1
|
Strobel SM, Fischer EK, Womack MC. Consequences of developmental and growth-rate plasticity within and across life stages in wood frogs ( Rana sylvatica). ROYAL SOCIETY OPEN SCIENCE 2025; 12:250202. [PMID: 40370614 PMCID: PMC12077235 DOI: 10.1098/rsos.250202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 05/16/2025]
Abstract
Increased trait responsiveness to the environment can provide short-term benefits but may induce delayed costs. Anurans (frogs and toads) provide an excellent system to examine phenotypic plasticity and developmental carry-over effects given their ecologically distinct life stages, which have distinct development and growth opportunities. Previous research has predominantly assessed phenotype at metamorphosis rather than within and across life stages. To address this knowledge gap, we reared wood frogs (Rana sylvatica) at two densities and assessed morphology and survival at multiple larval and post-metamorphic timepoints. As expected, the high-density rearing environment depressed early larval size and survivorship and delayed metamorphosis. However, compensatory growth-rate plasticity enabled high-density tadpoles to metamorphose at a similar size as low-density tadpoles. Regardless of rearing density, larval duration was negatively correlated with metamorphic mass for the earliest developers and influenced post-metamorphic survivorship and morphology, but we found evidence for a trade-off between compensatory growth and later-life survival. Our results reinforce the need to sample at multiple timepoints and life stages to understand interactions between phenotype and developmental environment. More broadly, this study contributes to understanding trade-offs and compensation associated with phenotypic plasticity, which will become even more critical given accelerating rates of global environmental change.
Collapse
Affiliation(s)
- Sarah McKay Strobel
- Department of Biology, Utah State University, Logan, UT, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Eva K. Fischer
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA, USA
| | - Molly C. Womack
- Department of Biology, Utah State University, Logan, UT, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Iglesias-Carrasco M, Torres J, Cruz-Dubon A, Candolin U, Wong BBM, Velo-Antón G. Global impacts of exotic eucalypt plantations on wildlife. Biol Rev Camb Philos Soc 2025. [PMID: 40159998 DOI: 10.1111/brv.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
The establishment of exotic tree plantations poses a pervasive threat to wildlife across the globe. Among the most important tree species used for forestry purposes worldwide are members of the genus Eucalyptus, which have now been established in at least 107 countries outside of their native range. When introduced into non-native areas, eucalypt plantations are associated with myriad novel challenges for native fauna, and have often been associated with reductions in the biodiversity of local communities. However, similar to other anthropogenic habitats, eucalypt plantations can also create novel opportunities for species that can allow them to survive and thrive in these novel environments. In this review, we use eucalypt plantations as a case study for understanding the ecological and evolutionary responses of wildlife to anthropogenic habitat loss and change. We begin by summarising the main avenues of research addressing the study of wildlife responses at the individual, community, and ecosystem levels, and highlight critical research gaps. We also consider the characteristics of different types of eucalypt plantations and how such attributes are linked with the ability of animals to respond appropriately to the establishment of plantations, and summarise important considerations for the conservation of animal communities in these human-altered habitats.
Collapse
Affiliation(s)
- Maider Iglesias-Carrasco
- Evolution and Ecology of Sexual Interactions Group, Doñana Biological Station, CSIC, Americo Vespucio s/n, Seville, 41092, Spain
- GLOBE Institute, Hologenomics, University of Copenhagen, Øster Voldgade 7, København, 1350, Denmark
| | | | - Adalid Cruz-Dubon
- State University of Feira de Santana, Avenida Transnordestina, s/n, Novo Horizonte, CEP 44036-900, Feira de Santana, Bahía, Brazil
| | - Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, PO Box 65, University of Helsinki, Helsinki, 00014, Finland
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| | - Guillermo Velo-Antón
- ECOEVO Lab, EE Forestal, University of Vigo, Campus Universitario A Xunqueira, Pontevedra, E-36005, Spain
| |
Collapse
|
3
|
Mariotto LF, Lofeu L, Kohlsdorf T. Developmental Plasticity in Growth and Performance Blur Taxonomic Boundaries in South American True Toads (Rhinella). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:80-93. [PMID: 39718098 DOI: 10.1002/jez.b.23283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Developmental plasticity can affect traits directly related to survival, and some changes may promote or impair population persistence in changing environments. At the same time, it can also originate new complex phenotypes, surpassing species-specific boundaries. Therefore, plastic responses have the potential to participate in processes of micro and macroevolution. In this study, we evaluate plastic responses to different thermal regimes during development in traits related to survival and also used for taxonomic classification of two true-toad species, Rhinella icterica and Rhinella ornata. We raised tadpoles representing distinct operational taxonomic units (OTUs) at different temperatures, and the resulting phenotypic patterns suggest canalization in R. icterica and complex variation revealed by plasticity among R. ornata OTUs. Plastic responses to thermal regimes produced differences among the OTUs in traits associated with specific survival strategies of Rhinella species. Some changes surpassed taxonomic boundaries and rescued lineage-specific phenotypic patterns, establishing unusual phenotypic combinations for these species. Our results illustrate the contribution of developmental plasticity for processes involving phenotypic differentiation among species in traits directly related to survival.
Collapse
Affiliation(s)
- Lucas Ferriolli Mariotto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Leandro Lofeu
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Tiana Kohlsdorf
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Méndez-Narváez J, Warkentin KM. Effects of larval foam-making and prolonged terrestriality on morphology, nitrogen excretion and development to metamorphosis in a Leptodactylid frog. PeerJ 2025; 13:e18990. [PMID: 40028200 PMCID: PMC11871897 DOI: 10.7717/peerj.18990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
At ontogenetic transitions, animals often exhibit plastic variation in development, behavior and physiology in response to environmental conditions. Most terrestrial-breeding frogs have aquatic larval periods. Some species can extend their initial terrestrial period, as either a plastic embryonic response to balance trade-offs across environments or an enforced wait for rain that allows larvae to access aquatic habitats. Terrestrial larvae of the foam-nesting frog, Leptodactylus fragilis, can arrest development, make their own nest foam to prevent dehydration, and synthesize urea to avoid ammonia toxicity. These plastic responses enable survival during unpredictably long periods in underground nest chambers, waiting for floods to enable exit and continued development in water. However, such physiological and behavioral responses may have immediate and long-term carry-over effects across subsequent ecological and developmental transitions. We examined effects of prolonged terrestriality and larval foam-making activity on larval physiology, development, and metamorphosis in L. fragilis. We tested for changes in foam-making ability by measuring the nests larvae produced following complete removal of parental foam at different ages. We measured ammonia and urea levels in larval foam nests to assess nitrogen excretion patterns, testing for effects of larval age, soil hydration around parental nests, and repeated nest construction. We also assessed immediate and long-term effects of larval foam-making and prolonged terrestriality on larval morphology at water entry and development to metamorphosis. We found that larvae arrested development during prolonged time on land and even young larvae were able to effectively produce multiple foam nests. We found high ammonia concentrations in larval nests, very high urea excretion by developmentally arrested older larvae, and faster growth of larvae in water than while constructing nests. Nonetheless, sibling larvae had a similar aquatic larval period and size at metamorphosis, regardless of their nest-making activity and timing of water entry. Sibship size increased the size of larval foam nests, but reduced per-capita foam production and increased size at metamorphosis, suggesting maternal effects in cooperative groups. Metamorph size also decreased with aquatic larval period. Our results highlight the extent of larval ability to maintain and construct a suitable developmental environment and excrete N-waste as urea, which are both crucial for survival during enforced extensions of terrestriality. Our results suggest that the energetic reserves in large eggs are sufficient to meet metabolic costs of urea synthesis and foam production during developmental arrest over an extended period on land, with no apparent carry-over effects on fitness-relevant traits at metamorphosis.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia
- Biology Department, Boston University, Boston, Massachusetts, United States
| | - Karen M. Warkentin
- Biology Department, Boston University, Boston, Massachusetts, United States
- Smithsonian Tropical Research Institute, Panama, Panama
| |
Collapse
|
5
|
Wu NC, Fuh NT, Borzée A, Wu CS, Kam YC, Chuang MF. Developmental plasticity to pond drying has carryover costs on metamorph performance. CONSERVATION PHYSIOLOGY 2025; 13:coaf008. [PMID: 39974208 PMCID: PMC11839272 DOI: 10.1093/conphys/coaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Increasing variable hydroperiods may leave ectotherms with complex life cycles more vulnerable to the impacts of environmental drying. While developmental plasticity may enable some species to escape drying ponds, this plasticity might result in trade-offs with performance and subsequent fitness in adults. Here, we used rice paddy frogs (Fejervarya limnocharis) to test how pond drying influences the developmental plasticity of tadpoles, and the resulting carryover effects on body size and jumping performance. We predicted that tadpoles under simulated drought conditions (2-0.25 cm depth) compared to low stable water level conditions (0.25 cm depth) would develop faster, and the resulting metamorphs would be smaller and exhibit lower jumping performance. We show that tadpoles in drying conditions had a faster developmental rate than tadpoles in stable low water level treatments. The size of metamorphs from the drying treatment was similar to the high-water treatments (2 cm depth), but maximum jumping distance of individuals from the drying condition was lower than that of the high-water treatment. These results indicate that drying conditions for F. limnocharis increase development rate without a reduction in size at metamorphosis, but with poorer mass-independent locomotor performance, which can potentially impact their survival.
