1
|
Maes D, Pavani KC, Nauwynck H, Van Soom A. Immunological defense mechanisms of ejaculates and the spread of viral infectious diseases through pig semen. Anim Reprod Sci 2024; 269:107535. [PMID: 38880667 DOI: 10.1016/j.anireprosci.2024.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
This review focuses on the mechanisms of immune tolerance and antimicrobial defense in the male genital tract of the pig. Sperm cells are foreign to the immune system and, therefore, they must be protected from the immune system. The blood-testis-barrier is mediated by a physical barrier between adjacent Sertoli cells, several cell types within the testis, and interactions between immunomodulatory molecules. The blood-epididymal-barrier is composed of a physical barrier that is lined with principal cells having a network of junctional complexes in their apical lateral membrane and completed by specific transporters. The seminal plasma (SP) contains many signaling agents involved in establishing a state of immune tolerance in the female genital tract, which is essential for successful fertilization. Specific SP-proteins, however, also have pro-inflammatory capacities contributing to transient uterine inflammation, supporting the removal of foreign cells, possible pathogens, and excessive spermatozoa. While many different proteins and other substances present in semen can damage sperm cells, they may also protect them against viral infections. A delicate balance of these substances, therefore, needs to be maintained. Related to this, recent studies have shown the importance of extracellular vesicles (EVs), as they contain these substances and convey immune signals. Yet, viruses may use EVs to interact with the male genital tract and circumvent immune responses. For this reason, further research needs to explore the role of EVs in the male reproductive tract, as it might contribute to elucidating the pathogenesis of viral infections that might be transmitted via semen and to developing better vaccines.
Collapse
Affiliation(s)
- Dominiek Maes
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Krishna C Pavani
- Reproductive Biology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Ann Van Soom
- Reproductive Biology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| |
Collapse
|
2
|
Lewis CE, Pinette MM, Lakin SM, Smith G, Fisher M, Moffat E, Embury-Hyatt C, Pickering BS. Experimental Infection of Bundibugyo Virus in Domestic Swine Leads to Viral Shedding with Evidence of Intraspecies Transmission. Transbound Emerg Dis 2024; 2024:5350769. [PMID: 40303058 PMCID: PMC12017203 DOI: 10.1155/2024/5350769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 05/02/2025]
Abstract
The Ebolavirus genus contains several of the deadliest zoonotic viruses known. One of these, Bundibugyo virus (BDBV), has been the causative agent of two outbreaks of human disease that have resulted in 211 known cases with a case fatality rate of 33.6%. Although bats are routinely implicated as the possible reservoir species for the ebolaviruses, the source of infection for index cases in almost all outbreaks is unknown with only limited epidemiological evidence directly linking human cases to bats. This lack of evidence leaves open the possibility that maintenance of one or more of these viruses could involve multiple host species or more complex spillover dynamics. Domestic pigs have been found naturally infected with Reston virus (RESTV) and are experimentally susceptible to infection with Ebola virus (EBOV), two other members of the Ebolavirus genus. Infection of pigs resulted in shedding of infectious virus with subsequent transmission to naïve animals being documented, including transmission to humans for RESTV and to nonhuman primates for EBOV. The susceptibility and subsequent viral shedding and pathogenesis of domestic pigs to other ebolaviruses and the potential role this species may play in virus ecology, spillover dynamics, and human public health risk is unknown. For these reasons, we conducted a series of studies aimed at determining the susceptibility of domestic pigs to BDBV thereby demonstrating that pigs are not only susceptible to experimental infection but that the development of productive infection, tissue dissemination, and shedding of infectious virus can also occur while animals remain clinically normal. The role of pigs as a possible interim or amplifying host for ebolaviruses is a concern for both human public health and food security.
Collapse
Affiliation(s)
- Charles E. Lewis
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Program, College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa, USA
| | - Mathieu M. Pinette
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Steven M. Lakin
- Scientific Liaison Services Section, Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Animal Plant Health Inspection Service, United States Department of Agriculture, Orient Point, New York, USA
| | - Greg Smith
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Mathew Fisher
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Estella Moffat
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Brad S. Pickering
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Prasad AN, Fenton KA, Agans KN, Borisevich V, Woolsey C, Comer JE, Dobias NS, Peel JE, Deer DJ, Geisbert JB, Lawrence WS, Cross RW, Geisbert TW. Pathogenesis of Aerosolized Ebola Virus Variant Makona in Nonhuman Primates. J Infect Dis 2023; 228:S604-S616. [PMID: 37145930 PMCID: PMC10651212 DOI: 10.1093/infdis/jiad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Highly pathogenic filoviruses such as Ebola virus (EBOV) hold capacity for delivery by artificial aerosols, and thus potential for intentional misuse. Previous studies have shown that high doses of EBOV delivered by small-particle aerosol cause uniform lethality in nonhuman primates (NHPs), whereas only a few small studies have assessed lower doses in NHPs. METHODS To further characterize the pathogenesis of EBOV infection via small-particle aerosol, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona, which may help define risks associated with small particle aerosol exposures. RESULTS Despite using challenge doses orders of magnitude lower than previous studies, infection via this route was uniformly lethal across all cohorts. Time to death was delayed in a dose-dependent manner between aerosol-challenged cohorts, as well as in comparison to animals challenged via the intramuscular route. Here, we describe the observed clinical and pathological details including serum biomarkers, viral burden, and histopathological changes leading to death. CONCLUSIONS Our observations in this model highlight the striking susceptibility of NHPs, and likely humans, via small-particle aerosol exposure to EBOV and emphasize the need for further development of diagnostics and postexposure prophylactics in the event of intentional release via deployment of an aerosol-producing device.
Collapse
Affiliation(s)
- Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer E Peel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - William S Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Wei X, Li S, Lu Y, Qiu L, Xu N, Guo X, Chen M, Liang H, Cheng D, Zhao L, Hao S, Kou Z, Wen H. Severe fever with thrombocytopenia syndrome virus aerosol infection in C57/BL6 mice. Virology 2023; 581:58-62. [PMID: 36913913 DOI: 10.1016/j.virol.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Although secondary cases have become infected with the SFTSV after being in the same space without direct contact with the index case, it has not been experimentally determined if the SFTSV can be transmitted through aerosols. Here, this study aimed to verify if the SFTSV could be transmitted by aerosols. Firstly, we demonstrated that the SFTSV can infect BEAS-2B cells, and SFTSV genomes can be isolate from mild patient's sputum, which provided a foundation for the existence of SFTSV aerosol transmission. Then, we evaluated total antibody production in serum and viral load in tissue of mice infected with SFTSV by aerosols. The results showed that the presence of antibodies is related to the dose of virus infection and the SFTSV preferentially replicates in the lungs of mice following an aerosol exposure. Our study will help update the prevention and treatment guidelines for SFTSV and prevent the spread of the SFTSV in hospitals.
