1
|
da Silva EL, Mesquita FP, Pinto LC, Gomes BPS, de Oliveira EHC, Burbano RMR, Moraes MEAD, de Souza PFN, Montenegro RC. Transcriptome analysis displays new molecular insights into the mechanisms of action of Mebendazole in gastric cancer cells. Comput Biol Med 2025; 184:109415. [PMID: 39566281 DOI: 10.1016/j.compbiomed.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Gastric cancer (GC) is a common cancer worldwide. Therefore, searching for effective treatments is essential, and drug repositioning can be a promising strategy to find new potential drugs for GC therapy. For the first time, we sought to identify molecular alterations and validate new mechanisms related to Mebendazole (MBZ) treatment in GC cells through transcriptome analysis using microarray technology. Data revealed 1066 differentially expressed genes (DEGs), of which 345 (2.41 %) genes were upregulated, 721 (5.04 %) genes were downregulated, and 13,231 (92.54 %) genes remained unaltered after MBZ exposure. The overexpressed genes identified were CCL2, IL1A, and CDKN1A. In contrast, the H3C7, H3C11, and H1-5 were the top 3 underexpressed genes. Gene set enrichment analysis (GSEA) identified 8 pathways significantly overexpressed in the treated group (p < 0.05 and FDR<0.25). The validation of the expression of top desregulated genes by RT-qPCR confirmed the transcriptome results, where MBZ increased the CCL2, IL1A, and CDKN1A and reduced the H3C7, H3C11, and H1-5 transcript levels. Expression analysis in samples from TCGA databases correlated that the lower ILI1A and higher H3C11 and H1-5 gene expression are associated with decreased overall survival rates in patients with GC, indicating that MBZ treatment can improve the prognosis of patients. Thus, the data demonstrated that the drug MBZ alters the transcriptome of the AGP-01 lineage, mainly modulating the expression of histone proteins and inflammatory cytokines, indicating a possible epigenetic and immunological effect on tumor cells, these findings highlight new mechanisms of action related to MBZ treatment. Additional studies are still needed to better clarify the epigenetic and immune mechanism of MBZ in the therapy of GC.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Laine Celestino Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus Street, Belém, Brazil
| | - Bruna Puty Silva Gomes
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Rommel Mario Rodríguez Burbano
- Molecular Biology Laboratory, Ophir Loyola Hospital, Av. Governador Magalhães Barata, Belém, Brazil; Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Augusto Correa Avenue, Belém, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Pedro Filho Noronha de Souza
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Brazil; National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Red Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil.
| |
Collapse
|
2
|
Kumar M, Kumar A, Srivastav A, Ghosh A, Kumar D. Genomic and molecular landscape of gallbladder cancer elucidating pathogenic mechanisms novel therapeutic targets and clinical implications. Mutat Res 2024; 830:111896. [PMID: 39754821 DOI: 10.1016/j.mrfmmm.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk. Established signaling pathways, including hormonal, apoptotic, metabolic, inflammatory, and DNA damage repair pathways, are integral to GBC progression, and evidence points to the involvement of specific germline and somatic mutations in its development. Key mutations in genes such as KRAS, TP53, IDH1/2, ERBB, PIK3CA, MET, MYC, BRAF, MGMT, CDKN2A and p16 have been identified as contributors to tumorigenesis, with additional alterations including chromosomal aberrations and epigenetic modifications. These molecular insights reveal several potential therapeutic targets that could address the limited treatment options for GBC. Promising therapeutic avenues under investigation include immune checkpoint inhibitors, tyrosine kinase inhibitors, tumor necrosis factor-related apoptosis-inducing ligands (TRAIL), and phytochemicals. Numerous clinical trials are assessing the efficacy of these targeted therapies. This review provides a detailed examination of GBC's genetic and mutational underpinnings, highlighting critical pathways and emerging therapeutic strategies. We discuss the implications of germline and somatic mutations for early detection and individualized treatment, aiming to bridge current knowledge gaps. By advancing our understanding of GBC's molecular profile, we hope to enhance diagnostic accuracy and improve treatment outcomes, ultimately paving the way for precision medicine approaches in managing GBC.
Collapse
Affiliation(s)
- Manishankar Kumar
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007, India
| | - Arun Kumar
- Mahavir Cancer Institute and Research Centre, Phulwarisharif, Patna, Bihar 801505, India
| | - Abhinav Srivastav
- Mahavir Cancer Institute and Research Centre, Phulwarisharif, Patna, Bihar 801505, India
| | - Ashok Ghosh
- Mahavir Cancer Institute and Research Centre, Phulwarisharif, Patna, Bihar 801505, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
3
|
Edman S, Jones Iii RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Chambers TL, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-hour molecular landscape after exercise in humans reveals MYC is sufficient for muscle growth. EMBO Rep 2024; 25:5810-5837. [PMID: 39482487 PMCID: PMC11624283 DOI: 10.1038/s44319-024-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery. To test whether MYC is sufficient for hypertrophy, we periodically pulse MYC in skeletal muscle over 4 weeks. Transient MYC increases muscle mass and fiber size in the soleus of adult mice. We present a temporally resolved resource for understanding molecular adaptations to resistance exercise in muscle ( http://data.myoanalytics.com ) and suggest that controlled MYC doses influence the exercise-related hypertrophic transcriptional landscape.
Collapse
Affiliation(s)
- Sebastian Edman
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Ronald G Jones Iii
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Paulo R Jannig
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Pieter J Koopmans
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Francielly Morena
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Toby L Chambers
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Calvin S Peterson
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Logan N Scott
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas P Greene
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Vandre C Figueiredo
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Biological Sciences, Oakland University, Rochester Hills, MI, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Liu Zhengye
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johanna T Lanner
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedic Surgery, Region Jönköping County, Eksjö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A Murach
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA.
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
4
|
Mulè P, Fernandez-Perez D, Amato S, Manganaro D, Oldani P, Brandini S, Diaferia G, Cuomo A, Recordati C, Soriani C, Dondi A, Zanotti M, Rustichelli S, Bisso A, Pece S, Rodighiero S, Natoli G, Amati B, Ferrari KJ, Chiacchiera F, Pasini D. WNT Oncogenic Transcription Requires MYC Suppression of Lysosomal Activity and EPCAM Stabilization in Gastric Tumors. Gastroenterology 2024; 167:903-918. [PMID: 38971196 DOI: 10.1053/j.gastro.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND & AIMS WNT signaling is central to spatial tissue arrangement and regulating stem cell activity, and it represents the hallmark of gastrointestinal cancers. Although its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. METHODS We have developed mouse models to control the specific expression of an oncogenic form of β-catenin (CTNNB1) in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multiomics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. RESULTS We report that constitutive β-catenin stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumor formation. Although physiologically low MYC levels in gastric glands limit β-catenin transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting β-catenin enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting β-catenin chromatin accumulation and activation of WNT oncogenic transcription. CONCLUSION Our results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.
Collapse
Affiliation(s)
- Patrizia Mulè
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Daniel Fernandez-Perez
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Simona Amato
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Daria Manganaro
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Paola Oldani
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Stefania Brandini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Giuseppe Diaferia
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Alessandro Cuomo
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | | | - Chiara Soriani
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Ambra Dondi
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Marika Zanotti
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Samantha Rustichelli
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Andrea Bisso
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Salvatore Pece
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Simona Rodighiero
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Gioacchino Natoli
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Karin Johanna Ferrari
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Fulvio Chiacchiera
- University of Trento, Department of Cellular, Computational and Integrative Biology, Trento, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy; University of Milan, Department of Health Sciences, Milan, Italy.
| |
Collapse
|
5
|
Wu S, Li C, Zhou H, Yang Y, Liang N, Fu Y, Luo Q, Zhan Y. The regulatory mechanism of m6A modification in gastric cancer. Discov Oncol 2024; 15:283. [PMID: 39009956 PMCID: PMC11250764 DOI: 10.1007/s12672-024-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/23/2024] [Indexed: 07/17/2024] Open
Abstract
To the best of our knowledge, N6-Methyladenosine (m6A) exerts a significant role in the occurrence and development of various tumors. Gastric cancer (GC), originating from the mucosal epithelium in the digestive tract, is the fifth most common cancer and the third most common cause of cancer death around the world. Therefore, it is urgent to explore the specific mechanism of tumorigenesis of GC. As we all know, m6A modification as the most common RNA modification, is involved in the modification of mRNA and ncRNA at the post-transcriptional level, which played a regulatory role in various biological processes. As identified by numerous studies, the m6A modification are able to influence the proliferation, apoptosis, migration, and invasion of GC. What's more, m6A modification are associated with EMT, drug resistance, and aerobic glycolysis in GC. m6A related-ncRNAs may be a valuable biomarker used by the prediction of GC diagnosis in the future. This review summarizes the role of m6A modification in the mechanism of gastric cancer, with the aim of identifying biological progress.
