1
|
Kyobe S, Mwesigwa S, Nkurunungi G, Retshabile G, Egesa M, Katagirya E, Amujal M, Mlotshwa BC, Williams L, Sendagire H, Kiragga D, Mardon G, Matshaba M, Hanchard NA, Kyosiimire-Lugemwa J, Robinson D. Identification of a Clade-Specific HLA-C*03:02 CTL Epitope GY9 Derived from the HIV-1 p17 Matrix Protein. Int J Mol Sci 2024; 25:9683. [PMID: 39273630 PMCID: PMC11395705 DOI: 10.3390/ijms25179683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 09/15/2024] Open
Abstract
Efforts towards an effective HIV-1 vaccine have remained mainly unsuccessful. There is increasing evidence for a potential role of HLA-C-restricted CD8+ T cell responses in HIV-1 control, including our recent report of HLA-C*03:02 among African children. However, there are no documented optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C*03:02; additionally, the structural influence of HLA-C*03:02 on epitope binding is undetermined. Immunoinformatics approaches provide a fast and inexpensive method to discover HLA-restricted epitopes. Here, we employed immunopeptidomics to identify HLA-C*03:02 CD8+ T cell epitopes. We identified a clade-specific Gag-derived GY9 (GTEELRSLY) HIV-1 p17 matrix epitope potentially restricted to HLA-C*03:02. Residues E62, T142, and E151 in the HLA-C*03:02 binding groove and positions p3, p6, and p9 on the GY9 epitope are crucial in shaping and stabilizing the epitope binding. Our findings support the growing evidence of the contribution of HLA-C molecules to HIV-1 control and provide a prospect for vaccine strategies.
Collapse
Affiliation(s)
- Samuel Kyobe
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
| | - Savannah Mwesigwa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Gyaviira Nkurunungi
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street London, London WC1E 7HT, UK
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Moses Egesa
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street London, London WC1E 7HT, UK
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Marion Amujal
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Busisiwe C. Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Hakim Sendagire
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
| | | | - Dithan Kiragga
- Baylor College of Medicine Children’s Foundation, Kampala P.O. Box 72052, Uganda;
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mogomotsi Matshaba
- Pediatric Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Botswana-Baylor Children’s Clinical Centre of Excellence, Gaborone Private Bag BR 129, Botswana
| | - Neil A. Hanchard
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA;
| | - Jacqueline Kyosiimire-Lugemwa
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
| | - David Robinson
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
2
|
Romero-Martín L, Tarrés-Freixas F, Pedreño-López N, de la Concepción MLR, Cunyat F, Hartigan-O'Connor D, Carrillo J, Mothe B, Blanco J, Ruiz-Riol M, Brander C, Olvera A. T-Follicular-Like CD8 + T Cell Responses in Chronic HIV Infection Are Associated With Virus Control and Antibody Isotype Switching to IgG. Front Immunol 2022; 13:928039. [PMID: 35784304 PMCID: PMC9241491 DOI: 10.3389/fimmu.2022.928039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
T cell responses are considered critical for the in vivo control of HIV, but the contribution of different T cell subsets to this control remains unclear. Using a boosted flow cytometric approach that is able to differentiate CD4+ and CD8+ T cell Th1/Tc1, Th2/Tc2, Th17/Tc17, Treg and Tfh/Tfc-like HIV-specific T cell populations, we identified CD8+ Tfc responses that were related to HIV plasma viral loads and associated with rate of antibody isotype class switching to IgG. This favorable balance towards IgG responses positively correlated with increased virus neutralization, higher avidity of neutralizing antibodies and more potent antibody-dependent cell cytotoxicity (ADCC) in PBMCs from HIV controllers compared to non-controllers. Our results identified the CD8+ Tfc-like T-cell response as a component of effective virus control which could possibly be exploited therapeutically.
Collapse
Affiliation(s)
- Luis Romero-Martín
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Departament de Biologia Cellular, de Fisiologia i d’Immunologia, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Núria Pedreño-López
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Maria L. Rodríguez de la Concepción
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Francesc Cunyat
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Dennis Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- AELIX Therapeutics, Barcelona, Spain
| | - Alex Olvera
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
3
|
Zhang H, He C, Jiang F, Cao S, Zhao B, Ding H, Dong T, Han X, Shang H. A longitudinal analysis of immune escapes from HLA-B*13-restricted T-cell responses at early stage of CRF01_AE subtype HIV-1 infection and implications for vaccine design. BMC Immunol 2022; 23:15. [PMID: 35366796 PMCID: PMC8976269 DOI: 10.1186/s12865-022-00491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying immunogens which can elicit effective T cell responses against human immunodeficiency virus type 1 (HIV-1) is important for developing a T-cell based vaccine. It has been reported that human leukocyte antigen (HLA)-B*13-restricted T-cell responses contributed to HIV control in subtype B' and C infected individuals. However, the kinetics of B*13-restricted T-cell responses, viral evolution within epitopes, and the impact on disease progression in CRF01_AE subtype HIV-1-infected men who have sex with men (MSM) are not known. RESULTS Interferon-γ ELISPOT assays and deep sequencing of viral RNAs were done in 14 early HLA-B*13-positive CRF01_AE subtype HIV-1-infected MSM. We found that responses to RQEILDLWV (Nef106-114, RV9), GQMREPRGSDI (Gag226-236, GI11), GQDQWTYQI (Pol487-498, GI9), and VQNAQGQMV (Gag135-143, VV9) were dominant. A higher relative magnitude of Gag-specific T-cell responses, contributed to viral control, whereas Nef-specific T-cell responses were associated with rapid disease progression. GI11 (Gag) was conserved and strong GI11 (Gag)-specific T-cell responses showed cross-reactivity with a dominant variant, M228I, found in 3/12 patients; GI11 (Gag)-specific T-cell responses were positively associated with CD4 T-cell counts (R = 0.716, P = 0.046). Interestingly, the GI9 (Pol) epitope was also conserved, but GI9 (Pol)-specific T-cell responses did not influence disease progression (P > 0.05), while a D490G variant identified in one patient did not affect CD4 T-cell counts. All the other epitopes studied [VV9 (Gag), RQYDQILIEI (Pol113-122, RI10), HQSLSPRTL (Gag144-152, HL9), and RQANFLGRL (Gag429-437, RL9)] developed escape mutations within 1 year of infection, which may have contributed to overall disease progression. Intriguingly, we found early RV9 (Nef)-specific T-cell responses were associated with rapid disease progression, likely due to escape mutations. CONCLUSIONS Our study strongly suggested the inclusion of GI11 (Gag) and exclusion of RV9 (Nef) for T-cell-based vaccine design for B*13-positive CRF01_AE subtype HIV-1-infected MSM and high-risk individuals.
