1
|
Liu J, Zhang B, Huang B, Zhang K, Guo F, Wang Z, Shang D. A stumbling block in pancreatic cancer treatment: drug resistance signaling networks. Front Cell Dev Biol 2025; 12:1462808. [PMID: 39872846 PMCID: PMC11770040 DOI: 10.3389/fcell.2024.1462808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The primary node molecules in the cell signaling network in cancer tissues are maladjusted and mutated in comparison to normal tissues, which promotes the occurrence and progression of cancer. Pancreatic cancer (PC) is a highly fatal cancer with increasing incidence and low five-year survival rates. Currently, there are several therapies that target cell signaling networks in PC. However, PC is a "cold tumor" with a unique immunosuppressive tumor microenvironment (poor effector T cell infiltration, low antigen specificity), and targeting a single gene or pathway is basically ineffective in clinical practice. Targeted matrix therapy, targeted metabolic therapy, targeted mutant gene therapy, immunosuppressive therapy, cancer vaccines, and other emerging therapies have shown great therapeutic potential, but results have been disappointing. Therefore, we summarize the identified and potential drug-resistant cell signaling networks aimed at overcoming barriers to existing PC therapies.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fujia Guo
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Ferdous KU, Tesfay MZ, Cios A, Shelton RS, Hartupee C, Urbaniak A, Chamcheu JC, Mavros MN, Giorgakis E, Mustafa B, Simoes CC, Miousse IR, Basnakian AG, Moaven O, Post SR, Cannon MJ, Kelly T, Nagalo BM. Enhancing Neoadjuvant Virotherapy's Effectiveness by Targeting Stroma to Improve Resectability in Pancreatic Cancer. Biomedicines 2024; 12:1596. [PMID: 39062169 PMCID: PMC11275208 DOI: 10.3390/biomedicines12071596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
About one-fourth of patients with pancreatic ductal adenocarcinoma (PDAC) are categorized as borderline resectable (BR) or locally advanced (LA). Chemotherapy and radiation therapy have not yielded the anticipated outcomes in curing patients with BR/LA PDAC. The surgical resection of these tumors presents challenges owing to the unpredictability of the resection margin, involvement of vasculature with the tumor, the likelihood of occult metastasis, a higher ratio of positive lymph nodes, and the relatively larger size of tumor nodules. Oncolytic virotherapy has shown promising activity in preclinical PDAC models. Unfortunately, the desmoplastic stroma within the PDAC tumor microenvironment establishes a barrier, hindering the infiltration of oncolytic viruses and various therapeutic drugs-such as antibodies, adoptive cell therapy agents, and chemotherapeutic agents-in reaching the tumor site. Recently, a growing emphasis has been placed on targeting major acellular components of tumor stroma, such as hyaluronic acid and collagen, to enhance drug penetration. Oncolytic viruses can be engineered to express proteolytic enzymes that cleave hyaluronic acid and collagen into smaller polypeptides, thereby softening the desmoplastic stroma, ultimately leading to increased viral distribution along with increased oncolysis and subsequent tumor size regression. This approach may offer new possibilities to improve the resectability of patients diagnosed with BR and LA PDAC.
Collapse
Affiliation(s)
- Khandoker Usran Ferdous
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Aleksandra Cios
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
| | - Randal S. Shelton
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA 70112, USA; (C.H.); (O.M.)
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.U.); (I.R.M.)
| | - Jean Christopher Chamcheu
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA;
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michail N. Mavros
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Emmanouil Giorgakis
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Bahaa Mustafa
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Camila C. Simoes
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.U.); (I.R.M.)
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Central Arkansas Veterans Healthcare System, John L. McClellan Memorial VA Hospital, Little Rock, AR 72205, USA
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA 70112, USA; (C.H.); (O.M.)
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA 70112, USA
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Martin J. Cannon
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| |
Collapse
|
3
|
Gupta P, Bermejo-Rodriguez C, Kocher H, Pérez-Mancera PA, Velliou EG. Chemotherapy Assessment in Advanced Multicellular 3D Models of Pancreatic Cancer: Unravelling the Importance of Spatiotemporal Mimicry of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2300580. [PMID: 38327154 DOI: 10.1002/adbi.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Camino Bermejo-Rodriguez
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eirini G Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| |
Collapse
|
4
|
Kazakova AN, Lukina MM, Anufrieva KS, Bekbaeva IV, Ivanova OM, Shnaider PV, Slonov A, Arapidi GP, Shender VO. Exploring the diversity of cancer-associated fibroblasts: insights into mechanisms of drug resistance. Front Cell Dev Biol 2024; 12:1403122. [PMID: 38818409 PMCID: PMC11137237 DOI: 10.3389/fcell.2024.1403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction: Among the various stromal cell types within the tumor microenvironment, cancer-associated fibroblasts (CAFs) emerge as the predominant constituent, exhibiting a diverse array of oncogenic functions not intrinsic to normal fibroblasts. Their involvement spans across all stages of tumorigenesis, encompassing initiation, progression, and metastasis. Current understanding posits the coexistence of distinct subpopulations of CAFs within the tumor microenvironment across a spectrum of solid tumors, showcasing both pro- and antitumor activities. Recent advancements in single-cell transcriptomics have revolutionized our ability to meticulously dissect the heterogeneity inherent to CAF populations. Furthermore, accumulating evidence underscores the pivotal role of CAFs in conferring therapeutic resistance to tumors against various drug modalities. Consequently, efforts are underway to develop pharmacological agents specifically targeting CAFs. Methods: This review embarks on a comprehensive analysis, consolidating data from 36 independent single-cell RNA sequencing investigations spanning 17 distinct human malignant tumor types. Results: Our exploration centers on elucidating CAF population markers, discerning their prognostic relevance, delineating their functional contributions, and elucidating the underlying mechanisms orchestrating chemoresistance. Discussion: Finally, we deliberate on the therapeutic potential of harnessing CAFs as promising targets for intervention strategies in clinical oncology.
Collapse
Affiliation(s)
- Anastasia N. Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Maria M. Lukina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ksenia S. Anufrieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina V. Bekbaeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Olga M. Ivanova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina V. Shnaider
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Slonov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Georgij P. Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria O. Shender
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Luo Z, Zheng Q, Ye S, Li Y, Chen J, Fan C, Chen J, Lei Y, Liao Q, Xi Y. HMGA2 alleviates ferroptosis by promoting GPX4 expression in pancreatic cancer cells. Cell Death Dis 2024; 15:220. [PMID: 38493165 PMCID: PMC10944463 DOI: 10.1038/s41419-024-06592-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Pancreatic cancer is one of the most malignant tumor types and is characterized by high metastasis ability and a low survival rate. As a chromatin-binding protein, HMGA2 is widely overexpressed and considered an oncogene with various undefined regulatory mechanisms. Herein, we demonstrated that HMGA2 is highly expressed in pancreatic cancer tissues, mainly distributed in epithelial cells, and represents a subtype of high epithelial-mesenchymal transition. Deletion of HMGA2 inhibits tumor malignancy through cell proliferation, metastasis, and xenograft tumor growth in vivo. Moreover, HMGA2 enhanced the cellular redox status by inhibiting reactive oxygen species and promoting glutathione production. Importantly, ferroptotic cell death was significantly ameliorated in cells overexpressing HMGA2. Conversely, HMGA2 deletion exacerbated ferroptosis. Mechanistically, HMGA2 activated GPX4 expression through transcriptional and translational regulation. HMGA2 binds and promotes cis-element modification in the promoter region of the GPX4 gene by enhancing enhancer activity through increased H3K4 methylation and H3K27 acetylation. Furthermore, HMGA2 stimulated GPX4 protein synthesis via the mTORC1-4EBP1 and -S6K signaling axes. The overexpression of HMGA2 alleviated the decrease in GPX4 protein levels resulting from the pharmacologic inhibition of mTORC1. Conversely, compared with the control, HMGA2 deletion more strongly reduced the phosphorylation of 4EBP1 and S6K. A strong positive correlation between HMGA2 and GPX4 expression was confirmed using immunohistochemical staining. We also demonstrated that HMGA2 mitigated the sensitivity of cancer cells to combination treatment with a ferroptosis inducer and mTORC1 inhibition or gemcitabine. In summary, our results revealed a regulatory mechanism by which HMGA2 coordinates GPX4 expression and underscores the potential value of targeting HMGA2 in cancer treatment.
Collapse
Affiliation(s)
- Ziyang Luo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Qingfang Zheng
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Shazhou Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Jiayi Chen
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chengjiang Fan
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jianing Chen
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuxin Lei
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Qi Liao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Yang Xi
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Zhou S, Zhang C, Zhang Z, Hu Y, Zhao L, Hu W, Chen S, Li B, Xiao S. A novel HMGA2::KITLG fusion in a dedifferentiated liposarcoma with amplification of MDM2 and HMGA2. Genes Chromosomes Cancer 2024; 63:e23200. [PMID: 37698344 DOI: 10.1002/gcc.23200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
High-mobility group AT-hook 2 (HMGA2) is rearranged in various types of mesenchymal tumors, particularly lipomas. HMGA2 is also co-amplified with mouse double minute 2 (MDM2) in well-differentiated liposarcoma/dedifferentiated liposarcoma (WDLPS/DDLPS). We report a case of relapsed DDLPS with a novel in-frame fusion between HMGA2 and KITLG, which encodes the ligand for KIT kinase, a critical protein involved in gametogenesis, hematopoiesis, and melanogenesis. The HMGA2 breakpoint is in intron 3, a commonly observed location for HMGA2 rearrangements, while the KITLG breakpoint is in intron 2, leading to a fusion protein that contains almost the entire coding sequence of KITLG. By immunohistochemical staining, tumor cells expressed KIT and showed phosphorylated MAPK, a major KIT downstream target. We suggest an oncogenic mechanism that involves the overexpression of KITLG caused by its rearrangement with HMGA2, leading to the constitutive activation of KIT kinase. While MDM2 amplification was observed in both the primary tumor and the relapsed tumor, the HMGA2::KITLG was only present in the relapsed tumor, indicating the role of HMGA2::KITLG in disease progression.