Collapse
Affiliation(s)
- Si Wu
- Department of Pathology, The First Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Street, Huichuan District, Zunyi, 563000, Guizhou, China
| | - Chunming Li
- Department of Pathology, The First Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Street, Huichuan District, Zunyi, 563000, Guizhou, China.
| | - Hanghao Zhou
- Department of Pathology, The First Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Street, Huichuan District, Zunyi, 563000, Guizhou, China
| | - Ying Yang
- Department of Dermatology, The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinpu Street and Xinlong Street, Xinpu New District, Zunyi, 563000, Guizhou, China
| | - Na Liang
- Department of Histology and Embryology, Zunyi Medical University, No. 6 Xuefu West Street, Xinpu New District, Zunyi, Guizhou, China
| | - Yue Fu
- Department of Histology and Embryology, Zunyi Medical University, No. 6 Xuefu West Street, Xinpu New District, Zunyi, Guizhou, China
| | - Qingqing Luo
- Department of Physiology, Zunyi Medical University, No. 6 Xuefu West Street, Xinpu New District, Zunyi, Guizhou, China
| | - YaLi Zhan
- Department of Pathology, The First Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Street, Huichuan District, Zunyi, 563000, Guizhou, China
| |
Collapse
|
6
|
Edman S, Jones RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-Hour Time Course of Integrated Molecular Responses to Resistance Exercise in Human Skeletal Muscle Implicates MYC as a Hypertrophic Regulator That is Sufficient for Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586857. [PMID: 38586026 PMCID: PMC10996609 DOI: 10.1101/2024.03.26.586857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected. A time-point matched biopsy-only group was also included. RNA-sequencing defined the transcriptome while DNA methylomics and computational approaches complemented these data. The post-RE time course revealed: 1) DNA methylome responses at 30 minutes corresponded to upregulated genes at 3 hours, 2) a burst of translation- and transcription-initiation factor-coding transcripts occurred between 3 and 8 hours, 3) global gene expression peaked at 8 hours, 4) ribosome-related genes dominated the mRNA landscape between 8 and 24 hours, 5) methylation-regulated MYC was a highly influential transcription factor throughout the 24-hour recovery and played a primary role in ribosome-related mRNA levels between 8 and 24 hours. The influence of MYC in human muscle adaptation was strengthened by transcriptome information from acute MYC overexpression in mouse muscle. To test whether MYC was sufficient for hypertrophy, we generated a muscle fiber-specific doxycycline inducible model of pulsatile MYC induction. Periodic 48-hour pulses of MYC over 4 weeks resulted in higher muscle mass and fiber size in the soleus of adult female mice. Collectively, we present a temporally resolved resource for understanding molecular adaptations to RE in muscle and reveal MYC as a regulator of RE-induced mRNA levels and hypertrophy.
Collapse
Affiliation(s)
- Sebastian Edman
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Paulo R. Jannig
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Karolinska Institute, Division of Clinical Physiology, Department of Laboratory Medicine, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Karolinska Institute, Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Nicholas T. Thomas
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Pieter Jan Koopmans
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Francielly Morena
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Calvin S. Peterson
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Logan N. Scott
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Vandre C. Figueiredo
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- Oakland University, Department of Biological Sciences, Rochester Hills, MI, USA
| | - Christopher S. Fry
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Liu Zhengye
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Johanna T. Lanner
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Yuan Wen
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Ferdinand von Walden
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| |
Collapse
|
7
|
Feng W, Ma C, Rao H, Zhang W, Liu C, Xu Y, Aji R, Wang Z, Xu J, Gao WQ, Li L. Setd2 deficiency promotes gastric tumorigenesis through inhibiting the SIRT1/FOXO pathway. Cancer Lett 2023; 579:216470. [PMID: 37914019 DOI: 10.1016/j.canlet.2023.216470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Gastric cancer (GC) is the fifth most common cancer and the second leading cause of cancer death globally. SETD2 is a histone methyltransferase catalyzing tri-methylation of H3K36 (H3K36me3) and has been shown to participate in diverse biological processes and human tumors. However, the mechanism of SETD2 in GC remains unclear. Here, we reported that Setd2 deficiency predicts poor prognosis of gastric cancer. SETD2 loss facilitated H. felis/MNU and c-Myc-induced gastric tumorigenesis, respectively. The mouse model of stomach-specific Setd2 depletion together with c-MYC overexpression (AMS) developed high-grade epithelial defects, intestinal metaplasia and dysplasia at only 10-12 weeks of age. Mechanistically, Setd2 depletion resulted in impaired epigenetic regulation of Sirt1, thus inhibiting the SIRT1/FOXO pathway. Moreover, the agonists of FOXO signaling or overexpression of SIRT1 significantly rescued the enhanced cell proliferation and migration caused by Setd2 deficiency in SGC7901 cells. Together, our findings highlight an epigenetic mechanism by which SETD2 regulates gastric tumorigenesis through SIRT1/FOXO pathway. It may also pave the way for the development of targeted, patient-tailored therapies for GC patients with Setd2 deficiency.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Rebiguli Aji
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Costa PMDS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SS, Pessoa CDÓ, Furtado GP, Furtado CLM. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol 2023; 11:1116805. [PMID: 36866275 PMCID: PMC9974167 DOI: 10.3389/fcell.2023.1116805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.
Collapse
Affiliation(s)
- Pedro Mikael da Silva Costa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Sant’Anna Maranhão
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia do Ó. Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil,Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil,*Correspondence: Cristiana Libardi Miranda Furtado,
| |
Collapse
|
9
|
Tang Y, Dong L, Zhang C, Li X, Li R, Lin H, Qi Y, Tang M, Peng Y, Liu C, Zhou J, Hou N, Liu W, Yang G, Yang X, Teng Y. PRMT5 acts as a tumor suppressor by inhibiting Wnt/β-catenin signaling in murine gastric tumorigenesis. Int J Biol Sci 2022; 18:4329-4340. [PMID: 35864961 PMCID: PMC9295066 DOI: 10.7150/ijbs.71581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/21/2022] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated the in vitro oncogenic role of protein arginine methyltransferase 5 (PRMT5) in gastric cancer cell lines. The in vivo function of PRMT5 in gastric tumorigenesis, however, is still unexplored. Here, we showed that Prmt5 deletion in mouse gastric epithelium resulted in spontaneous tumorigenesis in gastric antrum. All Prmt5-deficient mice displayed intestinal-type gastric cancer within 4 months of age. Of note, 20% (2/10) of Prmt5 mutants finally developed into invasive gastric cancer by 8 months of age. Gastric cancer caused by PRMT5 loss exhibited the increase in Lgr5+ stem cells, which are proposed to contribute to both the gastric tumorigenesis and progression in mouse models. Consistent with the notion that Lgr5 is the target of Wnt/β-catenin signaling, whose activation is the most predominant driver for gastric tumorigenesis, Prmt5 mutant gastric cancer showed the activation of Wnt/β-Catenin signaling. Furthermore, in human gastric cancer samples, PRMT5 deletion and downregulation were frequently observed and associated with the poor prognosis. We propose that as opposed to the tumor-promoting role of PRMT5 well-established in the progression of various cancer types, PRMT5 functions as a tumor suppressor in vivo, at least during gastric tumor formation.
Collapse
Affiliation(s)
- Yuling Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.,Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiubin Li
- Department of Urology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Rongyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huisang Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yini Qi
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Mingchuan Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yanli Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chuan Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenjia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
10
|
Ribeiro HF, de Castro Sant' Anna C, de Jesus Oliveira Kato V, de Sousa Brasil RM, Bona AB, da Costa DF, Lima IK, Soares PC, Guimarães APA, de Assumpção PP, Burbano RR. CDC25B Inhibition by menadione: a potential new therapeutical approach. Anticancer Agents Med Chem 2022; 22:2927-2932. [PMID: 35440317 DOI: 10.2174/1871520622666220418131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is the fifth most common type of tumor and the third leading cause of cancer death worldwide. The evolution of gastric carcinogenesis is still poorly understood and, for this reason, preclinical research protocols were established that included the development of gastric cancer cell lines and the establishment of models of gastric carcinogenesis in non-human primate Sapajus apella. A comprehensive literature search was performed in relevant databases such as PubMed, ResearchGate and Google Scholar to identify studies related to the topic. After an in-depth study of these reports, significant data/data were collected and compiled under appropriate headings. The main result of the studies carried out by the group on GC is the demonstration of the MYC gene overexpression as a common phenomenon in stomach carcinogenesis. Furthermore, we revealed that reducing the expression of the CDC25B gene, regulated by the MYC protein, is a therapeutic strategy against stomach tumors. This review article reveals preclinical evidence that treatment with menadione in experimental models of gastric tumorigenesis, in vivo and in vitro, inhibits the action of the phosphatase CDC25B and, consequently, prevents cell proliferation, invasion and migration.
