1
|
Oğuz E, Yılmaz Y, Güneş FE. The relationship between bacterial changes and dietary intervention in non-alcoholic fatty liver disease. Clin Nutr ESPEN 2025; 68:267-273. [PMID: 40345652 DOI: 10.1016/j.clnesp.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/19/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND AND AIM This study aimed to investigate the levels of Faecalibacterium prausnitzii (F. prausnitzii) and Eubacterium rectale (E. rectale) in patients with non-alcoholic fatty liver disease (NAFLD) and evaluate the impact of dietary intervention on these bacterial populations. MATERIALS An interventional study was conducted with 38 NAFLD patients recruited from the Marmara University Gastroenterology Institute. Participants were divided into two groups: a diet intervention group (n = 21) and a control group (n = 17). The dietary intervention consisted of a balanced diet containing 50-55 % carbohydrates, 30-35 % fats, and 15-20 % protein. Fecal samples were collected at baseline and after six weeks for both groups, and bacterial quantification was performed via deoxyribonucleic acid (DNA) analysis of the fecal samples. RESULTS In the diet intervention group, a significant increase in E. rectale abundance was observed after six weeks (p = 0.008). Additionally, intakes of dietary fiber, vitamin E, vitamin C, and thiamine were significantly higher in the intervention group compared to the control group by the end of the study (p < 0.05). However, no significant changes were detected in F. prausnitzii levels in either group. CONCLUSION The findings demonstrate that dietary intervention can significantly increase E. rectale abundance in NAFLD patients, while F. prausnitzii levels remain unaffected. These results highlight the selective influence of dietary modifications on gut bacterial populations, offering potential implications for the management of NAFLD.
Collapse
Affiliation(s)
- Esma Oğuz
- Kırklareli University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Kırklareli, Türkiye.
| | - Yusuf Yılmaz
- Recep Tayyip Erdoğan University, School of Medicine, Department of Gastroenterology, Rize, Türkiye
| | - Fatma Esra Güneş
- İstanbul Medeniyet University, Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul, Türkiye
| |
Collapse
|
2
|
Jiménez-González C, Alonso-Peña M, Argos Vélez P, Crespo J, Iruzubieta P. Unraveling MASLD: The Role of Gut Microbiota, Dietary Modulation, and AI-Driven Lifestyle Interventions. Nutrients 2025; 17:1580. [PMID: 40362889 PMCID: PMC12073168 DOI: 10.3390/nu17091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Gut microbiota has a crucial role in the pathophysiology of metabolic-associated steatotic liver disease (MASLD), influencing various metabolic mechanisms and contributing to the development of the disease. Dietary interventions targeting gut microbiota have shown potential in modulating microbial composition and mitigating MASLD progression. In this context, the integration of multi-omics analysis and artificial intelligence (AI) in personalized nutrition offers new opportunities for tailoring dietary strategies based on individual microbiome profiles and metabolic responses. The use of chatbots and other AI-based health solutions offers a unique opportunity to democratize access to health interventions due to their low cost, accessibility, and scalability. Future research should focus on the clinical validation of AI-powered dietary strategies, integrating microbiome-based therapies and precision nutrition approaches. Establishing standardized protocols and ethical guidelines will be crucial for implementing AI in MASLD management, paving the way for a more personalized, data-driven approach to disease prevention and treatment.
Collapse
Affiliation(s)
- Carolina Jiménez-González
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
| | - Paula Argos Vélez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| |
Collapse
|
3
|
Wu Q, Yang Y, Lin S, Geller DA, Yan Y. The microenvironment in the development of MASLD-MASH-HCC and associated therapeutic in MASH-HCC. Front Immunol 2025; 16:1569915. [PMID: 40370443 PMCID: PMC12074932 DOI: 10.3389/fimmu.2025.1569915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a series of obesity-related metabolic liver diseases, ranging from relatively benign hepatic steatosis to metabolic-associated steatohepatitis (MASH). With the changes in lifestyle, its incidence and prevalence have risen to epidemic proportions globally. In recent years, an increasing amount of evidence has indicated that the hepatic microenvironment is involved in the pathophysiological processes of MASH-induced liver fibrosis and the formation of hepatocellular carcinoma (HCC). The hepatic microenvironment is composed of various parenchymal and non-parenchymal cells, which communicate with each other through various factors. In this review, we focus on the changes in hepatocytes, cholangiocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KC), dendritic cells (DC), neutrophils, monocytes, T and B lymphocytes, natural killer cells (NK), natural killer T cells (NKT), mucosal-associated invariant T cells (MAIT), γδT cells, and gut microbiota during the progression of MASLD. Furthermore, we discuss promising therapeutic strategies targeting the microenvironment of MASLD-MASH-HCC.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixun Lin
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Münte E, Viebahn G, Khurana A, Fujiki J, Nakamura T, Lang S, Demir M, Schnabl B, Hartmann P. Faecalibacterium prausnitzii Is Associated with Disease Severity in MASLD but Its Supplementation Does Not Improve Diet-Induced Steatohepatitis in Mice. Microorganisms 2025; 13:675. [PMID: 40142567 PMCID: PMC11944644 DOI: 10.3390/microorganisms13030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The gut microbiota plays an important role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we aimed to evaluate the role of the butyrate-producing bacterium Faecalibacterium prausnitzii in MASLD and whether supplementation with butyrate-producing bacteria, in particular Faecalibacterium prausnitzii, can ameliorate diet-induced steatohepatitis in mice. The relative abundance of the genus Faecalibacterium and its most abundant strain Faecalibacterium prausnitzii was determined by 16S rRNA sequencing and quantitative polymerase chain reaction (qPCR), respectively, in 95 participants with MASLD and 19 healthy control subjects. Butyrate and butyrate-producing bacteria (Faecalibacterium prausnitzii and Coprococcus comes) were gavaged to C57BL/6 mice fed a steatohepatitis-inducing diet. The fecal relative abundance of Faecalibacterium and Faecalibacterium prausnitzii was decreased in subjects with MASLD versus healthy controls and lower in individuals with MASLD and stage 3-4 fibrosis versus those with stage 0-2 fibrosis. Sodium-butyrate supplementation improved hepatic steatosis in mice on high-fat diet (HFD). Gavage of various butyrate-producing bacteria including Faecalibacterium prausnitzii and Coprococcus comes isolated from humans did not improve HFD-induced liver disease in mice. Although the abundance of Faecalibacterium prausnitzii is associated with MASLD severity in humans, its gavage to mice does not improve experimental diet-induced liver disease.
Collapse
Affiliation(s)
- Eliane Münte
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Greta Viebahn
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA (J.F.)
| | - Amit Khurana
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jumpei Fujiki
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA (J.F.)
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Hokkaido, Japan
| | - Tomohiro Nakamura
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA (J.F.)
| | - Sonja Lang
- Department of Gastroenterology and Hepatology, University Hospital Cologne, 50937 Cologne, Germany
- Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, 13353 Berlin, Germany
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA (J.F.)
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| |
Collapse
|
5
|
Terrazas F, Kelley ST, DeMasi T, Giltvedt K, Tsang M, Nannini K, Kern M, Hooshmand S. Influence of menstrual cycle and oral contraception on taxonomic composition and gas production in the gut microbiome. J Med Microbiol 2025; 74:001987. [PMID: 40153295 PMCID: PMC11952661 DOI: 10.1099/jmm.0.001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/20/2025] [Indexed: 03/30/2025] Open
Abstract
Introduction. Oral contraceptives (OCs) are widely used for birth control and offer benefits such as menstrual cycle regulation and reduced menstrual pain. However, they have also been associated with an increased risk of cancer and reduced bone mass density.Gap Statement. While the gut microbiome is known to interact with endocrine factors, the impact of hormonal OCs on its composition and function remains underexplored. Additionally, we explore the relationship of OC use and the microbiome to gas production, which can cause symptoms and be indicative of poor health.Aim. This study investigates the effects of OCs on the diversity and composition of the gut microbiome and its association with breath hydrogen (H2) and methane (CH4) levels.Methodology. We utilized 16S rRNA gene sequencing to analyse faecal samples from 65 women, comparing OC users with non-users at two menstrual cycle time points. Breath tests measured hydrogen and CH4 production. Data were analysed for microbial diversity, community composition and correlation with gas production.Results. There were no differences in overall microbial diversity between OC users and non-users in samples collected on day 2 of the menstrual cycle. However, on day 21, we found a significant difference in microbial richness, suggesting a cycle-dependent effect of OCs on gut microbiota species richness but not composition. We found a strong correlation between H2 and CH4 concentrations and an interaction between OC use and the menstrual cycle on H2 and CH4 production. We also identified several taxa associated with both high levels of H2 and CH4 production and OC use.Conclusion. Our study highlights the intricate relationships among hormonal contraceptives, the gut microbiota and gas production and connects shifts in the microbiome composition to gastrointestinal symptoms (e.g. gas production) that can impact overall health. This underscores the need for further research on the long-term effects of OCs and for the development of precise therapeutic strategies to address potential adverse effects. Our findings offer new perspectives on the microbiome-hormone-gas production nexus, potentially broadening our understanding of the systemic implications of OCs.
Collapse
Affiliation(s)
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, USA
| | - Taylor DeMasi
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Kristine Giltvedt
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Michelle Tsang
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Kaelyn Nannini
- Department of Biology, San Diego State University, San Diego, USA
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| |
Collapse
|
6
|
Chen WY, Zhang JH, Chen LL, Byrne CD, Targher G, Luo L, Ni Y, Zheng MH, Sun DQ. Bioactive metabolites: A clue to the link between MASLD and CKD? Clin Mol Hepatol 2025; 31:56-73. [PMID: 39428978 PMCID: PMC11791555 DOI: 10.3350/cmh.2024.0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
Collapse
Affiliation(s)
- Wen-Ying Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hui Zhang
- Department of Pediatric Laboratory, Affiliated Children’s Hospital of Jiangnan University, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Liang Luo
- Intensive Care Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yan Ni
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Department of Nephrology, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
7
|
Yaghmaei H, Taromiha A, Nojoumi SA, Soltanipur M, Shahshenas S, Rezaei M, Hosseini SM, Siadat SD. Role of Gut-Liver Axis in Non-Alcoholic Fatty Liver Disease. IRANIAN BIOMEDICAL JOURNAL 2025; 29:1-8. [PMID: 40223320 PMCID: PMC12040635 DOI: 10.61186/ibj.4212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/16/2024] [Indexed: 04/17/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health problem, mainly due to the increasing prevalence of obesity and metabolic syndrome. The gut microbiota plays an essential role in the development of NAFLD through the gut-liver axis. Dysbiosis of. the gut microbiota (GM) is associated with the pathogenesis of NAFLD. Dietary choices and other lifestyle factors influence the composition of the GM and contribute to the development of NAFLD. At the phylum level, individuals with NAFLD show an increased level in Actinobacteria and Firmicutes, while Verrucomicrobia, Thermus, Proteobacteria, Lentiphaerae, and Fusobacteria are found to be decreased. Several genera, including Faecalibacterium and Akkermansia, exhibit alterations in NAFLD and are linked to disease progression. Modulating the GM through prebiotics, probiotics, or fecal microbiota transplantation represents a promising therapeutic strategy for NAFLD. This review summarizes the current understanding of GM changes in NAFLD, focusing on findings from both human and animal studies.