Collapse
Affiliation(s)
- Shishan Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | | | - Zhipeng Zhang
- Department of Geratology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lina Zhao
- Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Wentao Hu
- Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Si Chen
- Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Zhang T, Gu Z, Ni R, Wang X, Jiang Q, Tao R. An Update on Gemcitabine-Based Chemosensitization Strategies in Pancreatic Ductal Adenocarcinoma. FRONT BIOSCI-LANDMRK 2023; 28:361. [PMID: 38179740 DOI: 10.31083/j.fbl2812361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 01/06/2024]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths, and chemotherapy is one of the most important treatments for pancreatic cancer. Unfortunately, pancreatic cancer cells can block chemotherapy drugs from entering the tumor. This is owing to interactions between the tumor's environment and the cancer cells. Here, we review the latest research on the mechanisms by which pancreatic cancer cells block the chemotherapy drug, gemcitabine. The results of our review can help identify potential therapeutic targets for the blocking of gemcitabine by pancreatic cancer cells and may provide new strategies to help chemotherapy drugs penetrate tumors.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Surgery, Bengbu Medical College, 233030 Bengbu, AnHui, China
| | - Zongting Gu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Ran Ni
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Xiao Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Qitao Jiang
- Department of Surgery, Bengbu Medical College, 233030 Bengbu, AnHui, China
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Song X, Nihashi Y, Yamamoto M, Setoyama D, Kunisaki Y, Kida YS. Exploring the Role of Desmoplastic Physical Stroma in Pancreatic Cancer Progression Using a Three-Dimensional Collagen Matrix Model. Bioengineering (Basel) 2023; 10:1437. [PMID: 38136028 PMCID: PMC10741102 DOI: 10.3390/bioengineering10121437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a refractory tumor with a poor prognosis, and its complex microenvironment is characterized by a fibrous interstitial matrix surrounding PDAC cells. Type I collagen is a major component of this interstitial matrix. Abundant type I collagen promotes its deposition and cross-linking to form a rigid and dense physical barrier, which limits drug penetration and immune cell infiltration and provides drug resistance and metabolic adaptations. In this study, to identify the physical effect of the stroma, type I collagen was used as a 3D matrix to culture Capan-1 cells and generate a 3D PDAC model. Using transcriptome analysis, a link between type I collagen-induced physical effects and the promotion of Capan-1 cell proliferation and migration was determined. Moreover, metabolomic analysis revealed that the physical effect caused a shift in metabolism toward a glycolytic phenotype. In particular, the high expression of proline in the metabolites suggests the ability to maintain Capan-1 cell proliferation under hypoxic and nutrient-depleted conditions. In conclusion, we identified type I collagen-induced physical effects in promoting Capan-1 cells, which cause PDAC progression, providing support for the role of dense stroma in the PDAC microenvironment and identifying a fundamental method for modeling the complex PDAC microenvironment.
Collapse
Affiliation(s)
- Xiaoyu Song
- Tsukuba Life Science Innovation Program (T-LSI), School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita 564-8565, Japan;
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
9
|
Kalli M, Poskus MD, Stylianopoulos T, Zervantonakis IK. Beyond matrix stiffness: targeting force-induced cancer drug resistance. Trends Cancer 2023; 9:937-954. [PMID: 37558577 PMCID: PMC10592424 DOI: 10.1016/j.trecan.2023.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
During tumor progression, mechanical abnormalities in the tumor microenvironment (TME) trigger signaling pathways in cells that activate cellular programs, resulting in tumor growth and drug resistance. In this review, we describe mechanisms of action for anti-cancer therapies and mechanotransduction programs that regulate cellular processes, including cell proliferation, apoptosis, survival and phenotype switching. We discuss how the therapeutic response is impacted by the three main mechanical TME abnormalities: high extracellular matrix (ECM) composition and stiffness; interstitial fluid pressure (IFP); and elevated mechanical forces. We also review drugs that normalize these abnormalities or block mechanosensors and mechanotransduction pathways. Finally, we discuss current challenges and perspectives for the development of new strategies targeting mechanically induced drug resistance in the clinic.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Matthew D Poskus
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | | |
Collapse
|
10
|
Zhao Z, Liu L, Chen H, Li S, Guo Y, Hou X, Yang J. Thymoquinone affects the gemcitabine sensitivity of pancreatic cancer by regulating collagen via hypoxia inducible factor-1α. Front Pharmacol 2023; 14:1138265. [PMID: 37324458 PMCID: PMC10264578 DOI: 10.3389/fphar.2023.1138265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Objective: To clarify the potential therapeutic effects of thymoquinone (TQ) on pancreatic cancer and its gemcitabine (GEM) sensitivity. Methods: The expression levels of hypoxia inducible factor-1α (HIF-1α), collagens (COL1A1, COL3A1, and COL5A1), and transforming growth factor-β1 (TGFβ1) in pancreatic cancer and para-carcinoma tissues were compared using immunohistochemical methods, and their relationships with TNM staging were analyzed. The effects of TQ on apoptosis, migration, invasion, and GEM sensitivity of pancreatic cancer cells were assessed using in vitro and in vivo experiments. Western blot and immunohistochemistry were used to detect the expression levels of HIF-1α, extracellular matrix (ECM) production pathway-related proteins, and TGFβ/Smad signaling pathway-related proteins. Results: The expression levels of HIF-1α, COL1A1, COL3A1, COL5A1, and TGFβ1 in pancreatic cancer tissues were significantly higher than those in para-carcinoma tissues and correlated with TNM staging (p < 0.05). TQ and GEM administration inhibited the migration and invasion of the human pancreatic cancer cell line PANC-1 and promoted the apoptosis of PANC-1 cells. The combination of TQ and GEM was more effective than GEM alone. Western blot analysis showed that the expression levels of HIF-1α, ECM production pathway-related proteins, and TGFβ/Smad signaling pathway-related proteins were significantly decreased when TQ was used to treat PANC-1 cells (p < 0.05), and the expression levels of these proteins in the TQ + GEM group were significantly more decreased than those in the GEM group. Overexpression or knockdown of HIF-1α in PANC-1 cells showed the same effects as those induced by TQ administration. In vivo experiments showed that in PANC-1 tumor-bearing mice, tumor volume and tumor weight in mice treated with GEM and TQ were significantly lower than those in control or GEM-treated mice, whereas cell apoptosis was significantly increased (p < 0.05). Western blot and immunohistochemistry results showed that the levels of HIF-1α, ECM production pathway-related proteins, and TGFβ/Smad signaling pathway-related proteins in the GEM + TQ treatment group were further decreased compared to the control group or the GEM treatment group (p < 0.05). Conclusion: In pancreatic cancer cells, TQ can promote apoptosis, inhibit migration, invasion, and metastasis, and enhance the sensitivity to GEM. The underlying mechanism may involve the regulation of ECM production through the TGFβ/Smad pathway, in which HIF-1α plays a key role.
Collapse
Affiliation(s)
- Zhanxue Zhao
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Linxun Liu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Hekai Chen
- Department of General Surgery, Peking University BinHai Hospital, Tianjin, China
| | - Shuai Li
- Department of Clinical Pharmacy, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Yan Guo
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Pathology, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Xiaofan Hou
- Graduate School, Qinghai University, Xining, Qinghai, China
| | - Jinyu Yang
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
11
|
Gaudreau-Lapierre A, Klonisch T, Nicolas H, Thanasupawat T, Trinkle-Mulcahy L, Hombach-Klonisch S. Nuclear High Mobility Group A2 (HMGA2) Interactome Revealed by Biotin Proximity Labeling. Int J Mol Sci 2023; 24:ijms24044246. [PMID: 36835656 PMCID: PMC9966875 DOI: 10.3390/ijms24044246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) has important functions in chromatin remodeling, and genome maintenance and protection. Expression of HMGA2 is highest in embryonic stem cells, declines during cell differentiation and cell aging, but it is re-expressed in some cancers, where high HMGA2 expression frequently coincides with a poor prognosis. The nuclear functions of HMGA2 cannot be explained by binding to chromatin alone but involve complex interactions with other proteins that are incompletely understood. The present study used biotin proximity labeling, followed by proteomic analysis, to identify the nuclear interaction partners of HMGA2. We tested two different biotin ligase HMGA2 constructs (BioID2 and miniTurbo) with similar results, and identified known and new HMGA2 interaction partners, with functionalities mainly in chromatin biology. These HMGA2 biotin ligase fusion constructs offer exciting new possibilities for interactome discovery research, enabling the monitoring of nuclear HMGA2 interactomes during drug treatments.