Collapse
|
11
|
Liu M, Li H, Zhang H, Zhou H, Jiao T, Feng M, Na F, Sun M, Zhao M, Xue L, Xu L. RBMS1 promotes gastric cancer metastasis through autocrine IL-6/JAK2/STAT3 signaling. Cell Death Dis 2022; 13:287. [PMID: 35361764 PMCID: PMC8971453 DOI: 10.1038/s41419-022-04747-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Metastasis is the most important reason for the poor prognosis of gastric cancer (GC) patients, and the mechanism urgently needs to be clarified. Here, we explored a prognostic model for the estimation of tumor-associated mortality in GC patients and revealed the RNA-binding protein RBMS1 as a candidate promoter gene for GC metastasis by analyzing GOBO and Oncomine high-throughput sequencing datasets for 408 GC patients. Additionally, RBMS1 was observed with overexpression in 85 GC patient clinical specimens by IHC staining and further be verified its role in GC metastasis via inducing EMT process both in in vitro and in vivo experiments. Moreover, we identified that IL-6 was predicted to be one of the most significant upstream cytokines in the RBMS1 overexpression gene set based on the Ingenuity Pathway Analysis (IPA) algorithm. Most importantly, we also revealed that RBMS1 could promote migration and invasion through IL6 transactivation and JAK2/STAT3 downstream signaling pathway activation by influencing histone modification in the promoter regions after binding with the transcription factor MYC in the HGC-27 and SGC-7901 GC cell lines. Hence, we shed light on the potential molecular mechanisms of RBMS1 in the promotion of GC metastasis, which suggests that RBMS1 may be a potential therapeutic target for GC patients.
Collapse
Affiliation(s)
- Mengyuan Liu
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Heming Li
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Huijing Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Huan Zhou
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Taiwei Jiao
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Mingliang Feng
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Fangjian Na
- Network Information Center, China Medical University, 110122, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Lei Xue
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, 110001, Shenyang, China.
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China.
| |
Collapse
|
12
|
Abstract
The relationship between epitranscriptomics and malignant tumours has become a popular research topic in recent years. N6-methyladenosine (m6A), the most common post-transcriptional modification in mammals, is involved in various physiological processes in different cancer types, including gastric cancer (GC). The incidence and mortality of GC have been increasing annually, especially in developing countries. Insights into the epitranscriptomic mechanisms of gastric carcinogenesis could provide potential strategies for the prevention, diagnosis, and treatment of GC. In this review, we describe the mechanisms of RNA m6A modification; the functions of m6A regulators in GC; the functional crosstalk among m6A, messenger RNA, and noncoding RNA; and the promising application of m6A in the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Yitian Xu
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, PR China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, PR China
| |
Collapse
|
13
|
Circular RNA circ-TNPO3 suppresses metastasis of GC by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:649-664. [PMID: 34703650 PMCID: PMC8516998 DOI: 10.1016/j.omtn.2021.08.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) continues to be the most common gastrointestinal malignancy in China, and tumor metastases are a major reason for poor prognosis. Circular RNAs (circRNAs) are an intriguing type of noncoding RNAs with important regulatory roles. However, the roles of circRNAs in GC metastasis have not been fully elucidated. Here, we reported that circ-transportin 3 (TNPO3) was significantly downregulated in 103 pairs of GC tissues compared with matched noncancerous tissues. The level of circ-TNPO3 expression correlated with differentiation of GC, and plasma circ-TNPO3 could serve as a potential diagnostic biomarker. Functionally, circ-TNPO3 inhibited proliferation and migration of GC in vitro and in vivo. We further verified that circ-TNPO3 competitively interacted with insulin-like growth factor 2 binding protein 3 (IGF2BP3) protein; thus, the role of IGF2BP3 in stabilizing MYC mRNA was weakened, which inhibited the expression of MYC and its target SNAIL. Taken together, circ-TNPO3 acts as a protein decoy for IGF2BP3 to regulate the MYC-SNAIL axis, thereby suppressing the proliferation and metastasis of GC. Therefore, circ-TNPO3 has the potential to serve as a therapeutic target for GC.
Collapse
|
14
|
Ferns GA, Shahini Shams Abadi M, Raeisi A, Arjmand MH. The Potential Role of Changes in the Glucose and Lipid Metabolic Pathways in Gastrointestinal Cancer Progression: Strategy in Cancer Therapy. Gastrointest Tumors 2021; 8:169-176. [PMID: 34722470 DOI: 10.1159/000517771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background Changes in cell metabolism are a well-known feature of some cancers, and this may be involved in the etiology of tumor formation and progression, as well as tumor heterogeneity. These changes may affect fatty acid metabolism and glycolysis and are required to provide the increase in energy necessary for the high rate of proliferation of cancer cells. Gastrointestinal cancers remain a difficult-to-treat cancer, particularly as they are usually diagnosed at a late stage of disease and are associated with poor outcomes. Summary Recently, the changes in the metabolic pathways, including the expression of the rate-limiting enzymes involved, have been considered to be a potential target for therapy for gastrointestinal tumors. Key Message A combination of routine chemotherapy drugs with metabolic inhibitors may improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Milad Shahini Shams Abadi
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ahmad Raeisi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Hassan Arjmand
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
Sai C, Qin W, Meng J, Gao LN, Huang L, Zhang Z, Wang H, Chen H, Yan C. Macleayins A From Macleaya Promotes Cell Apoptosis Through Wnt/β-Catenin Signaling Pathway and Inhibits Proliferation, Migration, and Invasion in Cervical Cancer HeLa Cells. Front Pharmacol 2021; 12:668348. [PMID: 34421589 PMCID: PMC8377739 DOI: 10.3389/fphar.2021.668348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023] Open
Abstract
Macleayins A (MA), a novel compound, was isolated from Macleaya cordata (Willd.) R. Br. and Macleaya microcarpa (Maxim.) Fedde. The plant species are the member of Papaveraceae family and have been used traditionally for diverse therapeutic purposes. According to the reported studies, the chemical constituents, as well as crude extracts of these plants, could attenuate the proliferation of several cancer cell lines, such as HL-60, A549, HepG2, and MCF-7. The current study aimed to investigate the anticervical cancer activity of MA and its related molecular mechanism. Isolation of MA was carried out using various column chromatographic methods, and its structure was elucidated with 1H NMR. The cytotoxicity of MA was determined against HeLa cell lines via CCK-8 assay. The cell proliferation, apoptosis, cell cycle, migration, and invasion were measured by EdU labeling, Annexin-V APC/7-AAD double staining, PI staining, and transwell assay, respectively. The protein expression levels of c-Myc, β-catenin, cyclin D1, and MMP-7 in the cells were evaluated by western blotting. The Wnt/β-catenin signaling cascade activation was verified using the Dual-Glo® Luciferase assay. We found that MA inhibited the growth of HeLa cells at 72 h (IC50 = 26.88 µM) via inducing apoptotic process, reduced the proliferation rate by 29.89%, and decreased the cells migration and invasion as compared to the untreated group. It arrested the cell cycle at the G1 phase and its treatment inhibited the expression of related proteins c-Myc, β-catenin, cyclin D1, and MMP-7 in the Wnt/β-catenin signaling cascade. Further, the Wnt/β-catenin signaling cascade activation in MA-treated HeLa cells was attenuated in a dose-dependent manner. These findings demonstrate the anticancer effects of MA on a mechanistic level, thus providing a basis for MA to become a potential candidate drug for resistance of cervical carcinoma.
Collapse
Affiliation(s)
- Chunmei Sai
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Wei Qin
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Junyu Meng
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Lufen Huang
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhen Zhang
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Huannan Wang
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Haixia Chen
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Chaohua Yan
- College of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
16
|
Liu J, Feng W, Liu M, Rao H, Li X, Teng Y, Yang X, Xu J, Gao W, Li L. Stomach-specific c-Myc overexpression drives gastric adenoma in mice through AKT/mammalian target of rapamycin signaling. Bosn J Basic Med Sci 2021; 21:434-446. [PMID: 33259779 PMCID: PMC8292868 DOI: 10.17305/bjbms.2020.4978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant cancers in the world. c-Myc, a well-known oncogene, is commonly amplified in many cancers, including gastric cancer. However, it is still not completely understood how c-Myc functions in GC. Here, we generated a stomach-specific c-Myc transgenic mouse model to investigate its role in GC. We found that overexpression of c-Myc in Atp4b+ gastric parietal cells could induce gastric adenoma in mice. Mechanistically, c-Myc promoted tumorigenesis via the AKT/mTOR pathway. Furthermore, AKT inhibitor (MK-2206) or mTOR inhibitor (Rapamycin) inhibited the proliferation of c-Myc overexpressing gastric cancer cell lines. Thus, our findings highlight that gastric tumorigenesis can be induced by c-Myc overexpression through activation of the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxue Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiqiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Development of a cell-based pathway modulator screening system to screen the targeted cancer therapeutic candidates. Hum Cell 2021; 34:445-456. [PMID: 33405176 DOI: 10.1007/s13577-020-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
To overcome the issues of poor prognosis and to tackle the non-responsiveness to various chemotherapeutics; it is necessary to develop targeted cancer therapeutic agents. Also, it is being necessary to understand the molecular targets of the drug candidates and drugs in the context of cellular signaling pathways, to make progress towards the development of targeted cancer therapeutics. Towards addressing these, we have established a cell-based and pathway-focused drug screening system for the pathways such as MYC, E2F, WNT, ERK, NRF1/2, HIF1α, p53, YY1 and NFκB. These signaling pathways are highly dysregulated in many cancers, including gastric cancer. The developed firefly luciferase assay-based screening system in gastric cancer lineage is suitable for the screening of the massive panel of drugs, drug candidates, small molecule inhibitors, chemicals and alternate drug formulations. The developed stable cell lines have been demonstrated for their pathway activity reporting features using the corresponding pathway-specific modulators. A proof-of-concept medium throughput screening focusing on YY1 signaling pathway also revealed the connection between calcium channel blockers and YY1 signaling. The developed signaling pathway screening assay cells are valuable resource and will serve as the screening platform for screening the drug libraries towards the development of targeted cancer therapeutics.