Collapse
Affiliation(s)
- Hui Zhang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Chuan He
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412636.40000 0004 1757 9485Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001 China
| | - Fanming Jiang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412636.40000 0004 1757 9485Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001 China
| | - Shuang Cao
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412449.e0000 0000 9678 1884Department of Laboratory Medicine, China Medical University Shengjing Hospital Nanhu Branch, Shenyang, 110001 China
| | - Bin Zhao
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Haibo Ding
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Tao Dong
- grid.4991.50000 0004 1936 8948Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford Institute, Oxford University, Oxford, UK ,grid.4991.50000 0004 1936 8948Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, UK
| | - Xiaoxu Han
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Hong Shang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| |
Collapse
|
4
|
Comparative analysis of the ex vivo IFN-gamma responses to CD8+ T cell epitopes within allelic forms of PfAMA1 in subjects with natural exposure to malaria. PLoS One 2021; 16:e0257219. [PMID: 34506564 PMCID: PMC8432784 DOI: 10.1371/journal.pone.0257219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
Antigen polymorphisms in essential malarial antigens are a key challenge to the design and development of broadly effective malaria vaccines. The effect of polymorphisms on antibody responses is fairly well studied while much fewer studies have assessed this for T cell responses. This study investigated the effect of allelic polymorphisms in the malarial antigen apical membrane antigen 1 (AMA1) on ex vivo T cell-specific IFN-γ responses in subjects with lifelong exposure to malaria. Human leukocyte antigen (HLA) class I-restricted peptides from the 3D7 clone AMA1 were bioinformatically predicted and those with variant amino acid positions used to select corresponding allelic sequences from the 7G8, FVO, FC27 and tm284 parasite strains. A total of 91 AMA1 9-10mer peptides from the five parasite strains were identified, synthesized, grouped into 42 allele sets and used to stimulate PBMCs from seven HLA class 1-typed subjects in IFN-γ ELISpot assays. PBMCs from four of the seven subjects (57%) made positive responses to 18 peptides within 12 allele sets. Fifty percent of the 18 positive peptides were from the 3D7 parasite variant. Amino acid substitutions that were associated with IFN-γ response abrogation were more frequently found at positions 1 and 6 of the tested peptides, but substitutions did not show a clear pattern of association with response abrogation. Thus, while we show some evidence of polymorphisms affecting T cell response induction, other factors including TCR recognition of HLA-peptide complexes may also be at play.
Collapse
|
5
|
Olusola BA, Olaleye DO, Odaibo GN. Non-synonymous Substitutions in HIV-1 GAG Are Frequent in Epitopes Outside the Functionally Conserved Regions and Associated With Subtype Differences. Front Microbiol 2021; 11:615721. [PMID: 33505382 PMCID: PMC7829476 DOI: 10.3389/fmicb.2020.615721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
In 2019, 38 million people lived with HIV-1 infection resulting in 690,000 deaths. Over 50% of this infection and its associated deaths occurred in Sub-Saharan Africa. The West African region is a known hotspot of the HIV-1 epidemic. There is a need to develop an HIV-1 vaccine if the HIV epidemic would be effectively controlled. Few protective cytotoxic T Lymphocytes (CTL) epitopes within the HIV-1 GAG (HIV_gagconsv) have been previously identified to be functionally conserved among the HIV-1 M group. These epitopes are currently the focus of universal HIV-1 T cell-based vaccine studies. However, these epitopes' phenotypic and genetic properties have not been observed in natural settings for HIV-1 strains circulating in the West African region. This information is critical as the usefulness of universal HIV-1 vaccines in the West African region depends on these epitopes' occurrence in strains circulating in the area. This study describes non-synonymous substitutions within and without HIV_gagconsv genes isolated from 10 infected Nigerians at the early stages of HIV-1 infection. Furthermore, we analyzed these substitutions longitudinally in five infected individuals from the early stages of infection till after seroconversion. We identified three non-synonymous substitutions within HIV_gagconsv genes isolated from early HIV infected individuals. Fourteen and nineteen mutations outside the HIV_gagconsv were observed before and after seroconversion, respectively, while we found four mutations within the HIV_gagconsv. These substitutions include previously mapped CTL epitope immune escape mutants. CTL immune pressure likely leaves different footprints on HIV-1 GAG epitopes within and outside the HIV_gagconsv. This information is crucial for universal HIV-1 vaccine designs for use in the West African region.
Collapse
Affiliation(s)
| | | | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Schouest B, Leslie GJ, Hoxie JA, Maness NJ. Tetherin downmodulation by SIVmac Nef lost with the H196Q escape variant is restored by an upstream variant. PLoS One 2020; 15:e0225420. [PMID: 32764749 PMCID: PMC7413475 DOI: 10.1371/journal.pone.0225420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/13/2020] [Indexed: 01/17/2023] Open
Abstract
The H196 residue in SIVmac239 Nef is conserved across the majority of HIV and SIV isolates, lies immediately adjacent to the AP-2 (adaptor protein 2) binding di-leucine domain (ExxxLM195), and is critical for several described AP-2 dependent Nef functions, including the downregulation of tetherin (BST-2/CD317), CD4, and others. Surprisingly, many stocks of the closely related SIVmac251 swarm virus harbor a nef allele encoding a Q196. In SIVmac239, this variant is associated with loss of multiple AP-2 dependent functions. Publicly available sequences for SIVmac251 stocks were mined for variants linked to Q196 that might compensate for functional defects associated with this residue. Variants were engineered into the SIVmac239 backbone and in Nef expression plasmids and flow cytometry was used to examine surface tetherin expression in primary CD4 T cells and surface CD4 expression in SupT1 cells engineered to express rhesus CD4. We found that SIVmac251 stocks that encode a Q196 residue in Nef uniformly also encode an upstream R191 residue. We show that R191 restores the ability of Nef to downregulate tetherin in the presence of Q196 and has a similar but less pronounced impact on CD4 expression. However, a published report showed Q196 commonly evolves to H196 in vivo, suggesting a fitness cost. R191 may represent compensatory evolution to restore the ability to downregulate tetherin lost in viruses harboring Q196.