Collapse
Affiliation(s)
- Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Science Rd, Richmond 2753, NSW, Australia
| | - Nien-Tse Fuh
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Blvd, Xitun Dist, Taichung 407224, Taiwan
| | - Amaël Borzée
- Laboratory of Animal Behaviour and Conservation, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Rd, Xuanwu Dist, Nanjing 210037, China
| | - Chi-Shiun Wu
- Department of Life Science, Chinese Culture University, No. 55, Hwa-Kang Rd, Yang-Ming-Shan, Taipei 11114, Taiwan
| | - Yeong-Choy Kam
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Blvd, Xitun Dist, Taichung 407224, Taiwan
| | - Ming-Feng Chuang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Rd, South Dist, Taichung 402202, Taiwan
- Global Change Biology Research Center, National Chung Hsing University, No. 145, Xingda Rd, South Dist, Taichung 402202, Taiwan
| |
Collapse
|
6
|
Maia NVNDS, Melo Alves MKD, Mariz CF, Simões PI, Carvalho PSMD. Phenanthrene toxicity during early development of the neotropical tree frog Dendropsophus branneri. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107239. [PMID: 39805256 DOI: 10.1016/j.aquatox.2025.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/15/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Phenanthrene is considered a priority polycyclic aromatic hydrocarbon due to its ubiquitous presence in aquatic and terrestrial environments and its toxic potential. Tadpoles are sensitive ecotoxicological models that provide important information regarding effects of contaminants in amphibian species. The goal of the present study was to generate information regarding the acute and chronic toxicity of phenanthrene to the neotropical tree frog Dendropsophus branneri early life stages. Tadpoles at Gosner stage 25 were exposed to environmentally relevant concentrations of 10.8, 18.6, 76.2, 187.7, and 279.6 µg phenanthrene L-1 in two experiments with 15 and 60 days of exposure. Lethality, progression of development, final weight, swimming behavior and enzymatic biomarkers were analyzed. The lethal concentration of dissolved phenanthrene for 50 % of D. branneri tadpoles after 15 days of exposure was 154.8 µg L-1, typical of a sensitive species. Significant developmental delay was verified, with a lowest observed effect concentration (LOEC) of 76.2 µg L-1 and 10.8 µg L-1 after exposures of 15 and 60 days, respectively. Delay was measured based on the difference between the mean Gosner stage of controls and exposed tadpoles (Deltagosner). Deltagosner after 60 days of exposure ranged from 10 at 10.8 µg L-1 to 13 at 187.7 µg L-1, and tadpoles remained in the early stages of hind limb development (Gosner stages 28-32), in contrast to controls that reached stage 42 with fully formed forelimbs and hind limbs with toes at metamorphic climax. Glutathione-S-transferase and Catalase were induced in exposed tadpoles, possibly due to oxidative stress. Thigmotaxis was decreased in phenanthrene exposed tadpoles, indicating loss of anti-predatory behaviors. Final wet weight of exposed D.branneri tadpoles significantly decreased. Delayed development and slower growth rate are crucial factors for tadpole survival, and these effects of phenanthrene on D.branneri early stages potentially affects its recruitment to the adult stage.
Collapse
Affiliation(s)
- Natallia Vívian Nascimento da Silva Maia
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Herpetology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Aquatic Ecotoxicology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil
| | - Maria Karolaine de Melo Alves
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Aquatic Ecotoxicology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil
| | - Célio Freire Mariz
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Aquatic Ecotoxicology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil
| | - Pedro Ivo Simões
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Herpetology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil
| | - Paulo Sérgio Martins de Carvalho
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Aquatic Ecotoxicology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil.
| |
Collapse
|
7
|
Zamora‐Camacho FJ, Aragón P. Increased Temperature and Exposure to Ammonium Alter the Life Cycle of an Anuran Species. Ecol Evol 2024; 14:e70685. [PMID: 39629171 PMCID: PMC11612019 DOI: 10.1002/ece3.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Amphibian populations are undergoing a major recession worldwide, likely triggered by global change components such as the global warming and pollutants, among which agrochemicals, in general, and fertilizers, in particular, play a central role given their relevance in agriculture. Potential synergies among these stressors could maximize their individual effects. In this work, we investigated the consequences of a controlled chronic exposure to increased temperature and a sublethal dose of ammonium during the larval stage of Pelophylax perezi frogs on the growth, development, and locomotor performance of tadpoles and the metamorphs they gave rise to. To that end, tadpoles were reared either in heated or nonheated tanks, with or without ammonium added. The parents of these tadpoles came from either a pine grove or an agrosystem. Survival was reduced in agrosystem tadpoles reared with ammonium. Increased temperature potentiated tadpole growth while giving way to smaller metamorphs. Faster growth could be a consequence of increased metabolism, whereas the smaller size could follow an accelerated development and metamorphosis, which reduced the growth period. Also, swimming speed was greater in tadpoles reared in heated tanks, while jumping distance was greater in metamorphs reared in nonheated tanks. The effects of temperature were more marked in agrosystem than in pine grove individuals, which could mirror reduced adaptability. Thus, the ability to withstand the effects of these stressors was lower in agrosystem tadpoles.
Collapse
Affiliation(s)
- Francisco Javier Zamora‐Camacho
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
- Department of Biology of Organisms and SystemsUniversity of OviedoOviedoSpain
| | - Pedro Aragón
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| |
Collapse
|
8
|
Padilla P, Herrel A, Denoël M. Invading new climates at what cost? Ontogenetic differences in the thermal dependence of metabolic rate in an invasive amphibian. J Therm Biol 2024; 121:103836. [PMID: 38604116 DOI: 10.1016/j.jtherbio.2024.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Global warming can either promote or constrain the invasive potential of alien species. In ectotherm invaders that exhibit a complex life cycle, success is inherently dependent on the capacity of each developmental stage to cope with environmental change. This is particularly relevant for invasive anurans, which disperse on land while requiring water for reproduction. However, it remains unknown how the different life stages respond in terms of energy expenditure under different climate change scenarios. We here quantified the oxygen uptake of frogs at rest (a proxy of the standard metabolic rate) in the aquatic phase (at the tadpole and climax, i.e. during metamorphosis, stages) and in the terrestrial phase (metamorphosed stage) at three environmental temperatures. To do so, we used marsh frogs (Pelophylax ridibundus), an amphibian with the largest invasive range within the palearctic realm and for which their adaptation to global warming might be key to their invasion success. Beyond an increase of metabolic rate with temperature, our data show variation in thermal adaptation across life stages and a higher metabolic cost during metamorphosis. These results suggest that the cost to shift habitat and face changes in temperature may be a constraint on the invasive potential of species with a complex life cycle which may be particularly vulnerable during metamorphosis.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium; UMR 7179, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Paris, France.
| | - Anthony Herrel
- UMR 7179, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Paris, France; Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium; Department of Biology, University of Antwerp, Wilrijk, Belgium; Naturhistorisches Museum Bern, Bern, Switzerland
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
9
|
Crossland MR, Shine R, DeVore JL. Mechanisms, costs, and carry-over effects of cannibal-induced developmental plasticity in invasive cane toads. Ecol Evol 2024; 14:e10961. [PMID: 38343578 PMCID: PMC10857926 DOI: 10.1002/ece3.10961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 10/28/2024] Open
Abstract
Inducible defences can improve survival in variable environments by allowing individuals to produce defences if they detect predators. These defences are often expressed as inter-related developmental, morphological, and behavioural changes. However, producing defences can incur costs, which may be expressed immediately and/or during subsequent life stages. In Australia, waterborne cues of potentially cannibalistic conspecific tadpoles induce hatchlings of invasive cane toads to accelerate their developmental rate, thereby reducing their window of vulnerability. However, the mechanisms and costs of such accelerated development are poorly understood, and whether cane toad embryos show cannibal-induced plasticity in other traits is unknown. Here, we found no evidence of altered time of hatching for embryos exposed to non-feeding conspecific cannibal tadpole cues. Additionally, hatchling dispersal behaviours were not affected by exposure to these cues. However, developmental acceleration of hatchlings induced by exposure to tadpole cues was accompanied by reduced hatchling growth, indicating a trade-off between these processes. At the conclusion of the hatchling stage, cannibal-exposed individuals were smaller and morphologically distinct from control siblings. This size reduction affected performance during the subsequent tadpole stage: smaller cannibal-exposed individuals were more likely to die, and initial size tended to be positively associated with subsequent tadpole growth and development across treatments (respectively, p = .07 and p = .06). However, even accounting for variation in initial size, there was an additional negative effect of cannibal exposure on tadpole growth and development, demonstrating that the fitness costs associated with developmental acceleration are not entirely attributable to size reductions.
Collapse
Affiliation(s)
- Michael R. Crossland
- School of Life and Environmental Sciences A08The University of SydneySydneyNew South WalesAustralia
| | - Richard Shine
- School of Life and Environmental Sciences A08The University of SydneySydneyNew South WalesAustralia
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Jayna L. DeVore
- School of Life and Environmental Sciences A08The University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
10
|
Wright M, Oleson L, Witty R, Fritz KA, Kirschman LJ. Infection Causes Trade-Offs between Development and Growth in Larval Amphibians. Physiol Biochem Zool 2023; 96:430-437. [PMID: 38237190 DOI: 10.1086/727729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractTrade-offs between life history traits are context dependent; they vary depending on environment and life stage. Negative associations between development and growth often characterize larval life stages. Both growth and development consume large parts of the energy budget of young animals. The metabolic rate of animals should reflect differences in growth and developmental rates. Growth and development can also have negative associations with immune function because of their costs. We investigated how intraspecific variation in growth and development affected the metabolism of larval amphibians and whether intraspecific variation in growth, development, and metabolic rate could predict mortality and viral load in larvae infected with ranavirus. We also compared the relationship between growth and development before and after infection with ranavirus. We hypothesized that growth and development would affect metabolism and predicted that each would have a positive correlation with metabolic rate. We further hypothesized that allocation toward growth and development would increase ranavirus susceptibility and therefore predicted that larvae with faster growth, faster development, and higher metabolic rates would be more likely to die from ranavirus and have higher viral loads. Finally, we predicted that growth rate and developmental rate would have a negative association. Intraspecific variation in growth rate and developmental rate did not affect metabolism. Growth rate, developmental rate, and metabolism did not predict mortality from ranavirus or viral load. Larvae infected with ranavirus exhibited a trade-off between developmental rate and growth rate that was absent in uninfected larvae. Our results indicate a cost of ranavirus infection that is potentially due to both the infection-induced anorexia and the cost of infection altering priority rules for resource allocation.
Collapse
|
11
|
Crossland MR, Shine R. Intraspecific interference retards growth and development of cane toad tadpoles, but those effects disappear by the time of metamorphosis. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231380. [PMID: 38026033 PMCID: PMC10645094 DOI: 10.1098/rsos.231380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Competition among larval anurans can occur via interference as well as via a reduction in per-capita food supply. Previous research on intraspecific interference competition in cane toad (Rhinella marina) tadpoles found conflicting results, with one study detecting strong effects on tadpoles and another detecting no effects on metamorphs. A capacity to recover from competitive suppression by the time of metamorphosis might explain those contrasting impacts. In a laboratory experiment, we found that nine days of exposure to intraspecific interference competition strongly reduced tadpole growth and development, especially when the competing tadpoles were young (early-stage) individuals. Those competitive effects disappeared by the time of metamorphosis, with no significant effect of competition on metamorph body condition, size, larval period or survival. Temporal changes in the impact of competition were not related to tadpole density or to variation in water quality. The ability of larval cane toads to recover from intraspecific interference competition may enhance the invasive success of this species, because size at metamorphosis is a significant predictor of future fitness. Our study also demonstrates a cautionary tale: conclusions about the existence and strength of competitive interactions among anuran larvae may depend on which developmental stages are measured.