Collapse
Affiliation(s)
- Hessam Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirmahdi Taromiha
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Masood Soltanipur
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Sina Shahshenas
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mahdi Rezaei
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Zhang X, Lau HCH, Ha S, Liu C, Liang C, Lee HW, Ng QWY, Zhao Y, Ji F, Zhou Y, Pan Y, Song Y, Zhang Y, Lo JCY, Cheung AHK, Wu J, Li X, Xu H, Wong CC, Wong VWS, Yu J. Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis. Nat Metab 2025; 7:102-119. [PMID: 39779889 PMCID: PMC11774752 DOI: 10.1038/s42255-024-01177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear. Here, we discover that mice with intestinal epithelial cell-specific knockout of Tm6sf2 (Tm6sf2ΔIEC) develop MASH, accompanied by impaired intestinal barrier and microbial dysbiosis. Transplanting stools from Tm6sf2ΔIEC mice induces steatohepatitis in germ-free recipient mice, whereas MASH is alleviated in Tm6sf2ΔIEC mice co-housed with wild-type mice. Mechanistically, Tm6sf2-deficient intestinal cells secrete more free fatty acids by interacting with fatty acid-binding protein 5 to induce intestinal barrier dysfunction, enrichment of pathobionts, and elevation of lysophosphatidic acid (LPA) levels. LPA is translocated from the gut to the liver, contributing to lipid accumulation and inflammation. Pharmacological inhibition of the LPA receptor suppresses MASH in both Tm6sf2ΔIEC and wild-type mice. Hence, modulating microbiota or blocking the LPA receptor is a potential therapeutic strategy in TM6SF2 deficiency-induced MASH.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Suki Ha
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chuanfa Liu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cong Liang
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hye Won Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Queena Wing-Yin Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Zhao
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenfen Ji
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yasi Pan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Song
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yating Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jennie Ching Yin Lo
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin Ho Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoxing Li
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chi Chun Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Li Z, Zhu X, Li C, Tang R, Zou Y, Liu S. Integrated serum metabolomics, 16S rRNA sequencing and bile acid profiling to reveal the potential mechanism of gentiopicroside against nonalcoholic steatohepatitis in lean mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118526. [PMID: 38972531 DOI: 10.1016/j.jep.2024.118526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lean nonalcoholic steatohepatitis (NASH) poses a serious threat to public health worldwide. Herbs of the genus Gentiana have been used for centuries to treat hepatic disease or have been consumed for hepatic protection efficiency. Gentiopicroside (GPS), the main bioactive component of Gentiana herbs, has been shown to be beneficial for protecting the liver, improving intestinal disorders, modulating bile acid profiles, ameliorating alcoholic hepatosteatosis, and so on. It is plausible to speculate that GPS may hold potential as a therapeutic strategy for lean NASH. However, no related studies have been conducted thus far. AIM OF THE STUDY The present work aimed to investigate the benefit of GPS on NASH in a lean mouse model. MATERIALS AND METHODS NASH in a lean mouse model was successfully established via a published method. GPS of 50 and 100 mg/kg were orally administered to verify the effect. Untargeted metabolomics, 16S rDNA sequencing and bile acid (BA) profiling, as well as qPCR and Western blotting analysis were employed to investigate the mechanism underlying the alleviating effect. RESULTS GPS significantly reduced the increase in serum biochemicals and liver index, and attenuated the accumulation of fat in the livers of lean mice with NASH. Forty-two potential biomarkers were identified by metabolomics analysis, leading to abnormal metabolic pathways of primary bile acid biosynthesis and fatty acid biosynthesis, which were subsequently rebalanced by GPS. A decreased Firmicutes/Bacteroidetes (F/B) ratio and disturbed BA related GM profiles were revealed in lean mice with NASH but were partially recovered by GPS. Furthermore, serum profiling of 23 BAs confirmed that serum BA levels were elevated in the lean model but downregulated by GPS treatment. Pearson correlation analysis validated associations between BA profiles, serum biochemical indices and related GM. qPCR and Western blotting analysis further elucidated the regulation of genes associated with liver lipid synthesis and bile acid metabolism. CONCLUSIONS GPS may ameliorate steatosis in lean mice with NASH, regulating the metabolomic profile, BA metabolism, fatty acid biosynthesis, and BA-related GM. All these factors may contribute to its beneficial effect.
Collapse
Affiliation(s)
- Zeyun Li
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xueya Zhu
- Department of pharmacy, Zhumadian Central Hospital, Zhumadian, 463000, Henan, China.
| | - Chenhao Li
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ruiting Tang
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yuanyuan Zou
- Yichun University, Yichun, 336000, Jiangxi, China.
| | - Shuaibing Liu
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
10
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [PMID: 39534519 PMCID: PMC11551618 DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
11
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Singh S, Kriti M, Catanzaro R, Marotta F, Malvi M, Jain A, Verma V, Nagpal R, Tiwari R, Kumar M. Deciphering the Gut–Liver Axis: A Comprehensive Scientific Review of Non-Alcoholic Fatty Liver Disease. LIVERS 2024; 4:435-454. [DOI: 10.3390/livers4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue. The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways. This review also explores the potential therapeutic strategies centered on modulating gut microbiota such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics, and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend the development and advancement of NAFLD and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Mona Kriti
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Roberto Catanzaro
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Service, University Hospital Policlinico “G. Rodolico”, University of Catania, 95123 Catania, Italy
| | | | - Mustafa Malvi
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Ajay Jain
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rajnarayan Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| |
Collapse
|
13
|
Duan X, Wang X, Li Z, Liu C, Bao Y, Shi W, Zhao X. Effects of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. Front Microbiol 2024; 15:1459188. [PMID: 39328912 PMCID: PMC11424466 DOI: 10.3389/fmicb.2024.1459188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The stress response of pig herds poses a significant challenge in the pig breeding industry, and investigating strategies to mitigate this stress is of paramount importance. The objective of this study was to investigate the impacts of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. A total of 60 healthy sows (Large white) at fourth parity were randomly assigned to five treatment groups. The control group received a basal diet, while the TRT1 group received a basal diet supplemented with 2kg/t Bazhen powder (BZP). The TRT2, TRT3, and TRT4 groups were fed a basal diet supplemented with 1kg/t, 2kg/t, and 3kg/t Qi-Zhu- Gui-Shao soothing liver and replenishing blood powder (QZGSP), respectively. The trial lasted for 5weeks, starting from day 100 of gestation until day 21 of delivery. The results demonstrated that the inclusion of 2kg/t and 3kg/t QZGSP significantly enhanced the antioxidant capacity of sows and their offspring piglets to different degrees, thereby effectively alleviating oxidative stress. Analysis of gut microbiota revealed that QZGSP influenced the composition of gut microbiota in both sows and their offspring piglets. Specifically, at the genus level, the abundance of Christensenellaceae_R-7_group in the gut microbiota of sows in the TRT4 group was significantly lower than that in the TRT1 group (p < 0.05), while the relative abundance of Lactobacillus in the gut microbiota of sows in the TRT4 group was significantly higher than that in the CON group (p < 0.05). Furthermore, at the genus level, compared to those in the TRT1 group, piglets from the TRT4 group exhibited a significant decrease in relative abundance of Escherichia-Shigella, Parabacteroides, and Methanobrevivacter (p < 0.05), but a significant increase in Phascolarctobacterium (p < 0.05). Spearman correlation analysis indicated a positive correlation between relative abundance of Christensenellaceae_R-7_group and serum contents of T-AOC and CAT (p < 0.05), as well as a negative correlation with serum concentration MDA (p < 0.05). Additionally, there was a positive correlation between relative abundance Lactobacillus and serum levels SOD (p < 0.01) and GSH-Px (p < 0.05). Therefore, supplementation of 3kg/t QZGSP in the periparturient sow diet significantly augmented antioxidant capacity in both sows and offspring piglets, while concurrently modulating the composition and structure of their intestinal microflora. The findings from this study demonstrate that QZGSP represents a beneficial feed additive for perinatal sows.
Collapse
Affiliation(s)
- Xuelei Duan
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zhaonian Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chenggong Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
- Hebei Provincial Traditional Chinese Veterinary Medicine Technology Innovation Center, Baoding, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
14
|
Mulder D, Jakobi B, Shi Y, Mulders P, Kist JD, Collard RM, Vrijsen JN, van Eijndhoven P, Tendolkar I, Bloemendaal M, Arias Vasquez A. Gut microbiota composition links to variation in functional domains across psychiatric disorders. Brain Behav Immun 2024; 120:275-287. [PMID: 38815661 DOI: 10.1016/j.bbi.2024.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Changes in microbial composition are observed in various psychiatric disorders, but their specificity to certain symptoms or processes remains unclear. This study explores the associations between the gut microbiota composition and the Research Domain Criteria (RDoC) domains of functioning, representing symptom domains, specifically focusing on stress-related and neurodevelopmental disorders in patients with and without psychiatric comorbidity. METHODS The gut microbiota was analyzed in 369 participants, comprising 272 individuals diagnosed with a mood disorder, anxiety disorder, attention deficit/hyperactivity disorder, autism spectrum disorder, and/or substance use disorder, as well as 97 psychiatrically unaffected individuals. The RDoC domains were estimated using principal component analysis (PCA) with oblique rotation on a range of psychiatric, psychological, and personality measures. Associations between the gut microbiota and the functional domains were assessed using multiple linear regression and permanova, adjusted for age, sex, diet, smoking, medication use and comorbidity status. RESULTS Four functional domains, aligning with RDoC's negative valence, social processes, cognitive systems, and arousal/regulatory systems domains, were identified. Significant associations were found between these domains and eight microbial genera, including associations of negative valence with the abundance of the genera Sellimonas, CHKCI001, Clostridium sensu stricto 1, Oscillibacter, and Flavonifractor; social processes with Sellimonas; cognitive systems with Sporobacter and Hungatella; and arousal/regulatory systems with Ruminococcus torques (all pFDR < 0.05). CONCLUSION Our findings demonstrate associations between the gut microbiota and the domains of functioning across patients and unaffected individuals, potentially mediated by immune-related processes. These results open avenues for microbiota-focused personalized interventions, considering psychiatric comorbidity. However, further research is warranted to establish causality and elucidate mechanistic pathways.