Collapse
Affiliation(s)
- Blake Schouest
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States of America
| | - George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States of America
- Department of Microbiology and Immunology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Cocker ATH, Shah NM, Raj I, Dermont S, Khan W, Mandalia S, Imami N, Johnson MR. Pregnancy Gestation Impacts on HIV-1-Specific Granzyme B Response and Central Memory CD4 T Cells. Front Immunol 2020; 11:153. [PMID: 32117291 PMCID: PMC7027986 DOI: 10.3389/fimmu.2020.00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Pregnancy induces alterations in peripheral T-cell populations with both changes in subset frequencies and anti-viral responses found to alter with gestation. In HIV-1 positive women anti-HIV-1 responses are associated with transmission risk, however detailed investigation into both HIV-1-specific memory responses associated with HIV-1 control and T-cell subset changes during pregnancy have not been undertaken. In this study we aimed to define pregnancy and gestation related changes to HIV-1-specific responses and T-cell phenotype in ART treated HIV-1 positive pregnant women. Eleven non-pregnant and 24 pregnant HIV-1 positive women were recruited, peripheral blood samples taken, fresh cells isolated, and compared using ELISpot assays and flow cytometry analysis. Clinical data were collected as part of standard care, and non-parametric statistics used. Alterations in induced IFNγ, IL-2, IL-10, and granzyme B secretion by peripheral blood mononuclear cells in response to HIV-1 Gag and Nef peptide pools and changes in T-cell subsets between pregnant and non-pregnant women were assessed, with data correlated with participant clinical parameters and longitudinal analysis performed. Cross-sectional comparison identified decreased IL-10 Nef response in HIV-1 positive pregnant women compared to non-pregnant, while correlations exhibited reversed Gag and Nef cytokine and protease response associations between groups. Longitudinal analysis of pregnant participants demonstrated transient increases in Gag granzyme B response and in the central memory CD4 T-cell subset frequency during their second trimester, with a decrease in CD4 effector memory T cells from their second to third trimester. Gag and Nef HIV-1-specific responses diverge with pregnancy time-point, coinciding with relevant T-cell phenotype, and gestation associated immunological adaptations. Decreased IL-10 Nef and both increased granzyme B Gag response and central memory CD4 T cells implies that amplified antigen production is occurring, which suggests a period of compromised HIV-1 control in pregnancy.
Collapse
Affiliation(s)
| | | | - Inez Raj
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Sarah Dermont
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Waheed Khan
- Chelsea and Westminster Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
8
|
Mann JK, Rajkoomar E, Jin SW, Mkhize Q, Baiyegunhi O, Mbona P, Brockman MA, Ndung'u T. Consequences of HLA-associated mutations in HIV-1 subtype C Nef on HLA-I downregulation ability. J Med Virol 2020; 92:1182-1190. [PMID: 31944317 DOI: 10.1002/jmv.25676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022]
Abstract
Identification of CD8+ T lymphocyte (CTL) escape mutations that compromise the pathogenic functions of the Nef protein may be relevant for an HIV-1 attenuation-based vaccine. Previously, HLA-associated mutations 102H, 105R, 108D, and 199Y were individually statistically associated with decreased Nef-mediated HLA-I downregulation ability in a cohort of 298 HIV-1 subtype C infected individuals. In the present study, these mutations were introduced by site-directed mutagenesis into different patient-derived Nef sequence backgrounds of high similarity to the consensus C Nef sequence, and their ability to downregulate HLA-I was measured by flow cytometry in a CEM-derived T cell line. A substantial negative effect of 199Y on HLA-I downregulation and Nef expression was observed, while 102H and 105R displayed negative effects on HLA-I downregulation ability and Nef expression to a lesser extent. The total magnitude of CTL responses in individuals harboring the 199Y mutation was lower than those without the mutation, although this was not statistically significant. Overall, a modest positive relationship between Nef-mediated HLA-I downregulation ability and total magnitude of CTL responses was observed, suggesting that there is a higher requirement for HLA-I downregulation with increased CTL pressure. These results highlight a region of Nef that could be targeted by vaccine-induced CTL to reduce HLA-I downregulation and maximize CTL efficacy.
Collapse
Affiliation(s)
- Jaclyn K Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
| | - Erasha Rajkoomar
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Burnaby, BC, Canada
| | - Qiniso Mkhize
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
| | | | - Pholisiwe Mbona
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Burnaby, BC, Canada.,Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, Maryland.,Max Planck Institute for Infection Biology, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
9
|
Shadabi E, Liang B, Plummer F, Luo M. Identification and Characterization of Positively Selected Mutations in Nef of Four HIV-1 Major Subtypes from Los Alamos National Laboratory. Curr HIV Res 2019; 16:130-142. [PMID: 29600767 DOI: 10.2174/1570162x16666180330140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) mutates rapidly to escape host immune pressure. This results in the generation of positively selected mutations (PSM) throughout the viral genome. Escape mutations in Nef, one of the accessory proteins of HIV-1, which plays an important role in viral pathogenicity have previously been identified in several large cohort studies, but the evolution of PSMs overtime in various HIV-1 subtypes remains unknown. METHODS 161 clade A1, 3093 clade B, 647 clade C and 115 clade D HIV-1 nef sequences were obtained from the HIV Database of Los Alamos National Laboratory and aligned using MEGA 6.0. The sequences from each clade were grouped based on the year of collection. Quasi analysis was used to identify PSMs and the number and locations of PSMs were compared among different subtypes. RESULTS PSMs for all four subtypes were distributed across the sequence of Nef, and conserved residues F90, W113, PxxPxR (a.a 72-77) remain unaltered overtime. The frequency of PSMs was stable among subtype B sequences but increased overtime for other subtypes. Phylogenetic analysis shows that sequences containing PSMs tend to cluster together at both inter and intra- subtype levels. CONCLUSION Identification of PSMs and their changes overtime within various subtypes of HIV-1 is important in defining global viral evolutionary patterns that can provide insights for designing therapeutic strategies.
Collapse
Affiliation(s)
- Elnaz Shadabi
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Frank Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Naidoo L, Mzobe Z, Jin SW, Rajkoomar E, Reddy T, Brockman MA, Brumme ZL, Ndung'u T, Mann JK. Nef-mediated inhibition of NFAT following TCR stimulation differs between HIV-1 subtypes. Virology 2019; 531:192-202. [PMID: 30927712 DOI: 10.1016/j.virol.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/11/2023]
Abstract
Functional characterisation of different HIV-1 subtypes may improve understanding of viral pathogenesis and spread. Here, we evaluated the ability of 345 unique HIV-1 Nef clones representing subtypes A, B, C and D to inhibit NFAT signalling following TCR stimulation. The contribution of this Nef function to disease progression was also assessed in 211 additional Nef clones isolated from unique subtype C infected individuals in early or chronic infection. On average, subtype A and C Nef clones exhibited significantly lower ability to inhibit TCR-mediated NFAT signalling compared to subtype B and D Nef clones. While this observation corroborates accumulating evidence supporting relative attenuation of subtypes A and C that may paradoxically contribute to their increased global prevalence and spread, no significant correlations between Nef-mediated NFAT inhibition activity and clinical markers of HIV-1 infection were observed, indicating that the relationship between Nef function and pathogenesis is complex.