Collapse
Affiliation(s)
- M. R. Crossland
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - R. Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
12
|
Băncilă RI, Stănescu F, Plăiaşu R, Nae I, Székely D, Vlad SE, Cogălniceanu D. Food and light availability induce plastic responses in fire salamander larvae from contrasting environments. PeerJ 2023; 11:e16046. [PMID: 37810773 PMCID: PMC10559897 DOI: 10.7717/peerj.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
Phenotypic plasticity has been proposed as a mechanism facilitating the colonisation and adaptation to novel environments, such as caves. However, phenotypic plasticity in subterranean environments remains largely unexplored. Here, we test for plasticity in growth and development of fire salamander larvae (Salamandra salamandra) from subterranean and surface habitats, in response to contrasting food availability and light conditions. We hypothesized that: (i) low food availability and absence of light decrease larval growth and delay metamorphosis, (ii) light conditions mediate the effects of food availability on growth and time to metamorphosis, and (iii) larval response to contrasting light and food conditions is shaped by the habitat of origin. Our study showed that reduced food availability significantly delayed metamorphosis and slowed total length and body mass growth rates, while exposure to constant darkness slowed body mass growth rate. However, larvae slowed growth rates and increased time to metamorphosis without compromising size at metamorphosis. The effect of food availability on growth and time to metamorphosis did not change under different light conditions. Fire salamanders from subterranean and surface habitats responded differently only in relation to contrasting food availability conditions. Specifically, larvae from the surface habitat grew faster in high food conditions, while growth in larvae from the subterranean habitat was not influenced by food availability. Initial size also appeared to be an influential factor, since larger and heavier larvae grew slower, metamorphosed faster, and the size advantage was maintained in newly-metamorphosed juveniles. Overall, the results of our experiment suggest that plasticity and local adaptation favor the exploitation of aquatic subterranean habitats for breeding by fire salamanders, allowing successful development even under food shortage and day-length constraints, without compromising metamorphic size. Our findings have implications for conservation because they confirm that phenotypic plasticity plays a critical role in allowing fire salamanders to overcome altered environmental conditions.
Collapse
Affiliation(s)
- Raluca Ioana Băncilă
- “Emil Racoviţă” Institute of Speleology of Romanian Academy of Sciences, Bucharest, Romania
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
| | - Florina Stănescu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
- Black Sea Institute for Development and Security Studies, Ovidius University Constanţa, Constanţa, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanţa, Constanţa, Romania
| | - Rodica Plăiaşu
- “Emil Racoviţă” Institute of Speleology of Romanian Academy of Sciences, Bucharest, Romania
| | - Ioana Nae
- “Emil Racoviţă” Institute of Speleology of Romanian Academy of Sciences, Bucharest, Romania
| | - Diana Székely
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
- Museo de Zoología, Universidad Técnica Particular de Loja, Loja, Ecuador
- Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Sabina E. Vlad
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanţa, Constanţa, Romania
- Chelonia Romania, Bucharest, Romania
| | - Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
- Chelonia Romania, Bucharest, Romania
| |
Collapse
|
13
|
Horn K, Shidemantle G, Velasquez I, Ronan E, Blackwood J, Reinke BA, Hua J. Evaluating the interactive effects of artificial light at night and background color on tadpole crypsis, background adaptation efficacy, and growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122056. [PMID: 37343910 DOI: 10.1016/j.envpol.2023.122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Artificial light at night (ALAN) is a global pollutant of rising concern. While alterations to natural day-night cycles caused by ALAN can affect a variety of traits, the broader fitness and ecological implications of these ALAN-induced shifts remain unclear. This study evaluated the interactive effects of ALAN and background color on traits that have important implications for predator-prey interactions and fitness: crypsis, background adaptation efficacy, and growth. Using three amphibian species as our models, we discovered that: (1) Exposure to ALAN reduced the ability for some species to match their backgrounds (background adaptation efficacy), (2) Crypsis and background adaptation efficacy were enhanced when tadpoles were exposed to dark backgrounds only, emphasizing the importance of environmental context when evaluating the effects of ALAN, (3) ALAN and background color have a combined effect on a common metric of fitness (growth), and (4) Effects of ALAN were not generalizable across amphibian species, supporting calls for more studies that utilize a diversity of species. Notably, to our knowledge, we found the first evidence that ALAN can diminish background adaptation efficacy in an amphibian species (American toad tadpoles). Collectively, our study joins others in highlighting the complex effects of ALAN on wildlife and underscores the challenges of generalizing ALAN's effect across species, emphasizing the need for a greater diversity of species and approaches used in ALAN research.
Collapse
Affiliation(s)
- Kelsey Horn
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA.
| | - Grascen Shidemantle
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Isabela Velasquez
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily Ronan
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Jurnee Blackwood
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Jessica Hua
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Boualit L, Cayuela H, Ballu A, Cattin L, Reis C, Chèvre N. The Amphibian Short-Term Assay: Evaluation of a New Ecotoxicological Method for Amphibians Using Two Organophosphate Pesticides Commonly Found in Nature-Assessment of Behavioral Traits. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1595-1606. [PMID: 37097014 DOI: 10.1002/etc.5642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
Neurotoxic pesticides are used worldwide to protect crops from insects; they are recognized to impact nontarget organisms that live in areas surrounded by treated crops. Many biochemical and cell-based solutions have been developed for testing insecticide neurotoxicity. Nevertheless, such solutions provide a partial assessment of the impact of neurotoxicity, neglecting important phenotypic components such as behavior. Behavior is the apical endpoint altered by neurotoxicity, and scientists are increasingly recommending including behavioral endpoints in available tests or developing new methods for assessing contaminant-induced behavioral changes. In the present study, we extended an existing protocol (the amphibian short-term assay) with a behavioral test. To this purpose, we developed a homemade device along with an open-source computing solution for tracking trajectories of Xenopus laevis tadpoles exposed to two organophosphates insecticides (OPIs), diazinon (DZN) and chlorpyrifos (CPF). The data resulting from the tracking were then analyzed, and the impact of exposure to DZN and CPF was tested on speed- and direction-related components. Our results demonstrate weak impacts of DZN on the behavioral components, while CPF demonstrated strong effects, notably on speed-related components. Our results also suggest a time-dependent alteration of behavior by CPF, with the highest impacts at day 6 and an absence of impact at day 8. Although only two OPIs were tested, we argue that our solution coupled with biochemical biomarkers is promising for testing the neurotoxicity of this pesticide group on amphibians. Environ Toxicol Chem 2023;42:1595-1606. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laurent Boualit
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Hugo Cayuela
- Laboratoire de Biométrie et Biologie Evolution, Université Lyon 1, Villeurbanne, France
| | - Aurélien Ballu
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Loïc Cattin
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Christophe Reis
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Chèvre
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Ford J, Green DM. Inter-annual variation in amphibian larval interspecies interactions. Ecol Evol 2023; 13:e10221. [PMID: 37408624 PMCID: PMC10318579 DOI: 10.1002/ece3.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
The outcomes of species interactions can vary by life stage, year, and surrounding environmental conditions. Amphibian species are expected to compete most strongly during their tadpole stage when they exist in the highest densities. Changes in arrival timing, surrounding aquatic communities, and yearly conditions could all affect the outcome of larval competition. In Long Point, Ontario, the Fowler's toad (Anaxyrus fowleri) is at the northern edge of its range and overlaps with the more common American toad (Anaxyrus americanus). Both species breed in ponds that encounter high inter-annual variation. To determine whether these species compete strongly, and if this effect was replicated across multiple years, we raised both species as tadpoles together and, apart, in mesocosms in 2018 and 2021. We measured survivorship to, weight at, and time to metamorphosis for both species in both years. We determined that the presence of American toad tadpoles consistently had a detrimental effect on Fowler's toad tadpoles, even though this effect presented itself differently across years. Our study suggests that competitive exclusion by American toads could be occurring at the edge of the Fowler's toad's range. This study further demonstrates the importance of studying communities across multiple years to understand the full scope of species interactions.
Collapse
Affiliation(s)
- Jessica Ford
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
16
|
Anastas ZM, Byrne PG, O'Brien JK, Hobbs RJ, Upton R, Silla AJ. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals (Basel) 2023; 13:2094. [PMID: 37443891 DOI: 10.3390/ani13132094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Multidisciplinary approaches to conserve threatened species are required to curb biodiversity loss. Globally, amphibians are facing the most severe declines of any vertebrate class. In response, conservation breeding programs have been established in a growing number of amphibian species as a safeguard against further extinction. One of the main challenges to the long-term success of conservation breeding programs is the maintenance of genetic diversity, which, if lost, poses threats to the viability and adaptive potential of at-risk populations. Integrating reproductive technologies into conservation breeding programs can greatly assist genetic management and facilitate genetic exchange between captive and wild populations, as well as reinvigorate genetic diversity from expired genotypes. The generation of offspring produced via assisted fertilisation using frozen-thawed sperm has been achieved in a small but growing number of amphibian species and is poised to be a valuable tool for the genetic management of many more threatened species globally. This review discusses the role of sperm storage in amphibian conservation, presents the state of current technologies for the short-term cold storage and cryopreservation of amphibian sperm, and discusses the generation of cryo-derived offspring.