Collapse
Affiliation(s)
- Danique Mulder
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Babette Jakobi
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Yingjie Shi
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Josina D Kist
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Rose M Collard
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Janna N Vrijsen
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Pro Persona Mental Health Care, Depression Expertise Center, Nijmegen, the Netherlands
| | - Phillip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Tang R, Liu R, Zha H, Cheng Y, Ling Z, Li L. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci 2024; 24:2300016. [PMID: 38708414 PMCID: PMC11065334 DOI: 10.1002/elsc.202300016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Rongrong Liu
- Center of Pediatric Hematology‐oncologyPediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang ProvinceNational Clinical Research Center for Child HealthChildren's HospitalZhejiang University School of MedicineHangzhouChina
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
16
|
Yang K, Zeng J, Wu H, Liu H, Ding Z, Liang W, Wu L, Lin Z, Huang W, Xu J, Dong F. Nonalcoholic Fatty Liver Disease: Changes in Gut Microbiota and Blood Lipids. J Clin Transl Hepatol 2024; 12:333-345. [PMID: 38638378 PMCID: PMC11022063 DOI: 10.14218/jcth.2023.00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/10/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND AIMS The global prevalence of nonalcoholic fatty liver disease (NAFLD) is 25%. This study aimed to explore differences in the gut microbial community and blood lipids between normal livers and those affected by NAFLD using 16S ribosomal deoxyribonucleic acid sequencing. METHODS Gut microbiome profiles of 40 NAFLD and 20 non-NAFLD controls were analyzed. Information about four blood lipids and 13 other clinical features was collected. Patients were divided into three groups by ultrasound and FibroScan, those with a normal liver, mild FL (FL1), and moderate-to-severe FL (FL2). FL1 and FL2 patients were divided into two groups, those with either hyperlipidemia or non-hyperlipidemia based on their blood lipids. Potential keystone species within the groups were identified using univariate analysis and a specificity-occupancy plot. Significant difference in biochemical parameters ion NAFLD patients and healthy individuals were identified by detrended correspondence analysis and canonical correspondence analysis. RESULTS Decreased gut bacterial diversity was found in patients with NAFLD. Firmicutes/Bacteroidetes decreased as NAFLD progressed. Faecalibacterium and Ruminococcus 2 were the most representative fatty-related bacteria. Glutamate pyruvic transaminase, aspartate aminotransferase, and white blood cell count were selected as the most significant biochemical indexes. Calculation of areas under the curve identified two microbiomes combined with the three biochemical indexes that identified normal liver and FL2 very well but performed poorly in diagnosing FL1. CONCLUSIONS Faecalibacterium and Ruminococcus 2, combined with glutamate pyruvic transaminase, aspartate aminotransferase, and white blood cell count distinguished NAFLD. We speculate that regulating the health of gut microbiota may release NAFLD, in addition to providing new targets for clinicians to treat NAFLD.
Collapse
Affiliation(s)
| | | | - Huaiyu Wu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Huiyu Liu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Zhimin Ding
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Weiyu Liang
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Linghu Wu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Ziwei Lin
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Wenhui Huang
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| |
Collapse
|
17
|
Chae YR, Lee YR, Kim YS, Park HY. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol 2024; 34:747-756. [PMID: 38321650 DOI: 10.4014/jmb.2312.12031] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.
Collapse
Affiliation(s)
- Yu-Rim Chae
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
18
|
Cornejo-Pareja I, Amiar MR, Ocaña-Wilhelmi L, Soler-Humanes R, Arranz-Salas I, Garrido-Sánchez L, Gutiérrez-Repiso C, Tinahones FJ. Non-alcoholic fatty liver disease in patients with morbid obesity: the gut microbiota axis as a potential pathophysiology mechanism. J Gastroenterol 2024; 59:329-341. [PMID: 38265508 PMCID: PMC10959783 DOI: 10.1007/s00535-023-02075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND/AIM Alterations in gut microbiota are associated with the pathogenesis of metabolic diseases, including metabolic-associated fatty liver disease (MAFLD). The aim of this study was to evaluate gut microbiota composition and functionality in patients with morbid obesity with different degrees of MAFLD, as assessed by biopsy. SUBJECTS/METHODS 110 patients with morbid obesity were evaluated by biopsy obtained during bariatric surgery for MAFLD. Stool samples were collected prior to surgery for microbiota analysis. RESULTS Gut microbiota from patients with steatosis and non-alcoholic steatohepatitis (NASH) were characterized by an enrichment in Enterobacteriaceae (an ethanol-producing bacteria), Acidaminococcus and Megasphaera and the depletion of Eggerthellaceae and Ruminococcaceae (SCFA-producing bacteria). MAFLD was also associated with enrichment of pathways related to proteinogenic amino acid degradation, succinate production, menaquinol-7 (K2-vitamin) biosynthesis, and saccharolytic and proteolytic fermentation. Basic histological hepatic alterations (steatosis, necroinflammatory activity, or fibrosis) were associated with specific changes in microbiota patterns. Overall, the core microbiome related to basic histological alterations in MAFLD showed an increase in Enterobacteriaceae and a decrease in Ruminococcaceae. Specifically, Escherichia coli was associated with steatosis and necroinflammatory activity, whilst Escherichia-shigella was associated with fibrosis and necroinflammatory activity. CONCLUSIONS We established a link between gut microbiota alterations and histological injury in liver diagnosis using biopsy. Harmful products such as ethanol or succinate may be involved in the pathogenesis and progression of MAFLD. Thus, these alterations in gut microbiota patterns and their possible metabolic pathways could add information to the classical predictors of MAFLD severity and suggest novel metabolic targets.
Collapse
Affiliation(s)
- Isabel Cornejo-Pareja
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga University, Campus Teatinos S/N, 29010, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, 29010, Málaga, Spain.
- Centro de Investigacion Biomedica en Red de la Fisiopatología de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010, Málaga, Spain.
- Department of Medicine and Dermatology, Faculty of Medicine, University of Málaga, 29010, Málaga, Spain.
| | - Mohamed Reda Amiar
- Department of Medicine and Dermatology, Faculty of Medicine, University of Málaga, 29010, Málaga, Spain
- Department of Clinical Analysis Laboratory, Virgen de la Victoria Hospital, 29010, Málaga, Spain
| | - Luís Ocaña-Wilhelmi
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, 29010, Málaga, Spain
- Department of General and Digestive Surgery, Virgen de la Victoria University Hospital, 29010, Málaga, Spain
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Málaga, 29010, Málaga, Spain
| | - Rocío Soler-Humanes
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, 29010, Málaga, Spain
- Department of General and Digestive Surgery, Virgen de la Victoria University Hospital, 29010, Málaga, Spain
| | - Isabel Arranz-Salas
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, 29010, Málaga, Spain
- Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, Malaga University, 29010, Málaga, Spain
- Department of Anatomical Pathology, Virgen de la Victoria Hospital, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga University, Campus Teatinos S/N, 29010, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, 29010, Málaga, Spain.
- Centro de Investigacion Biomedica en Red de la Fisiopatología de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010, Málaga, Spain.
| | - Carolina Gutiérrez-Repiso
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga University, Campus Teatinos S/N, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, 29010, Málaga, Spain
- Centro de Investigacion Biomedica en Red de la Fisiopatología de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010, Málaga, Spain
| | - Francisco Jose Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga University, Campus Teatinos S/N, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, 29010, Málaga, Spain
- Centro de Investigacion Biomedica en Red de la Fisiopatología de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010, Málaga, Spain
- Department of Medicine and Dermatology, Faculty of Medicine, University of Málaga, 29010, Málaga, Spain
| |
Collapse
|
19
|
Cai W, Qiu T, Hu W, Fang T. Changes in the intestinal microbiota of individuals with non-alcoholic fatty liver disease based on sequencing: An updated systematic review and meta-analysis. PLoS One 2024; 19:e0299946. [PMID: 38547205 PMCID: PMC10977702 DOI: 10.1371/journal.pone.0299946] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/20/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Alterations in the composition and abundance of the intestinal microbiota occur in non-alcoholic fatty liver disease (NAFLD). However, the results are inconsistent because of differences in the study design, subject area, and sequencing methodology. In this study, we compared the diversity and abundance of the intestinal microbiota of patients with NAFLD and healthy individuals through a systematic review and meta-analysis. METHODS Three databases (PubMed, EMBASE, and Cochrane Library) were searched from their inception to March 20, 2023. A meta-analysis was performed using Stata software to analyze variations in the richness and abundance of the intestinal microbiota in patients with NAFLD. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used for quality assessment. RESULTS A total of 28 articles were included. Shannon diversity was reduced in patients with NAFLD (SMD = -0.24 (95% CI -0.43-0.05, I2 = 71.7%). The relative abundance of Ruminococcus, Faecalibacterium, and Coprococcus all decreased, with total SMDs of -0.96 (95% CI -1.29 to -0.63, I2 = 4.8%), -1.13 (95% CI -2.07 to -0.19, I2 = 80.5%), and -1.66 (95% CI -3.04 to -0.28, I2 = 91.5%). Escherichia was increased in individuals with NAFLD (SMD = 1.78, 95% CI 0.12 to 3.45, I2 = 94.4%). CONCLUSION Increasing the species diversity and altering the abundance of specific gut microbiota, including Coprococcus, Faecalibacterium, Ruminococcus, and Escherichia, may be beneficial for improving NAFLD.
