultry (120) and occupational workers (25) in the "farm to fork" continuum (farm, transport, slaughterhouse, and retail points). Twelve MRSA (12/145; 8.3%) isolates were found in the poultry food-chain. MRSA isolates were subjected to antibiotic susceptibility testing against a panel of 20 antibiotics using the broth dilution method and their whole genome was sequenced via the Illumina MiSeq. All the MRSA isolates were multi-drug resistant (MDR) and carried the mecA gene on the SCCmec mobile genetic element (MGE). The majority (11/12) of the MRSA isolates circulating between humans and animals in the continuum belonged to a human-associated clone, ST612-CC8-t1257-SCCmec_IVd (2B), previously reported in South Africa. Other MGEs present in the isolates included: plasmid replicons based on Rep 7 and 20, insertion sequences (IS1182), and prophages (phi2958PVL). Genomic analysis identified a distinct acquired antibiotic resistome in the clone, which accurately predicted the phenotypic antibiograms. Phylogenetic analysis clustered the isolates within the major cluster (I), suggesting the spread of the local dominant multidrug resistance MRSA clone ST612-CC8-t1257-SCCmec_IVd (2B) between humans and animals along the 'farm to fork' continuum. The findings of this study suggest the need to establish appropriate control measures to curb the spread of MDR-MRSA in the food chain.
Collapse
Affiliation(s)
- Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Anou Moise Somboro
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Pretoria, South Africa.
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Pretoria, South Africa.
| | - Linda Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
40
|
Abd El-Hafeez AA, Khalifa HO, Mahdy EAM, Sharma V, Hosoi T, Ghosh P, Ozawa K, Montano MM, Fujimura T, Ibrahim ARN, Abdelhamid MAA, Pack SP, Shouman SA, Kawamoto S. Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. Pharmacol Rep 2019; 71:289-298. [PMID: 30826569 DOI: 10.1016/j.pharep.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Nor-wogonin, a polyhydroxy flavone, has been shown to possess antitumor activity. However, the mechanisms responsible for its antitumor activity are poorly studied. Herein, we investigated the mechanisms of nor-wogonin actions in triple-negative breast cancer (TNBC) cells. METHODS Effects of nor-wogonin on cell proliferation and viability of four TNBC cell lines (MDA-MB-231, BT-549, HCC70, and HCC1806) and two non-tumorigenic breast cell lines (MCF-10A and AG11132) were assessed by BrdU incorporation assays and trypan blue dye exclusion tests. Cell cycle and apoptosis analyses were carried out by flow cytometry. Protein expression was analyzed by immunoblotting. RESULTS Nor-wogonin significantly inhibited the growth and decreased the viability of TNBC cells; however, it exhibited no or minimal effects in non-tumorigenic breast cells. Nor-wogonin (40 μM) was a more potent anti-proliferative and cytotoxic agent than wogonin (100 μM) and wogonoside (100 μM), which are structurally related to nor-wogonin. The antitumor effects of nor-wogonin can be attributed to cell cycle arrest via reduction of the expression of cyclin D1, cyclin B1, and CDK1. Furthermore, nor-wogonin induced mitochondrial apoptosis, (as evidenced by the increase in % of cells that are apoptotic), decreases in the mitochondrial membrane potential (ΔΨm), increases in Bax/Bcl-2 ratio, and caspase-3 cleavage. Moreover, nor-wogonin attenuated the expression of the nuclear factor kappa-B and activation of signal transducer and activator of transcription 3 pathways, which can be correlated with suppression of transforming growth factor-β-activated kinase 1 in TNBC cells. CONCLUSION These results showed that nor-wogonin might be a potential multi-target agent for TNBC treatment.