Collapse
Affiliation(s)
- Zara M Anastas
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rose Upton
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
17
|
Paetow LJ, Cue RI, Pauli BD, Marcogliese DJ. Effects of Herbicides and the Chytrid Fungus Batrachochytrium dendrobatidis on the growth, development and survival of Larval American Toads (Anaxyrus americanus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115021. [PMID: 37216860 DOI: 10.1016/j.ecoenv.2023.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Pesticides and pathogens adversely affect amphibian health, but their interactive effects are not well known. We assessed independent and combined effects of two agricultural herbicides and the fungal pathogen Batrachochytrium dendrobatidis (Bd) on the growth, development and survival of larval American toads (Anaxyrus americanus). Wild-caught tadpoles were exposed to four concentrations of atrazine (0.18, 1.8, 18.0, 180 μg/L) or glyphosate (7, 70, 700, 7000 µg a.e./L), respectively contained in Aatrex® Liquid 480 (Syngenta) or Vision® Silviculture Herbicide (Monsanto) for 14 days, followed by two doses of Bd. At day 14, atrazine had not affected survival, but it non-monotonically affected growth. Exposure to the highest concentration of glyphosate caused 100% mortality within 4 days, while lower doses had an increasing monotonic effect on growth. At day 65, tadpole survival was unaffected by atrazine and the lower doses of glyphosate. Neither herbicide demonstrated an interaction effect with Bd on survival, but exposure to Bd increased survival among both herbicide-exposed and herbicide-control tadpoles. At day 60, tadpoles exposed to the highest concentration of atrazine remained smaller than controls, indicating longer-term effects of atrazine on growth, but effects of glyphosate on growth disappeared. Growth was unaffected by any herbicide-fungal interaction but was positively affected by exposure to Bd following exposure to atrazine. Atrazine exhibited a slowing and non-monotonic effect on Gosner developmental stage, while exposure to Bd tended to speed up development and act antagonistically toward the observed effect of atrazine. Overall, atrazine, glyphosate and Bd all showed a potential to modulate larval toad growth and development.
Collapse
Affiliation(s)
- Linda J Paetow
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, Quebec H4B 1R6, Canada.
| | - Roger I Cue
- Department of Animal Science, McGill University, 21111 Lakeshore Rd., Ste. Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Bruce D Pauli
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada
| | - David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, St. Lawrence Centre, Environment and Climate Change Canada, 105 McGill, 7th Floor, Montreal, Quebec H2Y 2E7, Canada
| |
Collapse
|
18
|
Zamora-Camacho FJ, Burraco P, Zambrano-Fernández S, Aragón P. Ammonium effects on oxidative stress, telomere length, and locomotion across life stages of an anuran from habitats with contrasting land-use histories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160924. [PMID: 36526187 DOI: 10.1016/j.scitotenv.2022.160924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Understanding the mechanistic implications behind wildlife responses to global changes is a central topic in eco-evolutionary research. In particular, anthropic pollution is known to impact wild populations across the globe, which may have even stronger consequences for species with complex life cycles. Among vertebrates, amphibians represent a paradigmatic example of metamorphosis, and their characteristics make them highly vulnerable to pollution. Here, we tested for differences in the redox status, telomere length, and locomotor performance across life stages of green frogs (Pelophylax perezi) from agrosystem and natural habitats, both constitutively and in response to an experimental ammonium exposure (10 mg/L). We found that larvae from the agrosystem constitutively showed an enhanced redox status (better antioxidant balance against H2O2, lower lipid peroxidation) but shorter telomeres as compared to larvae from the natural environment. The larval redox response to ammonium was, overall, similar in both habitats. In contrast, after metamorphosis, the redox status of individuals from the natural habitat seemed to cope better with ammonium exposure (denoted by lower lipid peroxidation), and differences between habitats in telomere length were no longer present. Intriguingly, while the swimming performance of larvae did not correlate with individual's physiology, metamorphs with lower glutathione reductase activity and longer telomeres had a better jumping performance. This may suggest that locomotor performance is both traded off with the production of reactive oxygen species and potentiated directly by longer telomeres or indirectly by the mechanisms that buffer their shortening. Overall, our study suggests that contrasting land-use histories can drive divergence in physiological pathways linked to individual health and lifespan. Since this pattern was life-stage dependent, divergent habitat conditions can have contrasting implications across the ontogenetic development of species with complex life cycles.
Collapse
Affiliation(s)
- Francisco Javier Zamora-Camacho
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Pablo Burraco
- Department of Wetland Ecology, Doñana Biological Station, Avda. Américo Vespucio 26, 41092 Seville, Spain
| | | | - Pedro Aragón
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
19
|
Fiorillo BF, Faggioni GP, Cerezer FO, Becker CG, Díaz‐Ricaurte JC, Martins M. Effects of environmental factors on the ecology and survival of a widespread, endemic Cerrado frog. Biotropica 2023. [DOI: 10.1111/btp.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Bruno F. Fiorillo
- Herp Trips, Reserva Particular do Patrimônio Natural Trápaga São Miguel Arcanjo Brazil
- Manacá Institute, Reserva Particular do Patrimônio Natural Trápaga São Miguel Arcanjo Brazil
- Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós‐Graduação em Ecologia Aplicada Universidade de São Paulo Piracicaba Brazil
| | | | - Felipe Osmari Cerezer
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Brazil
| | - C. Guilherme Becker
- Department of Biology The Pennsylvania State University University Park Pennsylvania USA
| | - Juan C. Díaz‐Ricaurte
- Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós‐Graduação em Ecologia Aplicada Universidade de São Paulo Piracicaba Brazil
- Horae Gene Therapy Center University of Massachusetts Medical School Worcester MA USA
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
- Semillero de investigación en Ecofisiologia y Biogeografía de Vertebrados (EcoBioVert), Grupo de Investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Programa de Biología, Facultad de Ciencias Básicas Universidad de la Amazonía Florencia Colombia
| | - Marcio Martins
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
20
|
Burraco P, Hernandez-Gonzalez M, Metcalfe NB, Monaghan P. Ageing across the great divide: tissue transformation, organismal growth and temperature shape telomere dynamics through the metamorphic transition. Proc Biol Sci 2023; 290:20222448. [PMID: 36750187 PMCID: PMC9904946 DOI: 10.1098/rspb.2022.2448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
Telomere attrition is considered a useful indicator of cellular and whole-organism ageing rate. While approximately 80% of animal species undergo metamorphosis that includes extensive tissue transformations (involving cell division, apoptosis, de-differentiation and de novo formation of stem cells), the effect on telomere dynamics is unknown. We measured telomeres in Xenopus laevis developing from larvae to adults under contrasting environmental temperatures. Telomere dynamics were linked to the degree of tissue transformation during development. Average telomere length in gut tissue increased dramatically during metamorphosis, when the gut shortens by 75% and epithelial cells de-differentiate into stem cells. In the liver (retained from larva) and hindlimb muscle (newly formed before metamorphosis), telomeres gradually shortened until adulthood, likely due to extensive cell division. Tail muscle telomere lengths were constant until tail resorption, and those in heart (retained from larva) showed no change over time. Telomere lengths negatively correlated with larval growth, but for a given growth rate, telomeres were shorter in cooler conditions, suggesting that growing in the cold is more costly. Telomere lengths were not related to post-metamorphic growth rate. Further research is now needed to understand whether telomere dynamics are a good indicator of ageing rate in species undergoing metamorphosis.
Collapse
Affiliation(s)
- Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- Ecology, Evolution and Development Group, Doñana Biological Station (CSIC), 41092, Seville, Spain
| | - Miguel Hernandez-Gonzalez
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
21
|
Petrović TG, Vučić T, Burraco P, Gavrilović BR, Despotović SG, Gavrić JP, Radovanović TB, Šajkunić S, Ivanović A, Prokić MD. Higher temperature induces oxidative stress in hybrids but not in parental species: A case study of crested newts. J Therm Biol 2023; 112:103474. [PMID: 36796919 DOI: 10.1016/j.jtherbio.2023.103474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Ectotherms are particularly sensitive to global warming due to their limited capacity to thermoregulate, which can impact their performance and fitness. From a physiological standpoint, higher temperatures often enhance biological processes that can induce the production of reactive oxygen species and result in a state of cellular oxidative stress. Temperature alters interspecific interactions, including species hybridization. Hybridization under different thermal conditions could amplify parental (genetic) incompatibilities, thus affecting a hybrid's development and distribution. Understanding the impact of global warming on the physiology of hybrids and particularly their oxidative status could help in predicting future scenarios in ecosystems and in hybrids. In the present study, we investigated the effect of water temperature on the development, growth and oxidative stress of two crested newt species and their reciprocal hybrids. Larvae of Triturus macedonicus and T. ivanbureschi, and their T. macedonicus-mothered and T. ivanbureschi-mothered hybrids were exposed for 30 days to temperatures of 19°C and 24°C. Under the higher temperature, the hybrids experienced increases in both growth and developmental rates, while parental species exhibited accelerated growth (T. macedonicus) or development (T. ivanbureschi). Warm conditions also had different effects on the oxidative status of hybrid and parental species. Parental species had enhanced antioxidant responses (catalase, glutathione peroxidase, glutathione S-transferase and SH groups), which allowed them to alleviate temperature-induced stress (revealed by the absence of oxidative damage). However, warming induced an antioxidant response in the hybrids, including oxidative damage in the form of lipid peroxidation. These findings point to a greater disruption of redox regulation and metabolic machinery in hybrid newts, which can be interpreted as the cost of hybridization that is likely linked to parental incompatibilities expressed under a higher temperature. Our study aims to improve mechanistic understanding of the resilience and distribution of hybrid species that cope with climate-driven changes.
Collapse
Affiliation(s)
- Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tijana Vučić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands.
| | - Pablo Burraco
- Doñana Biological Station (CSIC), C/ Americo Vespucci 26, 41092, Seville, Spain.
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Sanja Šajkunić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ana Ivanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
22
|
Shidemantle G, Blackwood J, Horn K, Velasquez I, Ronan E, Reinke B, Hua J. The morphological effects of artificial light at night on amphibian predators and prey are masked at the community level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119604. [PMID: 35691446 DOI: 10.1016/j.envpol.2022.119604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night (ALAN) is a pervasive pollutant that influences wildlife at both the individual and community level. In this study, we tested the individual-level effects of ALAN on three species of tadpole prey and their newt predators by measuring prey pigmentation and predator and prey mass. Then we evaluated whether the individual-level effects of ALAN on pigmentation and mass had cascading community-level effects by assessing the outcome of predator-prey interactions. We found that spring peepers exposed to ALAN were significantly darker than those reared under control conditions. Additionally, wood frogs reared in ALAN conditions were significantly smaller than those reared in control conditions. In contrast, Eastern newts collected earlier in the spring that were exposed to ALAN were significantly larger than controls while those collected later in the spring were not affected by ALAN, suggesting phenological differences in the effect of ALAN. To understand how changes in pigmentation and size due to ALAN influence predation rates, we ran predation assays in both ALAN-polluted and ALAN-free outdoor environments. After the predation assay, the size disparity in wood frogs reared in ALAN was eliminated such that there was no longer a treatment difference in wood frog size, likely due to size-selective predation. This demonstrates the beneficial nature of predators' selective pressure on prey populations. Lastly, despite individual-level effects of ALAN on pigmentation and mass, we did not detect cascading community-level effects on predation rates. Overall, this study highlights important species-level distinctions in the effects of ALAN. It also emphasizes the need to incorporate ecological complexity to understand the net impact of ALAN.