Collapse
Affiliation(s)
- Wenpin Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ting Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weitao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
20
|
Zhang J, Wang W, Cui X, Zhu P, Li S, Yuan S, Peng D, Peng C. Ganoderma lucidum ethanol extracts ameliorate hepatic fibrosis and promote the communication between metabolites and gut microbiota g_Ruminococcus through the NF-κB and TGF-β1/Smads pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117656. [PMID: 38154526 DOI: 10.1016/j.jep.2023.117656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum, a traditional edible medicinal mushroom, has been widely reported to improve liver diseases as a dietary intervention for people. Ganoderma lucidum extracts, primarily total triterpenoids (GLTTs), are one of the bioactive ingredients that have excellent beneficial effects on hepatic fibrosis. Therefore, its prevention and reversal are particularly critical due to the increasing number of patients with chronic liver diseases worldwide. AIM OF THE STUDY The study aimed to evaluate whether GLTTs had a hepatoprotective effect against hepatic fibrosis through metabolic perturbations and gut microbiota changes and its underlying mechanisms. MATERIALS AND METHODS The compound compositions of GLTTs were quantified, and carbon tetrachloride (CCl4)-induced hepatic fibrosis rats were used to investigate the cause of the improvement in various physiological states with GLTTs treatment, and to determine whether its consequent effect was associated with endogenous metabolites and gut microbiota using UPLC-Q-TOF-MSE metabolomics and 16S rRNA gene sequencing technology. RESULTS GLTTs alleviated physical status, reduced liver pathological indicators, proinflammatory cytokines, and deposition of hepatic collagen fibers via regulating the NF-κB and TGF-β1/Smads pathways. The untargeted metabolomics analysis identified 16 potential metabolites that may be the most relevant metabolites for gut microbiota dysbiosis and the therapeutic effects of GLTTs in hepatic fibrosis. Besides, although GLTTs did not significantly affect the α-diversity indexes, significant changes were observed in the composition of microflora structure. In addition, Spearman analysis revealed strong correlations between endogenous metabolites and gut microbiota g_Ruminococcus with hepatic fibrosis. CONCLUSION GLTTs could provide a potential target for the practical design and application of novel functional food ingredients or drugs in the therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wen Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinge Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Pengling Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Siyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Generic Technology Research Center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
21
|
Bahitham W, Alghamdi S, Omer I, Alsudais A, Hakeem I, Alghamdi A, Abualnaja R, Sanai FM, Rosado AS, Sergi CM. Double Trouble: How Microbiome Dysbiosis and Mitochondrial Dysfunction Drive Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Biomedicines 2024; 12:550. [PMID: 38540163 PMCID: PMC10967987 DOI: 10.3390/biomedicines12030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are closely related liver conditions that have become more prevalent globally. This review examines the intricate interplay between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH. The combination of these two factors creates a synergistic situation referred to as "double trouble", which promotes the accumulation of lipids in the liver and the subsequent progression from simple steatosis (NAFLD) to inflammation (NASH). Microbiome dysbiosis, characterized by changes in the composition of gut microbes and increased intestinal permeability, contributes to the movement of bacterial products into the liver. It triggers metabolic disturbances and has anti-inflammatory effects. Understanding the complex relationship between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH is crucial for advancing innovative therapeutic approaches that target these underlying mechanisms.
Collapse
Affiliation(s)
- Wesam Bahitham
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Siraj Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ibrahim Omer
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ali Alsudais
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ilana Hakeem
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Arwa Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Reema Abualnaja
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Faisal M. Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia;
| | - Alexandre S. Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Consolato M. Sergi
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
22
|
Su X, Chen S, Liu J, Feng Y, Han E, Hao X, Liao M, Cai J, Zhang S, Niu J, He S, Huang S, Lo K, Zeng F. Composition of gut microbiota and non-alcoholic fatty liver disease: A systematic review and meta-analysis. Obes Rev 2024; 25:e13646. [PMID: 37813400 DOI: 10.1111/obr.13646] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 10/11/2023]
Abstract
The present systematic review and meta-analysis aimed to summarize the associations between gut microbiota composition and non-alcoholic fatty liver disease. To compare the differences between individuals with or without NAFLD, the standardized mean difference and 95% confidence interval were computed for each α-diversity index and relative abundance of gut microbes. The β-diversity indices were summarized in a qualitative manner. A total of 54 studies with 8894 participants were included. Overall, patients with NAFLD had moderate reduction in α-diversity indices including Shannon (SMD = -0.36, 95% CI = [-0.53, -0.19], p < 0.001) and Chao 1 (SMD = -0.42, 95% CI = [-0.68, -0.17], p = 0.001), but no significant differences were found for Simpson, observed species, phylogenetic diversity, richness, abundance-based coverage estimator, and evenness (p ranged from 0.081 to 0.953). Over 75% of the included studies reported significant differences in β-diversity. Although there was substantial interstudy heterogeneity, especially for analyses at the phylum, class, and family levels, the majority of the included studies showed alterations in the depletion of anti-inflammatory microbes (i.e., Ruminococcaceae and Coprococcus) and the enrichment of proinflammatory microbes (i.e., Fusobacterium and Escherichia) in patients with NAFLD. Perturbations in gut microbiota were associated with NAFLD, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species.
Collapse
Affiliation(s)
- Xin Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shiyun Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiazi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yonghui Feng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Eerdun Han
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaolei Hao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Minqi Liao
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, PR, Germany
| | - Jun Cai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shiwen Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianxiang Niu
- General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shihua He
- Department of Infectious Disease, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Shaofen Huang
- Shenzhen Qianhai Shekou Free Zone Hospital, Shenzhen, China
| | - Kenneth Lo
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Banerjee G, Papri SR, Satapathy SK, Banerjee P. Akkermansia muciniphila - A Potential Next-generation Probiotic for Non-alcoholic Fatty Liver Disease. Curr Pharm Biotechnol 2024; 25:426-433. [PMID: 37724669 DOI: 10.2174/1389201025666230915103052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver conditions, and its growing prevalence is a serious concern worldwide, especially in Western countries. Researchers have pointed out several genetic mutations associated with NAFLD; however, the imbalance of the gut microbial community also plays a critical role in the progression of NAFLD. Due to the lack of approved medicine, probiotics gain special attention in controlling metabolic disorders like NAFLD. Among these probiotics, Akkermansia muciniphila (a member of natural gut microflora) is considered one of the most efficient and important bacterium in maintaining gut health, energy homeostasis, and lipid metabolism. In this perspective, we discussed the probable molecular mechanism of A. muciniphila in controlling the progression of NAFLD and restoring liver health. The therapeutic potential of A. muciniphila in NAFLD has been tested primarily on animal models, and thus, more randomized human trials should be conducted to prove its efficacy.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Suraya R Papri
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Sanjaya K Satapathy
- 2Department of Medicine, Northwell Health Center for Liver Disease & Transplantation, North Shore, University Hospital/Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
24
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
25
|
Ni Y, Wang X, Wu Q, Yao Y, Xu Y, Li Y, Feng Q, Zhou M, Gou X. Qushi Huayu decoction ameliorates non-alcoholic fatty liver disease in rats by modulating gut microbiota and serum lipids. Front Endocrinol (Lausanne) 2023; 14:1272214. [PMID: 37900123 PMCID: PMC10600383 DOI: 10.3389/fendo.2023.1272214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. As a clinical empirical prescription of traditional Chinese medicine, Qushi Huayu decoction (QHD) has attracted considerable attention for its advantages in multi-target treatment of NAFLD. However, the intervention mechanism of QHD on abnormal lipid levels and gut microbiota in NAFLD has not been reported. Methods Therefore, we verified the therapeutic effect of QHD on high-fat diet (HFD)-induced NAFLD in rats by physiological parameters and histopathological examination. In addition, studies on gut microbiota and serum lipidomics based on 16S rRNA sequencing and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) were conducted to elucidate the therapeutic mechanism of NAFLD in QHD. Results The changes in gut microbiota in NAFLD rats are mainly reflected in their diversity and composition, while QHD treated rats restored these changes. The genera Blautia, Lactobacillus, Allobaculum, Lachnoclostridium and Bacteroides were predominant in the NAFLD group, whereas, Turicibacter, Blautia, Sporosarcina, Romboutsia, Clostridium_sensu_stricto_1, Allobaculum, and Psychrobacter were predominant in the NAFLD+QHD group. Lipid subclasses, including diacylglycerol (DG), triglycerides (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylserine (PS), lysophosphatidylinositol (LPI), and phosphatidylglycerol (PG), were significantly different between the NAFLD and the control groups, while QHD treatment significantly altered the levels of DG, TG, PA, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and platelet activating factor (PAF). Finally, Spearman's correlation analysis showed that NAFLD related differential lipid molecules were mainly associated with the genera of Bacteroides, Blautia, Lachnoclostridium, Clostridium_sensu_stricto_1, and Turicibacter, which were also significantly correlated with the biological parameters of NAFLD. Discussion Taken together, QHD may exert beneficial effects by regulating the gut microbiota and thus intervening in serum lipids.
Collapse
Affiliation(s)
- Yiming Ni
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wang
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yichen Yao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xu
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Liu R, Qian MP, Cui YY. Protein kinases: The key contributors in pathogenesis and treatment of nonalcoholic fatty liver disease-derived hepatocellular carcinoma. Metabolism 2023; 147:155665. [PMID: 37517794 DOI: 10.1016/j.metabol.2023.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Protein kinases (PKs), one of the largest protein families, can be further divided into different groups based on their substrate or structure and function. PKs are important signaling messengers in numerous life activities, including cell metabolism, proliferation, division, differentiation, senescence, death, and disease. Among PK-related diseases, nonalcoholic fatty liver disease (NAFLD) has been recognized as a major contributor to hepatocellular carcinoma (HCC) and liver transplantation. Unfortunately, NAFLD-derived HCC (NAFLD-HCC) has poor prognosis because it is typically accompanied by older age, multiple metabolic syndromes, obstacles in early-stage diagnosis, and limited licensed drugs for treatment. Accumulating evidence suggests that PKs are implicated in the pathogenic process of NAFLD-HCC, via aberrant metabolism, hypoxia, autophagy, hypoxia, gut microbiota dysbiosis, and/or immune cell rearrangement. The present review aims to summarize the latest research advances and emphasize the feasibility and effectiveness of therapeutic strategies that regulate the expression and activities of PKs. This might yield clinically significant effects and lead to the design of novel PK-targeting therapies. Furthermore, we discuss emerging PK-based strategies for the treatment of other malignant diseases similar to NAFLD-HCC.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ming-Ping Qian
- Department of General Surgery, Suzhou First People's Hospital, Anhui 234099, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ying-Yu Cui
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200331, China; Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200331, China; Key Laboratory of Arrhythmias of the Ministry of Education of China (Tongji University), Tongji University School of Medicine, Shanghai 200331, China.
| |
Collapse
|
27
|
Stojic J, Kukla M, Grgurevic I. The Intestinal Microbiota in the Development of Chronic Liver Disease: Current Status. Diagnostics (Basel) 2023; 13:2960. [PMID: 37761327 PMCID: PMC10528663 DOI: 10.3390/diagnostics13182960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic liver disease (CLD) is a significant global health burden, leading to millions of deaths annually. The gut-liver axis plays a pivotal role in this context, allowing the transport of gut-derived products directly to the liver, as well as biological compounds from the liver to the intestine. The gut microbiota plays a significant role in maintaining the health of the digestive system. A change in gut microbiome composition as seen in dysbiosis is associated with immune dysregulation, altered energy and gut hormone regulation, and increased intestinal permeability, contributing to inflammatory mechanisms and damage to the liver, irrespective of the underlying etiology of CLD. The aim of this review is to present the current knowledge about the composition of the intestinal microbiome in healthy individuals and those with CLD, including the factors that affect this composition, the impact of the altered microbiome on the liver, and the mechanisms by which it occurs. Furthermore, this review analyzes the effects of gut microbiome modulation on the course of CLD, by using pharmacotherapy, nutrition, fecal microbiota transplantation, supplements, and probiotics. This review opens avenues for the translation of knowledge about gut-liver interplay into clinical practice as an additional tool to fight CLD and its complications.