Collapse
Affiliation(s)
- Xuemin Wei
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Shuhan Li
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Yan Lu
- Cheeloo Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ling Qiu
- Department of Infection, Shandong Provincial Public Health Clinical Center, Jinan, Shandong Province, China
| | - Nannan Xu
- Cheeloo Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xianhu Guo
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, China
| | - Mengting Chen
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Hao Liang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Dong Cheng
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Prevention and Control, Jinan, Shandong Province, China
| | - Li Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Shubin Hao
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Prevention and Control, Jinan, Shandong Province, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China.
| |
Collapse
|
5
|
Saco Y, Bassols A. Acute phase proteins in cattle and swine: A review. Vet Clin Pathol 2023; 52 Suppl 1:50-63. [PMID: 36526287 DOI: 10.1111/vcp.13220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The major acute phase proteins (APPs) in cattle are haptoglobin (Hp) and serum amyloid A (SAA), and in swine, are Hp, SAA, C-reactive protein (CRP), and Pig major acute phase protein (Pig-MAP). Many methodologic assays are presently available to measure these parameters, which are still being improved to increase their specificity, sensitivity, user-friendliness, and economic availability. In cattle, the main applications are the diagnosis and monitoring of frequent diseases such as mastitis and metritis in dairy cows and respiratory problems in young calves. In pigs, APPs are useful in the control of bacterial and viral infections, and they may be used at the slaughterhouse to monitor subclinical pathologies and improve food safety. The utility of APP in animal production must not be forgotten; optimization of protocols to improve performance, welfare, and nutrition may benefit from the use of APPs. Other sample types besides serum or plasma have potential uses; APP determination in milk is a powerful tool in the control of mastitis, saliva is a non-invasive sample type, and meat juice is easily obtained at the slaughterhouse. Increasing our knowledge of reference intervals and the influence of variables such as age, breed, sex, and the season is important. Finally, worldwide harmonization and standardization of analytical procedures will help to expand the use of APPs.
Collapse
Affiliation(s)
- Yolanda Saco
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Wanninger TG, Millian DE, Saldarriaga OA, Maruyama J, Saito T, Reyna RA, Taniguchi S, Arroyave E, Connolly ME, Stevenson HL, Paessler S. Macrophage infection, activation, and histopathological findings in ebolavirus infection. Front Cell Infect Microbiol 2022; 12:1023557. [PMID: 36310868 PMCID: PMC9597316 DOI: 10.3389/fcimb.2022.1023557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Macrophages contribute to Ebola virus disease through their susceptibility to direct infection, their multi-faceted response to ebolaviruses, and their association with pathological findings in tissues throughout the body. Viral attachment and entry factors, as well as the more recently described influence of cell polarization, shape macrophage susceptibility to direct infection. Moreover, the study of Toll-like receptor 4 and the RIG-I-like receptor pathway in the macrophage response to ebolaviruses highlight important immune signaling pathways contributing to the breadth of macrophage responses. Lastly, the deep histopathological catalogue of macrophage involvement across numerous tissues during infection has been enriched by descriptions of tissues involved in sequelae following acute infection, including: the eye, joints, and the nervous system. Building upon this knowledge base, future opportunities include characterization of macrophage phenotypes beneficial or deleterious to survival, delineation of the specific roles macrophages play in pathological lesion development in affected tissues, and the creation of macrophage-specific therapeutics enhancing the beneficial activities and reducing the deleterious contributions of macrophages to the outcome of Ebola virus disease.
Collapse
Affiliation(s)
- Timothy G. Wanninger
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Daniel E. Millian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Omar A. Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Takeshi Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Melanie E. Connolly
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Heather L. Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Treatment with Ad5-Porcine Interferon-α Attenuates Ebolavirus Disease in Pigs. Pathogens 2022; 11:pathogens11040449. [PMID: 35456124 PMCID: PMC9031749 DOI: 10.3390/pathogens11040449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Under experimental conditions, pigs infected with Ebola Virus (EBOV) develop disease and can readily transmit the virus to non-human primates or pigs. In the event of accidental or intentional EBOV infection of domestic pigs, complex and time-consuming safe depopulation and carcass disposal are expected. Delaying or preventing transmission through a reduction in viral shedding is an absolute necessity to limit the spread of the virus. In this study, we tested whether porcine interferon-α or λ3 (porIFNα or porIFNλ3) delivered by a replication-defective human type 5 adenovirus vector (Ad5-porIFNα or Ad5-porIFNλ3) could limit EBOV replication and shedding in domestic pigs. Our results show that pigs pre-treated with Ad5-porIFNα did not develop measurable clinical signs, did not shed virus RNA, and displayed strongly reduced viral RNA load in tissues. A microarray analysis of peripheral blood mononuclear cells indicated that Ad5-porIFNα treatment led to clear upregulation in immune and inflammatory responses probably involved in protection against disease. Our results indicate that administration of Ad5-porIFNα can potentially be used to limit the spread of EBOV in pigs.
Collapse
|
8
|
Lewis CE, Pickering B. Livestock and Risk Group 4 Pathogens: Researching Zoonotic Threats to Public Health and Agriculture in Maximum Containment. ILAR J 2022; 61:86-102. [PMID: 34864994 PMCID: PMC8759435 DOI: 10.1093/ilar/ilab029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Maximum-containment laboratories are a unique and essential component of the bioeconomy of the United States. These facilities play a critical role in the national infrastructure, supporting research on a select set of especially dangerous pathogens, as well as novel, emerging diseases. Understanding the ecology, biology, and pathology at the human-animal interface of zoonotic spillover events is fundamental to efficient control and elimination of disease. The use of animals as human surrogate models or as target-host models in research is an integral part of unraveling the interrelated components involved in these dynamic systems. These models can prove vitally important in determining both viral- and host-factors associated with virus transmission, providing invaluable information that can be developed into better risk mitigation strategies. In this article, we focus on the use of livestock in maximum-containment, biosafety level-4 agriculture (BSL-4Ag) research involving zoonotic, risk group 4 pathogens and we provide an overview of historical associated research and contributions. Livestock are most commonly used as target-host models in high-consequence, maximum-containment research and are routinely used to establish data to assist in risk assessments. This article highlights the importance of animal use, insights gained, and how this type of research is essential for protecting animal health, food security, and the agriculture economy, as well as human public health in the face of emerging zoonotic pathogens. The utilization of animal models in high-consequence pathogen research and continued expansion to include available species of agricultural importance is essential to deciphering the ecology of emerging and re-emerging infectious diseases, as well as for emergency response and mitigation preparedness.