Collapse
Affiliation(s)
| | - Jurnee Blackwood
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Kelsey Horn
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Isabela Velasquez
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Emily Ronan
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Beth Reinke
- Northeastern Illinois University, 5500 N St Louis Ave, Chicago, IL, 60625, USA
| | - Jessica Hua
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| |
Collapse
|
23
|
Phenotypic variation in Xenopus laevis tadpoles from contrasting climatic regimes is the result of adaptation and plasticity. Oecologia 2022; 200:37-50. [PMID: 35996029 DOI: 10.1007/s00442-022-05240-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Phenotypic variations between populations often correlate with climatic variables. Determining the presence of phenotypic plasticity and local adaptation of a species to different environments over a large spatial scale can provide insight on the persistence of a species across its range. Amphibians, and in particular their larvae, are good models for studies of phenotypic variation as they are especially sensitive to their immediate environment. Few studies have attempted to determine the mechanisms that drive phenotypic variation between populations of a single amphibian species over a large spatial scale especially across contrasting climatic regimes. The African clawed frog, Xenopus laevis, occurs in two regions with contrasting rainfall regimes in southern Africa. We hypothesised that the phenotypic variation of life-history traits of X. laevis tadpoles emerges from a combination of plastic and genetic responses. We predicted that plasticity would allow the development of tadpoles from both regions in each environment. We also predicted that local adaptation of larval traits would drive the differentiation of reaction norms between populations and lower survival in tadpoles reared away from their home environment. We measured growth, time to metamorphosis, and survival in a reciprocal transplant experiment using outdoor mesocosms. Supporting our prediction, we found that the measured variation of all traits was explained by both adaptation and plasticity. However, the reaction norms differed between populations suggesting adaptive and asymmetric plasticity. All tadpoles experienced lower survival when translocated, but only translocated tadpoles from the winter rainfall region matched survival of local tadpoles. This has implications for the dynamics of translocated X. laevis into novel environments, especially from the winter rainfall region. Our discovery of their asymmetric capacity to overcome novel environmental conditions by phenotypic plasticity alone provides insight into their invasion success.
Collapse
|
24
|
Dahrouge NC, Rittenhouse TAG. Variable temperature regimes and wetland salinity reduce performance of juvenile wood frogs. Oecologia 2022; 199:1021-1033. [PMID: 35984505 DOI: 10.1007/s00442-022-05243-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
On a changing planet, amphibians must respond to weather events shifting in frequency and magnitude, and to how those temperature and precipitation changes interact with other anthropogenic disturbances that modify amphibian habitat. To understand how drastic changes in environmental conditions affect wood frog tadpoles, we tested five temperature manipulations, including Ambient (water temperatures tracking daily air temperatures), Elevated (+ 3 °C above ambient), Nightly (removal of nightly lows), Spike (+ 6 °C above ambient every third week), and Flux (alternating ambient and + 3 °C weekly) crossed with Low Salt (specific conductivity: 109-207 µS-cm) and High Salt (1900-2000 µS-cm). We replicated each of the ten resulting treatments four times. High-salinity conditions produced larger metamorphs than low-salinity conditions. Tadpole survival was reduced only by the Spike treatment (P = 0.017). Elevated temperatures did not shorten larval periods; time to metamorphosis did not differ among temperature treatments (P = 0.328). We retained 135 recently metamorphosed frogs in outdoor terrestrial enclosures for 10 months to investigate larval environment carryover effects. Juvenile frogs grew larger in low-density terrestrial enclosures than high density (P = 0.015) and frogs from Ambient Low Salt larval conditions grew and survived better than frogs from manipulated larval conditions. Frogs from High Salt larval conditions had lower survival than frogs from Low Salt conditions. Our results suggest that anthropogenic disturbances to larval environmental conditions can affect both larval and post-metamorphic individuals, with detrimental carryover effects of high-salinity larval conditions not emerging until the juvenile life stage.
Collapse
Affiliation(s)
- Nicole C Dahrouge
- Department of Natural Resources and the Environment, Wildlife and Fisheries Conservation Center, University of Connecticut, 1376 Storrs Road, Unit 4087, Storrs, CT, 06269, USA.
| | - Tracy A G Rittenhouse
- Department of Natural Resources and the Environment, Wildlife and Fisheries Conservation Center, University of Connecticut, 1376 Storrs Road, Unit 4087, Storrs, CT, 06269, USA
| |
Collapse
|
25
|
Murphy M, Boone M. Evaluating the role of body size and habitat type in movement behavior in human-dominated systems: A frog's eye view. Ecol Evol 2022; 12:e9022. [PMID: 35784035 PMCID: PMC9217892 DOI: 10.1002/ece3.9022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Animal movement is a key process that connects and maintains populations on the landscape, yet for most species, we do not understand how intrinsic and extrinsic factors interact to influence individual movement behavior.Land-use/land-cover changes highlight that connectivity among populations will depend upon an individual's ability to traverse habitats, which may vary as a result of habitat permeability, individual condition, or a combination of these factors.We examined the effects of intrinsic (body size) and extrinsic (habitat type) factors on desiccation tolerance, movement, and orientation in three anuran species (American toads, Anaxyrus americanus; northern leopard frogs, Lithobates pipiens; and Blanchard's cricket frogs, Acris blanchardi) using laboratory and field studies to connect the effects of susceptibility to desiccation, size, and movement behavior in single-habitat types and at habitat edges.Smaller anurans were more vulnerable to desiccation, particularly for species that metamorphose at relatively small sizes. Habitat type had the strongest effect on movement, while body size had more situational and species-specific effects on movement. We found that individuals moved the farthest in habitat types that, when given the choice, they oriented away from, suggesting that these habitats are less favorable and could represent barriers to movement.Overall, our work demonstrated that differences in habitat type had strong impacts on individual movement behavior and influenced choices at habitat edges. By integrating intrinsic and extrinsic factors into our study, we provided evidence that population connectivity may be influenced not only by the habitat matrix but also by the condition of the individuals leaving the habitat patch.
Collapse
Affiliation(s)
- Mason Murphy
- Department of BiologyMiami UniversityOxfordOhioUSA
| | | |
Collapse
|
26
|
Zamora-Camacho FJ, Zambrano-Fernández S, Aragón P. Carryover effects of chronic exposure to ammonium during the larval stage on post-metamorphic frogs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106196. [PMID: 35598377 DOI: 10.1016/j.aquatox.2022.106196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Water contamination poses an important challenge to aquatic fauna, including well-documented effects on amphibian larvae. However, little is known about how contamination during the larval stages may affect post-metamorphic phases, or whether resistance may have evolved in some populations. In this work, we tested the hypothesis that chronic exposure to ammonium (a common contaminant in agroecosystems with confirmed effects on anuran tadpoles) during the larval stage of Pelophylax perezi frogs would affect growth and locomotor performance of metamorph, juvenile, subadult and adult stages. We also predicted that the effects of ammonium would be milder in offspring originated from parental agroecosystem frogs than those originating from forests. We compared tadpoles from both habitats either reared in untreated water or chronically exposed to ammonium. We found that exposure to ammonium during the larval stage inflicted effects on morphology (different measures of body size) and swimming speed after metamorphosis until adulthood. However, these effects were not always consistent through post-metamorphic stages and the effects differed as a function of treatment and habitat. In adults, body size and condition were greater in non-ammonium and ammonium exposed individuals, respectively. These differences were not detectable in metamorphs, for which only ammonium-exposed individuals from agroecosystem showed reduced body size in intermediate post-metamorphic stages. In turn, treatment reduced jumping distance only in agroecosystem adults, subadults and juveniles, which was opposite to the trend observed just after metamorphosis. These changes of patterns throughout the ontogeny of P. perezi could be due to processes such as compensatory growth, delayed energy costs derived from it, or early sexual differences that could be present even before they can be accounted for. In summary, this study suggests that exposure to ammonium during larval stages can result in diverse biological and long-term outcomes in later life stages.
Collapse
Affiliation(s)
- Francisco Javier Zamora-Camacho
- Museo Nacional de Ciencias Naturales, (MNCN-CSIC), C/ José Gutiérrez Abascal 2, Madrid 28006, Spain; Universidad Complutense de Madrid, C/José Antonio Novais 2, Madrid 28040, Spain.
| | | | - Pedro Aragón
- Museo Nacional de Ciencias Naturales, (MNCN-CSIC), C/ José Gutiérrez Abascal 2, Madrid 28006, Spain; Universidad Complutense de Madrid, C/José Antonio Novais 2, Madrid 28040, Spain
| |
Collapse
|
27
|
Kásler A, Ujszegi J, Holly D, Üveges B, Móricz ÁM, Herczeg D, Hettyey A. Metamorphic common toads keep chytrid infection under control, but at a cost. J Zool (1987) 2022. [DOI: 10.1111/jzo.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Kásler
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Doctoral School of Biology Institute of Biology ELTE Eötvös Loránd University Budapest Hungary
| | - J. Ujszegi
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Department of Systematic Zoology and Ecology Institute of Biology ELTE Eötvös Loránd University Budapest Hungary
| | - D. Holly
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Doctoral School of Biology Institute of Biology ELTE Eötvös Loránd University Budapest Hungary
| | - B. Üveges
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Molecular Ecology and Evolution at Bangor School of Natural Sciences Bangor University Bangor UK
| | - Á. M. Móricz
- Department of Pathophysiology Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
| | - D. Herczeg
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
| | - A. Hettyey
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Department of Systematic Zoology and Ecology Institute of Biology ELTE Eötvös Loránd University Budapest Hungary
- Department of Ecology University of Veterinary Medicine Budapest Hungary
| |
Collapse
|
28
|
Shen Y, Jiang Z, Zhong X, Wang H, Liu Y, Li X. Manipulation of cadmium and diethylhexyl phthalate on Rana chensinensis tadpoles affects the intestinal microbiota and fatty acid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153455. [PMID: 35093358 DOI: 10.1016/j.scitotenv.2022.153455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Gastrointestinal tract and intestine microbiota can both have deep effects on the lipid metabolism and immune function of amphibians. Additionally, the composition and structure of the microbial community are influenced by environmental pollutions. It is noteworthy that environmental compounds such as Cd and DEHP are pervasive in the aquatic environment and do not exist in isolation, and single exposure experiments cannot well explain the effects of unpredictable interactions between co-existing compounds on amphibians. In this study, we calculated the parameters of morphological and histological indices of Rana chensinensis tadpoles after treated with Cd and/or DEHP. The 16S rRNA gene sequencing technology was used to assess the relative abundance of intestinal microbial community among tadpoles from each treatment groups. We also examined the mRNA expression levels of lipid digestion and absorption and SCFAs related-genes. Our results indicated that all morphological and histological indices were significantly declined in the Cd treatment group, while the mixed treatment group was similar to the control group. Compared with the control group, the relative abundances of Firmicutes, Proteobacteria and Verrucomicrobia exhibited distinctive differences in Cd and/or DEHP treatment groups. Further, RT-qPCR results revealed that the expression levels of lipid metabolism and SCFAs related-genes were also significantly altered among the treatment groups. Taken together, the present study highlighted a new evidence that the alterations in intestinal microbial community and mRNA expression levels of larval amphibians after exposure to Cd and/or DEHP may impair lipid storage and transport, as well as reduce anti-inflammatory capacity, which may ultimately lead to a decline in amphibian populations.