Collapse
|
18
|
Koulis A, Busuttil RA, Boussioutas A. Premalignant lesions of the stomach and management of early neoplastic lesions. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:185-216. [DOI: 10.1016/b978-0-323-85563-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Jones DW, Zavros Y. In vivo and in vitro models of gastric cancer. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:157-184. [DOI: 10.1016/b978-0-323-85563-1.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
20
|
Heitor da Silva Maués J, Ferreira Ribeiro H, de Maria Maués Sacramento R, Maia de Sousa R, Pereira de Tommaso R, Dourado Kovacs Machado Costa B, Cardoso Soares P, Pimentel Assumpção P, de Fátima Aquino Moreira-Nunes C, Mário Rodriguez Burbano R. Downregulated genes by silencing MYC pathway identified with RNA-SEQ analysis as potential prognostic biomarkers in gastric adenocarcinoma. Aging (Albany NY) 2020; 12:24651-24670. [PMID: 33351778 PMCID: PMC7803532 DOI: 10.18632/aging.202260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
MYC overexpression is a common phenomenon in gastric carcinogenesis. In this study, we identified genes differentially expressed with a downregulated profile in gastric cancer (GC) cell lines with silenced MYC. The TTLL12, CDKN3, CDC16, PTPRA, MZT2B, UBE2T genes were validated using qRT-PCR, western blot and immunohistochemistry in tissues of 213 patients with diffuse and intestinal GC. We identified high levels of TTLL12, MZT2B, CDC16, UBE2T, associated with early and advanced stages, lymph nodes, distant metastases and risk factors such as H. pylori. Our results show that in the diffuse GC the overexpression of CDC16 and UBE2T indicate markers of poor prognosis higher than TTLL12. That is, patients with overexpression of these two genes live less than patients with overexpression of TTLL12. In the intestinal GC, patients who overexpressed CDC16 had a significantly lower survival rate than patients who overexpressed MZT2B and UBE2T, indicating in our data a worse prognostic value of CDC16 compared to the other two genes. PTPRA and CDKN3 proved to be important for assessing tumor progression in the early and advanced stages. In summary, in this study, we identified diagnostic and prognostic biomarkers of GC under the control of MYC, related to the cell cycle and the neoplastic process.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | - Helem Ferreira Ribeiro
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Center of Biological and Health Sciences, Department of Biomedicine, University of Amazon, Belém 66060-000, PA, Brazil
| | | | - Rafael Maia de Sousa
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | | | | | - Paulo Cardoso Soares
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | - Paulo Pimentel Assumpção
- Oncology Research Nucleus, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-000, PA, Brazil
| | | | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| |
Collapse
|
21
|
Gao Y, Yu XF, Chen T. Human endogenous retroviruses in cancer: Expression, regulation and function. Oncol Lett 2020; 21:121. [PMID: 33552242 PMCID: PMC7798031 DOI: 10.3892/ol.2020.12382] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient retroviruses that infected human germline cells and became integrated into the human genome millions of years ago. Although most of these sequences are incomplete and silent, several potential pathological roles of HERVs have been observed in numerous diseases, such as multiple sclerosis and rheumatoid arthritis, and especially cancer, including breast cancer and pancreatic carcinoma. The present review investigates the expression signatures and complex regulatory mechanisms of HERVs in cancer. The long terminal repeats-driven transcriptional initiation of HERVs are regulated by transcription factors (such as Sp3) and epigenetic modifications (such as DNA methylation), and are influenced by environmental factors (such as ultraviolet radiation). In addition, this review focuses on the dual opposing effects of HERVs in cancer. HERVs can suppress cancer via immune activation; however, they can also promote cancer. HERV env gene serves a prime role in promoting carcinogenesis in certain malignant tumors, including breast cancer, pancreatic cancer, germ cell tumors, leukemia and Kaposi's sarcoma. Also, HERV ENV proteins can promote cancer via immune suppression. Targeting ENV proteins is a potential future antitumor treatment modality.
Collapse
Affiliation(s)
- Yuan Gao
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Xiao-Fang Yu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Ting Chen
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| |
Collapse
|
22
|
Wang L, Li C, Tian J, Liu J, Zhao Y, Yi Y, Zhang Y, Han J, Pan C, Liu S, Deng N, Xian Z, Li G, Zhang X, Liang A. Genome-wide transcriptional analysis of Aristolochia manshuriensis induced gastric carcinoma. PHARMACEUTICAL BIOLOGY 2020; 58:98-106. [PMID: 31957525 PMCID: PMC7006638 DOI: 10.1080/13880209.2019.1710219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Context: Aristolochia manshuriensis Kom (Aristolochiaceae) (AMK) is known for toxicity and mutagenicity.Objective: The tumorigenic role of AMK has yet to be understood.Materials and methods: AMK extracts were extracted from root crude drug. SD (Sprague Dawley) rats underwent gavage with AMK (0.92 g/kg) every other day for 10 (AMK-10) or 20 (AMK-20) weeks. Stomach samples were gathered for histopathological evaluation, microarray and mRNA analysis.Results: The gastric weight to body weight ratio (GW/BW) is 1.7 in the AMK-10 cohort, and 1.8 in AMK-20 cohort compared to control (CTL) cohort. Liver function was damaged in AMK-10 and AMK-20 rats compared to CTL rats. There were no significant changes of CRE (creatinine) in AMK-10 and AMK-20 rats. Histopathological analysis revealed that rats developed dysplasia in the forestomach in AMK-10 rats, and became gastric carcinoma in AMK-20 rats. Genes including Mapk13, Nme1, Gsta4, Gstm1, Jun, Mgst2, Ggt6, Gpx2, Gpx8, Calml3, Rasgrp2, Cd44, Gsr, Dgkb, Rras, and Amt were found to be critical in AMK-10 and AMK-20 rats. Pik3cb, Plcb3, Tp53, Hras, Myc, Src, Akt1, Gnai3, and Fgfr3 worked in AMK-10 rats, and PDE2a and PDE3a played a pivotal role in AMK-20 rats.Discussion and conclusions: AMK induced benign or malignant gastric tumours depends on the period of AMK administration. Genes including Mapk13, Nme1, Gsta4, Gstm1, Jun, Mgst2, Ggt6, Gpx2, Gpx8, Calml3, Rasgrp2, Cd44, Gsr, Dgkb, Rras, Amt, Pik3cb, Plcb3, Tp53, Hras, Myc, Src, Akt1, Gnai3, Fgfr3, PDE2a, and PDE3a were found to be critical in aristolochic acid-induced gastric tumour process.
Collapse
Affiliation(s)
- Lianmei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Chunying Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Jingzhuo Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Jing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Yong Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Yan Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Suyan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Nuo Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Zhong Xian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Guiqin Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| | - Xin Zhang
- Blood Products Engineering Research and Development Center, Shenzhen, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
- CONTACT Aihua Liang Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and chemoresistance. Semin Cancer Biol 2020; 83:166-176. [PMID: 33220458 DOI: 10.1016/j.semcancer.2020.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Both genetic and epigenetic mechanisms intimately regulate cancer development and chemoresistance. Different genetic alterations are observed in multiple genes, and most are irreversible. Aside from genetic alterations, epigenetic alterations play a crucial role in cancer. The reversible nature of epigenetic modifications makes them an attractive target for cancer prevention and therapy. Specific epigenetic alteration is also being investigated as a potential biomarker in multiple cancers. c-MYC is one of the most important transcription factors that are centrally implicated in multiple types of cancer cells reprogramming, proliferation, and chemoresistance. c-MYC shows not only genetic alterations but epigenetic changes in multiple cancers. It has been observed that epigenome aberrations can reversibly alter the expression of c-MYC, both transcriptional and translational levels. Understanding the underlying mechanism of the epigenetic alterations of c-MYC, that has its role in multiple levels of cancer pathogenesis, can give a better understanding of various unresolved questions regarding cancer. Recently, some researchers reported that targeting the epigenetic modifiers of c-MYC can successfully inhibit cancer cell proliferation, sensitize the chemoresistant cells, and increase the patient survival rate. As c-MYC is an important transcription factor, epigenetic therapy might be one of the best alternatives for the conventional therapies that assumes the "one-size-fits-all" role. It can also increase the precision of targeting and enhance the effectiveness of treatments among various cancer subtypes. In this review, we highlighted the role of epigenetically modified c-MYC in cancer cell reprogramming, progression, and chemoresistance. We also summarize the potential therapeutic approaches to target these modifications for the prevention of cancer development and chemoresistant phenotypes.