Collapse
Affiliation(s)
- Lisa Naidoo
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Zinhle Mzobe
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Erasha Rajkoomar
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Tarylee Reddy
- Medical Research Council, Biostatistics Unit, Durban 4001, South Africa
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Africa Health Research Institute, Durban 4001, South Africa; Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
11
|
Salido J, Ruiz MJ, Trifone C, Figueroa MI, Caruso MP, Gherardi MM, Sued O, Salomón H, Laufer N, Ghiglione Y, Turk G. Phenotype, Polyfunctionality, and Antiviral Activity of in vitro Stimulated CD8 + T-Cells From HIV + Subjects Who Initiated cART at Different Time-Points After Acute Infection. Front Immunol 2018; 9:2443. [PMID: 30405632 PMCID: PMC6205955 DOI: 10.3389/fimmu.2018.02443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Since anti-HIV treatment cannot cure the infection, many strategies have been proposed to eradicate the viral reservoir, which still remains as a major challenge. The success of some of these strategies will rely on the ability of HIV-specific CD8+ T-cells (CD8TC) to clear reactivated infected cells. Here, we aimed to investigate the phenotype and function of in vitro expanded CD8TC obtained from HIV+ subjects on combination antiretroviral therapy (cART), either initiated earlier (median = 3 months postinfection, ET: Early treatment) or later (median = 20 months postinfection, DT: Delayed treatment) after infection. Peripheral blood mononuclear cells from 12 DT and 13 ET subjects were obtained and stimulated with Nef and Gag peptide pools plus IL-2 for 14 days. ELISPOT was performed pre- and post-expansion. CD8TC memory/effector phenotype, PD-1 expression, polyfunctionality (CD107a/b, IFN-γ, IL-2, CCL4 (MIP-1β), and/or TNF-α production) and antiviral activity were evaluated post-expansion. Magnitude of ELISPOT responses increased after expansion by 103 times, in both groups. Expanded cells were highly polyfunctional, regardless of time of cART initiation. The memory/effector phenotype distribution was sharply skewed toward an effector phenotype after expansion in both groups although ET subjects showed significantly higher proportions of stem-cell and central memory CD8TCs. PD-1 expression was clustered in HIV-specific effector memory CD8TCs, subset that also showed the highest proportion of cytokine-producing cells. Moreover, PD-1 expression directly correlated with CD8TC functionality. Expanded CD8TCs from DT and ET subjects were highly capable of mediating antiviral activity, measured by two different assays. Antiviral function directly correlated with the proportion of fully differentiated effector cells (viral inhibition assay) as well as with CD8TC polyfunctionality and PD-1 expression (VITAL assay). In sum, we show that, despite being dampened in subjects on cART, the HIV-specific CD8TC response could be selectively stimulated and expanded in vitro, presenting a high proportion of cells able to carry-out multiple effector functions. Timing of cART initiation had an impact on the memory/effector differentiation phenotype, most likely reflecting how different periods of antigen persistence affected immune function. Overall, these results have important implications for the design and evaluation of strategies aimed at modulating CD8TCs to achieve the HIV functional cure.
Collapse
Affiliation(s)
- Jimena Salido
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - María Paula Caruso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
- Hospital General de Agudos “Dr. JA Fernández”, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
12
|
Li W, Li C, Xia W, Li X. HLA-DQB1*06 and breadth of Nef core region-specific T-cell response are associated with slow disease progression in antiretroviral therapy-naive Chinese HIV-1 subtype B patients. Hum Vaccin Immunother 2018; 13:2341-2347. [PMID: 28771107 DOI: 10.1080/21645515.2017.1340138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines still are an important way to prevent and treat acquired immunodeficiency syndrome (AIDS). 1 For developing an effective T cell-based AIDS vaccine, it is critical to define the human leukocyte antigen (HLA) type and epitope that elicit the most potent responses. This study involved 29 antiretroviral therapy-naive and chronic human immunodeficiency virus (HIV)-1 subtype B-infected individuals. A polymerase chain reaction-sequence-specific primer was used to detect the HLA typing, and the enzyme-linked immunospot assay to quantify the T-cell immune function. The results showed that the HLA-DQB1*06-positive group had higher CD4 counts and lower viral load (VL) compared with the HLA-DQB1*06-negative group; A higher magnitude of HIV-1-specific T-cell response and breadth were observed in the HLA-DQB1*06-positive group; the T-cell response was proportional to VL (R2 = 0.488, P = 0.0368) in the HLA-DQB1*06-positive group. The total T-cell responses to HIV-1 Nef core region were quantified at the single-peptide level. Nine (90%) peptides were recognized in 18 (62.1%) individuals. The breath of Nef core region-specific T-cell response was correlated positively with CD4+ T cell count and inversely with VL, which improved disease outcomes. These data revealed that HLA-DQB1*06 had a protective effect on the course of HIV-1 and T-cell targeting of certain specific Nef epitopes, contributing to HIV-1 suppression. The results suggested the potential use of HLA-DQB1*06 and Nef core region in HIV-1 T-cell vaccine design.
Collapse
Affiliation(s)
- Weihua Li
- a YouAn Hospital , Capital Medical University , Beijing , China.,b Beijing Liver Disease Research Institute , Beijing , China
| | - Chuanyun Li
- a YouAn Hospital , Capital Medical University , Beijing , China
| | - Wei Xia
- a YouAn Hospital , Capital Medical University , Beijing , China
| | - Xiuhui Li
- a YouAn Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
13
|
Maintenance of AP-2-Dependent Functional Activities of Nef Restricts Pathways of Immune Escape from CD8 T Lymphocyte Responses. J Virol 2018; 92:JVI.01822-17. [PMID: 29237831 DOI: 10.1128/jvi.01822-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/02/2017] [Indexed: 01/28/2023] Open
Abstract
Nef-specific CD8+ T lymphocytes (CD8TL) are linked to extraordinary control of primate lentiviral replication, but the mechanisms underlying their efficacy remain largely unknown. The immunodominant, Mamu-B*017:01+-restricted Nef195-203MW9 epitope in SIVmac239 partially overlaps a sorting motif important for interactions with host AP-2 proteins and, hence, downmodulation of several host proteins, including Tetherin (CD317/BST-2), CD28, CD4, SERINC3, and SERINC5. We reasoned that CD8TL-driven evolution in this epitope might compromise Nef's ability to modulate these important molecules. Here, we used deep sequencing of SIV from nine B*017:01+ macaques throughout infection with SIVmac239 to characterize the patterns of viral escape in this epitope and then assayed the impacts of these variants on Nef-mediated modulation of multiple host molecules. Acute variation in multiple Nef195-203MW9 residues significantly compromised Nef's ability to downregulate surface Tetherin, CD4, and CD28 and reduced its ability to prevent SERINC5-mediated reduction in viral infectivity but did not impact downregulation of CD3 or major histocompatibility complex class I, suggesting the selective disruption of immunomodulatory pathways involving Nef AP-2 interactions. Together, our data illuminate a pattern of viral escape dictated by a selective balance to maintain AP-2-mediated downregulation while evading epitope-specific CD8TL responses. These data could shed light on mechanisms of both CD8TL-driven viral control generally and on Mamu-B*017:01-mediated viral control specifically.IMPORTANCE A rare subset of humans infected with HIV-1 and macaques infected with SIV can control the virus without aid of antiviral medications. A common feature of these individuals is the ability to mount unusually effective CD8 T lymphocyte responses against the virus. One of the most formidable aspects of HIV is its ability to evolve to evade immune responses, particularly CD8 T lymphocytes. We show that macaques that target a specific peptide in the SIV Nef protein are capable of better control of the virus and that, as the virus evolves to escape this response, it does so at a cost to specific functions performed by the Nef protein. Our results help show how the virus can be controlled by an immune response, which could help in designing effective vaccines.