Collapse
Affiliation(s)
- Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhaoyang Jiang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Zhong
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
29
|
Chen A, Deng H, Song X, Liu X, Chai L. Effects of Separate and Combined Exposure of Cadmium and Lead on the Endochondral Ossification in Bufo gargarizans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1228-1245. [PMID: 35040517 DOI: 10.1002/etc.5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) and lead (Pb) are ubiquitous in aquatic environments and most studies have examined the potential effects of Cd or Pb alone on aquatic organisms. In the present study, chronic effects of Cd and Pb, alone and in combination, on Bufo gargarizans were investigated by exposing embryos to these contaminants throughout metamorphosis. Significant reductions in body mass and snout-to-vent length were observed in B. gargarizans at Gosner stage 42 (Gs 42) and Gs 46 exposed to a Cd/Pb mixture. Single and combined exposure with Cd and Pb induced histological alterations of the thyroid gland characterized by reduced colloid area and thickness of epithelial cells. There was a significant decrease in the maximum jump distance of froglets exposed to Cd alone and the Cd/Pb mixture, and the jumping capacity showed a positive correlation with hind limb length and tibia/fibula. Moreover, single metals and their mixture induced reduction of endochondral bone formation in B. gargarizans. Transcriptomic and real-time quantitative polymerase chain reaction results showed that genes involved in skeletal ossification (TRα, TRβ, Dio2, Dio3, MMP9, MMP13, Runx1, Runx2, and Runx3) were transcriptionally dysregulated by Cd and Pb exposure alone or in combination. Our results suggested that despite the low concentration tested, the Cd/Pb mixture induced more severe impacts on B. gargarizans. In addition, the Cd/Pb mixture might reduce chances of survival for B. gargarizans froglets by decreasing size at metamorphosis, impaired skeletal ossification, and reduction in jumping ability, which might result from dysregulation of genes involved in thyroid hormone action and endochondral ossification. The findings obtained could add a new dimension to understanding of the mechanisms underpinning skeletal ossification response to heavy metals in amphibians. Environ Toxicol Chem 2022;41:1228-1245. © 2022 SETAC.
Collapse
Affiliation(s)
- Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| |
Collapse
|
30
|
Wijethunga U, Greenlees M, Elphick M, Shine R. No evidence for cold-adapted life-history traits in cool-climate populations of invasive cane toads (Rhinella marina). PLoS One 2022; 17:e0266708. [PMID: 35390099 PMCID: PMC8989335 DOI: 10.1371/journal.pone.0266708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
As an invasive organism spreads into a novel environment, it may encounter strong selective pressures to adapt to abiotic and biotic challenges. We examined the effect of water temperature during larval life on rates of survival and growth of the early life-history stages of cane toads (Rhinella marina) from two geographic regions (tropical vs. temperate) in the species’ invaded range in eastern Australia. If local adaptation at the southern (cool-climate) invasion front has extended the cold-tolerance of early life-stages, we would expect to see higher viability of southern-population toads under cooler conditions. Our comparisons revealed no such divergence: the effects of water temperature on rates of larval survival and growth, time to metamorphosis, size at metamorphosis and locomotor performance of metamorphs were similar in both sets of populations. In two cases where tropical and temperate-zone populations diverged in responses to temperature, the tropical animals performed better at low to medium temperatures than did conspecifics from cooler regions. Adaptation to low temperatures in the south might be constrained by behavioural shifts (e.g., in reproductive seasonality, spawning-site selection) that allow toads to breed in warmer water even in cool climates, by gene flow from warmer-climate populations, or by phylogenetic conservatism in these traits.
Collapse
Affiliation(s)
- Uditha Wijethunga
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Matthew Greenlees
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Melanie Elphick
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
31
|
Monogenean body size, but not reproduction, increases with infracommunity density. Int J Parasitol 2022; 52:539-545. [DOI: 10.1016/j.ijpara.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022]
|
32
|
Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm. Nat Ecol Evol 2022; 6:405-417. [PMID: 35256809 DOI: 10.1038/s41559-022-01686-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Identifying factors that influence how ectothermic animals respond physiologically to changing temperatures is of high importance given current threats of global climate change. Host-associated microbial communities impact animal physiology and have been shown to influence host thermal tolerance in invertebrate systems. However, the role of commensal microbiota in the thermal tolerance of ectothermic vertebrates is unknown. Here we show that experimentally manipulating the tadpole microbiome through environmental water sterilization reduces the host's acute thermal tolerance to both heat and cold, alters the thermal sensitivity of locomotor performance, and reduces animal survival under prolonged heat stress. We show that these tadpoles have reduced activities of mitochondrial enzymes and altered metabolic rates compared with tadpoles colonized with unmanipulated microbiota, which could underlie differences in thermal phenotypes. These results demonstrate a strong link between the microbiota of an ectothermic vertebrate and the host's thermal tolerance, performance and fitness. It may therefore be important to consider host-associated microbial communities when predicting species' responses to climate change.
Collapse
|
33
|
Reducing Populations of an Invasive Ant Influences Survival, Growth, and Diet of Southern Toads (Anaxyrus terrestris). J HERPETOL 2022. [DOI: 10.1670/20-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Zhu W, Yang D, Chang L, Zhang M, Zhu L, Jiang J. Animal gut microbiome mediates the effects of antibiotic pollution on an artificial freshwater system. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127968. [PMID: 34894514 DOI: 10.1016/j.jhazmat.2021.127968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The antibiotic pollution has become an emerging environmental problem worldwide, but the ecological outcomes remain to be elucidated, especially very little is known about the interactions between antibiotics and different ecological elements. In this study, the long-term influences of three representative antibiotics, i.e., tetracycline, erythromycin, and sulfamethoxazole, were investigated focusing on a simplified artificial freshwater system composed of amphibian tadpoles, gut and environmental bacterial and fungi communities, and water parameters. Results demonstrated that antibiotic exposure reduced tadpole's fitness with increased mortality and physiological abnormality, and altered the water quality, particularly the nitrogen homeostasis. Sequential analyses at organism, symbiont, and systematic levels revealed that antibiotics disrupted tadpole metabolome (e.g., tetrahydrobiopterin metabolism) directly by off-target effects. Antibiotics also reshaped the tadpole gut bacterial and fungi diversity and composition, which partly accounted for the tadpole's health condition. Moreover, changes of tadpole gut microbiome (i.e., Cyanobacteria and Basidiomycota OTUs) partly explained the variations of water parameters. In contrast, environmental microbiota and metagenome stayed relatively stable, and didn't contribute to the environmental variations. These results highlighted the pivotal role of gut microbiome in mediating the effects of antibiotics on the host and the environment, which would extend our understanding on the ecological outcomes caused by antibiotic pollution.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China
| | - Duoli Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China
| |
Collapse
|
35
|
Stage-Specific Environmental Correlates of Reproductive Success in Boreal Toads (Anaxyrus boreas boreas). J HERPETOL 2022. [DOI: 10.1670/21-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Reyes YM, Robinson SA, De Silva AO, Brinovcar C, Trudeau VL. Exposure to the synthetic phenolic antioxidant 4,4'-thiobis(6-t-butyl-m-cresol) disrupts early development in the frog Silurana tropicalis. CHEMOSPHERE 2022; 291:132814. [PMID: 34774609 DOI: 10.1016/j.chemosphere.2021.132814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Many chemicals in commonly used household and industrial products are being released into the environment, yet their toxicity is poorly understood. The synthetic phenolic antioxidant, 4,4'-thiobis(6-t-butyl-m-cresol) (CAS 96-69-5; TBBC) is present in many common products made of rubber and plastic. Yet, this phenolic antioxidant has not been tested for potential toxicity and developmental disruption in amphibians, a sensitive and susceptible class. We investigated whether acute and chronic exposure to TBBC would interfere with thyroid hormone-dependent developmental processes in the frog Silurana tropicalis and thus affect its early life-stage development. We exposed S. tropicalis embryos at the Nieuwkoop-Faber (NF) 9-10 stage to TBBC at nominal concentrations (0, 25, 50, 75, 100, 200 and 400 μg/L) to determine the 96h lethal concentrations and sublethal effects. We conducted a chronic exposure starting at stage NF47-48 to three sublethal TBBC nominal concentrations (0, 0.002, 0.1 and 5 μg/L) for 48-52 days to evaluate effects on growth and metamorphosis. The 96h lethal and effective (malformations) TBBC concentrations (LC50 and EC50) were 70.5 and 76.5 μg/L, respectively. Acute exposure to all TBBC concentrations affected S. tropicalis growth and was lethal at 200 and 400 μg/L. Chronic exposure to sublethal TBBC concentrations reduced body size by 8% at 5 μg/L and body mass by 17% at 0.002 μg/L when metamorphosis was completed. This study demonstrates that TBBC is toxic, induces malformations and inhibits tadpole growth after acute and chronic exposures. These findings call for further investigations on the mode of actions of TBBC and related antioxidants for developmental disruption in amphibians.