Collapse
Affiliation(s)
- Amer Ali Abd El-Hafeez
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Global Career Design Center, Hiroshima University, Hiroshima, Japan; Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Hazim O Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | | | - Vikas Sharma
- Pharmacology Department, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Toru Hosoi
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA,USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Koichiro Ozawa
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Monica M Montano
- Pharmacology Department, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Takashi Fujimura
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| | - Ahmed R N Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed A A Abdelhamid
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia Egypt; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Samia A Shouman
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
41
|
Zhao Y, Li H, Wei S, Zhou X, Xiao X. Antimicrobial Effects of Chemical Compounds Isolated from Traditional Chinese Herbal Medicine (TCHM) Against Drug-Resistant Bacteria: A Review Paper. Mini Rev Med Chem 2019; 19:125-137. [PMID: 30332952 DOI: 10.2174/1389557518666181017143141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
Infectious diseases caused by pathogenic bacteria seriously threaten human lives. Although antibiotic therapy is effective in the treatment of bacterial infections, the overuse of antibiotics has led to an increased risk of antibiotic resistance, putting forward urgent requirements for novel antibacterial drugs. Traditional Chinese herbal medicine (TCHM) and its constituents are considered to be potential sources of new antimicrobial agents. Currently, a series of chemical compounds purified from TCHM have been reported to fight against infections by drug-resistant bacteria. In this review, we summarized the recent findings on TCHM-derived compounds treating drug-resistant bacterial infections. Further studies are still needed for the discovery of potential antibacterial components from TCHM.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Haotian Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Xuelin Zhou
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital of China, Beijing, 100039, China
| |
Collapse
|
42
|
Ramachandran G, Rajivgandhi G, Maruthupandy M, Manoharan N. Extraction and partial purification of secondary metabolites from endophytic actinomycetes of marine green algae Caulerpa racemosa against multi drug resistant uropathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Lei XJ, Kim YM, Kim IH. Effects of dried citrus pulp and fermented medicinal plants on growth performance, nutrient digestibility, blood characteristics, and meat quality in growing–finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present experiment was conducted to determine the effects of dried citrus pulp and fermented medicinal plants in growing–finishing pigs. A total of 96 pigs (62.34 ± 1.96 kg body weight) were randomly allotted into three dietary treatments: (1) control, basal diet (CON); (2) diet containing 10% dried citrus pulp (DCP); (3) diet containing 10% dried citrus pulp supplemented with 0.1% fermented medicinal plants (DCPFMP). From weeks 0 to 5 and 0 to 10, pigs fed the DCPFMP diet had significantly decreased (P < 0.05) average daily feed intake and increased (P < 0.05) gain:feed ratio compared with those fed the CON diet. The apparent total tract digestibility of gross energy was greater (P < 0.05), and serum total cholesterol concentration was decreased (P < 0.05) for pigs fed the DCPFMP diet compared with those fed the DCP diet in week 10. In addition, an increase (P < 0.05) in Longissimus muscle area was observed for pigs fed the DCPFMP diet compared with those fed the CON diet. In conclusion, supplementation with fermented medicinal plants in a diet containing 10% dried citrus pulp improved growth performance and Longissimus muscle area and lowered serum low-density lipoprotein cholesterol and total cholesterol concentrations.
Collapse
Affiliation(s)
- Xin Jian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| | - Yong Min Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| |
Collapse
|
44
|
Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. PHYTOCHEMISTRY 2018; 154:94-105. [PMID: 30031244 DOI: 10.1016/j.phytochem.2018.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 05/20/2023]
Abstract
Antimicrobial peptides (AMPs), the self-defence products of organisms, are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides and hevein-type proteins. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents. Research on AMPs has sought to obtain more detailed and reliable information regarding the selection of suitable plant sources and the use of appropriate isolation and purification techniques, as well as examining the mode of action of these peptides. Well-established AMP purification techniques currently used include salt precipitation methods, absorption-desorption, a combination of ion-exchange and reversed-phase C18 solid phase extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), and the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. Beyond these traditional methods, this review aims to highlight new and different approaches to the selection, characterisation, isolation, purification, mode of action and bioactivity assessment of a range of AMPs collected from plant sources. The information gathered will be helpful in the search for novel AMPs distributed in the plant kingdom, as well as providing future directions for the further investigation of AMPs for possible use on humans.