Collapse
|
14
|
Sharp CP, Gregory WF, Hattingh L, Malik A, Adland E, Daniels S, van Zyl A, Carlson JM, Wareing S, Ogwu A, Shapiro R, Riddell L, Chen F, Ndung'u T, Goulder PJR, Klenerman P, Simmonds P, Jooste P, Matthews PC. PARV4 prevalence, phylogeny, immunology and coinfection with HIV, HBV and HCV in a multicentre African cohort. Wellcome Open Res 2017; 2:26. [PMID: 28497124 PMCID: PMC5423528 DOI: 10.12688/wellcomeopenres.11135.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: The seroprevalence of human parvovirus-4 (PARV4) varies considerably by region. In sub-Saharan Africa, seroprevalence is high in the general population, but little is known about the transmission routes or the prevalence of coinfection with blood-borne viruses, HBV, HCV and HIV.
Methods: To further explore the characteristics of PARV4 in this setting, with a particular focus on the prevalence and significance of coinfection, we screened a cohort of 695 individuals recruited from Durban and Kimberley (South Africa) and Gaborone (Botswana) for PARV4 IgG and DNA, as well as documenting HIV, HBV and HCV status.
Results: Within these cohorts, 69% of subjects were HIV-positive. We identified no cases of HCV by PCR, but 7.4% were positive for HBsAg. PARV4 IgG was positive in 42%; seroprevalence was higher in adults (69%) compared to children (21%) (p<0.0001) and in HIV-positive (52%) compared to HIV-negative individuals (24%) (p<0.0001), but there was no association with HBsAg status. We developed an on-line tool to allow visualization of coinfection data (
https://purl.oclc.org/coinfection-viz). We identified five subjects who were PCR-positive for PARV4 genotype-3.
Ex vivo CD8+ T cell responses spanned the entire PARV4 proteome and we propose a novel HLA-B*57:03-restricted epitope within the NS protein.
Conclusions: This characterisation of PARV4 infection provides enhanced insights into the epidemiology of infection and co-infection in African cohorts, and provides the foundations for planning further focused studies to elucidate transmission pathways, immune responses, and the clinical significance of this organism.
Collapse
Affiliation(s)
- Colin P Sharp
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.,Edinburgh Genomics, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | | | - Louise Hattingh
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, OX1 3SY, UK
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, OX1 3SY, UK
| | - Samantha Daniels
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Anriette van Zyl
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | | | - Susan Wareing
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Anthony Ogwu
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Lynn Riddell
- Northampton General Hospital NHS Trust, Northampton, NN1 5BD, UK
| | - Fabian Chen
- Royal Berkshire Hospital, Reading, RG1 5AN, UK
| | - Thumbi Ndung'u
- HIV Pathogenesis Program, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4041, South Africa
| | | | - Paul Klenerman
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK.,NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| | - Pieter Jooste
- Kimberley Hospital, Kimberley, Northern Cape, 8301, South Africa
| | - Philippa C Matthews
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| |
Collapse
|
15
|
Andersson AMC, Holst PJ. Increased T cell breadth and antibody response elicited in prime-boost regimen by viral vector encoded homologous SIV Gag/Env in outbred CD1 mice. J Transl Med 2016; 14:343. [PMID: 27998269 PMCID: PMC5175304 DOI: 10.1186/s12967-016-1102-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major obstacle for the development of HIV vaccines is the virus' worldwide sequence diversity. Nevertheless, the presence of T cell epitopes within conserved regions of the virus' structural Gag protein and conserved structures in the envelope (env) sequence raises the possibility that cross-reactive responses may be induced by vaccination. In this study, the aim was to investigate the importance of antigenic match on immunodominance and breadth of obtainable T cell responses. METHODS Outbred CD1 mice were immunized with either heterologous (SIVmac239 and HIV-1 clade B consensus) or homologous (SIVmac239) gag sequences using adenovirus (Ad5) and MVA vectors. Env (SIVmac239) was co-encoded in the vectors to study the induction of antibodies, which is a primary target of current HIV vaccine designs. All three vaccines were designed as virus-encoded virus-like particle vaccines. Antibody responses were analysed by ELISA, avidity ELISA, and neutralization assay. T cell responses were determined by intracellular cytokine staining of splenocytes. RESULTS The homologous Env/Gag prime-boost regimen induced higher Env binding antibodies, and induced stronger and broader Gag specific CD8+ T cell responses than the homologous Env/heterologous Gag prime-boost regimen. Homologous Env/heterologous Gag immunization resulted in selective boosting of Env specific CD8+ T cell responses and consequently a paradoxical decreased recognition of variant sequences including conserved elements of p24 Gag. CONCLUSIONS These results contrast with related studies using Env or Gag as the sole antigen and suggest that prime-boost immunizations based on homologous SIVmac239 Gag inserts is an efficient component of genetic VLP vaccines-both for induction of potent antibody responses and cross-reactive CD8+ T cell responses.
Collapse
Affiliation(s)
- Anne-Marie Carola Andersson
- Department of Immunology and Microbiology, Center for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, Center for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Herath S, Le Heron A, Colloca S, Patterson S, Tatoud R, Weber J, Dickson G. Strain-dependent and distinctive T-cell responses to HIV antigens following immunisation of mice with differing chimpanzee adenovirus vaccine vectors. Vaccine 2016; 34:4378-85. [PMID: 27452864 PMCID: PMC4978701 DOI: 10.1016/j.vaccine.2016.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/04/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022]
Abstract
In vivo vaccination studies are conventionally conducted in a single mouse strain with results, only reflecting responses to a single immunogenetic background. We decided to examine the immune response to an HIV transgene (gag, pol and nef fusion protein) in 3 strains of mice (CBA, C57BL/6 and BALB/c) to determine the spectrum of responses and in addition to determine whether the serotype of the adenoviral vector used (ChAd3 and ChAd63) impacted the outcome of response. Our results demonstrated that all three strains of mice responded to the transgene and that the magnitude of responses were different between the strains. The C57BL/6 strain showed the lowest range of responses compared to the other strains and, very few responses were seen to the same peptide pool in all three strains of mice. In CBA and BALB/c mice there were significant differences in IFNγ production dependent on the adenoviral vector used. Our results suggest that employing a single strain of mouse may underestimate the efficacy and efficiency of vaccine products.