Collapse
Affiliation(s)
- Charles E Lewis
- Corresponding Author: Dr Charles E. Lewis, DVM, MPH, MS, National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada. E-mail:
| | | |
Collapse
|
9
|
Morozov I, Monath TP, Meekins DA, Trujillo JD, Sunwoo SY, Urbaniak K, Kim IJ, Narayanan SK, Indran SV, Ma W, Wilson WC, O'Connor C, Dubey S, Troth SP, Coller BA, Nichols R, Martin BK, Feldmann H, Richt JA. High dose of vesicular stomatitis virus-vectored Ebola virus vaccine causes vesicular disease in swine without horizontal transmission. Emerg Microbes Infect 2021; 10:651-663. [PMID: 33719915 PMCID: PMC8023602 DOI: 10.1080/22221751.2021.1903343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ABSTRACTThe recent impact of Ebola virus disease (EVD) on public health in Africa clearly demonstrates the need for a safe and efficacious vaccine to control outbreaks and mitigate its threat to global health. ERVEBO® is an effective recombinant Vesicular Stomatitis Virus (VSV)-vectored Ebola virus vaccine (VSV-EBOV) that was approved by the FDA and EMA in late 2019 for use in prevention of EVD. Since the parental virus VSV, which was used to construct VSV-EBOV, is pathogenic for livestock and the vaccine virus may be shed at low levels by vaccinated humans, widespread deployment of the vaccine requires investigation into its infectivity and transmissibility in VSV-susceptible livestock species. We therefore performed a comprehensive clinical analysis of the VSV-EBOV vaccine virus in swine to determine its infectivity and potential for transmission. A high dose of VSV-EBOV resulted in VSV-like clinical signs in swine, with a proportion of pigs developing ulcerative vesicular lesions at the nasal injection site and feet. Uninoculated contact control pigs co-mingled with VSV-EBOV-inoculated pigs did not become infected or display any clinical signs of disease, indicating the vaccine is not readily transmissible to naïve pigs during prolonged close contact. In contrast, virulent wild-type VSV Indiana had a shorter incubation period and was transmitted to contact control pigs. These results indicate that the VSV-EBOV vaccine causes vesicular illness in swine when administered at a high dose. Moreover, the study demonstrates the VSV-EBOV vaccine is not readily transmitted to uninfected pigs, encouraging its safe use as an effective human vaccine.
Collapse
Affiliation(s)
- Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Thomas P Monath
- Bioprotection Systems, Inc, a subsidiary of NewLink Genetics Corp, Ames, IA, USA
| | - David A Meekins
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D Trujillo
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Sun-Young Sunwoo
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Kinga Urbaniak
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - In Joong Kim
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Sanjeev K Narayanan
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Sabarish V Indran
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - William C Wilson
- Center for Grain and Animal Health Research, Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | | | | | | | | | - Richard Nichols
- Bioprotection Systems, Inc, a subsidiary of NewLink Genetics Corp, Ames, IA, USA
| | - Brian K Martin
- Bioprotection Systems, Inc, a subsidiary of NewLink Genetics Corp, Ames, IA, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Reston virus causes severe respiratory disease in young domestic pigs. Proc Natl Acad Sci U S A 2020; 118:2015657118. [PMID: 33443221 DOI: 10.1073/pnas.2015657118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reston virus (RESTV), an ebolavirus, causes clinical disease in macaques but has yet only been associated with rare asymptomatic infections in humans. Its 2008 emergence in pigs in the Philippines raised concerns about food safety, pathogenicity, and zoonotic potential, questions that are still unanswered. Until today, the virulence of RESTV for pigs has remained elusive, with unclear pathogenicity in naturally infected animals and only one experimental study demonstrating susceptibility and evidence for shedding but no disease. Here we show that combined oropharyngeal and nasal infection of young (3- to 7-wk-old) Yorkshire cross pigs with RESTV resulted in severe respiratory disease, with most animals reaching humane endpoint within a week. RESTV-infected pigs developed severe cyanosis, tachypnea, and acute interstitial pneumonia, with RESTV shedding from oronasal mucosal membranes. Our studies indicate that RESTV should be considered a livestock pathogen with zoonotic potential.