Collapse
Affiliation(s)
- Antoine Gaudreau-Lapierre
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hannah Nicolas
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-204-789-3982; Fax: +1-204-789-3920
| |
Collapse
|
12
|
Chen X, Yuan Q, Liu J, Xia S, Shi X, Su Y, Wang Z, Li S, Shang D. Comprehensive characterization of extracellular matrix-related genes in PAAD identified a novel prognostic panel related to clinical outcomes and immune microenvironment: A silico analysis with in vivo and vitro validation. Front Immunol 2022; 13:985911. [PMID: 36311789 PMCID: PMC9606578 DOI: 10.3389/fimmu.2022.985911] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a vital component of the tumor microenvironment, which interplays with stromal and tumor cells to stimulate the capacity of cancer cells to proliferate, migrate, invade, and undergo angiogenesis. Nevertheless, the crucial functions of ECM-related genes (ECMGs) in pancreatic adenocarcinoma (PAAD) have not been systematically evaluated. Hence, a comprehensive evaluation of the ECMGs is required in pan-cancer, especially in PAAD. First, a pan-cancer overview of ECMGs was explored through the integration of expression profiles, prognostic values, mutation information, methylation levels, and pathway-regulation relationships. Seven ECMGs (i.e. LAMB3, LAMA3, ITGB6, ITGB4, ITGA2, LAMC2, and COL11A1) were identified to be hub genes of PAAD, which were obviously up-regulated in PAAD and considerably linked to tumor stage as well as prognosis. Subsequently, patients with PAAD were divided into 3 clusters premised on ECMG expression and ECM scores. Cluster 2 was the subtype with the best prognosis accompanied by the lowest ECM scores, further verifying ECM’s significant contribution to the pathophysiological processes of PAAD. Significant differences were observed for oncogene and tumor suppressor gene expression, immune microenvironment, and chemotherapy sensitivity across three ECM subtypes. After applying a variety of bioinformatics methods, a novel and robust ECM-associated mRNA-lncRNA-based prognostic panel (ECM-APP) was developed and validated for accurately predicting clinical outcomes of patients with PAAD. Patients with PAAD were randomly categorized into the train, internal validation, and external validation cohorts; meanwhile, each patient was allocated into high-risk (unfavorable prognosis) and low-risk (favorable prognosis) populations premised on the expression traits of ECM-related mRNAs and lncRNAs. The discrepancy in the tumor mutation burden and immune microenvironment might be responsible for the difference in prognoses across the high-risk and low-risk populations. Overall, our findings identified and validated seven ECMGs remarkably linked to the onset and progression of PAAD. ECM-based molecular classification and prognostic panel aid in the prognostic assessment and personalized intervention of patients with PAAD.
Collapse
Affiliation(s)
- Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jifeng Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilin Xia
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xueying Shi
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yuxin Su
- Department of Medical Imaging, Cardiovascular Research Institute, Northern Theater Command General Hospital, Shenyang, China
| | - Zhizhou Wang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Dong Shang, ; Shuang Li, ; Zhizhou Wang,
| | - Shuang Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Dong Shang, ; Shuang Li, ; Zhizhou Wang,
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Dong Shang, ; Shuang Li, ; Zhizhou Wang,
| |
Collapse
|
13
|
Jubelin C, Muñoz-Garcia J, Griscom L, Cochonneau D, Ollivier E, Heymann MF, Vallette FM, Oliver L, Heymann D. Three-dimensional in vitro culture models in oncology research. Cell Biosci 2022; 12:155. [PMID: 36089610 PMCID: PMC9465969 DOI: 10.1186/s13578-022-00887-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer is a multifactorial disease that is responsible for 10 million deaths per year. The intra- and inter-heterogeneity of malignant tumors make it difficult to develop single targeted approaches. Similarly, their diversity requires various models to investigate the mechanisms involved in cancer initiation, progression, drug resistance and recurrence. Of the in vitro cell-based models, monolayer adherent (also known as 2D culture) cell cultures have been used for the longest time. However, it appears that they are often less appropriate than the three-dimensional (3D) cell culture approach for mimicking the biological behavior of tumor cells, in particular the mechanisms leading to therapeutic escape and drug resistance. Multicellular tumor spheroids are widely used to study cancers in 3D, and can be generated by a multiplicity of techniques, such as liquid-based and scaffold-based 3D cultures, microfluidics and bioprinting. Organoids are more complex 3D models than multicellular tumor spheroids because they are generated from stem cells isolated from patients and are considered as powerful tools to reproduce the disease development in vitro. The present review provides an overview of the various 3D culture models that have been set up to study cancer development and drug response. The advantages of 3D models compared to 2D cell cultures, the limitations, and the fields of application of these models and their techniques of production are also discussed.
Collapse
|
14
|
Capula M, Perán M, Xu G, Donati V, Yee D, Gregori A, Assaraf YG, Giovannetti E, Deng D. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist Updat 2022; 64:100864. [PMID: 36115181 DOI: 10.1016/j.drup.2022.100864] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the highest incidence/death ratios among all neoplasms due to its late diagnosis and dominant chemoresistance. Most PDAC patients present with an advanced disease characterized by a multifactorial, inherent and acquired resistance to current anticancer treatments. This remarkable chemoresistance has been ascribed to several PDAC features including the genetic landscape, metabolic alterations, and a heterogeneous tumor microenvironment that is characterized by dense fibrosis, and a cellular contexture including functionally distinct subclasses of cancer-associated fibroblasts, immune suppressive cells, but also a number of bacteria, shaping a specific tumor microbiome microenvironment. Thus, recent studies prompted the emergence of a new research avenue, by describing the role of the microbiome in gemcitabine resistance, while next-generation-sequencing analyses identified a specific microbiome in different tumors, including PDAC. Functionally, the contribution of these microbes to PDAC chemoresistance is only beginning to be explored. Here we provide an overview of the studies demonstrating that bacteria have the capacity to metabolically transform and hence inactivate anticancer drugs, as exemplified by the inhibition of the efficacy of 10 out of 30 chemotherapeutics by Escherichia coli. Moreover, a number of bacteria modulate specific oncogenic pathways, such as Fusobacterium nucleatum, affecting autophagy and apoptosis induction by 5-fluorouracil and oxaliplatin. We hypothesize that improved understanding of how chemoresistance is driven by bacteria could enhance the efficacy of current treatments, and discuss the potential of microbiome modulation and targeted therapeutic approaches as well as the need for more reliable models and biomarkers to translate the findings of preclinical/translational research to the clinical setting, and ultimately overcome PDAC chemoresistance, hence improving clinical outcome.
Collapse
Affiliation(s)
- Mjriam Capula
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, 56017 Pisa, Italy; Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands; Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Macarena Perán
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, 56017 Pisa, Italy; Department of Health Sciences, University of Jaén, Campus de las Lagunillas SN, E- 23071, Jaén, Spain
| | - Geng Xu
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands; Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands; Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Dicky Yee
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Alessandro Gregori
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Elisa Giovannetti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, 56017 Pisa, Italy; Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Fuller AM, Eisinger-Mathason TSK. Context Matters: Response Heterogeneity to Collagen-Targeting Approaches in Desmoplastic Cancers. Cancers (Basel) 2022; 14:cancers14133132. [PMID: 35804902 PMCID: PMC9264969 DOI: 10.3390/cancers14133132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common feature of tumor types such as breast cancer, prostate cancer, pancreatic cancer, and soft-tissue sarcoma is the deposition of collagen-rich tissue called desmoplasia. However, efforts to control tumor growth by disrupting desmoplasia, collectively known as “collagen-targeting approaches”, have had mixed and contradictory results, sometimes even within the same cancer type. We believe that this phenomenon may be due—at least partially—to the fact that “collagen” is not a single molecule, but rather a diverse molecular family composed of 28 unique collagen types. Therefore, in this review, we discuss the diversity of collagen molecules in normal and cancer tissue, and explore how collagen heterogeneity relates to the mixed efficacy of collagen-targeting approaches for cancer therapy. Abstract The deposition of collagen-rich desmoplastic tissue is a well-documented feature of the solid tumor microenvironment (TME). However, efforts to target the desmoplastic extracellular matrix (ECM) en masse, or collagen molecules more specifically, have been met with mixed and sometimes paradoxical results. In this review, we posit that these discrepancies are due—at least in part—to the incredible diversity of the collagen superfamily. Specifically, whereas studies of “collagen-targeting” approaches frequently refer to “collagen” as a single molecule or relatively homogeneous molecular family, 28 individual collagens have been identified in mammalian tissues, each with a unique structure, supramolecular assembly pattern, tissue distribution, and/or function. Moreover, some collagen species have been shown to exert both pro- and anti-neoplastic effects in the desmoplastic TME, even within the same cancer type. Therefore, herein, we describe the diversity of the collagen family in normal tissues and highlight the context-specific roles of individual collagen molecules in desmoplastic tumors. We further discuss how this heterogeneity relates to the variable efficacy of “collagen-targeting” strategies in this setting and provide guidance for future directions in the field.