Collapse
Affiliation(s)
- Josip Stojic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10000 Zagreb, Croatia;
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagellonian University Medical College, 31-688 Kraków, Poland;
- Department of Endoscopy, University Hospital, 30-688 Kraków, Poland
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
28
|
Chi X, Cheng DY, Sun X, Liu SA, Wang RB, Chen Q, Xing HC. Efficacy of Biejiajian Pill on Intestinal Microbiota in Patients with Hepatitis B Cirrhosis/Liver Fibrosis: A Randomized Double-Blind Controlled Trial. Chin J Integr Med 2023; 29:771-781. [PMID: 37222832 DOI: 10.1007/s11655-023-3542-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To analyze the efficacy of Biejiajian Pill (BJJP) on intestinal microbiota in patients with hepatitis B cirrhosis/liver fibrosis, and explore its relationship with liver fibrosis. METHODS This was a prospective, randomized double-blind controlled trial. Using the stratified block randomization method, 35 patients with hepatitis B liver cirrhosis/liver fibrosis were randomly assigned (1:1) to receive entecavir (0.5 mg/d) combined with BJJP (3 g/time, 3 times a day) or placebo (simulator as control, SC group, simulator 3 g/time, 3 times a day) for 48 weeks. Blood and stool samples were collected from patients at baseline and week 48 of treatment, respectively. Liver and renal functions as well as hematological indices were detected. Fecal samples were analyzed by 16S rDNA V3-V4 high-throughput sequencing, and intestinal microbiota changes in both groups before and after treatment were compared, and their correlations with liver fibrosis were analyzed. RESULTS Compared with the SC group, there was no significant difference in liver function, renal function and hematology indices in the BJJP group, however, the improvement rate of liver fibrosis was higher in the BJJP group (94.4% vs. 64.7%, P=0.041). Principal coordinate analysis (PCoA) based on weighted Unifrac distance showed significant differences in intestinal microbiota community diversity before and after BJJP treatment (P<0.01 and P=0.003), respectively. After 48 weeks' treatment, the abundance levels of beneficial bacteria (Bifidobacteria, Lactobacillus, Faecalibacterium and Blautia) increased, whereas the abundance levels of potential pathogenic bacteria, including Escherichia coli, Bacteroides, Ruminococcus, Parabacteroides and Prevotella decreased, among which Ruminococcus and Parabacteroides were significantly positively correlated with degree of liver fibrosis (r=0.34, P=0.04; r=0.38, P=0.02), respectively. The microbiota in the SC group did not change significantly throughout the whole process of treatment. CONCLUSION BJJP had a certain regulatory effect on intestinal microbiota of patients with hepatitis B cirrhosis/liver fibrosis (ChiCTR1800016801).
Collapse
Affiliation(s)
- Xin Chi
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Dan-Ying Cheng
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing, 100015, China.
- Peking University Ditan Teaching Hospital, Beijing, 100015, China.
| | - Xiu Sun
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Shun-Ai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Rong-Bing Wang
- National Center for Infectious Diseases, Beijing, 100015, China
- Central of Integrated Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qin Chen
- China Traditional Chinese Medicine Holdings Co. Limited, Guangzhou, 528303, China
| | - Hui-Chun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
- Peking University Ditan Teaching Hospital, Beijing, 100015, China
| |
Collapse
|
29
|
Sato S, Iino C, Chinda D, Sasada T, Tateda T, Kaizuka M, Nomiya H, Igarashi G, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. Effect of Liver Fibrosis on Oral and Gut Microbiota in the Japanese General Population Determined by Evaluating the FibroScan-Aspartate Aminotransferase Score. Int J Mol Sci 2023; 24:13470. [PMID: 37686272 PMCID: PMC10487682 DOI: 10.3390/ijms241713470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The association between liver fibrosis and oral or gut microbiota has been studied before. However, epidemiological studies in the general population are limited owing to the difficulty of noninvasive liver-fibrosis assessment. FibroScan-asparate aminotransferase (FAST) scores can be used to accurately and non-invasively evaluate liver fibrosis. This study aimed to determine the association between liver fibrosis and oral or gut microbiota using the FAST score in the general population. After propensity score matching of 1059 participants based on sex, age, body mass index, homeostasis model assessment of insulin resistance, and triglyceride levels, 125 (non-liver-fibrosis group, 100; liver fibrosis group, 25) were included. The diversity of gut microbiota differed significantly between the two groups; however, no significant differences were noted in their oral microbiota. The liver fibrosis group showed an increase in the relative abundance of Fusobacteria strains and a decrease in the relative abundance of Faecalibacterium, with the presence of Fusicatenibacter in the gut microbiota. Feacalibacterium was not identified as an independent factor of liver fibrosis in adjusting the fatty liver index. In the general population, gut microbiota may be more involved in liver fibrosis than oral microbiota.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takafumi Sasada
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Tetsuyuki Tateda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Masatoshi Kaizuka
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Hiroki Nomiya
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Go Igarashi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Shigeyuki Nakaji
- Center of Healthy Aging Innovation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| |
Collapse
|
30
|
Shalaby N, Samocha-Bonet D, Kaakoush NO, Danta M. The Role of the Gastrointestinal Microbiome in Liver Disease. Pathogens 2023; 12:1087. [PMID: 37764895 PMCID: PMC10536540 DOI: 10.3390/pathogens12091087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Liver disease is a major global health problem leading to approximately two million deaths a year. This is the consequence of a number of aetiologies, including alcohol-related, metabolic-related, viral infection, cholestatic and immune disease, leading to fibrosis and, eventually, cirrhosis. No specific registered antifibrotic therapies exist to reverse liver injury, so current treatment aims at managing the underlying factors to mitigate the development of liver disease. There are bidirectional feedback loops between the liver and the rest of the gastrointestinal tract via the portal venous and biliary systems, which are mediated by microbial metabolites, specifically short-chain fatty acids (SCFAs) and secondary bile acids. The interaction between the liver and the gastrointestinal microbiome has the potential to provide a novel therapeutic modality to mitigate the progression of liver disease and its complications. This review will outline our understanding of hepatic fibrosis, liver disease, and its connection to the microbiome, which may identify potential therapeutic targets or strategies to mitigate liver disease.
Collapse
Affiliation(s)
- Nicholas Shalaby
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
| | - Dorit Samocha-Bonet
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
- Clinical Insulin Resistance Group, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2033, Australia
| | - Mark Danta
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
31
|
Guo GJ, Yao F, Lu WP, Xu HM. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J Hepatol 2023; 15:867-882. [PMID: 37547030 PMCID: PMC10401411 DOI: 10.4254/wjh.v15.i7.867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. In recent years, the occurrence rate of MAFLD has been on the rise, mainly due to lifestyle changes, high-calorie diets, and imbalanced dietary structures, thereby posing a threat to human health and creating heavy social and economic burdens. With the development of 16S sequencing and integrated multi-omics analysis, the role of the gut microbiota (GM) and its metabolites in MAFLD has been further recognized. The GM plays a role in digestion, energy metabolism, vitamin synthesis, the prevention of pathogenic bacteria colonisation, and immunoregulation. The gut-liver axis is one of the vital links between the GM and the liver. Toxic substances in the intestine can enter the liver through the portal vascular system when the intestinal barrier is severely damaged. The liver also influences the GM in various ways, such as bile acid circulation. The gut-liver axis is essential in maintaining the body's normal physiological state and plays a role in the onset and prognosis of many diseases, including MAFLD. This article reviews the status of the GM and MAFLD and summarizes the GM characteristics in MAFLD. The relationship between the GM and MAFLD is discussed in terms of bile acid circulation, energy metabolism, micronutrients, and signalling pathways. Current MAFLD treatments targeting the GM are also listed.
Collapse
Affiliation(s)
- Gong-Jing Guo
- Gastroenterology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, Guangdong Province, China
| | - Fei Yao
- Department of Science and Education, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, Guangdong Province, China
| | - Wei-Peng Lu
- The First Clinical School, Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China.
| |
Collapse
|
32
|
Ng JJJ, Loo WM, Siah KTH. Associations between irritable bowel syndrome and non-alcoholic fatty liver disease: A systematic review. World J Hepatol 2023; 15:925-938. [PMID: 37547029 PMCID: PMC10401413 DOI: 10.4254/wjh.v15.i7.925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is associated with obesity and metabolic syndrome. IBS and non-alcoholic fatty liver disease (NAFLD) are highly prevalent entities worldwide and may share similar mechanisms including gut dysbiosis, impaired intestinal mucosal barrier and immune system activation.
AIM To systematically review their association according to the Preferred Reporting Items for Systemic Review and Meta-analyses guidelines.
METHODS PubMed, EMBASE and Cochrane Database of Systematic Reviews were searched for relevant papers. Manual searches were also performed.
RESULTS Six studies were included. Both IBS and NAFLD subjects had significantly more metabolic risk factors like hypertension, obesity, dyslipidaemia and diabetes. Our review showed that 23.2% to 29.4% of NAFLD patients had IBS. IBS was significantly higher in NAFLD patients compared with patients without NAFLD (23.2% vs 12.5%, P < 0.01). A higher proportion of IBS patients had NAFLD (65.8% to 74.0%). IBS patients were three times more likely to have NAFLD compared with non-IBS patients (P < 0.001). Two studies showed a significant correlation between the severity of IBS and NAFLD. The proportion of NAFLD subjects with IBS increased with NAFLD severity.
CONCLUSION Further prospective studies are warranted to evaluate the relationship and shared pathways between IBS and NAFLD, potentially leading to the development of future therapeutics.