Collapse
Affiliation(s)
- S Herath
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - A Le Heron
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - S Colloca
- ReiThera Srl, Viale Citta d'Europa 679, 00144 Rome, Italy
| | - S Patterson
- Department of Immunology, Imperial College London, London, UK
| | - R Tatoud
- Department of Immunology, Imperial College London, London, UK
| | - J Weber
- Department of Immunology, Imperial College London, London, UK
| | - G Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
17
|
Kløverpris HN, Leslie A, Goulder P. Role of HLA Adaptation in HIV Evolution. Front Immunol 2016; 6:665. [PMID: 26834742 PMCID: PMC4716577 DOI: 10.3389/fimmu.2015.00665] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/27/2015] [Indexed: 01/22/2023] Open
Abstract
Killing of HIV-infected cells by CD8+ T-cells imposes strong selection pressure on the virus toward escape. The HLA class I molecules that are successful in mediating some degree of control over the virus are those that tend to present epitopes in conserved regions of the proteome, such as in p24 Gag, in which escape also comes at a significant cost to viral replicative capacity (VRC). In some instances, compensatory mutations can fully correct for the fitness cost of such an escape variant; in others, correction is only partial. The consequences of these events within the HIV-infected host, and at the population level following transmission of escape variants, are discussed. The accumulation of escape mutants in populations over the course of the epidemic already shows instances of protective HLA molecules losing their impact, and in certain cases, a modest decline in HIV virulence in association with population-level increase in mutants that reduce VRC.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Acute Viral Escape Selectively Impairs Nef-Mediated Major Histocompatibility Complex Class I Downmodulation and Increases Susceptibility to Antiviral T Cells. J Virol 2015; 90:2119-26. [PMID: 26637459 DOI: 10.1128/jvi.01975-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/24/2015] [Indexed: 01/29/2023] Open
Abstract
Nef-specific CD8(+) T lymphocytes (CD8TL) are associated with control of simian immunodeficiency virus (SIV) despite extensive nef variation between and within animals. Deep viral sequencing of the immunodominant Mamu-B*017:01-restricted Nef165-173IW9 epitope revealed highly restricted evolution. A common acute escape variant, T170I, unexpectedly and uniquely degraded Nef's major histocompatibility complex class I (MHC-I) downregulatory capacity, rendering the virus more vulnerable to CD8TL targeting other epitopes. These data aid in a mechanistic understanding of Nef functions and suggest means of immunity-mediated control of lentivirus replication.
Collapse
|
19
|
Herath S, Le Heron A, Colloca S, Bergin P, Patterson S, Weber J, Tatoud R, Dickson G. Analysis of T cell responses to chimpanzee adenovirus vectors encoding HIV gag-pol-nef antigen. Vaccine 2015; 33:7283-7289. [PMID: 26546736 PMCID: PMC4678176 DOI: 10.1016/j.vaccine.2015.10.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022]
Abstract
Adenoviruses have been shown to be both immunogenic and efficient at presenting HIV proteins but recent trials have suggested that they may play a role in increasing the risk of HIV acquisition. This risk may be associated with the presence of pre-existing immunity to the viral vectors. Chimpanzee adenoviruses (chAd) have low seroprevalence in human populations and so reduce this risk. ChAd3 and chAd63 were used to deliver an HIV gag, pol and nef transgene. ELISpot analysis of T cell responses in mice showed that both chAd vectors were able to induce an immune response to Gag and Pol peptides but that only the chAd3 vector induced responses to Nef peptides. Although the route of injection did not influence the magnitude of immune responses to either chAd vector, the dose of vector did. Taken together these results demonstrate that chimpanzee adenoviruses are suitable vector candidates for the delivery of HIV proteins and could be used for an HIV vaccine and furthermore the chAd3 vector produces a broader response to the HIV transgene.
Collapse
Affiliation(s)
- S Herath
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, Surrey, UK
| | - A Le Heron
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, Surrey, UK
| | - S Colloca
- ReiThera Srl, Viale Citta d'Europa 679, 00144 Rome, Italy
| | - P Bergin
- Department of Immunology, Imperial College London, London, UK
| | - S Patterson
- Department of Immunology, Imperial College London, London, UK
| | - J Weber
- Department of Immunology, Imperial College London, London, UK
| | - R Tatoud
- Department of Immunology, Imperial College London, London, UK
| | - G Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, Surrey, UK.
| |
Collapse
|
20
|
Martins MA, Tully DC, Cruz MA, Power KA, Veloso de Santana MG, Bean DJ, Ogilvie CB, Gadgil R, Lima NS, Magnani DM, Ejima K, Allison DB, Piatak M, Altman JD, Parks CL, Rakasz EG, Capuano S, Galler R, Bonaldo MC, Lifson JD, Allen TM, Watkins DI. Vaccine-Induced Simian Immunodeficiency Virus-Specific CD8+ T-Cell Responses Focused on a Single Nef Epitope Select for Escape Variants Shortly after Infection. J Virol 2015; 89:10802-20. [PMID: 26292326 PMCID: PMC4621113 DOI: 10.1128/jvi.01440-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Certain major histocompatibility complex class I (MHC-I) alleles (e.g., HLA-B*27) are enriched among human immunodeficiency virus type 1 (HIV-1)-infected individuals who suppress viremia without treatment (termed "elite controllers" [ECs]). Likewise, Mamu-B*08 expression also predisposes rhesus macaques to control simian immunodeficiency virus (SIV) replication. Given the similarities between Mamu-B*08 and HLA-B*27, SIV-infected Mamu-B*08(+) animals provide a model to investigate HLA-B*27-mediated elite control. We have recently shown that vaccination with three immunodominant Mamu-B*08-restricted epitopes (Vif RL8, Vif RL9, and Nef RL10) increased the incidence of elite control in Mamu-B*08(+) macaques after challenge with the pathogenic SIVmac239 clone. Furthermore, a correlate analysis revealed that CD8(+) T cells targeting Nef RL10 was correlated with improved outcome. Interestingly, this epitope is conserved between SIV and HIV-1 and exhibits a delayed and atypical escape pattern. These features led us to postulate that a monotypic vaccine-induced Nef RL10-specific CD8(+) T-cell response would facilitate the development of elite control in Mamu-B*08(+) animals following repeated intrarectal challenges with SIVmac239. To test this, we vaccinated Mamu-B*08(+) animals with nef inserts in which Nef RL10 was either left intact (group 1) or disrupted by mutations (group 2). Although monkeys in both groups mounted Nef-specific cellular responses, only those in group 1 developed Nef RL10-specific CD8(+) T cells. These vaccine-induced effector memory CD8(+) T cells did not prevent infection. Escape variants emerged rapidly in the group 1 vaccinees, and ultimately, the numbers of ECs were similar in groups 1 and 2. High-frequency vaccine-induced CD8(+) T cells focused on a single conserved epitope and therefore did not prevent infection or increase the incidence of elite control in Mamu-B*08(+) macaques. IMPORTANCE Since elite control of chronic-phase viremia is a classic example of an effective immune response against HIV/SIV, elucidating the basis of this phenomenon may provide useful insights into how to elicit such responses by vaccination. We have previously established that vaccine-induced CD8(+) T-cell responses against three immunodominant epitopes can increase the incidence of elite control in SIV-infected Mamu-B*08(+) rhesus macaques—a model of HLA-B*27-mediated elite control. Here, we investigated whether a monotypic vaccine-induced CD8(+) T-cell response targeting the conserved "late-escaping" Nef RL10 epitope can increase the incidence of elite control in Mamu-B*08(+) monkeys. Surprisingly, vaccine-induced Nef RL10-specific CD8(+) T cells selected for variants within days after infection and, ultimately, did not facilitate the development of elite control. Elite control is, therefore, likely to involve CD8(+) T-cell responses against more than one epitope. Together, these results underscore the complexity and multidimensional nature of virologic control of lentivirus infection.