Collapse
|
16
|
Bai L, Dong K, Tong D, Shi X, Wei S, Cai Y. lncRNA HIT000218960 enhances resistance to 5‑fluorouracil by promoting HMGA2 and activating the AKT/mTOR/P70S6K pathway in gastric cancer cells. Exp Ther Med 2022; 24:527. [PMID: 35837027 DOI: 10.3892/etm.2022.11454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/28/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Li Bai
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Kunbo Dong
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Deyong Tong
- Department of Oncology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Xiuna Shi
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Sirong Wei
- Department of Intervention, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Yongguo Cai
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
17
|
Shi R, Zhang Z, Zhu A, Xiong X, Zhang J, Xu J, Sy MS, Li C. Targeting Type I Collagen for Cancer Treatment. Int J Cancer 2022; 151:665-683. [PMID: 35225360 DOI: 10.1002/ijc.33985] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/07/2022]
Abstract
Collagen is the most abundant protein in animals. Interactions between tumor cells and collagen influence every step of tumor development. Type I collagen is the main fibrillar collagen in the extracellular matrix and is frequently up-regulated during tumorigenesis. The binding of type I collagen to its receptors on tumor cells promotes tumor cell proliferation, epithelial-mesenchymal transition, and metastasis. Type I collagen also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Furthermore, type I collagen fragments are diagnostic markers of metastatic tumors and have prognostic value. Inhibition of type I collagen synthesis has been reported to have anti-tumor effects in animal models. However, collagen has also been shown to possess anti-tumor activity. Therefore, the roles that type I collagen plays in tumor biology are complex and tumor type-dependent. In this review, we discuss the expression and regulation of synthesis of type I collagen, as well as the role up-regulated type I collagen plays in various stages of cancer progression. We also discuss the role of collagen in tumor therapy. Finally, we highlight several recent approaches targeting type I collagen for cancer treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Run Shi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Zhe Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Ankai Zhu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Xingxing Xiong
- Department of Operating Room, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| |
Collapse
|
18
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22:169-182. [PMID: 34904919 DOI: 10.1080/14737140.2022.2019018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) has a markedly poor prognosis as it progresses, and the prognosis is still unsatisfactory even with modern treatments. Cancer is composed of not only cancer cells, but also stroma consisting of various cell types. Cancer-associated fibroblasts (CAFs) are a major component of the stroma and the associated tumor microenvironment (TME). Particularly, CAFs are a critical component in elucidating the biological mechanisms of cancer progression and new therapeutic targets. This article outlines the TME formed by CAFs in NSCLC. AREAS COVERED Focusing on the TME in NSCLC, we discuss the mechanisms by which CAFs are involved in cancer progression, drug resistance, and the development of therapies targeting CAFs. EXPERT OPINION In the TME, CAFs profoundly contribute to tumor progression by interacting with cancer cells through direct contact or paracrine cytokine signaling. CAFs also interact with various other stromal components to establish a tumor-promoting immunosuppressive microenvironment and remodel the extracellular matrix. Furthermore, these effects are closely associated with drug resistance. Further elucidation of the stromal microenvironment, including CAFs, could prove to be crucial in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
20
|
Gu Z, Du Y, Zhao X, Wang C. Tumor microenvironment and metabolic remodeling in gemcitabine-based chemoresistance of pancreatic cancer. Cancer Lett 2021; 521:98-108. [PMID: 34461181 DOI: 10.1016/j.canlet.2021.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with a very low operative rate and a poor patient prognosis. Therefore, gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, the efficacy of GEM monotherapy or GEM combination chemotherapy in improving the survival of patients with advanced PDAC is very limited, primarily due to GEM resistance. The mechanism of GEM resistance is complex and unclear. An extensive and dense fibrous matrix in the tumor microenvironment (TME) is an important feature of PDAC. Increasing evidence indicates that this fibrotic TME not only actively participates in the growth and spread of PDAC but also contributes to the induction of GEM resistance. Metabolic remodeling reduces GEM transport and synthesis in PDAC. This review focuses on the main cellular and molecular mechanisms underlying the involvement of the extracellular matrix (ECM), immune cells, and metabolic remodeling in the induction of GEM resistance; highlights the prospect of targeting the TME as an essential strategy to overcome GEM resistance; and provides new precise interventions for chemotherapy sensitization and improving the overall prognosis of patients with PDAC.
Collapse
Affiliation(s)
- Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xueping Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:421-434. [DOI: 10.11569/wcjd.v29.i8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a solid malignant tumor with the worst prognosis worldwide, and about 90% of cases are pancreatic ductal adenocarcinoma (PDAC). Although surgical resection is the only potential way to cure PDAC, the overall survival rate after surgery is still not optimistic. Consequently, gemcitabine (GEM)-based chemotherapy is still one of the most important treatment options for PDAC. However, the survival improvement by GEM monotherapy for advanced PDAC is very limited, and GEM resistance is the key reason. The mechanism underlying gemcitabine resistance is complex and still unclear in PDAC. The extensive and dense fibrous mesenchyme in the tumor microenvironment (TME) is an important feature of PDAC. More and more evidence has shown that TME is not only an active participant in tumor growth and spread, but also a contributor to the induction of GEM resistance. This article will review the recent advances in the understanding of the cellular and molecular mechanisms underlying GEM resistance in PDAC, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
22
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
23
|
Zheng H, Yan B, Wu Q, Zhang J. MicroRNA-9-5p increases the sensitivity of colorectal cancer cells to 5-fluorouracil by downregulating high mobility group A2 expression. Oncol Lett 2021; 21:235. [PMID: 33613724 PMCID: PMC7856691 DOI: 10.3892/ol.2021.12496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy drug 5-fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC); however, 5-FU resistance decreases CRC therapeutic efficiency. A previous study revealed that microRNA (miR)-9-5p serves an antitumor effect in CRC. However, the effect of miR-9-5p in CRC chemoresistance remains unknown. In the present study, two CRC cell lines, including HT-29 and HCT-116 cells, were used to investigate the impact of miR-9-5p in overcoming 5-FU resistance. The results revealed that treatment with 5-FU decreased CRC cell viability and upregulated miR-9-5p expression in both CRC cells. Knockdown of miR-9-5p decreased HCT-116 cell sensitivity to 5-FU and inhibited apoptosis. By contrast, miR-9-5p overexpression enhanced the sensitivity of HT-29 cells to 5-FU and induced apoptosis. Additionally, it was confirmed that miR-9-5p directly targeted high mobility group A2 (HMGA2). HMGA2 overexpression reversed miR-9-5p-induced HT-29 apoptosis. The present study indicated that miR-9-5p enhanced the sensitivity of CRC cells to 5-FU via downregulating HMGA2 expression.
Collapse
Affiliation(s)
- Huizhe Zheng
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Bin Yan
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Qi Wu
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jingli Zhang
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
24
|
Choi SR, Yang Y, Huang KY, Kong HJ, Flick MJ, Han B. Engineering of biomaterials for tumor modeling. MATERIALS TODAY. ADVANCES 2020; 8:100117. [PMID: 34541484 PMCID: PMC8448271 DOI: 10.1016/j.mtadv.2020.100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development of biomaterials mimicking tumor and its microenvironment has recently emerged for the use of drug discovery, precision medicine, and cancer biology. These biomimetic models have developed by reconstituting tumor and stroma cells within the 3D extracellular matrix. The models are recently extended to recapitulate the in vivo tumor microenvironment, including biological, chemical, and mechanical conditions tailored for specific cancer type and its microenvironment. In spite of the recent emergence of various innovative engineered tumor models, many of these models are still early stage to be adapted for cancer research. In this article, we review the current status of biomaterials engineering for tumor models considering three main aspects - cellular engineering, matrix engineering, and engineering for microenvironmental conditions. Considering cancer-specific variability in these aspects, our discussion is focused on pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). In addition, we further discussed the current challenges and future opportunities to create reliable and relevant tumor models.
Collapse
Affiliation(s)
- Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kai-Yu Huang
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Joon Kong
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
25
|
Sodergren MH, Mangal N, Wasan H, Sadanandam A, Balachandran VP, Jiao LR, Habib N. Immunological combination treatment holds the key to improving survival in pancreatic cancer. J Cancer Res Clin Oncol 2020; 146:2897-2911. [PMID: 32748119 PMCID: PMC7519893 DOI: 10.1007/s00432-020-03332-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Advances in surgery, peri-operative care and systemic chemotherapy have not significantly improved the prognosis of pancreatic cancer for several decades. Early clinical trials of immunotherapy have yielded disappointing results proposing other means by which the tumour microenvironment serves to decrease the immune response. Additionally, the emergence of various subtypes of pancreatic cancer has emerged as a factor for treatment responses with immunogenic subtypes carrying a better prognosis. Herein we discuss the reasons for the poor response to checkpoint inhibitors and outline a rationale why combination treatments are likely to be most effective. We review the therapies which could provide optimal synergistic effects to immunotherapy including chemotherapy, agents targeting the stroma, co-stimulatory molecules, vaccinations and methods of immunogenic tumour priming including radiofrequency ablation. Finally, we discuss reasons why peri-operative and in particular neoadjuvant combination treatments are likely to be most effective and should be considered for early clinical trials.
Collapse
Affiliation(s)
- M H Sodergren
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK.
| | - N Mangal
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - H Wasan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - A Sadanandam
- Division of Molecular Pathology, Institute for Cancer Research, London, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
| | - V P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, USA
| | - L R Jiao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - N Habib
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| |
Collapse
|
26
|
Pegoraro S, Ros G, Sgubin M, Petrosino S, Zambelli A, Sgarra R, Manfioletti G. Targeting the intrinsically disordered architectural High Mobility Group A (HMGA) oncoproteins in breast cancer: learning from the past to design future strategies. Expert Opin Ther Targets 2020; 24:953-969. [PMID: 32970506 DOI: 10.1080/14728222.2020.1814738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat because of its heterogeneity and lack of specific therapeutic targets. High Mobility Group A (HMGA) proteins are chromatin architectural factors that have multiple oncogenic functions in breast cancer, and they represent promising molecular therapeutic targets for this disease. AREAS COVERED We offer an overview of the strategies that have been exploited to counteract HMGA oncoprotein activities at the transcriptional and post-transcriptional levels. We also present the possibility of targeting cancer-associated factors that lie downstream of HMGA proteins and discuss the contribution of HMGA proteins to chemoresistance. EXPERT OPINION Different strategies have been exploited to counteract HMGA protein activities; these involve interfering with their nucleic acid binding properties and the blocking of HMGA expression. Some approaches have provided promising results. However, some unique characteristics of the HMGA proteins have not been exploited; these include their extensive protein-protein interaction network and their intrinsically disordered status that present the possibility that HMGA proteins could be involved in the formation of proteinaceous membrane-less organelles (PMLO) by liquid-liquid phase separation. These unexplored characteristics could open new pharmacological avenues to counteract the oncogenic contributions of HMGA proteins.