Collapse
|
11
|
Herst CV, Burkholz S, Sidney J, Sette A, Harris PE, Massey S, Brasel T, Cunha-Neto E, Rosa DS, Chao WCH, Carback R, Hodge T, Wang L, Ciotlos S, Lloyd P, Rubsamen R. An effective CTL peptide vaccine for Ebola Zaire Based on Survivors' CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design. Vaccine 2020; 38:4464-4475. [PMID: 32418793 PMCID: PMC7186210 DOI: 10.1016/j.vaccine.2020.04.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 12/21/2022]
Abstract
The 2013-2016 West Africa EBOV epidemic was the biggest EBOV outbreak to date. An analysis of virus-specific CD8+ T-cell immunity in 30 survivors showed that 26 of those individuals had a CD8+ response to at least one EBOV protein. The dominant response (25/26 subjects) was specific to the EBOV nucleocapsid protein (NP). It has been suggested that epitopes on the EBOV NP could form an important part of an effective T-cell vaccine for Ebola Zaire. We show that a 9-amino-acid peptide NP44-52 (YQVNNLEEI) located in a conserved region of EBOV NP provides protection against morbidity and mortality after mouse adapted EBOV challenge. A single vaccination in a C57BL/6 mouse using an adjuvanted microsphere peptide vaccine formulation containing NP44-52 is enough to confer immunity in mice. Our work suggests that a peptide vaccine based on CD8+ T-cell immunity in EBOV survivors is conceptually sound and feasible. Nucleocapsid proteins within SARS-CoV-2 contain multiple Class I epitopes with predicted HLA restrictions consistent with broad population coverage. A similar approach to a CTL vaccine design may be possible for that virus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Disease Models, Animal
- Drug Design
- Ebola Vaccines/chemistry
- Ebola Vaccines/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Mice
- Mice, Inbred C57BL
- Nucleocapsid Proteins/chemistry
- Nucleocapsid Proteins/immunology
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- C V Herst
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - S Burkholz
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - J Sidney
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, United States
| | - A Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, United States
| | - P E Harris
- Endocrinology Division, Department of Medicine, School of Medicine, Columbia University, New York, NY, USA
| | - S Massey
- University of Texas, Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - T Brasel
- University of Texas, Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - E Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil; Heart Institute (Incor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - D S Rosa
- Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - W C H Chao
- University of Macau, E12 Avenida da Universidade, Taipa, Macau, China
| | - R Carback
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - T Hodge
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - L Wang
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - S Ciotlos
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - P Lloyd
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - R Rubsamen
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States; Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
12
|
Cytokine Effects on the Entry of Filovirus Envelope Pseudotyped Virus-Like Particles into Primary Human Macrophages. Viruses 2019; 11:v11100889. [PMID: 31547585 PMCID: PMC6832363 DOI: 10.3390/v11100889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Macrophages are one of the first and also a major site of filovirus replication and, in addition, are a source of multiple cytokines, presumed to play a critical role in the pathogenesis of the viral infection. Some of these cytokines are known to induce macrophage phenotypic changes in vitro, but how macrophage polarization may affect the cell susceptibility to filovirus entry remains largely unstudied. We generated different macrophage subsets using cytokine pre-treatment and subsequently tested their ability to fuse with beta-lactamase containing virus-like particles (VLP), pseudotyped with the surface glycoprotein of Ebola virus (EBOV) or the glycoproteins of other clinically relevant filovirus species. We found that pre-incubation of primary human monocyte-derived macrophages (MDM) with interleukin-10 (IL-10) significantly enhanced filovirus entry into cells obtained from multiple healthy donors, and the IL-10 effect was preserved in the presence of pro-inflammatory cytokines found to be elevated during EBOV disease. In contrast, fusion of IL-10-treated macrophages with influenza hemagglutinin/neuraminidase pseudotyped VLPs was unchanged or slightly reduced. Importantly, our in vitro data showing enhanced virus entry are consistent with the correlation established between elevated serum IL-10 and increased mortality in filovirus infected patients and also reveal a novel mechanism that may account for the IL-10-mediated increase in filovirus pathogenicity.
Collapse
|
13
|
Lalle E, Biava M, Nicastri E, Colavita F, Di Caro A, Vairo F, Lanini S, Castilletti C, Langer M, Zumla A, Kobinger G, Capobianchi MR, Ippolito G. Pulmonary Involvement during the Ebola Virus Disease. Viruses 2019; 11:E780. [PMID: 31450596 PMCID: PMC6784166 DOI: 10.3390/v11090780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Filoviruses have become a worldwide public health concern, especially during the 2013-2016 Western Africa Ebola virus disease (EVD) outbreak-the largest outbreak, both by number of cases and geographical extension, recorded so far in medical history. EVD is associated with pathologies in several organs, including the liver, kidney, and lung. During the 2013-2016 Western Africa outbreak, Ebola virus (EBOV) was detected in the lung of infected patients suggesting a role in lung pathogenesis. However, little is known about lung pathogenesis and the controversial issue of aerosol transmission in EVD. This review highlights the pulmonary involvement in EVD, with a special focus on the new data emerging from the 2013-2016 Ebola outbreak.
Collapse
Affiliation(s)
- Eleonora Lalle
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Mirella Biava
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Francesca Colavita
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Antonino Di Caro
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
- International Public Health Crisis Group, 00149 Rome, Italy
| | - Francesco Vairo
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
- International Public Health Crisis Group, 00149 Rome, Italy
| | - Simone Lanini
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Concetta Castilletti
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Martin Langer
- EMERGENCY Onlus NGO, Via Santa Croce 19, 20122 Milan, Italy
| | - Alimuddin Zumla
- International Public Health Crisis Group, London WC1E 6BT, UK
- Division of Infection and Immunity, National Institute for Health Research Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London WC1E 6BT, UK
| | - Gary Kobinger
- International Public Health Crisis Group, Quebec City, PQ G1V 0A6, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, PQ G1V 0A6, Canada
| | - Maria R Capobianchi
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, 00149 Rome, Italy.
- International Public Health Crisis Group, 00149 Rome, Italy.
| |
Collapse
|
14
|
Monath TP, Fast PE, Modjarrad K, Clarke DK, Martin BK, Fusco J, Nichols R, Heppner DG, Simon JK, Dubey S, Troth SP, Wolf J, Singh V, Coller BA, Robertson JS, For the Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG). rVSVΔG-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein: Standardized template with key considerations for a risk/benefit assessment. Vaccine X 2019; 1:100009. [PMID: 31384731 PMCID: PMC6668225 DOI: 10.1016/j.jvacx.2019.100009] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. A recent publication by the V3SWG described live, attenuated, recombinant vesicular stomatitis virus (rVSV) as a chimeric virus vaccine for HIV-1 (Clarke et al., 2016). The rVSV vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features of the rVSV vector system, followed by a template with details on the safety and characteristics of a rVSV vaccine against Zaire ebolavirus (ZEBOV). The rVSV-ZEBOV vaccine is a live, replication competent vector in which the VSV glycoprotein (G) gene is replaced with the glycoprotein (GP) gene of ZEBOV. Multiple copies of GP are expressed and assembled into the viral envelope responsible for inducing protective immunity. The vaccine (designated V920) was originally constructed by the National Microbiology Laboratory, Public Health Agency of Canada, further developed by NewLink Genetics Corp. and Merck & Co., and is now in final stages of registration by Merck. The vaccine is attenuated by deletion of the principal virulence factor of VSV (the G protein), which also removes the primary target for anti-vector immunity. The V920 vaccine caused no toxicities after intramuscular (IM) or intracranial injection of nonhuman primates and no reproductive or developmental toxicity in a rat model. In multiple studies, cynomolgus macaques immunized IM with a wide range of virus doses rapidly developed ZEBOV-specific antibodies measured in IgG ELISA and neutralization assays and were fully protected against lethal challenge with ZEBOV virus. Over 20,000 people have received the vaccine in clinical trials; the vaccine has proven to be safe and well tolerated. During the first few days after vaccination, many vaccinees experience a mild acute-phase reaction with fever, headache, myalgia, and arthralgia of short duration; this period is associated with a low-level viremia, activation of anti-viral genes, and increased levels of chemokines and cytokines. Oligoarthritis and rash appearing in the second week occur at a low incidence, and are typically mild-moderate in severity and self-limited. V920 vaccine was used in a Phase III efficacy trial during the West African Ebola epidemic in 2015, showing 100% protection against Ebola Virus Disease, and it has subsequently been deployed for emergency control of Ebola outbreaks in central Africa. The template provided here provides a comprehensive picture of the first rVSV vector to reach the final stage of development and to provide a solution to control of an alarming human disease.