Collapse
|
24
|
Park JE, Jung JH, Lee HJ, Sim DY, Im E, Park WY, Shim BS, Ko SG, Kim SH. Ribosomal protein L5 mediated inhibition of c-Myc is critically involved in sanggenon G induced apoptosis in non-small lung cancer cells. Phytother Res 2020; 35:1080-1088. [PMID: 32935429 DOI: 10.1002/ptr.6878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 02/01/2023]
Abstract
Though Sanggenon G (SanG) from root bark of Morus alba was known to exhibit anti-oxidant and anti-depressant effects, its underlying mechanisms still remain unclear. Herein SanG reduced the viability of A549 and H1299 non-small lung cancer cells (NSCLCs). Also, SanG increased sub-G1 population via inhibition of cyclin D1, cyclin E, CDK2, CDK4 and Bcl-2, cleavages of poly (ADP-ribose) polymerase (PARP) and caspase-3 in A549 and H1299 cells. Of note, SanG effectively inhibited c-Myc expression by activating ribosomal protein L5 (RPL5) and reducing c-Myc stability even in the presence of cycloheximide and 20% serum in A549 cells. Furthermore, SanG enhanced the apoptotic effect with doxorubicin in A549 cells. Taken together, our results for the first time provide novel evidence that SanG suppresses proliferation and induces apoptosis via caspase-3 activation and RPL5 mediated inhibition of c-Myc with combinational potential with doxorubicin.
Collapse
Affiliation(s)
- Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer. Cancer Gene Ther 2020; 28:141-155. [PMID: 32655129 DOI: 10.1038/s41417-020-0193-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
As one of the deadliest malignancies, gastric cancer (GC) is often accompanied by a low 5-year survival following initial diagnosis, which accounts for a substantial proportion of cancer-related deaths each year worldwide. Altered epigenetic modifications of cancer oncogenes and tumor suppressor genes emerge as novel mechanisms have been implicated the pathogenesis of GC. In the current study, we aim to elucidate whether histone deacetylase 3 (HDAC3) exerts oncogenic role in GC, and investigate the possible mechanism. Initially, we collected 64 paired cancerous and noncancerous tissues surgically resected from GC patients. Positive expression of HDAC3, FTO, and MYC in the tissues was measured using Immunohistochemistry. Meanwhile, GC cell line BGC-823/AGS was selected and treated with lentivirus vectors for alteration of HDAC3, FTO, or FOXA2 expressions, followed by detection on mRNA and protein levels of HDAC3, FOXA2, FTO, and MYC using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assays. The results demonstrated that the expressions of HDAC3, FTO and MYC were upregulated, while FOXA2 expression was downregulated in GC tissues and cells. After that, the cell viability, migration, and invasion of GC cells were assessed by CCK-8 and Transwell assays, revealing that HDAC3 accelerated GC cell viability, migration and invasion by degrading FOXA2. Subsequently, the binding relationship among HDAC3, FOXA2, FTO, and MYC was assessed by assays of immunoprecipitation, dual-luciferase reporter gene, and chromatin immunoprecipitation assay. Methylation of m6A mRNA in GC cells was detected via gene-specific m6A qPCR and dot-blot assays. The transcription factor FOXA2 was found to bind to the FTO gene promoter and decreased its expression, while FTO stabilized MYC mRNA by reducing m6A methylation of MYC in GC cells. In addition, HDAC3 was observed to maintain the FTO/m6A/MYC signaling and regulated GC progression, which was also supported by in vivo animal study data of GC cell tumorigenesis in nude mice. These key observations uncover the tumor-initiating activities of HDAC3 in GC through its regulation on FOXA2-mediated FTO/m6A/MYC axis, highlighting the potential of therapeutically targeting epigenetic modifications to combat GC.
Collapse
|
26
|
Pádua D, Figueira P, Ribeiro I, Almeida R, Mesquita P. The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Front Cell Dev Biol 2020; 8:442. [PMID: 32626705 PMCID: PMC7314965 DOI: 10.3389/fcell.2020.00442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric and colorectal cancers have a high incidence and mortality worldwide. The presence of cancer stem cells (CSCs) within the tumor mass has been indicated as the main reason for tumor relapse, metastasis and therapy resistance, leading to poor overall survival. Thus, the elimination of CSCs became a crucial goal for cancer treatment. The identification of these cells has been performed by using cell-surface markers, a reliable approach, however it lacks specificity and usually differs among tumor type and in some cases even within the same type. In theory, the ideal CSC markers are those that are required to maintain their stemness features. The knowledge that CSCs exhibit characteristics comparable to normal stem cells that could be associated with the expression of similar transcription factors (TFs) including SOX2, OCT4, NANOG, KLF4 and c-Myc, and signaling pathways such as the Wnt/β-catenin, Hedgehog (Hh), Notch and PI3K/AKT/mTOR directed the attention to the use of these similarities to identify and target CSCs in different tumor types. Several studies have demonstrated that the abnormal expression of some TFs and the dysregulation of signaling pathways are associated with tumorigenesis and CSC phenotype. The disclosure of common and appropriate biomarkers for CSCs will provide an incredible tool for cancer prognosis and treatment. Therefore, this review aims to gather the new insights in gastric and colorectal CSC identification specially by using TFs as biomarkers and divulge promising drugs that have been found and tested for targeting these cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paula Figueira
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Inês Ribeiro
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Patrícia Mesquita
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
27
|
Anauate AC, Leal MF, Calcagno DQ, Gigek CO, Karia BTR, Wisnieski F, dos Santos LC, Chen ES, Burbano RR, Smith MAC. The Complex Network between MYC Oncogene and microRNAs in Gastric Cancer: An Overview. Int J Mol Sci 2020; 21:ijms21051782. [PMID: 32150871 PMCID: PMC7084225 DOI: 10.3390/ijms21051782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development. However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic, not only as biomarkers, but also as molecules for development of promising therapies.
Collapse
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Bruno Takao Real Karia
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Leonardo Caires dos Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém PA 66075-110, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém PA 66063-240, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
28
|
Bona AB, Calcagno DQ, Ribeiro HF, Muniz JAPC, Pinto GR, Rocha CAM, Lacreta Junior ACC, de Assumpção PP, Herranz JAR, Burbano RR. Menadione reduces CDC25B expression and promotes tumor shrinkage in gastric cancer. Therap Adv Gastroenterol 2020; 13:1756284819895435. [PMID: 35392297 PMCID: PMC8981514 DOI: 10.1177/1756284819895435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. METHODS To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. RESULTS Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. CONCLUSIONS We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
| | - Danielle Queiroz Calcagno
- Oncology Research Nucleus, University Hospital
João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | - Helem Ferreira Ribeiro
- Center of Biological and Health Sciences,
Department of Biomedicine, University of Amazon, Belém, Brazil
| | | | | | | | | | - Paulo Pimentel de Assumpção
- Oncology Research Nucleus, University Hospital
João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | | | | |
Collapse
|
29
|
New prognostic markers revealed by RNA-Seq transcriptome analysis after MYC silencing in a metastatic gastric cancer cell line. Oncotarget 2019; 10:5768-5779. [PMID: 31645899 PMCID: PMC6791377 DOI: 10.18632/oncotarget.27208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
MYC overexpression is considered a driver event in gastric cancer (GC), and is frequently correlated with poor prognosis and metastasis. In this study, we evaluated the prognostic value of genes upregulated by MYC in patients with GC. Metastatic GC cells (AGP01) characterized by MYC amplification, were transfected with siRNAs targeting MYC. RNA-seq was performed in silenced and non-silenced AGP01 cells. Among the differentially expressed genes, CIAPIN1, MTA2, and UXT were validated using qRT-PCR, western blot, and immunohistochemistry in gastric tissues of 213 patients with GC; and their expressions were correlated with clinicopathological and survival data. High mRNA and protein levels of CIAPIN1, MTA2, and UXT were strongly associated with advanced GC stages (P < 0.0001). However, only CIAPIN1 and UXT gene expressions were able to predict distant metastases in patients with early-stage GC (P < 0.0001), with high sensitivity (> 92%) and specificity (> 90%). Overall survival rate of patients with overexpressed CIAPIN1 or UXT was significantly lower (P < 0.0001). In conclusion, CIAPIN1 and UXT may serve as potential molecular markers for GC prognosis.