Collapse
Affiliation(s)
- Yol Monica Reyes
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada.
| | - Stacey A Robinson
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Amila O De Silva
- Aquatics Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, Ontario, L7S 1A1, Canada.
| | - Cassandra Brinovcar
- Aquatics Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, Ontario, L7S 1A1, Canada.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada.
| |
Collapse
|
37
|
Wetsch O, Strasburg M, McQuigg J, Boone MD. Is overwintering mortality driving enigmatic declines? Evaluating the impacts of trematodes and the amphibian chytrid fungus on an anuran from hatching through overwintering. PLoS One 2022; 17:e0262561. [PMID: 35030210 PMCID: PMC8759641 DOI: 10.1371/journal.pone.0262561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Emerging infectious diseases are increasing globally and are an additional challenge to species dealing with native parasites and pathogens. Therefore, understanding the combined effects of infectious agents on hosts is important for species’ conservation and population management. Amphibians are hosts to many parasites and pathogens, including endemic trematode flatworms (e.g., Echinostoma spp.) and the novel pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Our study examined how exposure to trematodes during larval development influenced the consequences of Bd pathogen exposure through critical life events. We found that prior exposure to trematode parasites negatively impacted metamorphosis but did not influence the effect of Bd infection on terrestrial growth and survival. Bd infection alone, however, resulted in significant mortality during overwintering—an annual occurrence for most temperate amphibians. The results of our study indicated overwintering mortality from Bd could provide an explanation for enigmatic declines and highlights the importance of examining the long-term consequences of novel parasite exposure.
Collapse
Affiliation(s)
- Olivia Wetsch
- Department of Biology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| | - Miranda Strasburg
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | - Jessica McQuigg
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | - Michelle D. Boone
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
38
|
Josimovich JM, Falk BG, Grajal-Puche A, Hanslowe EB, Bartoszek IA, Reed RN, Currylow AF. Clutch may predict growth of hatchling Burmese pythons better than food availability or sex. Biol Open 2021; 10:273482. [PMID: 34796905 PMCID: PMC8609237 DOI: 10.1242/bio.058739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Identifying which environmental and genetic factors affect growth pattern phenotypes can help biologists predict how organisms distribute finite energy resources in response to varying environmental conditions and physiological states. This information may be useful for monitoring and managing populations of cryptic, endangered, and invasive species. Consequently, we assessed the effects of food availability, clutch, and sex on the growth of invasive Burmese pythons (Python bivittatus Kuhl) from the Greater Everglades Ecosystem in Florida, USA. Though little is known from the wild, Burmese pythons have been physiological model organisms for decades, with most experimental research sourcing individuals from the pet trade. Here, we used 60 hatchlings collected as eggs from the nests of two wild pythons, assigned them to High or Low feeding treatments, and monitored growth and meal consumption for 12 weeks, a period when pythons are thought to grow very rapidly. None of the 30 hatchlings that were offered food prior to their fourth week post-hatching consumed it, presumably because they were relying on internal yolk stores. Although only two clutches were used in the experiment, we found that nearly all phenotypic variation was explained by clutch rather than feeding treatment or sex. Hatchlings from clutch 1 (C1) grew faster and were longer, heavier, in better body condition, ate more frequently, and were bolder than hatchlings from clutch 2 (C2), regardless of food availability. On average, C1 and C2 hatchling snout-vent length (SVL) and weight grew 0.15 cm d−1 and 0.10 cm d−1, and 0.20 g d−1 and 0.03 g d−1, respectively. Additional research may be warranted to determine whether these effects remain with larger clutch sample sizes and to identify the underlying mechanisms and fitness implications of this variation to help inform risk assessments and management. This article has an associated First Person interview with the first author of the paper. Summary: Hatchling pythons from an invasive population displayed substantial phenotypic variation in morphometrics, growth rates, and behaviors. This information may be useful for managing populations of cryptic, endangered, and invasive species.
Collapse
Affiliation(s)
- Jillian M Josimovich
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Bryan G Falk
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Alejandro Grajal-Puche
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Emma B Hanslowe
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | | | - Robert N Reed
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Andrea F Currylow
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| |
Collapse
|
39
|
Tornabene BJ, Breuner CW, Hossack BR. Comparative Effects of Energy-Related Saline Wastewaters and Sodium Chloride on Hatching, Survival, and Fitness-Associated Traits of Two Amphibian Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3137-3147. [PMID: 34407239 DOI: 10.1002/etc.5193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Salinity (sodium chloride [NaCl]) is a prevalent and persistent contaminant that negatively affects freshwater ecosystems. Although most studies focus on effects of salinity from road salts (primarily NaCl), high-salinity wastewaters from energy extraction (wastewaters) could be more harmful because they contain NaCl and other toxic components. Many amphibians are sensitive to salinity, and their eggs are thought to be the most sensitive life-history stage. However, there are few investigations with salinity that include eggs and larvae sequentially in long-term exposures. We investigated the relative effects of wastewaters from a large energy reserve, the Williston Basin (USA), and NaCl on northern leopard (Rana pipiens) and boreal chorus (Pseudacris maculata) frogs. We exposed eggs and tracked responses through larval stages (for 24 days). Wastewaters and NaCl caused similar reductions in hatching and larval survival, growth, development, and activity, while also increasing deformities. Chorus frog eggs and larvae were more sensitive to salinity than leopard frogs, suggesting species-specific responses. Contrary to previous studies, eggs of both species were less sensitive to salinity than larvae. Our ecologically relevant exposures suggest that accumulating effects can reduce survival relative to starting experiments with unexposed larvae. Alternatively, egg casings of some species may provide some protection against salinity. Notably, effects of wastewaters on amphibians were predominantly due to NaCl rather than other components. Therefore, findings from studies with other sources of increased salinity (e.g., road salts) could guide management of wastewater-contaminated ecosystems, and vice versa, to mitigate effects of salinization. Environ Toxicol Chem 2021;40:3137-3147. © 2021 SETAC.
Collapse
Affiliation(s)
- Brian J Tornabene
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, USA
| | - Creagh W Breuner
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, USA
| | - Blake R Hossack
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, USA
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, Montana, USA
| |
Collapse
|
40
|
Poo S, Bogisich A, Mack M, Lynn BK, Devan‐Song A. Post‐release comparisons of amphibian growth reveal challenges with sperm cryopreservation as a conservation tool. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sinlan Poo
- Department of Conservation and Research Memphis Zoological Society Memphis Tennessee USA
- Department of Biological Sciences Arkansas State University Jonesboro Arkansas USA
| | - Allison Bogisich
- Department of Conservation and Research Memphis Zoological Society Memphis Tennessee USA
| | - Mariah Mack
- Department of Biology Southern Illinois University Edwardsville Edwardsville Illinois USA
| | - Bryan K. Lynn
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| | - Anne Devan‐Song
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| |
Collapse
|
41
|
de Rysky E, Roberta B, Andrea C, Daniele C. Measuring athletic performance in post-metamorphic fire salamanders. BMC Res Notes 2021; 14:399. [PMID: 34702356 PMCID: PMC8549336 DOI: 10.1186/s13104-021-05808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Athletic performances are dynamic movements that are physically challenging and often predict individual success in ecological contexts. They stem from a complex integration of multiple phenotypic traits-e.g., morphological, physiological and behavioural-that dictate animal survival and individual fitness. However, directly quantifying athletic performances can be particularly challenging in cryptic, slow-moving species or not very reactive in attitude. Here we present and describe a rapid, simple, and low-cost method to measure athletic performance in post-metamorphic individuals of the fire salamander Salamandra salamandra. While extremely reactive during the larval stage, adult salamanders are, in fact, cryptic and relatively slow-moving. RESULTS Forcing terrestrial juveniles to swim under standard, albeit ecologically plausible, laboratory conditions, and using an automatic point-mass tracking tool, we were able to measure maximal and average performance indicators of post-metamorphic individuals. This method avoids inter-individual variation in motivation, as it forces individuals to perform at their best. Moreover, with this method, measures of athletic performance will be directly comparable between larval and terrestrial stages, allowing to study the contribution of carryover effects to the wide range of processes implicated in the eco-evo-devo of athletic performance in salamanders.
Collapse
Affiliation(s)
- Erica de Rysky
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| | - Bisconti Roberta
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy.
| | - Chiocchio Andrea
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| | - Canestrelli Daniele
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| |
Collapse
|
42
|
Mühlenhaupt M, Baxter-Gilbert J, Makhubo BG, Riley JL, Measey J. Growing up in a new world: trait divergence between rural, urban, and invasive populations of an amphibian urban invader. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.67995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cities are focal points of introduction for invasive species. Urban evolution might facilitate the success of invasive species in recipient urban habitats. Here we test this hypothesis by rearing tadpoles of a successful amphibian urban coloniser and invader in a common garden environment. We compared growth rate, morphological traits, swimming performance, and developmental rate of guttural toad tadpoles (Sclerophrys gutturalis) from native rural, native urban, and non-native urban habitats. By measuring these traits across ontogeny, we were also able to compare divergence across different origins as the tadpoles develop. The tadpoles of non-native urban origin showed significantly slower developmental rate (e.g., the proportion of tadpoles reaching Gosner stage 31 or higher was lower at age 40 days) than tadpoles of native urban origin. Yet, tadpoles did not differ in growth rate or any morphological or performance trait examined, and none of these traits showed divergent ontogenetic changes between tadpoles of different origin. These findings suggest that prior adaptation to urban habitats in larval traits likely does not play an important role in facilitating the invasion success of guttural toads into other urban habitats. Instead, we suggest that evolutionary changes in larval traits after colonization (e.g., developmental rate), together with decoupling of other traits and phenotypic plasticity might explain how this species succeeded in colonising extra-limital urban habitats.
Collapse
|
43
|
Gutierrez-Villagomez JM, Patey G, To TA, Lefebvre-Raine M, Lara-Jacobo LR, Comte J, Klein B, Langlois VS. Frogs Respond to Commercial Formulations of the Biopesticide Bacillus thuringiensis var . israelensis, Especially Their Intestine Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12504-12516. [PMID: 34460233 DOI: 10.1021/acs.est.1c02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is generally believed that Bacillus thuringiensis var. israelensis (Bti) biopesticides are harmless to non-target organisms; however, new research shows controversial results. We exposed acutely and chronicallyLithobates sylvaticusandAnaxyrus americanus tadpoles until metamorphic climax to VectoBac 200G (granules) and VectoBac 1200L (aqueous suspension) at 300-20,000 ITU/L covering field-relevant concentrations and higher. The data show that the exposure parameters tested did not affect significantly the survival, total length, total weight, hepatosomatic index, gonadosomatic index, the expression of genes of interest (i.e., related to xenobiotic exposure, oxidative stress, and metamorphosis), and the intestine tissue layer detachment ofL. sylvaticusandA. americanus in a concentration-response pattern. In contrast, VectoBac 200G significantly increased the median time to metamorphosis ofL. sylvaticus tadpoles by up to 3.5 days and decreased the median by up to 1 day inA. americanus. VectoBac 1200L significantly increased the median time to metamorphosis ofL. sylvaticusandA. americanustadpoles by up to 4.5 days. Also, the exposure to VectoBac 200G and 1200L altered the intestine bacterial community composition inA. americanus at application rates recommended by the manufacturer, which led to an increase in the relative abundance of Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. Changes in the intestine microbiota might impact the fitness of individuals, including the susceptibility to parasitic infections. Our results indicate that the effect of Bti commercial products is limited; however, we recommend that Bti-spraying activities in amphibian-rich ecosystems should be kept minimal until there is more conclusive research to assess if the changes in the time to metamorphosis and microbiota can lead to negative outcomes in amphibian populations and, eventually, the functioning of ecosystems.