Collapse
Affiliation(s)
- Jareth Jun Jie Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wai Mun Loo
- AliveoMedical, Mount Alvernia and Mount Elizabeth Hospitals, Singapore 574623, Singapore
| | - Kewin Tien Ho Siah
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
33
|
Pérez-Rubio Á, Soluyanova P, Moro E, Quintás G, Rienda I, Periañez MD, Painel A, Vizuete J, Pérez-Rojas J, Castell JV, Trullenque-Juan R, Pareja E, Jover R. Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients. Nutrients 2023; 15:3187. [PMID: 37513605 PMCID: PMC10385764 DOI: 10.3390/nu15143187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Bariatric surgery (BS) has several benefits, including resolution of non-alcoholic fatty liver disease (NAFLD) in many patients. However, a significant percentage of patients do not experience improvement in fatty liver after BS, and more than 10% develop new or worsening NAFLD features. Therefore, a question that remains unanswered is why some patients experience resolved NAFLD after BS and others do not. In this study, we investigated the fecal microbiota and plasma bile acids associated with NAFLD resolution in twelve morbidly obese patients undergoing BS, of whom six resolved their steatosis one year after surgery and another six did not. Results indicate that the hallmark of the gut microbiota in responder patients is a greater abundance of Bacteroides, Akkermansia, and several species of the Clostridia class (genera: Blautia, Faecalibacterium, Roseburia, Butyricicoccusa, and Clostridium), along with a decreased abundance of Actinomycetes/Bifidobacterium and Faecalicatena. NAFLD resolution was also associated with a sustained increase in primary bile acids (particularly non-conjugated), which likely results from a reduction in bacterial gut species capable of generating secondary bile acids. We conclude that there are specific changes in gut microbiota and plasma bile acids that could contribute to resolving NAFLD in BS patients. The knowledge acquired can help to design interventions with prebiotics and/or probiotics to promote a gut microbiome that favors NAFLD resolution.
Collapse
Affiliation(s)
- Álvaro Pérez-Rubio
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Polina Soluyanova
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46010 Valencia, Spain
| | - Erika Moro
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46010 Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, 08225 Terrassa, Spain
| | - Iván Rienda
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - María Dolores Periañez
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Andrés Painel
- Section of Abdominal Imaging, Radiology Department, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - José Vizuete
- Section of Abdominal Imaging, Radiology Department, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Judith Pérez-Rojas
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José V Castell
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46010 Valencia, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramón Trullenque-Juan
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Eugenia Pareja
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
| | - Ramiro Jover
- Experimental Hepatology Joint Unit, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46010 Valencia, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
34
|
Zhang L, Zi L, Kuang T, Wang K, Qiu Z, Wu Z, Liu L, Liu R, Wang P, Wang W. Investigating causal associations among gut microbiota, metabolites, and liver diseases: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1159148. [PMID: 37476494 PMCID: PMC10354516 DOI: 10.3389/fendo.2023.1159148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 07/22/2023] Open
Abstract
Objective There is some evidence for an association between gut microbiota and nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), and viral hepatitis, but no studies have explored their causal relationship. Methods Instrumental variables of the gut microbiota (N = 13266) and gut microbiota-derived metabolites (N = 7824) were acquired, and a Mendelian randomization study was performed to explore their influence on NAFLD (1483 European cases and 17,781 European controls), ALD (2513 European cases and 332,951 European controls), and viral hepatitis risk (1971 European cases and 340,528 European controls). The main method for examining causality is inverse variance weighting (IVW). Results IVW results confirmed that Anaerotruncus (p = 0.0249), Intestinimonas (p = 0.0237), Lachnoclostridium (p = 0.0245), Lachnospiraceae NC2004 group (p = 0.0083), Olsenella (p = 0.0163), and Peptococcus (p = 0.0472) were protective factors for NAFLD, and Ruminococcus 1 (p = 0.0120) was detrimental for NAFLD. The higher abundance of three genera, Lachnospira (p = 0.0388), Desulfovibrio (p = 0.0252), and Ruminococcus torques group (p = 0.0364), was correlated with a lower risk of ALD, while Ruminococcaceae UCG 002 level was associated with a higher risk of ALD (p = 0.0371). The Alistipes (p = 0.0069) and Ruminococcaceae NK4A214 group (p = 0.0195) were related to a higher risk of viral hepatitis. Besides, alanine (p = 0.0076) and phenyllactate (p = 0.0100) were found to be negatively correlated with NAFLD, while stachydrine (Op = 0.0244) was found to be positively associated with NAFLD. The phenylacetate (p = 0.0353) and ursodeoxycholate (p = 0.0144) had a protective effect on ALD, while the threonate (p = 0.0370) exerted a detrimental influence on ALD. The IVW estimates of alanine (p = 0.0408) and cholate (p = 0.0293) showed their suggestive harmful effects against viral hepatitis, while threonate (p = 0.0401) displayed its suggestive protective effect against viral hepatitis. Conclusion In conclusion, our research supported causal links between the gut microbiome and its metabolites and NAFLD, ALD, and viral hepatitis.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liuliu Zi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongkai Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Peng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
35
|
Wang C, Yi Z, Jiao Y, Shen Z, Yang F, Zhu S. Gut Microbiota and Adipose Tissue Microenvironment Interactions in Obesity. Metabolites 2023; 13:821. [PMID: 37512528 PMCID: PMC10383923 DOI: 10.3390/metabo13070821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is an increasingly serious global health problem. Some studies have revealed that the gut microbiota and its metabolites make important contributions to the onset of obesity. The gut microbiota is a dynamic ecosystem composed of diverse microbial communities with key regulatory functions in host metabolism and energy balance. Disruption of the gut microbiota can result in obesity, a chronic metabolic condition characterized by the excessive accumulation of adipose tissue. Host tissues (e.g., adipose, intestinal epithelial, and muscle tissues) can modulate the gut microbiota via microenvironmental interactions that involve hormone and cytokine secretion, changes in nutrient availability, and modifications of the gut environment. The interactions between host tissues and the gut microbiota are complex and bidirectional, with important effects on host health and obesity. This review provides a comprehensive summary of gut microbiota changes associated with obesity, the functional roles of gut microbiota-derived metabolites, and the importance of the complex interactions between the gut microbiota and target tissues in the pathogenesis of obesity. It places particular emphasis on the roles of adipose tissue microenvironment interactions in the onset of obesity.
Collapse
Affiliation(s)
- Congcong Wang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zihan Yi
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ye Jiao
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Shen
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fei Yang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Barrea L, Verde L, Savastano S, Colao A, Muscogiuri G. Adherence to Mediterranean Diet: Any Association with NAFLD? Antioxidants (Basel) 2023; 12:1318. [PMID: 37507858 PMCID: PMC10376004 DOI: 10.3390/antiox12071318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is considered one of the main determinants in the pathophysiology of non-alcoholic fatty liver disease (NAFLD) and obesity. The alterations of oxidant/antioxidant balance are related to chronic impairment of metabolism leading to mitochondrial dysfunction. Increased oxidative stress also triggers hepatocytes stress pathways, leading to inflammation and contributing to the progression of non-alcoholic steatohepatitis (NASH). Currently, the first-line therapeutic treatment of NAFLD is based on lifestyle interventions, suggesting the Mediterranean Diet (MD) as a preferable nutritional approach due to its antioxidant properties. However, it is still debated if adherence to MD could have a role in determining the risk of developing NAFLD directly or indirectly through its effect on weight. We enrolled 336 subjects (aged 35.87 ± 10.37 years; BMI 31.18 ± 9.66 kg/m2) assessing anthropometric parameters, lifestyle habits, metabolic parameters (fasting plasma glucose, fasting plasma insulin, triglycerides (TG), total cholesterol, low-density (LDL) and high-density lipoprotein (HDL) cholesterol, alanine transaminase (ALT), aspartate aminotransferase (AST), and γ-glutamyltransferase (γGT), cardio-metabolic indices [Homeostatic Model Assessment Insulin Resistance (HoMA-IR), visceral adipose index (VAI) and fatty liver index (FLI)] and adherence to MD [with the PREvención con DIetaMEDiterránea (PREDIMED) questionnaire]. Subjects with NAFLD had significantly higher anthropometric parameters, cardio-metabolic indices and lower adherence to MD than subjects without NAFLD. In a multiple regression analysis, PREDIMED score was the main predictor of FLI (p < 0.001) and came in first, followed by HoMA-IR, while VAI was not a predictor. A PREDIMED score value of <6 could serve as a threshold to identify patients who are more likely to have NAFLD (p < 0.001). In conclusion, high adherence to MD resulted in a lower risk of having NAFLD. Adherence to MD could have a direct role on the risk of developing NAFLD, regardless of visceral adipose tissue.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Centro Direzionale Isola F2, Via Porzio, 80143 Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, 80131 Naples, Italy
| |
Collapse
|
37
|
Nesci A, Carnuccio C, Ruggieri V, D'Alessandro A, Di Giorgio A, Santoro L, Gasbarrini A, Santoliquido A, Ponziani FR. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int J Mol Sci 2023; 24:ijms24109087. [PMID: 37240434 DOI: 10.3390/ijms24109087] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Several studies in recent years have demonstrated that gut microbiota-host interactions play an important role in human health and disease, including inflammatory and cardiovascular diseases. Dysbiosis has been linked to not only well-known inflammatory diseases, such as inflammatory bowel diseases, rheumatoid arthritis, and systemic lupus erythematous, but also to cardiovascular risk factors, such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. The ways the microbiota is involved in modulating cardiovascular risk are multiple and not only related to inflammatory mechanisms. Indeed, human and the gut microbiome cooperate as a metabolically active superorganism, and this affects host physiology through metabolic pathways. In turn, congestion of the splanchnic circulation associated with heart failure, edema of the intestinal wall, and altered function and permeability of the intestinal barrier result in the translocation of bacteria and their products into the systemic circulation, further enhancing the pro-inflammatory conditions underlying cardiovascular disorders. The aim of the present review is to describe the complex interplay between gut microbiota, its metabolites, and the development and evolution of cardiovascular diseases. We also discuss the possible interventions intended to modulate the gut microbiota to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Carnuccio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessia D'Alessandro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center (CEMAD), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center (CEMAD), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
38
|
Mbaye B, Wasfy RM, Alou MT, Borentain P, Andrieu C, Caputo A, Raoult D, Gerolami R, Million M. Limosilactobacillus fermentum, Lactococcus lactis and Thomasclavelia ramosa are enriched and Methanobrevibacter smithii is depleted in patients with non-alcoholic steatohepatitis. Microb Pathog 2023; 180:106160. [PMID: 37217120 DOI: 10.1016/j.micpath.2023.106160] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Non-alcoholic fatty liver (NAFLD), and its complicated form, non-alcoholic steatohepatitis (NASH), have been associated with gut dysbiosis with specific signatures. Endogenous ethanol production by Klebsiella pneumoniae or yeasts has been identified as a potential physio-pathological mechanism. A species-specific association between Lactobacillus and obesity and metabolic diseases has been reported. In this study, the microbial composition of ten cases of NASH and ten controls was determined using v3v4 16S amplicon sequencing as well as quantitative PCR (qPCR). Using different statistical approaches, we found an association of Lactobacillus and Lactoccocus with NASH, and an association of Methanobrevibacter, Faecalibacterium and Romboutsia with controls. At the species level, Limosilactobacillus fermentum and Lactococcus lactis, two species producing ethanol, and Thomasclavelia ramosa, a species already associated with dysbiosis, were associated with NASH. Using qPCR, we observed a decreased frequency of Methanobrevibacter smithii and confirmed the high prevalence of L. fermentum in NASH samples (5/10), while all control samples were negative (p = 0.02). In contrast, Ligilactobacillus ruminis was associated with controls. This supports the critical importance of taxonomic resolution at the species level, notably with the recent taxonomic reclassification of the Lactobacillus genus. Our results point towards the potential instrumental role of ethanol-producing gut microbes in NASH patients, notably lactic acid bacteria, opening new avenues for prevention and treatment.