Collapse
Affiliation(s)
- Silvia Pegoraro
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Gloria Ros
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Michela Sgubin
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Sara Petrosino
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | | |
Collapse
|
27
|
Song H, Cai GH, Liang J, Ao DS, Wang H, Yang ZH. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials. J Nanobiotechnology 2020; 18:90. [PMID: 32527266 PMCID: PMC7291456 DOI: 10.1186/s12951-020-00646-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 01/18/2023] Open
Abstract
Background Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I. Results Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin β1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC50 values and inhibition rates. Conclusion Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.
Collapse
Affiliation(s)
- Hong Song
- College of Basic Medicine, Zunyi Medical University, No.201 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Guo-Hui Cai
- College of Basic Medicine, Zunyi Medical University, No.201 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Jian Liang
- School of Resources and Environment, ABA Normal University, Shuimo Town, Wenchuan County, Aba Prefecture, Sichuan, 623002, China
| | - Di-Shu Ao
- College of Basic Medicine, Zunyi Medical University, No.201 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Huan Wang
- College of Basic Medicine, Zunyi Medical University, No.201 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Ze-Hong Yang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No.17 People's South Road, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
28
|
Huang H, Brekken RA. Recent advances in understanding cancer-associated fibroblasts in pancreatic cancer. Am J Physiol Cell Physiol 2020; 319:C233-C243. [PMID: 32432930 DOI: 10.1152/ajpcell.00079.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a devastating disease with a poor survival rate. It is resistant to therapy in part due to its unique tumor microenvironment, characterized by a desmoplastic reaction resulting in a dense stroma that constitutes a large fraction of the tumor volume. A major contributor to the desmoplastic reaction are cancer-associated fibroblasts (CAFs). CAFs actively interact with cancer cells and promote tumor progression by different mechanisms, including extracellular matrix deposition, remodeling, and secretion of tumor promoting factors, making CAFs an attractive target for PDA. However, emerging evidences indicate significant tumor-suppressive functions of CAFs, highlighting the complexity of CAF biology. CAFs were once considered as a uniform cell type within the cancer stroma. Recently, the existence of CAF heterogeneity in PDA has become appreciated. Due to advances in single cell technology, distinct subtypes of CAFs have been identified in PDA. Here we review recent updates in CAF biology in PDA, which may help develop effective CAF-targeted therapies in the future.
Collapse
Affiliation(s)
- Huocong Huang
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, University of Texas Southwestern, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
29
|
Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res 2020; 155:104740. [PMID: 32135247 DOI: 10.1016/j.phrs.2020.104740] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a fatal disease. The five-year survival for patients with all stages of this tumor type is less than 10%, with a majority of patients dying from drug resistant, metastatic disease. Gemcitabine has been a standard of care for the treatment of pancreatic cancer for over 20 years, but as a single agent gemcitabine is not curative. Since the only therapeutic option for the over 80 percent of pancreatic cancer patients ineligible for surgical resection is chemotherapy with or without radiation, the last few decades have seen a significant effort to develop effective therapy for this disease. This review addresses preclinical and clinical efforts to identify agents that target molecular characteristics common to pancreatic tumors and to develop mechanism-based combination approaches to therapy. Some of the most promising combinations include agents that inhibit transcription dependent on BET proteins (BET bromodomain inhibitors) or that inhibit DNA repair mediated by PARP (PARP inhibitors).
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA.
| |
Collapse
|
30
|
Li K, Yang J, Chen J, Shi Y, Zhang Z, Chen W. High mobility group AT-hook 2 and c-MYC as potential prognostic factors in pancreatic ductal adenocarcinoma. Oncol Lett 2019; 19:1584-1592. [PMID: 31966084 DOI: 10.3892/ol.2019.11205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
The present study investigated if c-MYC and high mobility group AT-hook 2 (HMGA2) expression was associated with prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). A total of 102 patients undergoing surgery for PDAC were retrospectively reviewed. Immunohistochemistry was used to detect c-MYC and HMGA2 protein expression in PDAC and peritumoral tissue samples. Expression of c-MYC and HMGA2 was associated with clinicopathological characteristics and prognoses of patients with PDAC using multivariate analysis. HMGA2 and c-MYC protein expression was significantly higher in PDAC tissues compared with peritumoral tissue (P<0.001). HMGA2 and c-MYC expression was also significantly higher in patients with PDAC who had lymph node metastasis, invasion of regional tissues and tumor node metastasis (TNM) stage III or IV disease compared with those who had no lymph node metastasis, no invasion of regional tissues and TNM stage I or II disease (P<0.001). Multivariate logistic regression analysis was used to identify TNM stage (P=0.007) and invasion (P=0.003) as significant independent predictors of c-MYC expression (model AUC=0.8201), and lymph node metastasis (P=0.002) and invasion (P=0.003) as significant independent predictors of HMGA2 expression (model AUC=0.7638). Cox multivariate analysis showed that expression of c-MYC (P=0.019) and HMGA2 (P<0.001), TNM stage (P=0.014) and lymph node metastasis (P=0.032) were associated with reduced overall survival time. HMGA2 and c-MYC may be important biological markers and potential therapeutic targets involved in the tumorigenesis, metastasis, invasion and prognosis of PDAC.
Collapse
Affiliation(s)
- Ke Li
- Department of Radiology, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Jiafei Chen
- Department of Radiology, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yanshu Shi
- Department of Radiology, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Zhuoli Zhang
- Northwestern Quantitative Imaging Core Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wei Chen
- Department of Radiology, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
31
|
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol 2019; 55:775-788. [PMID: 31432151 DOI: 10.3892/ijo.2019.4856] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 11/06/2022] Open
Abstract
The high mobility group A2 (HMGA2) protein is a non‑histone architectural transcription factor that modulates the transcription of several genes by binding to AT‑rich sequences in the minor groove of B‑form DNA and alters the chromatin structure. As a result, HMGA2 influences a variety of biological processes, including the cell cycle process, DNA damage repair process, apoptosis, senescence, epithelial‑mesenchymal transition and telomere restoration. In addition, the overexpression of HMGA2 is a feature of malignancy, and its elevated expression in human cancer predicts the efficacy of certain chemotherapeutic agents. Accumulating evidence has suggested that the detection of HMGA2 can be used as a routine procedure in clinical tumour analysis.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuping Mo
- Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
32
|
HMGA1 Modulates Gene Transcription Sustaining a Tumor Signalling Pathway Acting on the Epigenetic Status of Triple-Negative Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11081105. [PMID: 31382504 PMCID: PMC6721465 DOI: 10.3390/cancers11081105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 01/17/2023] Open
Abstract
Chromatin accessibility plays a critical factor in regulating gene expression in cancer cells. Several factors, including the High Mobility Group A (HMGA) family members, are known to participate directly in chromatin relaxation and transcriptional activation. The HMGA1 oncogene encodes an architectural chromatin transcription factor that alters DNA structure and interacts with transcription factors favouring their landing onto transcription regulatory sequences. Here, we provide evidence of an additional mechanism exploited by HMGA1 to modulate transcription. We demonstrate that, in a triple-negative breast cancer cellular model, HMGA1 sustains the action of epigenetic modifiers and in particular it positively influences both histone H3S10 phosphorylation by ribosomal protein S6 kinase alpha-3 (RSK2) and histone H2BK5 acetylation by CREB-binding protein (CBP). HMGA1, RSK2, and CBP control the expression of a set of genes involved in tumor progression and epithelial to mesenchymal transition. These results suggest that HMGA1 has an effect on the epigenetic status of cancer cells and that it could be exploited as a responsiveness predictor for epigenetic therapies in triple-negative breast cancers.
Collapse
|
33
|
Amrutkar M, Aasrum M, Verbeke CS, Gladhaug IP. Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells. BMC Cancer 2019; 19:596. [PMID: 31208372 PMCID: PMC6580453 DOI: 10.1186/s12885-019-5803-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background Gemcitabine remains a cornerstone in chemotherapy of pancreatic ductal adenocarcinoma (PDAC) despite suboptimal clinical effects that are partly due to the development of chemoresistance. Pancreatic stellate cells (PSCs) of the tumor stroma are known to interact with pancreatic cancer cells (PCCs) and influence the progression of PDAC through a complex network of signaling molecules that involve extracellular matrix (ECM) proteins. To understand tumor-stroma interactions regulating chemosensitivity, the role of PSC-secreted fibronectin (FN) in the development of gemcitabine resistance in PDAC was examined. Methods PSC cultures obtained from ten different human PDAC tumors were co-cultured with PCC lines (AsPC-1, BxPC-3, Capan-2, HPAF-II, MIA PaCa-2, PANC-1 and SW-1990) either directly, or indirectly via incubation with PSC-conditioned medium (PSC-CM). Gemcitabine dose response cytotoxicity was determined using MTT based cell viability assays. Protein expression was assessed by western blotting and immunofluorescence. PSC-CM secretome analysis was performed by proteomics-based LC-MS/MS, and FN content in PSC-CM was determined with ELISA. Radiolabeled gemcitabine was used to determine the capacity of PCCs to uptake the drug. Results In both direct and indirect co-culture, PSCs induced varying degrees of resistance to the cytotoxic effects of gemcitabine among all cancer cell lines examined. A variable degree of increased phosphorylation of ERK1/2 was observed across all PCC lines upon incubation with PSC-CM, while activation of AKT was not detected. Secretome analysis of PSC-CM identified 796 different proteins, including several ECM-related proteins such as FN and collagens. Soluble FN content in PSC-CM was detected in the range 175–350 ng/ml. Neither FN nor PSC-CM showed any effect on PCC uptake capacity of gemcitabine. PCCs grown on FN-coated surface displayed higher resistance to gemcitabine compared to cells grown on non-coated surface. Furthermore, a FN inhibitor, synthetic Arg-Gly-Asp-Ser (RGDS) peptide significantly inhibited PSC-CM-induced chemoresistance in PCCs via downregulation of ERK1/2 phosphorylation. Conclusions The findings of this study suggest that FN secreted by PSCs in the ECM plays a key role in the development of resistance to gemcitabine via activation of ERK1/2. FN-blocking agents added to gemcitabine-based chemotherapy might counteract chemoresistance in PDAC and provide better clinical outcomes. Electronic supplementary material The online version of this article (10.1186/s12885-019-5803-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316, Oslo, Norway. .,Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, PO Box 1171, Blindern, 0318, Oslo, Norway.
| | - Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316, Oslo, Norway
| | - Caroline S Verbeke
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316, Oslo, Norway.,Department of Pathology, Oslo University Hospital Rikshospitalet, Nydalen, 0424, Oslo, Norway
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, PO Box 1171, Blindern, 0318, Oslo, Norway.,Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital Rikshospitalet, Nydalen, 0424, Oslo, Norway
| |
Collapse
|
34
|
Jing W, McAllister D, Vonderhaar EP, Palen K, Riese MJ, Gershan J, Johnson BD, Dwinell MB. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J Immunother Cancer 2019; 7:115. [PMID: 31036082 PMCID: PMC6489306 DOI: 10.1186/s40425-019-0573-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is characterized by an immune suppressive stromal reaction that creates a barrier to therapy. A murine transgenic pancreatic cancer cell line that recapitulates human disease was used to test whether a STimulator of Interferon Genes (STING) agonist could reignite immunologically inert pancreatic tumors. STING agonist treatment potently changed the tumor architecture, altered the immune profile, and increased the survival of tumor-bearing mice. Notably, STING agonist increased numbers and activity of cytotoxic T cells within tumors and decreased levels of suppressive regulatory T cells. Further, STING agonist treatment upregulated costimulatory molecule expression on cross-presenting dendritic cells and reprogrammed immune-suppressive macrophages into immune-activating subtypes. STING agonist promoted the coordinated and differential cytokine production by dendritic cells, macrophages, and pancreatic cancer cells. Cumulatively, these data demonstrate that pancreatic cancer progression is potently inhibited by STING agonist, which reignited immunologically cold pancreatic tumors to promote trafficking and activation of tumor-killing T cells.
Collapse
Affiliation(s)
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Emily P Vonderhaar
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katie Palen
- , Department of Medicine, Milwaukee, USA.,Cell Therapy Laboratories, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Matthew J Riese
- , Department of Medicine, Milwaukee, USA.,Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,MCW Center for Immunology, Milwaukee, USA
| | - Jill Gershan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, USA
| | - Bryon D Johnson
- , Department of Medicine, Milwaukee, USA.,Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,MCW Center for Immunology, Milwaukee, USA.,Cell Therapy Laboratories, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,MCW Center for Immunology, Milwaukee, USA.
| |
Collapse
|
35
|
Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, Sidoli S, Parris JLD, Affronti HC, Sivanand S, Egolf S, Sela Y, Trizzino M, Gardini A, Garcia BA, Snyder NW, Stanger BZ, Wellen KE. Acetyl-CoA Metabolism Supports Multistep Pancreatic Tumorigenesis. Cancer Discov 2019; 9:416-435. [PMID: 30626590 PMCID: PMC6643997 DOI: 10.1158/2159-8290.cd-18-0567] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring Kras mutations prior to the appearance of premalignant lesions. Because acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in KRAS-mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anticancer effects. SIGNIFICANCE: Pancreatic cancer is among the deadliest of human malignancies. We identify a key role for the metabolic enzyme ACLY, which produces acetyl-CoA, in pancreatic carcinogenesis. The data suggest that acetyl-CoA use for histone acetylation and in the mevalonate pathway facilitates cell plasticity and proliferation, suggesting potential to target these pathways.See related commentary by Halbrook et al., p. 326.This article is highlighted in the In This Issue feature, p. 305.
Collapse
Affiliation(s)
- Alessandro Carrer
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sophie Trefely
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Steven Zhao
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sydney L Campbell
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kollin C Schultz
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simone Sidoli
- Epigenetics Institute, Departments of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joshua L D Parris
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hayley C Affronti
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharanya Sivanand
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shaun Egolf
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yogev Sela
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marco Trizzino
- The Wistar Institute, Gene Expression and Regulation Program, Philadelphia, Pennsylvania
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Epigenetics Institute, Departments of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Kathryn E Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Lin CC, Korc M. Designer hydrogels: Shedding light on the physical chemistry of the pancreatic cancer microenvironment. Cancer Lett 2018; 436:22-27. [PMID: 30118843 PMCID: PMC6557435 DOI: 10.1016/j.canlet.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of cancer mortality in the United States, with a 5-year survival of ∼8%. PDAC is characterized by a dense and hypo-vascularized stroma consisting of proliferating cancer cells, cancer-associated fibroblasts, macrophages and immune cells, as well as excess matrices including collagens, fibronectin, and hyaluronic acid. In addition, PDAC has increased interstitial pressures and a hypoxic/acidic tumor microenvironment (TME) that impedes drug delivery and blocks cancer-directed immune mechanisms. In spite of increasing options in targeted therapy, PDAC has mostly remained treatment recalcitrant. Owing to its critical roles on governing PDAC progression and treatment outcome, TME and its interplay with the cancer cells are increasingly studied. In particular, three-dimensional (3D) hydrogels derived from or inspired by components in the TME are progressively developed. When properly designed, these hydrogels (e.g., Matrigel, collagen gel, hyaluronic acid-based, and semi-synthetic hydrogels) can provide pathophysiologically relevant compositions, conditions, and contexts for supporting PDAC cell fate processes. This review summarizes recent efforts in using 3D hydrogels for fundamental studies on cell-matrix or cell-cell interactions in PDAC.
Collapse
Affiliation(s)
- Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Indiana University Melvin and Bren Simon Cancer Center and the Pancreatic Cancer Signature Center, Indianapolis, IN, 46202, USA.
| | - Murray Korc
- Indiana University Melvin and Bren Simon Cancer Center and the Pancreatic Cancer Signature Center, Indianapolis, IN, 46202, USA; Departments of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
37
|
Hmga2 is dispensable for pancreatic cancer development, metastasis, and therapy resistance. Sci Rep 2018; 8:14008. [PMID: 30228296 PMCID: PMC6143627 DOI: 10.1038/s41598-018-32159-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Expression of the chromatin-associated protein HMGA2 correlates with progression, metastasis and therapy resistance in pancreatic ductal adenocarcinoma (PDAC). Hmga2 has also been identified as a marker of a transient subpopulation of PDAC cells that has increased metastatic ability. Here, we characterize the requirement for Hmga2 during growth, dissemination, and metastasis of PDAC in vivo using conditional inactivation of Hmga2 in well-established autochthonous mouse models of PDAC. Overall survival, primary tumour burden, presence of disseminated tumour cells in the peritoneal cavity or circulating tumour cells in the blood, and presence and number of metastases were not significantly different between mice with Hmga2-wildtype or Hmga2-deficient tumours. Treatment of mice with Hmga2-wildtype and Hmga2-deficient tumours with gemcitabine did not uncover a significant impact of Hmga2-deficiency on gemcitabine sensitivity. Hmga1 and Hmga2 overlap in their expression in both human and murine PDAC, however knockdown of Hmga1 in Hmga2-deficient cancer cells also did not decrease metastatic ability. Thus, Hmga2 remains a prognostic marker which identifies a metastatic cancer cell state in primary PDAC, however Hmga2 has limited if any direct functional impact on PDAC progression and therapy resistance.
Collapse
|
38
|
The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship. Cancers (Basel) 2018; 10:cancers10090316. [PMID: 30200666 PMCID: PMC6162452 DOI: 10.3390/cancers10090316] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extraordinarily dense fibrotic stroma that impedes tumor perfusion and delivery of anticancer drugs. Since the extracellular matrix (ECM) comprises the bulk of the stroma, it is primarily responsible for the increased interstitial tissue pressure and stiff mechanical properties of the stroma. Besides its mechanical influence, the ECM provides important biochemical and physical cues that promote survival, proliferation, and metastasis. By serving as a nutritional source, the ECM also enables PDAC cells to survive under the nutrient-poor conditions. While therapeutic strategies using stroma-depleting drugs have yielded disappointing results, an increasing body of research indicates the ECM may offer a variety of potential therapeutic targets. As preclinical studies of ECM-targeted drugs have shown promising effects, a number of clinical trials are currently investigating agents with the potential to advance the future treatment of PDAC. Thus, the present review seeks to give an overview of the complex relationship between the ECM and PDAC.