Collapse
|
30
|
Won KY, Kim GY, Kim HK, Song MJ, Choi SI, Bae GE, Lim SJ. The expression of C-MYC in gastric adenocarcinoma is associated with PD-L1 and FOXP3 expression: C-MYC overexpression is a good prognostic factor. Pathol Res Pract 2019; 215:152639. [PMID: 31582185 DOI: 10.1016/j.prp.2019.152639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/25/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND C-MYC appears to initiate and maintain tumorigenesis through modulation of immune regulatory molecules such as PD-L1. The aim of our research was to evaluate the clinical implication of C-MYC expression in gastric adenocarcinoma in relation to the expression of the immune regulatory molecules PD-L1 and FOXP3. METHODS Tissue samples were acquired from 182 cases of gastric adenocarcinoma that were surgically resected at Kyung Hee University Hospital at Gangdong from 2006 to 2012. Immunohistochemical staining for C-MYC, PD-L1, CD8 and FOXP3 was done. RESULTS C-MYC overexpression showed a significant correlation with smaller tumor size, lower T category, lower N category, lower recurrence rate, and less lymphatic invasion. And C-MYC overexpression was negatively correlated with PD-L1 expression. The tumoral FOXP3 was positively correlated with C-MYC overexpression and Tregs count. PD-L1 expression was positively correlated with Tregs, CD8 + T cells, and tumor infiltrating lymphocytes (TIL). Tregs count was positively correlated with CD8 + T cells and TIL. CD8 + T cells was positively correlated with TIL. CONCLUSION We discovered that the immune regulatory effect of C-MYC and PD-L1, and the tumor suppressor function of tumoral FOXP3 had a significant influence on the tumor microenvironment (Tregs, CD8 + T cells, and tumor infiltrating lymphocytes) in a complex manner. The C-MYC overexpression is a good prognostic factor in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Kyu Yeoun Won
- Department of Pathology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Gou Young Kim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyung Kyung Kim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Min Jeong Song
- Department of Pathology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung Il Choi
- Department of Surgery, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Go Eun Bae
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sung-Jig Lim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
31
|
Increased Risk of Cancer in Men With Peyronie's Disease: A Cohort Study Using a Large United States Insurance Claims Database. Sex Med 2019; 7:403-408. [PMID: 31530474 PMCID: PMC6963113 DOI: 10.1016/j.esxm.2019.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 01/19/2023] Open
Abstract
Background Men with Peyronie’s disease (PD) may have an increased prevalence of certain comorbidities, including malignancy. We sought to examine the clinical relationship between PD and subsequent diagnosis of malignancy. Methods Using data from the IBM Health MarketScan claims database from 2007 to 2013, we compared men with PD to a control group of men without PD or erectile dysfunction matched for age and duration of follow-up. We compared incidence of 18 categories of malignancy between both groups using a Cox regression model. Results In total, 48,423 men with PD and 484,230 controls were identified. The mean age within both cohorts was 50 ± 9.4 years old, and mean follow-up time was approximately 4.4 ± 2.1 years. After being controlled for age, year of evaluation, obesity, smoking, number of outpatient visits, number of urologist visits, and duration of follow-up, men with PD had an increased risk of all cancers (hazard ratio = 1.10, 95% CI = 1.06–1.14), stomach cancer (1.43, 1.06–1.14), testis cancer (1.39, 1.05–1.84), and melanoma (1.19, 1.02–1.38) when compared with controls. The strengths in using the MarketScan database are the anonymous nature of the data, accessibility, and the power provided by the large number of patient visits recorded. Limitations include a lack of detail in certain facets of patient clinical data, and the lack of long-term follow-up to assess the impact of time on other potentially associated conditions. Conclusions This manuscript is the first to our knowledge to describe a relationship between PD and cancer. Men with PD may be at increased risk for certain malignancies compared with age-matched controls. Further investigation is needed to explore the clinical implications of these findings. Pastuszak AW, Thirumavalavan N, Kohn TP, et al. Increased Cancer Risk in Men With Peyronie’s Disease: A Cohort Study Using a Large US Insurance Claims Database. Sex Med 2019;7:403–408.
Collapse
|
32
|
Pant N, Rakshit S, Paul S, Saha I. Genome-wide analysis of multi-view data of miRNA-seq to identify miRNA biomarkers for stomach cancer. J Biomed Inform 2019; 97:103254. [DOI: 10.1016/j.jbi.2019.103254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
|
33
|
Calcagno DQ, Wisnieski F, Mota ERDS, Maia de Sousa SB, Costa da Silva JM, Leal MF, Gigek CO, Santos LC, Rasmussen LT, Assumpção PP, Burbano RR, Smith MAC. Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives. Epigenomics 2019; 11:349-362. [DOI: 10.2217/epi-2018-0081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.
Collapse
Affiliation(s)
- Danielle Q Calcagno
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
- Residência Multiprofissional em Saúde/Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Elizangela R da Silva Mota
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
| | - Stefanie B Maia de Sousa
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Mariana F Leal
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Carolina O Gigek
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Departamento de Patologia, Universidade Federal de São Paulo, SP, Brazil
| | - Leonardo C Santos
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Lucas T Rasmussen
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Sagrado Coração, Bauru, SP, Brazil
| | - Paulo P Assumpção
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rommel R Burbano
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brazil
| | - Marília AC Smith
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|
34
|
Gonzalez-Fierro A, Dueñas-González A. Emerging DNA methylation inhibitors for cancer therapy: challenges and prospects. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:27-35. [DOI: 10.1080/23808993.2019.1571906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Affiliation(s)
| | - Alfonso Dueñas-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM/Instituto Nacional de Can cerología, México City, Mexico
| |
Collapse
|
35
|
de Souza CRT, Almeida MCA, Khayat AS, da Silva EL, Soares PC, Chaves LC, Burbano RMR. Association between Helicobacter pylori, Epstein-Barr virus, human papillomavirus and gastric adenocarcinomas. World J Gastroenterol 2018; 24:4928-4938. [PMID: 30487702 PMCID: PMC6250917 DOI: 10.3748/wjg.v24.i43.4928] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To correlate Helicobacter pylori (H. pylori), Epstein-Barr virus (EBV) and human papillomavirus (HPV) with gastric cancer (GC) cases in Pará State, Brazil.
METHODS Tissue samples were obtained from 302 gastric adenocarcinomas. A rapid urease test was used to detect the presence of H. pylori, and the presence of the cagA gene in the HP-positive samples was confirmed by PCR. An RNA in situ hybridization test designed to complement Eber1 RNA was used to detect the presence of EBV in the samples, and the L1 region of HPV was detected using nested PCR. Positive HPV samples were genotyped and analyzed for E6 and E7 viral gene expression. Infections were also correlated with the clinical and pathological characteristics of the patients.
RESULTS The majority of the 302 samples analyzed were obtained from men (65%) aged 55 years or older (67%) and were classified as the intestinal subtype (55%). All three pathogens were found in the samples analyzed in the present study (H. pylori: 87%, EBV: 20%, HPV: 3%). Overall, 78% of the H. pylori-positive (H. pylori+) samples were cagA+ (H. pylori-cagA+), and there was an association between the cytotoxic product of this gene and EBV. Coinfections of H. pylori-cagA+ and EBV were correlated with the most advanced tumor stages. Although only 20% of the tumors were positive for EBV, infection with this virus was associated with distant metastasis. Only the HPV 16 and 18 strains were found in the samples, although no expression of the E6 and E7 oncoproteins was detected. The fundus of the stomach was the region least affected by the pathogens.
CONCLUSION HPV was not involved in gastric tumorigenesis. Prophylactic and therapeutic measures against H. pylori and EBV may prevent the development of GC, especially the more aggressive forms.
Collapse
Affiliation(s)
| | - Marcelli Carolini Alves Almeida
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil
| | - André Salim Khayat
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil
- Oncology Research Center, Federal University of Pará, João de Barros Barreto University Hospital, Belém, Pará 66073-000, Brazil
| | - Emerson Lucena da Silva
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil
| | | | | | - Rommel Mario Rodríguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil
- Oncology Research Center, Federal University of Pará, João de Barros Barreto University Hospital, Belém, Pará 66073-000, Brazil
- Ophir Loyola Hospital, Belém, Pará 66060-281, Brazil
| |
Collapse
|
36
|
Song B, Du J, Song DF, Ren JC, Feng Y. Dysregulation of NCAPG, KNL1, miR-148a-3p, miR-193b-3p, and miR-1179 may contribute to the progression of gastric cancer. Biol Res 2018; 51:44. [PMID: 30390708 PMCID: PMC6215350 DOI: 10.1186/s40659-018-0192-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/16/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Emerging evidence indicate that miRNAs play an important role on gastric cancer (GC) progression via regulating several downstream targets, but it is still partially uncovered. This study aimed to explore the molecular mechanisms of GC by comprehensive analysis of mRNAs and miRNA expression profiles. METHODS The mRNA and miRNA expression profiles of GSE79973 and GSE67354 downloaded from Gene Expression Omnibus were used to analyze the differentially expressed genes (DEGs) and DE-miRNAs among GC tissues and normal tissues. Then, targets genes of DE-miRNAs were predicted and the DE-miRNA-DEG regulatory network was constructed. Next, function enrichment analysis of the overlapped genes between the predicted DE-miRNAs targets and DEGs was performed and a protein-protein interactions network of overlapped genes was constructed. Finally, RT-PCR analysis was performed to detect the expression levels of several key DEGs and DE-miRNAs. RESULTS A set of 703 upregulated and 600 downregulated DEGs, as well as 8 upregulated DE-miRNAs and 27 downregulated DE-miRNAs were identified in GC tissue. hsa-miR-193b-3p and hsa-miR-148a-3p, which targeted most DEGs, were highlighted in the DE-miRNA-DEG regulatory network, as well as hsa-miR-1179, which targeted KNL1, was newly predicted to be associated with GC. In addition, NCAPG, which is targeted by miR-193b-3p, and KNL1, which is targeted by hsa-miR-1179, had higher degrees in the PPI network. RT-qPCR results showed that hsa-miR-148a-3p, hsa-miR-193b-3p, and hsa-miR-1179 were downregulated, and NCAPG and KNL1 were upregulated in GC tissues; this is consistent with our bioinformatics-predicted results. CONCLUSIONS The downregulation of miR-193b-3p might contribute to GC cell proliferation by mediating the upregulation of NCAPG; as additionally, the downregulation of miR-193b-3p might contribute to the mitotic nuclear division of GC cells by mediating the upregulation of KNL1.