Collapse
Affiliation(s)
- Babacar Mbaye
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Reham Magdy Wasfy
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Maryam Tidjani Alou
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | | | - Claudia Andrieu
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Aurelia Caputo
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Rene Gerolami
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France; Unité hépatologie, Hôpital de la Timone, Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
39
|
Yang Z, Wang L. Current, emerging, and potential therapies for non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1152042. [PMID: 37063264 PMCID: PMC10097909 DOI: 10.3389/fphar.2023.1152042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been identified as the most common chronic liver disease worldwide, with a growing incidence. NAFLD is considered the hepatic manifestation of a metabolic syndrome that emerges from multiple factors (e.g., oxidative stress, metabolic disorders, endoplasmic reticulum stress, cell death, and inflammation). Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, has been reported to be a leading cause of cirrhosis and hepatic carcinoma, and it is progressing rapidly. Since there is no approved pharmacotherapy for NASH, a considerable number of therapeutic targets have emerged with the deepening of the research on NASH pathogenesis. In this study, the therapeutic potential and properties of regulating metabolism, the gut microbiome, antioxidant, microRNA, inhibiting apoptosis, targeting ferroptosis, and stem cell-based therapy in NASH are reviewed and evaluated. Since the single-drug treatment of NASH is affected by individual heterogeneous responses and side effects, it is imperative to precisely carry out targeted therapy with low toxicity. Lastly, targeted therapeutic agent delivery based on exosomes is proposed in this study, such that drugs with different mechanisms can be incorporated to generate high-efficiency and low-toxicity individualized medicine.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
40
|
Pirola CJ, Sookoian S. Advances in our understanding of the molecular heterogeneity of fatty liver disease: toward informed treatment decision making. Expert Rev Gastroenterol Hepatol 2023; 17:317-324. [PMID: 36912694 DOI: 10.1080/17474124.2023.2191190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
INTRODUCTION nonalcoholic fatty liver disease (NAFLD) is a complex disorder resulting from intricate relationships with diverse cardiometabolic risk factors and environmental factors. NAFLD may result in severe chronic liver damage and potentially declining liver function. AREAS COVERED Accumulated knowledge over the last decade indicates that the disease trajectory presents substantial heterogeneity. In addition, overlapping features with the diseases of the metabolic syndrome, combined with heterogeneity in disease mechanisms, further complicates NAFLD diagnosis and prognosis, and hampers progress in biomarker and pharmacological discoveries. Here, we explore solving the heterogeneous clinical landscape of NAFLD by cluster analysis of molecular signatures that serve as a proxy for disease stratification into molecular sub-types. First, we collected information on NAFLD and metabolic syndrome-associated protein-coding genes by data mining the literature. Next, we performed pathways enrichment and cluster analyses to decipher and dissect the different patterns of phenotypic heterogeneity. Our approach showed unique biological pathways for every clinical subtype/group, namely NAFLD + obesity, NAFLD + arterial hypertension, NAFLD + dyslipidemia, and NAFLD + type 2 diabetes. EXPERT OPINION Patients with NAFLD may be benefited by a better understanding of the disease biology, which involves 'dissection' of the molecular sub-phenotypes that drive the disease progression.
Collapse
Affiliation(s)
- Carlos J Pirola
- Systems Biology of Complex Diseases, Centro de Altos Estudios En Ciencias Humanas Y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia Sookoian
- Clinical and Molecular Hepatology, Centro de Altos Estudios En Ciencias Humanas Y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
41
|
Gkolfakis P, Tziatzios G, Leite G, Papanikolaou IS, Xirouchakis E, Panayiotides IG, Karageorgos A, Millan MJ, Mathur R, Weitsman S, Dimitriadis GD, Giamarellos-Bourboulis EJ, Pimentel M, Triantafyllou K. Prevalence of Small Intestinal Bacterial Overgrowth Syndrome in Patients with Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis: A Cross-Sectional Study. Microorganisms 2023; 11:723. [PMID: 36985296 PMCID: PMC10057935 DOI: 10.3390/microorganisms11030723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is a multifactorial, wide-spectrum liver disorder. Small intestinal bacterial overgrowth (SIBO) is characterized by an increase in the number and/or type of colonic bacteria in the upper gastrointestinal tract. SIBO, through energy salvage and induction of inflammation, may be a pathophysiological factor for NAFLD development and progression. AIM/METHODS Consecutive patients with histological, biochemical, or radiological diagnosis of any stage of NAFLD (non-alcoholic fatty liver [NAFL], non-alcoholic steatohepatitis [NASH], cirrhosis) underwent upper gastrointestinal endoscopy. Duodenal fluid (2cc) was aspirated from the 3rd-4th part of duodenum into sterile containers. SIBO was defined as ≥103 aerobic colony-forming units (CFU)/mL of duodenal aspirate and/or the presence of colonic-type bacteria. Patients without any liver disease undergoing gastroscopy due to gastroesophageal reflux disease (GERD) comprised the healthy control (HC) group. Concentrations (pg/mL) of tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, and IL-6 were also measured in the duodenal fluid. The primary endpoint was to evaluate the prevalence of SIBO in NAFLD patients, while the comparison of SIBO prevalence among NAFLD patients and healthy controls was a secondary endpoint. RESULTS We enrolled 125 patients (51 NAFL, 27 NASH, 17 cirrhosis, and 30 HC) aged 54 ± 11.9 years and with a weight of 88.3 ± 19.6 kg (NAFLD vs. HC 90.7 ± 19.1 vs. 80.8 ± 19.6 kg, p = 0.02). Overall, SIBO was diagnosed in 23/125 (18.4%) patients, with Gram-negative bacteria being the predominant species (19/23; 82.6%). SIBO prevalence was higher in the NAFLD cohort compared to HC (22/95; 23.2% vs. 1/30; 3.3%, p = 0.014). Patients with NASH had higher SIBO prevalence (6/27; 22.2%) compared to NAFL individuals (8/51; 15.7%), but this difference did not reach statistical significance (p = 0.11). Patients with NASH-associated cirrhosis had a higher SIBO prevalence compared to patients with NAFL (8/17; 47.1% vs. 8/51; 15.7%, p = 0.02), while SIBO prevalence between patients with NASH-associated cirrhosis and NASH was not statistically different (8/17; 47.1% vs. 6/27; 22.2%, p = 0.11). Mean concentration of TNF-α, IL-1β, and IL-6 did not differ among the different groups. CONCLUSION The prevalence of SIBO is significantly higher in a cohort of patients with NAFLD compared to healthy controls. Moreover, SIBO is more prevalent in patients with NASH-associated cirrhosis compared to patients with NAFL.
Collapse
Affiliation(s)
- Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tziatzios
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Ioannis S. Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elias Xirouchakis
- Department of Gastroenterology and Hepatology, Athens Medical Palaio Faliron General Hospital, 17562 Palaio Faliron, Greece
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, Medical School, National and Kapodistrian University of Athens, 124622 Athens, Greece
| | - Athanasios Karageorgos
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Jesus Millan
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - George D. Dimitriadis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
42
|
Guimarães VHD, Marinho BM, Motta-Santos D, Mendes GDRL, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem 2023; 113:109252. [PMID: 36509338 DOI: 10.1016/j.jnutbio.2022.109252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Obesity and metabolic disorders represent a significant global health problem and the gut microbiota plays an important role in modulating systemic homeostasis. Recent evidence shows that microbiota and its signaling pathways may affect the whole metabolism and the Renin-Angiotensin System (RAS), which in turn seems to modify microbiota. The present review aimed to investigate nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome components. A description of metabolic changes was obtained based on relevant scientific literature. The molecular and physiological mechanisms that impact the human microbiome were addressed, including the gut microbiota associated with obesity, diabetes, and hepatic steatosis. The RAS interaction signaling and modulation were analyzed. Strategies including the use of prebiotics, symbiotics, probiotics, and biotechnology may affect the gut microbiota and its impact on human health.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- School of Physical Education, Physiotherapy, and Occupational Therapy - EEFFTO, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela da Rocha Lemos Mendes
- Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
43
|
Abstract
The current evidence indicates a strong association between sarcopenia, the loss of muscle mass and strength, and metabolic-associated fatty liver disease (MAFLD). The two entities share many common pathophysiologic mechanisms, and their coexistence may result in higher rates of morbidity and mortality. Therefore, given their increasing incidence in the modern world, there is a need for a better understanding of the liver-muscle axis for early identification of sarcopenia in patients with MAFLD and vice versa. This review aims at presenting current data regarding the correlation between sarcopenia and MAFLD, the associated comorbidities, and the need for effective therapies.