Collapse
Affiliation(s)
| | - Patricia E. Fast
- International AIDS Vaccine Initiative, New York, NY 10004, United States
| | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | | | | | - Joan Fusco
- NewLink Genetics Corp, Ames, IA, United States
| | | | | | | | - Sheri Dubey
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Sean P. Troth
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jayanthi Wolf
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Vidisha Singh
- Immunology and Molecular Pathogenesis, Emory University, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
15
|
Schneider-Futschik EK, Hoyer D, Khromykh AA, Baell JB, Marsh GA, Baker MA, Li J, Velkov T. Contemporary Anti-Ebola Drug Discovery Approaches and Platforms. ACS Infect Dis 2019; 5:35-48. [PMID: 30516045 DOI: 10.1021/acsinfecdis.8b00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ebola virus has a grave potential to destabilize civil society as we know it. The past few deadly Ebola outbreaks were unprecedented in size: The 2014-15 Ebola West Africa outbreak saw the virus spread from the epicenter through to Guinea, Sierra Leone, Nigeria, Congo, and Liberia. The 2014-15 Ebola West Africa outbreak was associated with almost 30,000 suspected or confirmed cases and over 11,000 documented deaths. The more recent 2018 outbreak in the Democratic Republic of Congo has so far resulted in 216 suspected or confirmed cases and 139 deaths. There is a general acceptance within the World Health Organization (WHO) and the Ebola outbreak response community that future outbreaks will become increasingly more frequent and more likely to involve intercontinental transmission. The magnitude of the recent outbreaks demonstrated in dramatic fashion the shortcomings of our mass casualty disease response capabilities and lack of therapeutic modalities for supporting Ebola outbreak prevention and control. Currently, there are no approved drugs although vaccines for human Ebola virus infection are in the trial phases and some potential treatments have been field tested most recently in the Congo Ebola outbreak. Treatment is limited to pain management and supportive care to counter dehydration and lack of oxygen. This underscores the critical need for effective antiviral drugs that specifically target this deadly disease. This review examines the current approaches for the discovery of anti-Ebola small molecule or biological therapeutics, their viral targets, mode of action, and contemporary platforms, which collectively form the backbone of the anti-Ebola drug discovery pipeline.
Collapse
Affiliation(s)
- Elena K. Schneider-Futschik
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Alexander A. Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jonathan B. Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, Jiangsu 211816, People’s Republic of China
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Glenn A. Marsh
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Involvement of Surfactant Protein D in Ebola Virus Infection Enhancement via Glycoprotein Interaction. Viruses 2018; 11:v11010015. [PMID: 30587835 PMCID: PMC6356362 DOI: 10.3390/v11010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/05/2023] Open
Abstract
Since the largest 2014⁻2016 Ebola virus disease outbreak in West Africa, understanding of Ebola virus infection has improved, notably the involvement of innate immune mediators. Amongst them, collectins are important players in the antiviral innate immune defense. A screening of Ebola glycoprotein (GP)-collectins interactions revealed the specific interaction of human surfactant protein D (hSP-D), a lectin expressed in lung and liver, two compartments where Ebola was found in vivo. Further analyses have demonstrated an involvement of hSP-D in the enhancement of virus infection in several in vitro models. Similar effects were observed for porcine SP-D (pSP-D). In addition, both hSP-D and pSP-D interacted with Reston virus (RESTV) GP and enhanced pseudoviral infection in pulmonary cells. Thus, our study reveals a novel partner of Ebola GP that may participate to enhance viral spread.
Collapse
|
17
|
Jiménez Martínez MÁ, Gasper DJ, Carmona Muciño MDC, Terio KA. Suidae and Tayassuidae. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7150131 DOI: 10.1016/b978-0-12-805306-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Suidae and Tayassuidae live on all continents except Antarctica. True wild boars were indigenous to Europe and Asia and are the ancestors to the domestic pig; with whom they share the same scientific name Sus scrofa. Wild boars have been introduced to the Americas and many islands. Because of the close genetic relationship, in many areas they have interbred with domestic pigs and formed considerable populations of feral suids that represent wild boar and feral pig crosses. Wild suid populations are relatively hardy and most disease research has been focused on their potential as a reservoir for diseases of concern for commercial pig production. The Togian Island babirusa, pygmy hog, Visayan warty pig, Javan warty pig, and Chacoan peccary are endangered. For all species, hunting, habitat loss, and hybridization are important threats to conservation.
Collapse
|
18
|
Pickering BS, Collignon B, Smith G, Marszal P, Kobinger G, Weingartl HM. Detection of Zaire ebolavirus in swine: Assay development and optimization. Transbound Emerg Dis 2017; 65:77-84. [PMID: 28345293 DOI: 10.1111/tbed.12606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 01/14/2023]
Abstract
Ebolaviruses (family Filoviridae, order Mononegavirales) cause often fatal, haemorrhagic fever in primates including humans. Pigs have been identified as a species susceptible to Reston ebolavirus (RESTV) infection, with indicated transmission to humans in the Philippines; however, their role during Ebola outbreaks in Africa needs to be clarified. To perform surveillance studies, detection of ebolavirus requires a prerequisite validation of viral RNA and antibody detection methods in swine samples. These diagnostic tests also need to be suitable for deployment to low-level containment laboratories. In this study, we developed a set of tests for detection of antibodies against Zaire ebolavirus (EBOV) in swine. Recombinant EBOV nucleoprotein was produced using a baculovirus expression system for indirect ELISA development. Evaluation of this assay was performed using laboratory and field samples, achieving a diagnostic specificity of 99%. Importantly, the indirect ELISA was able to detect antibodies to EBOV at 7 dpi, 3 days earlier than virus neutralization tests (VNT). The format of the VNT in this work was modified to a microtitre plaque reduction neutralization assay (miPRNT) complemented with immunostaining to provide a more rapid and highly specific assay. Finally, a confirmatory immunoblot assay was generated to supplement the indirect ELISA results.