Collapse
Affiliation(s)
- Swee-Seong Tang
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Zakaria H Prodhan
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Sudhangshu K Biswas
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheng-Foh Le
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia.
| | - Shamala D Sekaran
- Faculty of Medicine, MAHSA University, Saujana Putra Campus, 42610, Jenjarum, Selangor, Malaysia.
| |
Collapse
|
45
|
Rahman H, Khan I, Hussain A, Shahat AA, Tawab A, Qasim M, Adnan M, Al-Said MS, Ullah R, Khan SN. Glycyrrhiza glabra HPLC fractions: identification of Aldehydo Isoophiopogonone and Liquirtigenin having activity against multidrug resistant bacteria. Altern Ther Health Med 2018; 18:140. [PMID: 29720152 PMCID: PMC5930497 DOI: 10.1186/s12906-018-2207-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/17/2018] [Indexed: 11/15/2022]
Abstract
Background Medicinal plants have been founded as traditional herbal medicine worldwide. Most of the plant’s therapeutic properties are due to the presence of secondary metabolites such as alkaloids, glycosides, tannins and volatile oil. Methods The present investigation analyzed the High-Pressure Liquid Chromatography (HPLC) fractions of Glycyrrhiza glabra (Aqueous, Chloroform, Ethanol and Hexane) against multidrug resistant human bacterial pathogens (Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa). All the fractions showed antibacterial activity, were subjected to LC MS/MS analysis for identification of bioactive compounds. Results Among total HPLC fractions of G. glabra (n = 20), three HPLC fractions showed potential activity against multidrug resistant (MDR) bacterial isolates. Fraction 1 (F1) of aqueous extracts, showed activity against A. baumannii (15 ± 0.5 mm). F4 from hexane extract of G. glabra showed activity against S. aureus (10 ± 0.2 mm). However, F2 from ethanol extract exhibited activity against S. aureus (10 ± 0.3 mm). These active fractions were further processed by LC MS/MS analysis for the identification of compounds. Ellagic acid was identified in the F1 of aqueous extract while 6-aldehydo-isoophiopogonone was present in F4 of hexane extract. Similarly, Liquirtigenin was identified in F2 of ethanol. Conclusions Glycyrrhiza glabra extracts HPLC fractions showed anti-MDR activity. Three bioactive compounds were identified in the study. 6-aldehydo-isoophiopogonone and Liquirtigenin were for the first time reported in G. glabra. Further characterization of the identified compounds will be helpful for possible therapeutic uses against infectious diseases caused by multidrug resistant bacteria.
Collapse
|
46
|
Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 2018; 111:923-934. [PMID: 29415416 DOI: 10.1016/j.ijbiomac.2018.01.089] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
|
47
|
Tsai CC, Lin CS, Hsu CR, Chang CM, Chang IW, Lin LW, Hung CH, Wang JL. Using the Chinese herb Scutellaria barbata against extensively drug-resistant Acinetobacter baumannii infections: in vitro and in vivo studies. Altern Ther Health Med 2018; 18:96. [PMID: 29554903 PMCID: PMC5859712 DOI: 10.1186/s12906-018-2151-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/01/2018] [Indexed: 11/10/2022]
Abstract
Background No animal model studies have been conducted in which the efficacy of herbal compounds has been tested against multidrug-resistant Acinetobacter baumannii infections. Very few antibiotics are available for the treatment of pulmonary infections caused by extensively drug-resistant Acinetobacter baumannii (XDRAB). To find alternative treatments, traditional Chinese herbs were screened for their antimicrobial potential. Methods The present study screened 30 herbs that are traditionally used in Taiwan and that are commonly prescribed for heat clearing and detoxification. The herbs with antibacterial activities were analysed by disc diffusion assays, time-kill assays and a murine lung infection model. Results Of the 30 herbs tested, only Scutellaria barbata demonstrated 100% in vitro activity against XDRAB. Furthermore, we compared the antibacterial effect of the S. barbata extract with that of colistin, and the S. barbata extract showed better antibacterial effect. In the XDRAB pneumonia murine model, we compared the antimicrobial effects of the orally administered S. barbata extract (200 mg/kg, every 24 h), the intratracheally administered colistin (75,000 U/kg, every 12 h), and the control group. The bacterial load in the lungs of the treatment group that received the oral S. barbata extract showed a significant decrease in comparison to that in the lungs of the control group. In addition, histopathological examinations also revealed better resolution of perivascular, peribronchial, and alveolar inflammation in the oral S. barbata extract-treated group. Conclusions Our in vitro and in vivo data from the animal model support the use of S. barbata as an alternate drug to treat XDRAB pulmonary infections. However, detailed animal studies and clinical trials are necessary to establish the clinical utility of S. barbata in treating XDRAB pulmonary infections.