Collapse
Affiliation(s)
| | - Damien C Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael A Cruz
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Karen A Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - David J Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Colin B Ogilvie
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rujuta Gadgil
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Noemia S Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Keisuke Ejima
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David B Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
21
|
Brockman MA, Jones RB, Brumme ZL. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs. Front Immunol 2015; 6:506. [PMID: 26483795 PMCID: PMC4591506 DOI: 10.3389/fimmu.2015.00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
HIV's ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. "Shock and kill" methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8(+) T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| | - R Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| |
Collapse
|
22
|
Consequences of HLA-B*13-Associated Escape Mutations on HIV-1 Replication and Nef Function. J Virol 2015; 89:11557-71. [PMID: 26355081 DOI: 10.1128/jvi.01955-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED HLA-B*13 is associated with superior in vivo HIV-1 viremia control. Protection is thought to be mediated by sustained targeting of key cytotoxic T lymphocyte (CTL) epitopes and viral fitness costs of CTL escape in Gag although additional factors may contribute. We assessed the impact of 10 published B*13-associated polymorphisms in Gag, Pol, and Nef, in 23 biologically relevant combinations, on HIV-1 replication capacity and Nef-mediated reduction of cell surface CD4 and HLA class I expression. Mutations were engineered into HIV-1NL4.3, and replication capacity was measured using a green fluorescent protein (GFP) reporter T cell line. Nef-mediated CD4 and HLA-A*02 downregulation was assessed by flow cytometry, and T cell recognition of infected target cells was measured via coculture with an HIV-specific luciferase reporter cell line. When tested individually, only Gag-I147L and Gag-I437L incurred replicative costs (5% and 17%, respectively), consistent with prior reports. The Gag-I437L-mediated replication defect was rescued to wild-type levels by the adjacent K436R mutation. A novel B*13 epitope, comprising 8 residues and terminating at Gag147, was identified in p24(Gag) (GQMVHQAIGag140-147). No other single or combination Gag, Pol, or Nef mutant impaired viral replication. Single Nef mutations did not affect CD4 or HLA downregulation; however, the Nef double mutant E24Q-Q107R showed 40% impairment in HLA downregulation with no evidence of Nef stability defects. Moreover, target cells infected with HIV-1-NefE24Q-Q107R were recognized better by HIV-specific T cells than those infected with HIV-1NL4.3 or single Nef mutants. Our results indicate that CTL escape in Gag and Nef can be functionally costly and suggest that these effects may contribute to long-term HIV-1 control by HLA-B*13. IMPORTANCE Protective effects of HLA-B*13 on HIV-1 disease progression are mediated in part by fitness costs of CTL escape mutations in conserved Gag epitopes, but other mechanisms remain incompletely known. We extend our knowledge of the impact of B*13-driven escape on HIV-1 replication by identifying Gag-K436R as a compensatory mutation for the fitness-costly Gag-I437L. We also identify Gag-I147L, the most rapidly and commonly selected B*13-driven substitution in HIV-1, as a putative C-terminal anchor residue mutation in a novel B*13 epitope. Most notably, we identify a novel escape-driven fitness defect: B*13-driven substitutions E24Q and Q107R in Nef, when present together, substantially impair this protein's ability to downregulate HLA class I. This, in turn, increases the visibility of infected cells to HIV-specific T cells. Our results suggest that B*13-associated escape mutations impair HIV-1 replication by two distinct mechanisms, that is, by reducing Gag fitness and dampening Nef immune evasion function.
Collapse
|
23
|
Smith GR, Bauer L, Crane MM, Johnson ZP. Immunogenetic characterization of a captive colony of sooty mangabeys (Cercocebus atys) used for SIV research. J Med Primatol 2015; 44:76-88. [PMID: 25645218 DOI: 10.1111/jmp.12161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND African non-human primates are SIV natural hosts and do not develop disease following infection. Understanding disease avoidance mechanisms in these species is important for HIV vaccine development. The largest captive population of sooty mangabeys, a SIV natural host species, resides at the Yerkes National Primate Research Center. METHODS Thirteen primer sets that amplify polymorphic microsatellite loci within the MHC region were used to genotype 144 animals. Immunogenetic Management Software (IMS) was used to identify MHC haplotypes and organize data. RESULTS Seventy-three haplotypes were identified. Limited haplotype diversity was observed in this population with 88.2% of included animals carrying one of 18 haplotypes. Differences in haplotype frequency were observed between SIV (+) and SIV (-) populations. CONCLUSIONS We have developed a novel tool for others to use in the analysis of the role of the MHC in a natural host non-human primate model species used for SIV research.
Collapse
Affiliation(s)
- Geary R Smith
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
24
|
Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy. Mol Ther 2014; 23:387-95. [PMID: 25366030 DOI: 10.1038/mt.2014.207] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022] Open
Abstract
Antiretroviral therapy (ART) is unable to eradicate human immunodeficiency virus type 1 (HIV-1) infection. Therefore, there is an urgent need to develop novel therapies for this disease to augment anti-HIV immunity. T cell therapy is appealing in this regard as T cells have the ability to proliferate, migrate, and their antigen specificity reduces the possibility of off-target effects. However, past human studies in HIV-1 infection that administered T cells with limited specificity failed to provide ART-independent, long-term viral control. In this study, we sought to expand functional, broadly-specific cytotoxic T cells (HXTCs) from HIV-infected patients on suppressive ART as a first step toward developing cellular therapies for implementation in future HIV eradication protocols. Blood samples from seven HIV+ patients on suppressive ART were used to derive HXTCs. Multiantigen specificity was achieved by coculturing T cells with antigen-presenting cells pulsed with peptides representing Gag, Pol, and Nef. All but two lines were multispecific for all three antigens. HXTCs demonstrated efficacy as shown by release of proinflammatory cytokines, specific lysis of antigen-pulsed targets, and the ability to suppress HIV replication in vitro. In conclusion, we are able to generate broadly-specific cytotoxic T cell lines that simultaneously target multiple HIV antigens and show robust antiviral function.