Collapse
Affiliation(s)
- Bin Song
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, No.126, Xiantai Street, Changchun, 130033, China
| | - Juan Du
- Internal Medicine 2, The Tumor Hospital of Jilin Province, Changchun, 130012, China
| | - De-Feng Song
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, No.126, Xiantai Street, Changchun, 130033, China
| | - Ji-Chen Ren
- Internal Medicine 2, The Tumor Hospital of Jilin Province, Changchun, 130012, China
| | - Ye Feng
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, No.126, Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
37
|
Gastric Cancer Cell Lines Have Different MYC-Regulated Expression Patterns but Share a Common Core of Altered Genes. Can J Gastroenterol Hepatol 2018; 2018:5804376. [PMID: 30410872 PMCID: PMC6206580 DOI: 10.1155/2018/5804376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022] Open
Abstract
MYC is an oncogene responsible for excessive cell growth in cancer, enabling transcriptional activation of genes involved in cell cycle regulation, metabolism, and apoptosis, and is usually overexpressed in gastric cancer (GC). By using siRNA and Next-Generation Sequencing (NGS), we identified MYC-regulated differentially expressed Genes (DEGs) in three Brazilian gastric cancer cell lines representing the histological subtypes of GC (diffuse, intestinal, and metastasis). The DEGs were picked using Sailfish software, followed by Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using KEGG. We found 11 significantly enriched gene sets by using enrichment score (ES), False Discovery Rate (FDR), and nominal P-values. We identified a total of 5.471 DEGs with correlation over (80%). In diffuse-type and in metastatic GC cell lines, MYC-silencing caused DEGs downregulation, while the intestinal-type GC cells presented overall DEGs upregulation after MYC siRNA depletion. We were able to detect 11 significant gene sets when comparing our samples to the hallmark collection of gene expression, enriched mostly for the following hallmarks: proliferation, pathway, signaling, metabolic, and DNA damage response. When we analyzed our DEGs considering KEGG metabolic pathways, we found 12 common branches covering a wide range of biological functions, and three of them were common to all three cell lines: ubiquitin-mediated proteolysis, ribosomes, and system and epithelial cell signaling in Helicobacter pylori infection. The GC cell lines used in this study share 14 MYC-regulated genes, but their gene expression profile is different for each histological subtype of GC. Our results present a computational analysis of MYC-related signatures in GC, and we present evidence that GC cell lines representing distinct histological subtypes of this disease have different MYC-regulated expression profiles but share a common core of altered genes. This is an important step towards the understanding of MYC's role in gastric carcinogenesis and an indication of probable new drug targets in stomach cancer.
Collapse
|
38
|
Small benzothiazole molecule induces apoptosis and prevents metastasis through DNA interaction and c-MYC gene supression in diffuse-type gastric adenocarcinoma cell line. Chem Biol Interact 2018; 294:118-127. [DOI: 10.1016/j.cbi.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
|
39
|
Ranjbar R, Hesari A, Ghasemi F, Sahebkar A. Expression of microRNAs and IRAK1 pathway genes are altered in gastric cancer patients with Helicobacter pylori infection. J Cell Biochem 2018; 119:7570-7576. [PMID: 29797599 DOI: 10.1002/jcb.27067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is among the most common cancer types in the world and one of the most lethal gastrointestinal cancers. MicroRNAs (miRNAs) can be of great importance in the early detection of GC. This study aimed to investigate some miRNAs and the genes involved in IRAK1 pathways in the serum of GC patients with Helicobacter pylori (H. pylori) infections compared to the control group. Total RNA was extracted from the serum of GC patients with H. pylori infection and healthy volunteers. The expression levels of miRNAs and the genes were assessed using Real time RT-PCR with specific primers. Our data showed that miR-146, miR-375, and Let-7 were down-regulated and miR-19 and miR-21 were up-regulated in GC patients with H. pylori infection. Other genes involved in the pathways such as RAS, MYC, NFKB, JUN, TRAF6, and IRAK4 were overexpressed; while the expression of PTEN gene was decreased compared to the control group. Expression of miRNAs and IRAK1 pathway genes are altered in patients with GC and H. pylori infection. This suggests a potential role for the above-mentioned miRNAs and genes in the diagnosis of GC.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - AmirReza Hesari
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Su C, Li D, Li N, Du Y, Yang C, Bai Y, Lin C, Li X, Zhang Y. Studying the mechanism of PLAGL2 overexpression and its carcinogenic characteristics based on 3'-untranslated region in colorectal cancer. Int J Oncol 2018; 52:1479-1490. [PMID: 29512763 PMCID: PMC5873895 DOI: 10.3892/ijo.2018.4305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Pleomorphic adenoma gene like-2 (PLAGL2) is a zinc finger protein transcription factor, which is upregulated and serves an oncogenic function in multiple human malignancies, including colorectal cancer (CRC). First, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of PLAGL2 in CRC tissues and normal tissues. Then, bioinformatics analysis, RT-qPCR, western blotting, luciferase reporter assays and RNA-binding protein immunoprecipitation assays were performed to explore whether the underlying mechanisms, including copy number variation (CNV), microRNAs (miRNAs/miRs) and RNA-binding proteins (RBPs) led to the abnormal expression of PLAGL2. Finally, cell counting kit-8 assays, Transwell assays and xenograft models were used to detect carcinogenesis-associated characteristics based on the 3′-untranslated region (3′-UTR) of PLAGL2. In the present study, PLAGL2 was revealed to be upregulated in CRC tissues compared with normal CRC tissues. CNV was one of the causes leading to the upregulation of PLAGL2. miRNA, including downregulated miR-486-5p, and RBPs, including upregulated human antigen R (HuR), were other key underlying causes. In addition, PLAGL2 3′-UTR was revealed to promote the progression of CRC in vitro and in vivo, and to regulate the expression of C-MYC and CD44. To conclude, these results suggested that high expression of PLAGL2 in CRC was associated with CNV, miR-486-5p and HuR expression, whose 3′-UTR may promote colon carcinogenesis and serve as a novel potential biomarker for CRC therapies.
Collapse
Affiliation(s)
- Chen Su
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Daojiang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Nanpeng Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuheng Du
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chunxing Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yang Bai
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
41
|
YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process. Oncotarget 2018; 7:85393-85410. [PMID: 27863420 PMCID: PMC5356744 DOI: 10.18632/oncotarget.13381] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
We previously observed reduced YWHAE (14-3-3ε) protein expression in a small set of gastric cancer samples. YWHAE may act as a negative regulator of the cyclin CDC25B, which is a transcriptional target of MYC oncogene. The understanding of YWHAE role and its targets is important for the better knowledge of gastric carcinogenesis. Thus, we aimed to evaluate the relationship among YWHAE, CDC25B, and MYC in vitro and in vivo. For this, we analyzed the YWHAE, CDC25B, and MYC expression in YWHA-silenced, CDC25B-silenced, and MYC-silenced gastric cancer cell lines, as well as in gastric cancer and non-neoplastic gastric samples. In gastric cancer cell lines, YWHAE was able to inhibit the cell proliferation, invasion and migration through the reduction of MYC and CDC25B expression. Conversely, MYC induced the cell proliferation, invasion and migration through the induction of CDC25B and the reduction of YWHAE. Most of the tumors presented reduced YWHAE and increased CDC25B expression, which seems to be important for tumor development. Increased MYC expression was a common finding in gastric cancer and has a role in poor prognosis. In the tumor initiation, the opposite role of YWHAE and CDC25B in gastric carcinogenesis seems to be independent of MYC expression. However, the inversely correlation between YWHAE and MYC expression seems to be important for gastric cancer cells invasion and migration. The interaction between YWHAE and MYC and the activation of the pathways related to this interaction play a role in the metastasis process.