Collapse
Affiliation(s)
- B S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - B Collignon
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - G Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - P Marszal
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - G Kobinger
- Department of Microbiology, Immunology, faculty of Medicine, Université Laval, Québec, QC, Canada
| | - H M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Lawrence P, Danet N, Reynard O, Volchkova V, Volchkov V. Human transmission of Ebola virus. Curr Opin Virol 2016; 22:51-58. [PMID: 28012412 DOI: 10.1016/j.coviro.2016.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Ever since the first recognised outbreak of Ebolavirus in 1976, retrospective epidemiological analyses and extensive studies with animal models have given us insight into the nature of the pathology and transmission mechanisms of this virus. In this review focusing on Ebolavirus, we present an outline of our current understanding of filovirus human-to-human transmission and of our knowledge concerning the molecular basis of viral transmission and potential for adaptation, with particular focus on what we have learnt from the 2014 outbreak in West Africa. We identify knowledge gaps relating to transmission and pathogenicity mechanisms, molecular adaptation and filovirus ecology.
Collapse
Affiliation(s)
- Philip Lawrence
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon - EPHE, Lyon 69288, France
| | - Nicolas Danet
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Olivier Reynard
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Valentina Volchkova
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Viktor Volchkov
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| |
Collapse
|
20
|
Falcinelli SD, Chertow DS, Kindrachuk J. Integration of Global Analyses of Host Molecular Responses with Clinical Data To Evaluate Pathogenesis and Advance Therapies for Emerging and Re-emerging Viral Infections. ACS Infect Dis 2016; 2:787-799. [PMID: 27933782 PMCID: PMC6131701 DOI: 10.1021/acsinfecdis.6b00104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Outbreaks
associated with emerging and re-emerging viral pathogens continue
to increase in frequency and are associated with an increasing burden
to global health. In light of this, there is a need to integrate basic
and clinical research for investigating the connections between molecular
and clinical pathogenesis and for therapeutic development strategies.
Here, we will discuss this approach with a focus on the emerging viral
pathogens Middle East respiratory syndrome coronavirus (MERS-CoV),
Ebola virus (EBOV), and monkeypox virus (MPXV) from the context of
clinical presentation, immunological and molecular features of the
diseases, and OMICS-based analyses of pathogenesis. Furthermore, we
will highlight the role of global investigations of host kinases,
the kinome, for investigating emerging and re-emerging viral pathogens
from the context of characterizing cellular responses and identifying
novel therapeutic targets. Lastly, we will address how increased integration
of clinical and basic research will assist treatment and prevention
efforts for emerging pathogens.
Collapse
Affiliation(s)
- Shane D. Falcinelli
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Jason Kindrachuk
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| |
Collapse
|
21
|
Bhadelia N. Lessons for pulmonary critical care from treatment of Ebola virus disease in developed countries. THE LANCET RESPIRATORY MEDICINE 2016; 3:919-21. [PMID: 26679020 DOI: 10.1016/s2213-2600(15)00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Nahid Bhadelia
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
22
|
Mekibib B, Ariën KK. Aerosol Transmission of Filoviruses. Viruses 2016; 8:v8050148. [PMID: 27223296 PMCID: PMC4885103 DOI: 10.3390/v8050148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022] Open
Abstract
Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses.
Collapse
Affiliation(s)
- Berhanu Mekibib
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp B-2000, Belgium.
- School of Veterinary Medicine, College of Natural and Computational Sciences, Hawassa University, P.O. Box 05, Hawassa, Ethiopia.
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp B-2000, Belgium.
| |
Collapse
|
23
|
Missair A, Marino MJ, Vu CN, Gutierrez J, Missair A, Osman B, Gebhard RE. Anesthetic Implications of Ebola Patient Management: A Review of the Literature and Policies. Anesth Analg 2015; 121:810-821. [PMID: 25551317 DOI: 10.1213/ane.0000000000000573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As of mid-October 2014, the ongoing Ebola epidemic in Western Africa has affected approximately 10,000 patients, approached a 50% mortality rate, and crossed political and geographic borders without precedent. The disease has spread throughout Liberia, Guinea, and Sierra Leone. Isolated cases have arrived in urban centers in Europe and North America. The exponential growth, currently unabated, highlights the urgent need for effective and immediate management protocols for the various health care subspecialties that may care for Ebola virus disease patients. We conducted a comprehensive review of the literature to identify key areas of anesthetic care affected by this disease. The serious potential for "high-risk exposure" and "direct contact" (as defined by the Centers for Disease Control and Prevention) of anesthesiologists caring for Ebola patients prompted this urgent investigation. A search was conducted using MEDLINE/PubMed, MeSH, Cochrane Review, and Google Scholar. Key words included "anesthesia" and/or "ebola" combined with "surgery," "intubation," "laryngoscopy," "bronchoscopy," "stethoscope," "ventilation," "ventilator," "phlebotomy," "venous cannulation," "operating room," "personal protection," "equipment," "aerosol," "respiratory failure," or "needle stick." No language or date limits were applied. We also included secondary-source data from government organizations and scientific societies such as the Centers for Disease Control and Prevention, World Health Organization, American Society of Anesthesiologists, and American College of Surgeons. Articles were reviewed for primary-source data related to inpatient management of Ebola cases as well as evidence-based management guidelines and protocols for the care of Ebola patients in the operative room, infection control, and health care worker personal protection. Two hundred thirty-six articles were identified using the aforementioned terminology in the scientific database search engines. Twenty articles met search criteria for information related to inpatient Ebola virus disease management or animal virology studies as primary or secondary sources. In addition, 9 articles met search criteria as tertiary sources, representing published guidelines. The recommendations developed in this article are based on these 29 source documents. Anesthesia-specific literature regarding the care of Ebola patients is very limited. Secondary-source guidelines and policies represent the majority of available information. Data from controlled animal experiments and tuberculosis patient research provide some evidence for the existing recommendations and identify future guideline considerations.