Collapse
|
44
|
Kuraji R, Shiba T, Dong TS, Numabe Y, Kapila YL. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World J Gastroenterol 2023; 29:967-996. [PMID: 36844143 PMCID: PMC9950865 DOI: 10.3748/wjg.v29.i6.967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence from multiple areas proposes that periodontal disease, accompanied by oral inflammation and pathological changes in the microbiome, induces gut dysbiosis and is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A subgroup of NAFLD patients have a severely progressive form, namely nonalcoholic steatohepatitis (NASH), which is characterized by histological findings that include inflammatory cell infiltration and fibrosis. NASH has a high risk of further progression to cirrhosis and hepatocellular carcinoma. The oral microbiota may serve as an endogenous reservoir for gut microbiota, and transport of oral bacteria through the gastro-intestinal tract can set up a gut microbiome dysbiosis. Gut dysbiosis increases the production of potential hepatotoxins, including lipopolysaccharide, ethanol, and other volatile organic compounds such as acetone, phenol and cyclopentane. Moreover, gut dysbiosis increases intestinal permeability by disrupting tight junctions in the intestinal wall, leading to enhanced translocation of these hepatotoxins and enteric bacteria into the liver through the portal circulation. In particular, many animal studies support that oral administration of Porphyromonas gingivalis, a typical periodontopathic bacterium, induces disturbances in glycolipid metabolism and inflammation in the liver with gut dysbiosis. NAFLD, also known as the hepatic phenotype of metabolic syndrome, is strongly associated with metabolic complications, such as obesity and diabetes. Periodontal disease also has a bidirectional relationship with metabolic syndrome, and both diseases may induce oral and gut microbiome dysbiosis with insulin resistance and systemic chronic inflammation cooperatively. In this review, we will describe the link between periodontal disease and NAFLD with a focus on basic, epidemiological, and clinical studies, and discuss potential mechanisms linking the two diseases and possible therapeutic approaches focused on the microbiome. In conclusion, it is presumed that the pathogenesis of NAFLD involves a complex crosstalk between periodontal disease, gut microbiota, and metabolic syndrome. Thus, the conventional periodontal treatment and novel microbiome-targeted therapies that include probiotics, prebiotics and bacteriocins would hold great promise for preventing the onset and progression of NAFLD and subsequent complications in patients with periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-0071, Japan
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Takahiko Shiba
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Department of Medicine, University of California David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
- Sections of Biosystems and Function and Periodontics, Professor and Associate Dean of Research, Felix and Mildred Yip Endowed Chair in Dentistry, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
45
|
Effect of Dietary Supplemented with Mulberry Leaf Powder on Growth Performance, Serum Metabolites, Antioxidant Property and Intestinal Health of Weaned Piglets. Antioxidants (Basel) 2023; 12:antiox12020307. [PMID: 36829865 PMCID: PMC9952558 DOI: 10.3390/antiox12020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Background: The study aimed to explore the effect of mulberry leaf powder (MP) on the performance, serum metabolites and antioxidant property, as well as intestinal health, of weaned piglets. A total of 120 healthy piglets weighing 8.43 ± 1.91 kg (Duroc × (Landrace × Yorkshire); weaned at 28 d) were chosen and classified into four treatments with three replicates of 10 piglets each based on a randomized complete block design (barrow:gilt = 1:1). The diet treatments were a corn-soybean meal basal diet added with 0% (Ctrl), 2% (MP_2), 4% (MP_4) and 6% MP (MP_6), respectively. The feeding experiment was 28 days in total. The feeding period lasted for 28 days in total. Results: The diet supplemented with 2% MP had no detrimental effects on the growth performance, immunity, enzyme capacity and inflammatory factors, as well as intestinal barrier function. MP_2 is capable of decreasing the levels of serum D-lactic acid and lactate dehydrogenase, enhancing the superoxide dismutase capacity in the liver and diminishing the potential pathogenic bacteria Allisonella in the colon. However, compared with MP_2, MP_6 had unfavorable effects on the average daily gain and average daily feed intake; the concentration of serum non-esterified fatty acids; the activities of superoxide dismutase and glutathione peroxidase and the capacity of lipase and amylase, as well as the intestinal barrier function-related mRNA expression of occludin, claudin-1 and mucin-2 in piglets. Conclusion: Taken together, piglets fed with 2% MP had no adverse effect and was capable of improving the serum metabolites, enhancing the antioxidant capacity (SOD) and lowering the potential pathogenic bacteria of the hindgut (Allisonella). However, the highest concentration of MP (6%) may cause detrimental effects for piglets, which are probably associated with the higher antinutritional factors and fiber. Therefore, the dietary supplementation of 2% MP for piglets may be advisable.
Collapse
|
46
|
Bi CR, Sun JT, Du J, Chu LY, Li YJ, Jia XY, Liu Y, Zhang WP, Li YC, Liu YJ. Effects of Zhishi Daozhi Decoction on the intestinal flora of nonalcoholic fatty liver disease mice induced by a high-fat diet. Front Cell Infect Microbiol 2023; 12:1005318. [PMID: 36683694 PMCID: PMC9846642 DOI: 10.3389/fcimb.2022.1005318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background and aims Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease with a high incidence, and the situation is not optimistic. Intestinal flora imbalance is strongly correlated with NAFLD pathogenesis. Zhishi Daozhi Decoction (ZDD) is a water decoction of the herbs used in the classical Chinese medicine prescription Zhishi Daozhi Pills. Zhishi Daozhi Pills has shown promising hepatoprotective and hypolipidemic properties, but its specific mechanism remains unclear. Methods Mice were fed on a high fat-rich diet (HFD) for ten weeks, and then the animals were administrated ZDD through oral gavage for four weeks. The serum liver function and blood lipid indexes of the mice were then tested using an automatic biochemical analyzer. H&E and Oil Red O staining were used to observe the pathological conditions of mice liver tissue, and 16S rRNA sequencing technology was used to analyze the changes in intestinal flora of mice. The concentration of short-chain fatty acids (SCFAs) in the gut of mice was analyzed by gas chromatography-mass spectrometry (GC-MS). The expression of tight junction (TJ) proteins between ileal mucosal epithelial cells was analyzed using the immunofluorescence technique. Results ZDD was found to reduce the bodyweight of NAFLD mice, reduce serum TG, CHO, ALT, and AST levels, reduce fat accumulation in liver tissue, make the structure of intestinal flora comparable to the control group, and increase the concentration of intestinal SCFAs. It was also found to increase the expression of TJ proteins such as occludin and ZO-1, making them comparable to the control group. Conclusions ZDD has a therapeutic effect on NAFLD mice induced by HFD, which may act by optimizing the intestinal flora structure.
Collapse
Affiliation(s)
- Chao-Ran Bi
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jia-Tong Sun
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jian Du
- Department of Endocrinology, Metabolism and Gastroenterology, Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Li-Yuan Chu
- Department of Ophthalmology, China-Japan Friendship Hospital of Jilin University, Changchun, China
| | - Yi-Jing Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiao-Yu Jia
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuan Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wen-Ping Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yu-Chun Li
- Department of Spleen and Gastroenterology, Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Yan-Jing Liu
- Department of Endocrinology, Metabolism and Gastroenterology, Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
47
|
Lv S, Zhang Z, Su X, Li W, Wang X, Pan B, Li H, Zhang H, Wang Y. Qingrequzhuo capsule alleviated methionine and choline deficient diet-induced nonalcoholic steatohepatitis in mice through regulating gut microbiota, enhancing gut tight junction and inhibiting the activation of TLR4/NF-κB signaling pathway. Front Endocrinol (Lausanne) 2023; 13:1106875. [PMID: 36743916 PMCID: PMC9892721 DOI: 10.3389/fendo.2022.1106875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Qingrequzhuo capsule (QRQZ), composed of Morus alba L., Coptis chinensis Franch., Anemarrhena asphodeloides Bunge, Alisma plantago-aquatica subsp. orientale (Sam.) Sam., Citrus × aurantium L., Carthamus tinctorius L., Rheum palmatum L., Smilax glabra Roxb., Dioscorea oppositifolia L., Cyathula officinalis K.C.Kuan, has been used to treat nonalcoholic steatohepatitis (NASH) in clinic. However, the mechanism of QRQZ on NASH remains unclear. Recent studies have found that the dysfunction of gut microbiota could impair the gut barrier and induce the activation of TLR4/NF-kB signaling pathway, and further contribute to the inflammatory response in NASH. Modulating the gut microbiota to reduce inflammation could prevent the progression of NASH. In this study, a mouse model of NASH was generated by methionine and choline deficient diet (MCD) and treated with QRQZ. First, we evaluated the therapeutic effects of QRQZ on liver injury and inflammation in the NASH mice. Second, the changes in the gut microbiota diversity and abundance in each group of mice were measured through 16S rRNA sequencing. Finally, the effects of QRQZ on gut mucosal permeability, endotoxemia, and liver TLR4/NF-kB signaling pathway levels were examined. Our results showed that QRQZ significantly reduced the lipid accumulation in liver and the liver injury in NASH mice. In addition, QRQZ treatment decreased the levels of inflammatory cytokines in liver. 16S rRNA sequencing showed that QRQZ affected the diversity of gut microbiota and a f f e c t e d t h e r e l a t i v e a b u n d a n c e s o f D u b o s i e l l a , Lachnospiraceae_NK4A136_group, and Blautiain NASH mice. Besides, QRQZ could increase the expression of tight junction proteins (zonula occludens-1 and occludin) in gut and decrease the lipopolysaccharide (LPS) level in serum. Western blot results also showed that QRQZ treatment decreased the protein expression ofTLR4, MyD88 and the phosphorylation of IkB and NF-kBp65 and qPCR results showed that QRQZ treatment down-regulated the gene expression of interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a in liver. In conclusion, our study demonstrated that QRQZ could reduce the lipid accumulation and inflammatory response in NASH model mice. The mechanisms of QRQZ on NASH were associated with modulating gut microbiota, thereby inducing the tight junction of gut barrier, reducing the endotoxemia and inhibiting the activation of TLR4/NFkB signaling pathway in liver.
Collapse
Affiliation(s)
- Shuquan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zhongyong Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiuhai Su
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Wendong Li
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiaoyun Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Baochao Pan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hanzhou Li
- Graduate School, Chengde Medical University, Chengde, China
| | - Hui Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuansong Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| |
Collapse
|
48
|
Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1002-1017. [PMID: 36515085 PMCID: PMC9853865 DOI: 10.1021/acs.jafc.2c05879] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Anthocyanins, the red-orange to blue-violet colorants present in fruits, vegetables, and tubers, have antidiabetic properties expressed via modulating energy metabolism, inflammation, and gut microbiota. Acylation of the glycosyl moieties of anthocyanins alters the physicochemical properties of anthocyanins and improves their stability. Thus, acylated anthocyanins with probiotic-like property and lower bioavailability are likely to have different biological effects from nonacylated anthocyanins on diabetes. This work highlights recent findings on the antidiabetic effects of acylated anthocyanins from the perspectives of energy metabolism, inflammation, and gut microbiota compared to the nonacylated anthocyanins and particularly emphasizes the cellular and molecular mechanisms associated with the beneficial effects of these bioactive molecules, providing a new perspective to explore the different biological effects induced by structurally different anthocyanins. Acylated anthocyanins may have greater modulating effects on energy metabolism, inflammation, and gut microbiota in type 2 diabetes compared to nonacylated anthocyanins.
Collapse
|
49
|
Pan Y, Zhang X. Diet Modulates Gut Microbiome and Metabolites in Non-alcoholic Fatty Liver Diseases. MICROBIOME IN GASTROINTESTINAL CANCER 2023:131-146. [DOI: 10.1007/978-981-19-4492-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Zhou Q, Lan F, Gu S, Li G, Wu G, Yan Y, Li X, Jin J, Wen C, Sun C, Yang N. Genetic and microbiome analysis of feed efficiency in laying hens. Poult Sci 2022; 102:102393. [PMID: 36805401 PMCID: PMC9958098 DOI: 10.1016/j.psj.2022.102393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.
Collapse
Affiliation(s)
- Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Shuang Gu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guangqi Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Guiqin Wu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Xiaochang Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiaming Jin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|