Collapse
|
42
|
Frequent Coamplification of Receptor Tyrosine Kinase and Downstream Signaling Genes in Japanese Primary Gastric Cancer and Conversion in Matched Lymph Node Metastasis. Ann Surg 2018; 267:114-121. [DOI: 10.1097/sla.0000000000002042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Pan J, Xu Y, Song H, Zhou X, Yao Z, Ji G. Extracts of Zuo Jin Wan, a traditional Chinese medicine, phenocopies 5-HTR1D antagonist in attenuating Wnt/β-catenin signaling in colorectal cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:506. [PMID: 29183322 PMCID: PMC5706385 DOI: 10.1186/s12906-017-2006-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND In vitro and in vivo studies have shown that Zuo Jin Wan (ZJW), a herbal formula of traditional Chinese medicine (TCM), possessed anticancer properties. However, the underlying mechanism for the action of ZJW remains unclear. Various subtypes of 5-Hydroxytryptamine receptor (5-HTR) have been shown to play a role in carcinogenesis and cancer metastasis. 5-HTR1D, among the subtypes, is highly expressed in colorectal cancer (CRC) cell lines and tissues. The present study aimed at investigating effect of ZJW extracts on the biological function of CRC cells, the expression of 5-HTR1D, and molecules of Wnt/β-catenin signaling pathway. METHODS In this study, the effect of ZJW extracts on 5-HTR1D expression and Wnt/β-catenin signaling pathway were investigated and contrasted with GR127935 (GR), a known 5-HTR1D antagonist, using the CRC cell line SW403. The cells were respectively treated with GR127935 and different doses of ZJW extracts. Proliferation, apoptosis, migration, and invasion of SW403 cells were compared between ZJW and GR127935 treatments. The expression of 5-HTR1D and signaling molecules involved in the canonic Wnt/β-catenin pathway were determined by Western blot analysis. RESULTS After ZJW extracts treatment and GR127935 treatment, G1 arrest in cell cycle of SW403 was increased. Cell apoptosis was pronounced, and cell migration and invasion were suppressed. SW403 cells showed a dose-dependently decreased expression of 5-HTR1D, meanwhile, β-catenin level was significantly decreased in nucleus of cells cultured with GR127935. Treatment of ZJW extracts dose-dependently resulted in decreased 5-HTR1D and a concomitant reduction in the Wnt/β-catenin signal transduction, an effect indistinguishable from GR127935 treatment. CONCLUSION The anticancer activity of ZJW extracts may be partially achieved through attenuation of the 5-HTR1D-Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jielu Pan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Xiqiu Zhou
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- E-Institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
44
|
Abstract
Metaplasia is the replacement of one differentiated somatic cell type with another differentiated somatic cell type in the same tissue. Typically, metaplasia is triggered by environmental stimuli, which may act in concert with the deleterious effects of microorganisms and inflammation. The cell of origin for intestinal metaplasia in the oesophagus and stomach and for pancreatic acinar-ductal metaplasia has been posited through genetic mouse models and lineage tracing but has not been identified in other types of metaplasia, such as squamous metaplasia. A hallmark of metaplasia is a change in cellular identity, and this process can be regulated by transcription factors that initiate and/or maintain cellular identity, perhaps in concert with epigenetic reprogramming. Universally, metaplasia is a precursor to low-grade dysplasia, which can culminate in high-grade dysplasia and carcinoma. Improved clinical screening for and surveillance of metaplasia might lead to better prevention or early detection of dysplasia and cancer.
Collapse
Affiliation(s)
- Veronique Giroux
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
45
|
Shen N, Jiang L, Li Q, Cui J, Zhou S, Cheng F, Zhong Z, Meng L, You Y, Zhu X, Zou P. The epigenetic effect of microRNA in BCR-ABL1-positive microvesicles during the transformation of normal hematopoietic transplants. Oncol Rep 2017; 38:3278-3284. [DOI: 10.3892/or.2017.5966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/16/2017] [Indexed: 11/06/2022] Open
|
46
|
Ren W, Li W, Wang D, Hu S, Suo J, Ying X. Combining multi-dimensional data to identify key genes and pathways in gastric cancer. PeerJ 2017; 5:e3385. [PMID: 28603669 PMCID: PMC5463969 DOI: 10.7717/peerj.3385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/06/2017] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer is an aggressive cancer that is often diagnosed late. Early detection and treatment require a better understanding of the molecular pathology of the disease. The present study combined data on gene expression and regulatory levels (microRNA, methylation, copy number) with the aim of identifying key genes and pathways for gastric cancer. Data used in this study was retrieved from The Cancer Genomic Atlas. Differential analyses between gastric cancer and normal tissues were carried out using Limma. Copy number alterations were identified for tumor samples. Bimodal filtering of differentially expressed genes (DEGs) based on regulatory changes was performed to identify candidate genes. Protein–protein interaction networks for candidate genes were generated by Cytoscape software. Gene ontology and pathway analyses were performed, and disease-associated network was constructed using the Agilent literature search plugin on Cytoscape. In total, we identified 3602 DEGs, 251 differentially expressed microRNAs, 604 differential methylation-sites, and 52 copy number altered regions. Three groups of candidate genes controlled by different regulatory mechanisms were screened out. Interaction networks for candidate genes were constructed consisting of 415, 228, and 233 genes, respectively, all of which were enriched in cell cycle, P53 signaling, DNA replication, viral carcinogenesis, HTLV-1 infection, and progesterone mediated oocyte maturation pathways. Nine hub genes (SRC, KAT2B, NR3C1, CDK6, MCM2, PRKDC, BLM, CCNE1, PARK2) were identified that were presumed to be key regulators of the networks; seven of these were shown to be implicated in gastric cancer through disease-associated network construction. The genes and pathways identified in our study may play pivotal roles in gastric carcinogenesis and have clinical significance.
Collapse
Affiliation(s)
- Wu Ren
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China.,Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shuofeng Hu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jian Suo
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiaomin Ying
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Wang X, Sun L, Wang X, Kang H, Ma X, Wang M, Lin S, Liu M, Dai C, Dai Z. Acidified bile acids enhance tumor progression and telomerase activity of gastric cancer in mice dependent on c-Myc expression. Cancer Med 2017; 6:788-797. [PMID: 28247570 PMCID: PMC5387128 DOI: 10.1002/cam4.999] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
c-Myc overexpression has been implicated in several malignancies including gastric cancer. Here, we report that acidified bile acids enhance tumor progression and telomerase activity in gastric cancer via c-Myc activation both in vivo and in vitro. c-Myc mRNA and protein levels were assessed in ten primary and five local recurrent gastric cancer samples by quantitative real-time polymerase chain reaction and western blotting analysis. The gastric cancer cell line MGC803 was exposed to bile salts (100 μmol/L glycochenodeoxycholic acid and deoxycholic acid) in an acid medium (pH 5.5) for 10 min daily for 60 weeks to develop an MGC803-resistant cell line. Control MGC803 cells were grown without acids or bile salts for 60 weeks as a control. Cell morphology, proliferation, colony formation and apoptosis of MGC803-resistant cells were analyzed after 60 weeks. To determine the involvement of c-Myc in tumor progression and telomere aging in MGC803-resistant cells, we generated xenografts in nude mice and measured xenograft volume and in vivo telomerase activity. The c-Myc and hTERT protein and mRNA levels were significantly higher in local recurrent gastric cancer samples than in primary gastric cancer samples. MGC803-resistant cells showed a marked phenotypic change under normal growth conditions with more clusters and acini, and exhibited increased cell viability and colony formation and decreased apoptosis in vitro. These phenotypic changes were found to be dependent on c-Myc activation using the c-Myc inhibitor 10058-F4. MGC803-resistant cells also showed a c-Myc-dependent increase in xenograft growth and telomerase activity in vivo. In conclusion, these observations support the hypothesis that acidified bile acids enhance tumor progression and telomerase activity in gastric cancer and that these effects are dependent on c-Myc activity. These findings suggest that acidified bile acids play an important role in the malignant progression of local recurrent gastric cancer.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Lei Sun
- Department of General SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Xijing Wang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Huafeng Kang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Xiaobin Ma
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Meng Wang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Shuai Lin
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Meng Liu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Cong Dai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Zhijun Dai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710004China
| |
Collapse
|
48
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
49
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Calcagno DQ, Takeno SS, Gigek CO, Leal MF, Wisnieski F, Chen ES, Araújo TMT, Lima EM, Melaragno MI, Demachki S, Assumpção PP, Burbano RR, Smith MC. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines. World J Gastroenterol 2016; 22:9506-9514. [PMID: 27920471 PMCID: PMC5116594 DOI: 10.3748/wjg.v22.i43.9506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/10/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To identify common copy number alterations on gastric cancer cell lines.
METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis.
RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively.
CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer.
Collapse
|