Collapse
Affiliation(s)
- Andres Missair
- From the Department of Anesthesiology, Perioperative Medicine, and Pain, University of Miami, Miller School of Medicine, Miami, Florida; United Nations Development Programme, New York, New York; and Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
24
|
Anthony SM, Bradfute SB. Filoviruses: One of These Things is (not) Like the Other. Viruses 2015; 7:5172-90. [PMID: 26426036 PMCID: PMC4632375 DOI: 10.3390/v7102867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022] Open
Abstract
The family Filoviridae contains several of the most deadly pathogens known to date and the current Ebola virus disease (EVD) outbreak in Western Africa, due to Ebola virus (EBOV) infection, highlights the need for active and broad research into filovirus pathogenesis. However, in comparison, the seven other known filovirus family members are significantly understudied. Many of these, including Marburgviruses and Ebolaviruses other than EBOV, are also highly virulent and fully capable of causing widespread epidemics. This review places the focus on these non-EBOV filoviruses, including known immunological and pathological data. The available animal models, research tools and currently available therapeutics will also be discussed along with an emphasis in the large number of current gaps in knowledge of these less highlighted filoviruses. It is evident that much research is yet to be done in order to bring the non-EBOV filovirus field to the forefront of current research and, importantly, to the development of more effective vaccines and therapeutics to combat potential future outbreaks.
Collapse
Affiliation(s)
- Scott M Anthony
- Immunology Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Steven B Bradfute
- University of New Mexico, Center for Global Health, Department of Internal Medicine.
| |
Collapse
|
25
|
Porcine semen as a vector for transmission of viral pathogens. Theriogenology 2015; 85:27-38. [PMID: 26506911 DOI: 10.1016/j.theriogenology.2015.09.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 11/20/2022]
Abstract
Different viruses have been detected in porcine semen. Some of them are on the list of the World Organization for Animal Health (OIE), and consequently, these pathogens are of socioeconomic and/or public health importance and are of major importance in the international trade of animals and animal products. Artificial insemination (AI) is one of the most commonly used assisted reproductive technologies in pig production worldwide. This extensive use has enabled pig producers to benefit from superior genetics at a lower cost compared to natural breeding. However, the broad distribution of processed semen doses for field AI has increased the risk of widespread transmission of swine viral pathogens. Contamination of semen can be due to infections of the boar or can occur during semen collection, processing, and storage. It can result in reduced semen quality, embryonic mortality, endometritis, and systemic infection and/or disease in the recipient female. The presence of viral pathogens in semen can be assessed by demonstration of viable virus, nucleic acid of virus, or indirectly by measuring serum antibodies in the boar. The best way to prevent disease transmission via the semen is to assure that the boars in AI centers are free from the disease, to enforce very strict biosecurity protocols, and to perform routine health monitoring of boars. Prevention of viral semen contamination should be the primary focus because it is easier to prevent contamination than to eliminate viruses once present in semen. Nevertheless, research and development of novel semen processing treatments such as single-layer centrifugation is ongoing and may allow in the future to decontaminate semen.
Collapse
|
26
|
Acute respiratory distress syndrome after convalescent plasma use: treatment of a patient with Ebola virus disease contracted in Madrid, Spain. THE LANCET RESPIRATORY MEDICINE 2015; 3:554-62. [DOI: 10.1016/s2213-2600(15)00180-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 02/01/2023]
|
27
|
Shurtleff AC, Bavari S. Animal models for ebolavirus countermeasures discovery: what defines a useful model? Expert Opin Drug Discov 2015; 10:685-702. [PMID: 26004783 DOI: 10.1517/17460441.2015.1035252] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ebolaviruses are highly pathogenic filoviruses, which cause disease in humans and nonhuman primates (NHP) in Africa. The Zaire ebolavirus outbreak in 2014, which continues to greatly affect Western Africa and other countries to which the hemorrhagic fever was exported due to travel of unsymptomatic yet infected individuals, was complicated by the lack of available licensed vaccines or therapeutics to combat infection. After almost a year of research at an increased pace to find and test vaccines and therapeutics, there is now a deeper understanding of the available disease models for ebolavirus infection. Demonstration of vaccine or therapeutic efficacy in NHP models of ebolavirus infection is crucial to the development and eventual licensure of ebolavirus medical countermeasures, so that safe and effective countermeasures can be accelerated into human clinical trials. AREAS COVERED The authors describe ebolavirus hemorrhagic fever (EHF) disease in various animal species: mice, guinea pigs, hamsters, pigs and NHP, to include baboons, marmosets, rhesus and cynomolgus macaques, as well as African green monkeys. Because the NHP models are supremely useful for therapeutics and vaccine testing, emphasis is placed on comparison of these models, and their use as gold-standard models of EHF. EXPERT OPINION Animal models of EHF varying from rodents to NHP species are currently under evaluation for their reproducibility and utility for modeling infection in humans. Complete development and licensure of therapeutic agents and vaccines will require demonstration that mechanisms conferring protection in NHP models of infection are predictive of protective responses in humans, for a given countermeasure.
Collapse
Affiliation(s)
- Amy C Shurtleff
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Division of Molecular and Translational Sciences , 1425 Porter Street, Frederick, MD 21702 , USA +1 301 619 4246 ; +1 541 754 3545 ;
| | | |
Collapse
|
28
|
Martines RB, Ng DL, Greer PW, Rollin PE, Zaki SR. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J Pathol 2015; 235:153-74. [PMID: 25297522 DOI: 10.1002/path.4456] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Ebola viruses and Marburg viruses include some of the most virulent and fatal pathogens known to humans. These viruses cause severe haemorrhagic fevers, with case fatality rates in the range 25-90%. The diagnosis of filovirus using formalin-fixed tissues from fatal cases poses a significant challenge. The most characteristic histopathological findings are seen in the liver; however, the findings overlap with many other viral and non-viral haemorrhagic diseases. The need to distinguish filovirus infections from other haemorrhagic fevers, particularly in areas with multiple endemic viral haemorrhagic agents, is of paramount importance. In this review we discuss the current state of knowledge of filovirus infections and their pathogenesis, including histopathological findings, epidemiology, modes of transmission and filovirus entry and spread within host organisms. The pathogenesis of filovirus infections is complex and involves activation of the mononuclear phagocytic system, with release of pro-inflammatory cytokines, chemokines and growth factors, endothelial dysfunction, alterations of the innate and adaptive immune systems, direct organ and endothelial damage from unrestricted viral replication late in infection, and coagulopathy. Although our understanding of the pathogenesis of filovirus infections has rapidly increased in the past few years, many questions remain unanswered.