Collapse
Affiliation(s)
| | - Géraldine Patey
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Tuan Anh To
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Molly Lefebvre-Raine
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Linda Ramona Lara-Jacobo
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Bert Klein
- Service des territoires fauniques et des habitats, Ministère des Forêts, de la Faune et des Parcs (MFFP), Quebec City, Quebec G1S 4X4, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| |
Collapse
|
44
|
Burrow AK, Maerz JC. Experimental confirmation of effects of leaf litter type and light on tadpole performance for two priority amphibians. Ecosphere 2021. [DOI: 10.1002/ecs2.3729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Angela K. Burrow
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia 30602 USA
| | - John C. Maerz
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia 30602 USA
| |
Collapse
|
45
|
Wang W, Yang Y, Chen A, Song X, Chai L. Inhibition of Metamorphosis, Thyroid Gland, and Skeletal Ossification Induced by Hexavalent Chromium in Bufo gargarizans Larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2474-2483. [PMID: 34003524 DOI: 10.1002/etc.5114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr [VI]) is one of the major detrimental heavy metal pollutants. In the present study, Bufo gargarizans were exposed to 0, 52, 104, 208, and 416 μg/L Cr (VI) from Gosner stage 2 until metamorphosis; and growth, development, and histological characteristics of the thyroid gland and skeletal ossification were examined. The results demonstrated that the survival rate of larvae exposed to Cr (VI) was not different from that measured in animals from the control group. However, high levels of Cr (VI) (104, 208, and 416 μg/L) were associated with significantly delayed growth and development. The suppression of skeletal ossification was observed at high Cr (VI) levels. Besides, histological alterations of the thyroid gland, such as follicular cell hyperplasia, colloid depletion, and peripheral colloid vacuolation, were found in 52 to 416 μg/L Cr (VI) treatments. The results of the present study highlight reductions in growth and development as well as percent metamorphosis and skeletal ossification due to histological alteration of the thyroid gland during exposure to Cr (VI) in B. gargarizans larvae. The present investigation could provide a basis for understanding the detrimental effects of Cr (VI) in amphibian larvae. Environ Toxicol Chem 2021;40:2474-2483. © 2021 SETAC.
Collapse
Affiliation(s)
- Wenxiang Wang
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Yijie Yang
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| |
Collapse
|
46
|
The evolution of targeted cannibalism and cannibal-induced defenses in invasive populations of cane toads. Proc Natl Acad Sci U S A 2021; 118:2100765118. [PMID: 34426494 DOI: 10.1073/pnas.2100765118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biotic conflict can create evolutionary arms races, in which innovation in one group increases selective pressure on another, such that organisms must constantly adapt to maintain the same level of fitness. In some cases, this process is driven by conflict among members of the same species. Intraspecific conflict can be an especially important selective force in high-density invasive populations, which may favor the evolution of strategies for outcompeting or eliminating conspecifics. Cannibalism is one such strategy; by killing and consuming their intraspecific competitors, cannibals enhance their own performance. Cannibalistic behaviors may therefore be favored in invasive populations. Here, we show that cane toad tadpoles (Rhinella marina) from invasive Australian populations have evolved an increased propensity to cannibalize younger conspecifics as well as a unique adaptation to cannibalism-a strong attraction to vulnerable hatchlings-that is absent in the native range. In response, vulnerable conspecifics from invasive populations have evolved both stronger constitutive defenses and greater cannibal-induced plastic responses than their native range counterparts (i.e., rapid prefeeding development and inducible developmental acceleration). These inducible defenses are costly, incurring performance reductions during the subsequent life stage, explaining why plasticity is limited in native populations where hatchlings are not targeted by cannibalistic tadpoles. These results demonstrate the importance of intraspecific conflict in driving rapid evolution, highlight how plasticity can facilitate adaptation following shifts in selective pressure, and show that evolutionary processes can produce mechanisms that regulate invasive populations.
Collapse
|
47
|
Okamiya H, Inoue Y, Takai K, Crossland MR, Kishida O. Native frogs (
Rana pirica
) do not respond adaptively to alien toads (
Bufo japonicus formosus
) 100 years after introduction. Ecol Res 2021. [DOI: 10.1111/1440-1703.12259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hisanori Okamiya
- Department of Biological Sciences Graduate School of Sciences, Tokyo Metropolitan University Japan
| | - Yoshihiro Inoue
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Tomakomai Japan
| | - Kotaro Takai
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Tomakomai Japan
| | - Michael R. Crossland
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Tomakomai Japan
| |
Collapse
|
48
|
Brannelly LA, Webb RJ, Jiang Z, Berger L, Skerratt LF, Grogan LF. Declining amphibians might be evolving increased reproductive effort in the face of devastating disease. Evolution 2021; 75:2555-2567. [PMID: 34383313 DOI: 10.1111/evo.14327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
The devastating infectious disease chytridiomycosis has caused declines of amphibians across the globe, yet some populations are persisting and even recovering. One understudied effect of wildlife disease is changes in reproductive effort. Here, we aimed to understand if the disease has plastic effects on reproduction and if reproductive effort could evolve with disease endemism. We compared the effects of experimental pathogen exposure (trait plasticity) and population-level disease history (evolution in trait baseline) on reproductive effort using gametogenesis as a proxy in the declining and endangered frog Litoria verreauxii alpina. We found that unexposed males from disease-endemic populations had higher reproductive effort, which is consistent with an evolutionary response to chytridiomycosis. We also found evidence of trait plasticity, where males and females were affected differently by infection: pathogen exposed males had higher reproductive effort (larger testes), whereas females had reduced reproductive effort (smaller and fewer developed eggs) regardless of the population of origin. Infectious diseases can cause plastic changes in the reproductive effort at an individual level, and population-level disease exposure can result in changes to baseline reproductive effort; therefore, individual- and population-level effects of disease should be considered when designing management and conservation programs for threatened and declining species.
Collapse
Affiliation(s)
- Laura A Brannelly
- One Health Research Group, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Rebecca J Webb
- One Health Research Group, School of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Zhixuan Jiang
- One Health Research Group, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Lee Berger
- One Health Research Group, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Lee F Skerratt
- One Health Research Group, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Laura F Grogan
- Environmental Futures Research Institute, Griffith University, Southport, Queensland, Australia.,Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| |
Collapse
|
49
|
The effects of corticosterone and background colour on tadpole physiological plasticity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100872. [PMID: 34224981 DOI: 10.1016/j.cbd.2021.100872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Corticosterone (CORT)-mediated adaptive plasticity improves animal fitness in stressful environments. Although it brings ecological benefits, the cost potentially constrains its expression and evolution. Revealing the factors affecting plasticity costs is of great ecological and evolutionary significance. Evidence indicates that both CORT and background colour can induce metabolic changes in animals, which in turn determine phenotypic plasticity. However, whether and/or how CORT and background colour jointly act on plastic responses has not been studied. Here, this question has been investigated in amphibian tadpoles (Microhyla fissipes) exposed to CORT at different background colours (white or black) using integrated morphological, histological, and transcriptomic analyses. The results showed that CORT exposure increased relative tail length, immune function, and metabolic maintenance (i.e., transcription of substrate catabolism and oxidative phosphorylation) at the expense of reduction in growth rate and skin melanin level. The black background also increased relative tail length and metabolic maintenance (i.e., transcription of oxidative phosphorylation) at the cost of reduction in growth rate, but increased skin melanin level. The expression of critical pigmentation genes indicated that black background activated a distinct and opposite pigmentation regulating route to CORT. Although there was no interactive effect of background colour and CORT on phenotypic and metabolic variations, their additive effects further impact the trade-off between somatic growth, metabolic maintenance, and pigmentation in terms of resource allocation. In conclusion, the individual and additive effects of background colour and CORT exposure on tadpole plasticity were revealed. These results likely provide new insights into the environmental adaptation of animals.
Collapse
|
50
|
Forsburg ZR, Guzman A, Gabor CR. Artificial light at night (ALAN) affects the stress physiology but not the behavior or growth of Rana berlandieri and Bufo valliceps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116775. [PMID: 33639600 DOI: 10.1016/j.envpol.2021.116775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) alters the natural light dark patterns in ecosystems. ALAN can have a suite of effects on community structure and is a driver of evolutionary processes that influences a range of behavioral and physiological traits. Our understanding of possible effects of ALAN across species amphibians is lacking and research is warranted as ALAN could contribute to stress and declines of amphibian populations, particularly in urban areas. We tested the hypothesis that exposure to constant light or pulsed ALAN would physiologically stress Rio Grande leopard frog (Rana berlandieri) and Gulf Coast toad (Bufo valliceps) tadpoles. We reared tadpoles under constant or pulsed (on and off again) ALAN for 14 days and measured corticosterone release rates over time using a non-invasive water-borne hormone protocol. ALAN treatments did not affect behavior or growth. Tadpoles of both species had higher corticosterone (cort) release rates after 14 days of constant light exposure. Leopard frog tadpoles had lower cort release rates after exposure to pulsed ALAN while toad tadpoles had higher cort release rates. These results suggest that short-term exposure to constant or pulsed light at night may contribute to stress in tadpoles but that each species differentially modulated their cort response to ALAN exposure and a subsequent stressor. This flexibility in the upregulation and downregulation of hypothalamic-pituitary-interrenal axis response may indicate an alternative mechanism for diminishing the deleterious effects of chronic stress. Nonetheless, ALAN should be considered in management and conservation plans for amphibians.
Collapse
Affiliation(s)
- Zachery R Forsburg
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Alex Guzman
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | - Caitlin R Gabor
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| |
Collapse
|