Collapse
|
39
|
Li D, Lin TL, Lipe B, Hopkins RA, Shinogle H, Aljitawi OS. A novel extracellular matrix-based leukemia model supports leukemia cells with stem cell-like characteristics. Leuk Res 2018; 72:105-112. [PMID: 30130689 DOI: 10.1016/j.leukres.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023]
Abstract
Acute myeloid leukemia (AML) relapse results from the survival of chemotherapy-resistant and quiescent leukemia stem cells (LSC). These LSCs reside in the bone marrow microenvironment, comprised of other cells and extracellular matrix (ECM), which facilitates LSC quiescence through expression of cell adhesion molecules. We used decellularized Wharton's jelly matrix (DWJM), the gelatinous material in the umbilical cord, as a scaffolding material to culture leukemia cells, because it contains many components of the bone marrow extracellular matrix, including collagen, fibronectin, lumican, and hyaluronic acid (HA). Leukemia cells cultured in DWJM demonstrated decreased proliferation without undergoing significant differentiation. After culture in DWJM, these cells also exhibited changes in morphology, acquiring a spindle-shaped appearance, and an increase in the ALDH+ cell population. When treated with a high-dose of doxorubicin, leukemia cells in DWJM demonstrated less apoptosis compared with cells in suspension. Serial colony forming unit (CFU) assays indicated that leukemia cells cultured in DWJM showed increased colony-forming ability after both primary and secondary plating. Leukemia cell culture in DWJM was associated with increased N-cadherin expression by flow cytometry. Our data suggest that DWJM could serve as an ECM-based model to study AML stem cell-like cell behavior and chemotherapy sensitivity.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Tara L Lin
- Division of Hematology/Oncology and Blood and Marrow Transplantation Program, 2330 Shawnee Mission Parkway, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brea Lipe
- Division of Hematology/Oncology and Blood and Marrow Transplantation Program, 2330 Shawnee Mission Parkway, University of Kansas Medical Center, Kansas City, KS, United States
| | - Richard A Hopkins
- Cardiac Surgery Research Laboratories, Children's Mercy Hospital and Clinics, Kansas City, Missouri, United States
| | - Heather Shinogle
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, KS, United States
| | - Omar S Aljitawi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States; Division of Hematology/Oncology and Blood and Marrow Transplantation Program, 2330 Shawnee Mission Parkway, University of Kansas Medical Center, Kansas City, KS, United States; Department of Medicine, Hematology/Oncology and Bone Marrow Transplant Program, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| |
Collapse
|
40
|
Zhang S, Zhang H, Yu L. HMGA2 promotes glioma invasion and poor prognosis via a long-range chromatin interaction. Cancer Med 2018; 7:3226-3239. [PMID: 29733521 PMCID: PMC6051173 DOI: 10.1002/cam4.1534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
To identify the function and underlying mechanisms of HMGA2 on the prognosis and invasion of gliomas, HMGA2 was detected by immunohistochemistry. The Kaplan‐Meier and Cox's regression analysis results showed that higher HMGA2 level predicted the poorer outcomes of glioma patients. ChIP‐qPCR, DNA electrophoretic mobility shift assay, chromosome conformation capture, and co‐immunoprecipitation were applied to identify HMGA2‐activated target sites, which were further verified by mRNA and protein expression detection. Transwell and orthotopic implantation were used to investigate the roles of HMGA2 in glioma cells. HMGA2 shRNA transfection inhibited glioblastoma invasion. Mechanistically, we first discovered that HMGA2, together with GCN5, facilitated the invasion of glioma cells via inducing chromatin conformational remodeling of the MMP2 gene promoter and epigenetically activating MMP2 gene transcription. Our results indicated that HMGA2, as a novel GCN5 recognition partner and histone acetylation modulator, may be novel prognostic indicator and promising glioma treatment target.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huibian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
41
|
Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, Qin Y, Xu J, Ni Q, Yu X. Do anti-stroma therapies improve extrinsic resistance to increase the efficacy of gemcitabine in pancreatic cancer? Cell Mol Life Sci 2018; 75:1001-1012. [PMID: 28993833 PMCID: PMC11105455 DOI: 10.1007/s00018-017-2678-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies, with approximately 20-30% of PDAC patients receiving the surgical resection with curative intent. Although many studies have focused on finding ideal "drug chaperones" that facilitate and/or potentiate the effects of gemcitabine (GEM) in pancreatic cancer, a significant benefit in overall survival could not be demonstrated for any of these combination therapies in PDAC. Given that pancreatic cancer is characterized by desmoplasia and the dual biological roles of stroma in pancreatic cancer, we reassess the importance of stroma in GEM-based therapeutic approaches in light of current findings. This review is focused on understanding the role of stromal components in the extrinsic resistance to GEM and whether anti-stroma therapies have a positive effect on the GEM delivery. This work contributes to the development of novel and promising combination GEM-based regimens that have achieved significant survival benefits for the patients with pancreatic cancer.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qingcai Meng
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dingkong Liang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yi Qin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
42
|
Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, Qin Y, Xu J, Ni Q, Yu X. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going. Exp Mol Med 2017; 49:e406. [PMID: 29611542 PMCID: PMC5750480 DOI: 10.1038/emm.2017.255] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/23/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies. The poor clinical outcome in PDAC is partly attributed to a growth-permissive tumor microenvironment. In the PDAC microenvironment, the stroma is characterized by the development of extensive fibrosis, with stromal components outnumbering pancreatic cancer cells. Each of the components within the stroma has a distinct role in conferring chemoresistance to PDAC, and intrinsic chemoresistance has further worsened this pessimistic prognosis. The nucleoside analog gemcitabine (GEM) is usually the recommended first-line chemotherapeutic agent for PDAC patients and is given alone or in combination with other agents. The mechanisms of intrinsic resistance to GEM are an active area of ongoing research. This review highlights the important role the complex structure of stroma in PDAC plays in the intrinsic resistance to GEM and discusses whether antistroma therapy improves the efficacy of GEM. The addition of antistroma therapy combined with GEM is expected to be a novel therapeutic strategy with significant survival benefits for PDAC patients.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
43
|
The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int J Mol Sci 2017; 18:ijms18071586. [PMID: 28754000 PMCID: PMC5536073 DOI: 10.3390/ijms18071586] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially ‘omics’ technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously ‘unsupportive’ microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.
Collapse
|
44
|
Ping H, Guo L, Xi J, Wang D. Angiotensin II type 2 receptor-interacting protein 3a inhibits ovarian carcinoma metastasis via the extracellular HMGA2-mediated ERK/EMT pathway. Tumour Biol 2017. [PMID: 28651497 DOI: 10.1177/1010428317713389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Local migration and long-distance metastasis is the main reason for higher mortality of ovarian cancer. Microtubule-associated tumor suppressor 1/angiotensin II type 2 receptor-interacting protein is associated with tumor initiation and progression and exerts anti-tumor effects. High mobility group AT-hook 2 is overexpressed in majority of metastatic carcinomas, which contributes to carcinomas metastasis through Snail-induced epithelial-to-mesenchymal transition signal pathway. The purpose of this study was to investigate the signal pathway of microtubule-associated tumor suppressor 1/angiotensin II type 2 receptor-interacting protein-mediated anti-tumor effects. Our data observed that ovarian carcinoma cells exhibited lower expression of angiotensin II type 2 receptor-interacting protein 3a and higher expression of high mobility group AT-hook 2 compared to normal ovarian cells. Restoration of angiotensin II type 2 receptor-interacting protein 3a expression in ovarian carcinoma cells inhibited high mobility group AT-hook 2 expression and exhibited anti-proliferative effects. In addition, angiotensin II type 2 receptor-interacting protein 3a treatment suppressed the phosphorylation of epithelial-to-mesenchymal transition and extracellular signal-regulated kinase in ovarian carcinoma cells. We also observed that angiotensin II type 2 receptor-interacting protein 3a restoration downregulated expression of Snail, E-Cadherin, N-Cadherin, and Vimentin in ovarian carcinoma cells, whereas angiotensin II type 2 receptor-interacting protein 3a knockdown enhanced the phosphorylation of extracellular signal-regulated kinase and epithelial-to-mesenchymal transition. In vivo assay indicated that angiotensin II type 2 receptor-interacting protein 3a inhibited ovarian tumor growth and elevated survival of tumor-bearing immunodeficient mice. Tumor histological analysis indicated that Snail, E-Cadherin, N-Cadherin, and Vimentin expression levels were downregulated via decreasing high mobility group AT-hook 2 expression. Furthermore, upregulation of angiotensin II type 2 receptor-interacting protein 3a impaired the phenotype of extracellular signal-regulated kinase and epithelial-to-mesenchymal transition in ovarian carcinoma cells and tumor tissues. Taken together, angiotensin II type 2 receptor-interacting protein 3a presents potential in suppressing the proliferation and aggressiveness of ovarian carcinoma cells through the high mobility group AT-hook 2-mediated extracellular signal-regulated kinase/epithelial-to-mesenchymal transition signal pathway.