Collapse
Affiliation(s)
- Roosecelis Brasil Martines
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Ebola virus infection is the present global consideration. This deadly virus can result in a deadly acute febrile hemorrhagic illness. The patient can have several clinical manifestations. As a new emerging infection, the knowledge on this infection is extremely limited. The interesting issues to be discussed include a) the atypical clinical presentation, b) new diagnostic tool, c) new treatment, and d) disease prevention. Those topics will be discussed in this special review.
Collapse
Affiliation(s)
- Viroj Wiwanitkit
- Master Degree of Public Health Curriculum, Surindra Rajabhat University, Mueang Surin District, Surin, Thailand
| |
Collapse
|
30
|
Schroyen M, Tuggle CK. Current transcriptomics in pig immunity research. Mamm Genome 2014; 26:1-20. [PMID: 25398484 PMCID: PMC7087981 DOI: 10.1007/s00335-014-9549-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023]
Abstract
Swine performance in the face of disease challenge is becoming progressively more important. To improve the pig’s robustness and resilience against pathogens through selection, a better understanding of the genetic and epigenetic factors in the immune response is required. This review highlights results from the most recent transcriptome research, and the meta-analyses performed, in the context of pig immunity. A technological overview is given including wholegenome microarrays, immune-specific arrays, small-scale high-throughput expression methods, high-density tiling arrays, and next generation sequencing (NGS). Although whole genome microarray techniques will remain complementary to NGS for some time in domestic species, research will transition to sequencing-based methods due to cost-effectiveness and the extra information that such methods provide. Furthermore, upcoming high-throughput epigenomic studies, which will add greatly to our knowledge concerning the impact of epigenetic modifications on pig immune response, are listed in this review. With emphasis on the insights obtained from transcriptomic analyses for porcine immunity, we also discuss the experimental design in pig immunity research and the value of the newly published porcine genome assembly in using the pig as a model for human immune response. We conclude by discussing the importance of establishing community standards to maximize the possibility of integrative computational analyses, such as was clearly beneficial for the human ENCODE project.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA,
| | | |
Collapse
|
31
|
Serão NVL, Matika O, Kemp RA, Harding JCS, Bishop SC, Plastow GS, Dekkers JCM. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J Anim Sci 2014; 92:2905-21. [PMID: 24879764 DOI: 10.2527/jas.2014-7821] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease impacting pig production in North America, Europe, and Asia, causing reproductive losses such as increased rates of stillbirth and mummified piglets. The objective of this study was to explore the genetic basis of host response to the PRRS virus (PRRSV) in a commercial multiplier sow herd before and after a PRRS outbreak, using antibody response and reproductive traits. Reproductive data comprising number born alive (NBA), number alive at 24 h (NA24), number stillborn (NSB), number born mummified (NBM), proportion born dead (PBD), number born dead (NBD), number weaned (NW), and number of mortalities through weaning (MW) of 5,227 litters from 1,967 purebred Landrace sows were used along with a pedigree comprising 2,995 pigs. The PRRS outbreak date was estimated from rolling averages of farrowing traits and was used to split the data into a pre-PRRS phase and a PRRS phase. All 641 sows in the herd during the outbreak were blood sampled 46 d after the estimated outbreak date and were tested for anti-PRRSV IgG using ELISA (sample-to-positive [S/P] ratio). Genetic parameters of traits were estimated separately for the pre-PRRS and PRRS phase data sets. Sows were genotyped using the PorcineSNP60 BeadChip, and genome-wide association studies (GWAS) were performed using method Bayes B. Heritability estimates for reproductive traits ranged from 0.01 (NBM) to 0.12 (NSB) and from 0.01 (MW) to 0.12 (NBD) for the pre-PRRS and PRRS phases, respectively. S/P ratio had heritability (0.45) and strong genetic correlations with most traits, ranging from -0.72 (NBM) to 0.73 (NBA). In the pre-PRRS phase, regions associated with NSB and PBD explained 1.6% and 3% of the genetic variance, respectively. In the PRRS phase, regions associated with NBD, NSB, and S/P ratio explained 0.8%, 11%, and 50.6% of the genetic variance, respectively. For S/P ratio, 2 regions on SSC 7 (SSC7) separated by 100 Mb explained 40% of the genetic variation, including a region encompassing the major histocompatibility complex, which explained 25% of the genetic variance. These results indicate a significant genomic component associated with PRRSV antibody response and NSB in this data set. Also, the high heritability and genetic correlation estimates for S/P ratio during the PRRS phase suggest that S/P ratio could be used as an indicator of the impact of PRRS on reproductive traits.
Collapse
Affiliation(s)
- N V L Serão
- Department of Animal Science, Iowa State University, Ames 50011
| | - O Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - R A Kemp
- Genesus, Oakville, MB R0H 0Y0, Canada
| | - J C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A1, Canada
| | - S C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - G S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - J C M Dekkers
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
32
|
Abstract
Lloviu virus (LLOV), a novel filovirus detected in bats, is phylogenetically distinct from viruses in the genera Ebolavirus and Marburgvirus in the family Filoviridae. While filoviruses are known to cause severe hemorrhagic fever in humans and/or nonhuman primates, LLOV is biologically uncharacterized, since infectious LLOV has never been isolated. To examine the properties of LLOV, we characterized its envelope glycoprotein (GP), which likely plays a key role in viral tropism and pathogenicity. We first found that LLOV GP principally has the same primary structure as the other filovirus GPs. Similar to the other filoviruses, virus-like particles (VLPs) produced by transient expression of LLOV GP, matrix protein, and nucleoprotein in 293T cells had densely arrayed GP spikes on a filamentous particle. Mouse antiserum to LLOV VLP was barely cross-reactive to viruses of the other genera, indicating that LLOV is serologically distinct from the other known filoviruses. For functional study of LLOV GP, we utilized a vesicular stomatitis virus (VSV) pseudotype system and found that LLOV GP requires low endosomal pH and cathepsin L, and that human C-type lectins act as attachment factors for LLOV entry into cells. Interestingly, LLOV GP-pseudotyped VSV infected particular bat cell lines more efficiently than viruses bearing other filovirus GPs. These results suggest that LLOV GP mediates cellular entry in a manner similar to that of the other filoviruses while showing preferential tropism for some bat cells.
Collapse
|