Collapse
|
48
|
Li X, Deng Y, Zheng Z, Huang W, Chen L, Tong Q, Ming Y. Corilagin, a promising medicinal herbal agent. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.01.030 pmid: 29324311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
49
|
Li X, Deng Y, Zheng Z, Huang W, Chen L, Tong Q, Ming Y. Corilagin, a promising medicinal herbal agent. Biomed Pharmacother 2018; 99:43-50. [PMID: 29324311 DOI: 10.1016/j.biopha.2018.01.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
Corilagin, a gallotannin, is one of the major active components of many ethnopharmacological plants. It was isolated from Caesalpinia coriaria (Jacq.) Willd. (dividivi) by Schmidt in 1951 for the first time. In the past few decades, corilagin was reported to exhibit anti-tumor, anti-inflammatory and hepatoprotective activities, etc. However, little attention was paid to its pharmacological properties due to the complicated and inefficient extract method. In recent years, with the development of extraction technology corilagin was much easier to obtain than before. Thus, people return to pay attention to its anti-tumor, hepatoprotective, and anti-inflammatory activities, particularly as an anti-tumor agent candidate. Our research team had focused on the distribution, preparation and anti-tumor activity of corilagin since 2005. We found corilagin showed good anti-tumor activity on hepatocellular carcinoma and ovarian cancer. What's more, corilagin showed a low level of toxicity toward normal cells and tissues. Due to the extensive attention that corilagin has received, we present a systematic review of the pharmacological effects of corilagin. In this review, we summarized all the pharmacological effects of corilagin with a focus on the molecular mechanism of anti-tumor activity and show you how corilagin affected the signaling pathways of tumor cells as well as its physicochemical properties, distribution and preparation methods.
Collapse
Affiliation(s)
- Xuan Li
- Institute of Chemical Engnieering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yuan Deng
- Institute of Chemical Engnieering, Huaqiao University, Xiamen, Fujian 361021, China; Key Laboratory of Xiamen City for Plant Introduction & Quarantine and Plant Product, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, China
| | - Zhizhong Zheng
- Key Laboratory of Xiamen City for Plant Introduction & Quarantine and Plant Product, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, China
| | - Wen Huang
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Lianghua Chen
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Qingxuan Tong
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Yanlin Ming
- Institute of Chemical Engnieering, Huaqiao University, Xiamen, Fujian 361021, China; Key Laboratory of Xiamen City for Plant Introduction & Quarantine and Plant Product, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, China; Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China.
| |
Collapse
|
50
|
Antioxidant and Antidiabetic Effects of Flavonoids: A Structure-Activity Relationship Based Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8386065. [PMID: 29318154 PMCID: PMC5727842 DOI: 10.1155/2017/8386065] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/21/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022]
Abstract
The best described pharmacological property of flavonoids is their capacity to act as potent antioxidant that has been reported to play an important role in the alleviation of diabetes mellitus. Flavonoids biochemical properties are structure dependent; however, they are yet to be thoroughly understood. Hence, the main aim of this work was to investigate the antioxidant and antidiabetic properties of some structurally related flavonoids to identify key positions responsible, their correlation, and the effect of methylation and acetylation on the same properties. Antioxidant potential was evaluated through dot blot, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS+ radical scavenging, ferric reducing antioxidant power (FRAP), and xanthine oxidase inhibitory (XOI) assays. Antidiabetic effect was investigated through α-glucosidase and dipeptidyl peptidase-4 (DPP-4) assays. Results showed that the total number and the configuration of hydroxyl groups played an important role in regulating antioxidant and antidiabetic properties in scavenging DPPH radical, ABTS+ radical, and FRAP assays and improved both α-glucosidase and DPP-4 activities. Presence of C-2-C-3 double bond and C-4 ketonic group are two essential structural features in the bioactivity of flavonoids especially for antidiabetic property. Methylation and acetylation of hydroxyl groups were found to diminish the in vitro antioxidant and antidiabetic properties of the flavonoids.
Collapse
|