Collapse
Affiliation(s)
- Huang Ping
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| | - Liang Guo
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| | - Jie Xi
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| | - Donghui Wang
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
45
|
Strell C, Norberg KJ, Mezheyeuski A, Schnittert J, Kuninty PR, Moro CF, Paulsson J, Schultz NA, Calatayud D, Löhr JM, Frings O, Verbeke CS, Heuchel RL, Prakash J, Johansen JS, Östman A. Stroma-regulated HMGA2 is an independent prognostic marker in PDAC and AAC. Br J Cancer 2017; 117:65-77. [PMID: 28524160 PMCID: PMC5520204 DOI: 10.1038/bjc.2017.140] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The HMGA2 protein has experimentally been linked to EMT and cancer stemness. Recent studies imply that tumour-stroma interactions regulate these features and thereby contribute to tumour aggressiveness. METHODS We analysed 253 cases of pancreatic ductal adenocarcinoma (PDAC) and 155 cases of ampullary adenocarcinoma (AAC) for HMGA2 expression by IHC. The data were correlated with stroma abundance and supplemented by experimental studies. RESULTS HMGA2 acts as an independent prognostic marker associated with a significantly shorter overall survival in both tumour types. Overall, HMGA2-positivity was more frequent in patients with PDAC than with AAC. The HMGA2 status in tumour cells significantly correlated with the abundance of PDGFRβ-defined stroma cells. In vivo co-injection of Panc-1 cancer cells with pancreatic stellate cells increased tumour growth in a manner associated with increased HMGA2 expression. Furthermore, in vitro treatment of Panc-1 with conditioned media from PDGF-BB-activated stellate cells increased their ability to form tumour spheroids. CONCLUSIONS This study identifies HMGA2 expression in tumour cells as an independent prognostic marker in PDAC and AAC. Correlative data analysis gives novel tissue-based evidence for a heterotypic cross-talk with stroma cells as a possible mechanism for HMGA2 induction, which is further supported by experimental models.
Collapse
Affiliation(s)
- Carina Strell
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
| | - Karin Jessica Norberg
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm 14186, Sweden
| | - Artur Mezheyeuski
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
| | - Jonas Schnittert
- Department of Biomaterials Science and Technology, Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst building, ZH254, Enschede 7500AE, The Netherlands
| | - Praneeth R Kuninty
- Department of Biomaterials Science and Technology, Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst building, ZH254, Enschede 7500AE, The Netherlands
| | - Carlos Fernández Moro
- Department of Laboratory Medicine (LabMed) Division of Pathology, Karolinska Institutet, Stockholm 14186, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm 14186, Sweden
| | - Janna Paulsson
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Dan Calatayud
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Johannes Matthias Löhr
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm 14186, Sweden
| | - Oliver Frings
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden
| | - Caroline Sophie Verbeke
- Institute of Clinical Medicine, University of Oslo, Postbox 1171 Blindern, Oslo 0318, Norway
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Postbox 4956 Nydalen, Oslo 0424, Norway
| | - Rainer Lothar Heuchel
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm 14186, Sweden
| | - Jai Prakash
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
- Department of Biomaterials Science and Technology, Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst building, ZH254, Enschede 7500AE, The Netherlands
| | - Julia Sidenius Johansen
- Department of Oncology and Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
| |
Collapse
|
46
|
Bahrami A, Khazaei M, Bagherieh F, Ghayour-Mobarhan M, Maftouh M, Hassanian SM, Avan A. Targeting stroma in pancreatic cancer: Promises and failures of targeted therapies. J Cell Physiol 2017; 232:2931-2937. [PMID: 28083912 DOI: 10.1002/jcp.25798] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/18/2022]
Abstract
Desmoplasia or abundant fibrotic stroma is a typical property of most malignancies, which has a great effect on tumorigenesis, angiogenesis, and resistance to therapy. The activated stroma cells comprises several cell types including endothelial cells, nerve cells, inflammatory/macrophages cells, stellate cells, and extracellular matrix. In other word, the interactions of cancer-stroma modulate tumorigenesis, therapy resistance, and poor delivery of drugs. Therefore, targeting the tumor stroma in combination with conventional chemotherapeutic agents could provide a promising approach in the treatment of pancreatic cancer. This review summarizes the current knowledge about pancreatic stellate cells, targeting stroma compartments with particular emphasis on preclinical, and clinical trials on targeting of stroma as an option in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Neurogenic Inflammatory Research Center and Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Bagherieh
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftouh
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Coppola S, Carnevale I, Danen EHJ, Peters GJ, Schmidt T, Assaraf YG, Giovannetti E. A mechanopharmacology approach to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2017; 31:43-51. [PMID: 28867243 DOI: 10.1016/j.drup.2017.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly chemoresistant malignancy. This chemoresistant phenotype has been historically associated with genetic factors. Major biomedical research efforts were concentrated that resulted in the identification of subtypes characterized by specific genetic lesions and gene expression signatures that suggest important biological differences. However, to date, these distinct differences could not be exploited for therapeutic interventions. Apart from these genetic factors, desmoplasia and tumor microenvironment have been recognized as key contributors to PDAC chemoresistance. However, while several strategies targeting tumor-stroma have been explored including drugs against members of the Hedgehog family, they failed to meet the expectations in the clinical setting. These unsatisfactory clinical results suggest that, an important link between genetics and the influence of tumor microenvironment on PDAC chemoresistance remains to be elucidated. In this respect, mechanobiology is an emerging multidisciplinary field that encompasses cell and developmental biology as well as biophysics and bioengineering. Herein we provide a comprehensive overview of the key players in pancreatic cancer chemoresistance from the perspective of mechanobiology, and discuss novel experimental avenues such as elastic micropillar arrays that could provide fresh insights for the development of mechanobiology-targeted therapeutic approaches (know as mechanopharmacology) to overcome anticancer drug resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Ilaria Carnevale
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University Hospital of Pisa, Pisa, Italy
| | - Erik H J Danen
- Division of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University Hospital of Pisa, Pisa, Italy; Institute for Nanoscience and Nanotechnologies, CNR-Nano, Pisa.
| |
Collapse
|
48
|
Abstract
A fibroinflammatory stromal reaction cooperates with oncogenic signaling to influence pancreatic ductal adenocarcinoma (PDAC) initiation, progression, and therapeutic outcome, yet the mechanistic underpinning of this crosstalk remains poorly understood. Here we show that stromal cues elicit an adaptive response in the cancer cell including the rapid mobilization of a transcriptional network implicated in accelerated growth, along with anabolic changes of an altered metabolome. The close overlap of stroma-induced changes in vitro with those previously shown to be regulated by oncogenic Kras in vivo suggests that oncogenic Kras signaling-a hallmark and key driver of PDAC-is contingent on stromal inputs. Mechanistically, stroma-activated cancer cells show widespread increases in histone acetylation at transcriptionally enhanced genes, implicating the PDAC epigenome as a presumptive point of convergence between these pathways and a potential therapeutic target. Notably, inhibition of the bromodomain and extraterminal (BET) family of epigenetic readers, and of Bromodomain-containing protein 2 (BRD2) in particular, blocks stroma-inducible transcriptional regulation in vitro and tumor progression in vivo. Our work suggests the existence of a molecular "AND-gate" such that tumor activation is the consequence of mutant Kras and stromal cues, providing insight into the role of the tumor microenvironment in the origin and treatment of Ras-driven tumors.
Collapse
|
49
|
Paladino D, Yue P, Furuya H, Acoba J, Rosser CJ, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget 2016; 7:7253-67. [PMID: 26695438 PMCID: PMC4872783 DOI: 10.18632/oncotarget.6635] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/23/2022] Open
Abstract
The presence of Src in the nuclear compartment has been previously reported, although its significance has remained largely unknown. We sought to delineate the functions of the nuclear pool of Src within the context of malignant progression. Active Src is localized within the nuclei of human pancreatic cancer cells and mouse fibroblasts over-expressing c-Src where it is associated with p300. Nuclear Src additionally promotes the tyrosine phosphorylation of p300 in pancreatic cancer Panc-1 cells. Src, together with p300, is associated with the high-mobility group AT-hook (HMGA)2 and SET and MYND domain-containing protein (SMYD)3 gene promoters and regulates their expression in a Src-dependent manner. These nuclear Src-dependent events correlate with anchorage-independent soft-agar growth and the migratory properties in both pancreatic Panc-1 cells and mouse fibroblasts over-expressing Src. Moreover, analyses of human pancreatic ductal adenocarcinoma (PDAC) tumor tissues detected the association of nuclear Src with the HMGA2 and SMYD3 gene promoters. Our findings for the first time show the critical importance of nuclear Src and p300 function in the migratory properties of pancreatic cancer cells. Further, data together identify a previously unknown role of nuclear Src in the regulation of gene expression in association with p300 within the context of cells harboring activated or over-expressing Src. This novel mechanism of nuclear Src-p300 axis in PDAC invasiveness and metastasis may provide an opportunity for developing more effective early clinical interventions for this lethal disease. Active Src is complexed with and phosphorylates p300 in the nucleus, and the complex is bound to HMGA2 and SMYD3 genes, thereby regulating their expression to promote pancreatic tumor cell migration and invasiveness.
Collapse
Affiliation(s)
- David Paladino
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA.,Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - Peibin Yue
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA.,Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - Hideki Furuya
- Clinical and Translational Research Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - Jared Acoba
- Clinical and Translational Research Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - Charles J Rosser
- Clinical and Translational Research Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| | - James Turkson
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA.,Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
50
|
Mei L, Du W, Ma WW. Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: controversies and promises. J Gastrointest Oncol 2016; 7:487-94. [PMID: 27284483 DOI: 10.21037/jgo.2016.03.03] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a highly lethal disease. Conventional therapeutics targeting pancreas cancer cell compartment using cytotoxics improved patient survival but at the expense of significant toxicity. Microscopically, the tumor is characterized by thick desmoplastic stroma that surrounds islands of pancreatic cancer cells. The tumor microenvironment has been found to play important roles in carcinogenesis, the development of drug resistance, and mediating immunosuppression. The understanding the tumor-stromal interaction has led to the development of novel therapeutic approaches. Here, we review the strategies that are currently in (or, near to) clinical evaluation and the underlying preclinical rationales.
Collapse
Affiliation(s)
- Lin Mei
- 1 Department of Medicine, 2 Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Wei Du
- 1 Department of Medicine, 2 Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Wen Wee Ma
- 1 Department of Medicine, 2 Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|