Collapse
|
25
|
Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T, Peng J, Piechocka A, Carrington M, Walker BD. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. J Virol 2014; 88:12937-48. [PMID: 25165115 PMCID: PMC4249072 DOI: 10.1128/jvi.01004-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED We investigated the hypothesis that the correlation between the class I HLA types of an individual and whether that individual spontaneously controls HIV-1 is mediated by the targeting of specific epitopes by CD8(+) T cells. By measuring gamma interferon enzyme-linked immunosorbent spot (ELISPOT) assay responses to a panel of 257 optimally defined epitopes in 341 untreated HIV-infected persons, including persons who spontaneously control viremia, we found that the correlation between HLA types and control is mediated by the targeting of specific epitopes. Moreover, we performed a graphical model-based analysis that suggested that the targeting of specific epitopes is a cause of such control--that is, some epitopes are protective rather than merely associated with control--and identified eight epitopes that are significantly protective. In addition, we use an in silico analysis to identify protein regions where mutations are likely to affect the stability of a protein, and we found that the protective epitopes identified by the ELISPOT analysis correspond almost perfectly to such regions. This in silico analysis thus suggests a possible mechanism for control and could be used to identify protective epitopes that are not often targeted in natural infection but that may be potentially useful in a vaccine. Our analyses thus argue for the inclusion (and exclusion) of specific epitopes in an HIV vaccine. IMPORTANCE Some individuals naturally control HIV replication in the absence of antiretroviral therapy, and this ability to control is strongly correlated with the HLA class I alleles that they express. Here, in a large-scale experimental study, we provide evidence that this correlation is mediated largely by the targeting of specific CD8(+) T-cell epitopes, and we identify eight epitopes that are likely to cause control. In addition, we provide an in silico analysis indicating that control occurs because mutations within these epitopes change the stability of the protein structures. This in silico analysis also identified additional epitopes that are not typically targeted in natural infection but may lead to control when included in a vaccine, provided that other epitopes that would otherwise distract the immune system from targeting them are excluded from the vaccine.
Collapse
Affiliation(s)
- Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Carl Kadie
- Microsoft Research, Redmond, Washington, USA
| | | | - Daniel Karel
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Ariel Goldenthal
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Oliver B Davis
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | | | - Tienho Lin
- Microsoft Research, Los Angeles, California, USA
| | - Jian Peng
- Microsoft Research, Los Angeles, California, USA
| | - Alicja Piechocka
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
26
|
Tongo M, Burgers WA. Challenges in the design of a T cell vaccine in the context of HIV-1 diversity. Viruses 2014; 6:3968-90. [PMID: 25341662 PMCID: PMC4213573 DOI: 10.3390/v6103968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/27/2022] Open
Abstract
The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE) variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored.
Collapse
Affiliation(s)
- Marcel Tongo
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
27
|
Mann JK, Chopera D, Omarjee S, Kuang XT, Le AQ, Anmole G, Danroth R, Mwimanzi P, Reddy T, Carlson J, Radebe M, Goulder PJR, Walker BD, Abdool Karim S, Novitsky V, Williamson C, Brockman MA, Brumme ZL, Ndung'u T. Nef-mediated down-regulation of CD4 and HLA class I in HIV-1 subtype C infection: association with disease progression and influence of immune pressure. Virology 2014; 468-470:214-225. [PMID: 25193656 DOI: 10.1016/j.virol.2014.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/08/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
Abstract
Nef plays a major role in HIV-1 pathogenicity. We studied HIV-1 subtype C infected individuals in acute/early (n = 120) or chronic (n = 207) infection to investigate the relationship between Nef-mediated CD4/HLA-I down-regulation activities and disease progression, and the influence of immune-driven sequence variation on these Nef functions. A single Nef sequence per individual was cloned into an expression plasmid, followed by transfection of a T cell line and measurement of CD4 and HLA-I expression. In early infection, a trend of higher CD4 down-regulation ability correlating with higher viral load set point was observed (r = 0.19, p = 0.05), and higher HLA-I down-regulation activity was significantly associated with faster rate of CD4 decline (p = 0.02). HLA-I down-regulation function correlated inversely with the number HLA-associated polymorphisms previously associated with reversion in the absence of the selecting HLA allele (r = -0.21, p = 0.0002). These data support consideration of certain Nef regions in HIV-1 vaccine strategies designed to attenuate the infection course.
Collapse
Affiliation(s)
- Jaclyn K Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Denis Chopera
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa; Institute of Infectious Disease and Molecular Medicine, and the Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town 7925, South Africa
| | - Saleha Omarjee
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Xiaomei T Kuang
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Gursev Anmole
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Ryan Danroth
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Philip Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Tarylee Reddy
- Medical Research Council, Biostatistics Unit, Durban 4001, South Africa
| | - Jonathan Carlson
- Microsoft Research, Los Angeles, CA 90024, United States of America
| | - Mopo Radebe
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom; Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA; Massachusetts General Hospital and Harvard University, Boston, MA 02114, USA; Howard Hughes Medical Research Institute, Chevy Chase, MD 20815, USA
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Vladimir Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, P/Bag BO 320, Gaborone, Botswana
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, and the Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town 7925, South Africa
| | - Mark A Brockman
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban 4001, South Africa; Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA; Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany.
| |
Collapse
|
28
|
Martins MA, Wilson NA, Piaskowski SM, Weisgrau KL, Furlott JR, Bonaldo MC, Veloso de Santana MG, Rudersdorf RA, Rakasz EG, Keating KD, Chiuchiolo MJ, Piatak M, Allison DB, Parks CL, Galler R, Lifson JD, Watkins DI. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239. J Virol 2014; 88:7493-516. [PMID: 24741098 PMCID: PMC4054456 DOI: 10.1128/jvi.00601-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/14/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. IMPORTANCE Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by vaccinating rhesus macaques with minigenes encoding fragments of Gag, Vif, and Nef. In contrast to previous mouse studies, this strategy appeared to minimally affect monkey CD8(+) T-cell immundominance hierarchies, as seen by the detection of only one subdominant epitope in Mamu-A*01(+) vaccinees. This finding underscores the difficulty of inducing subdominant CD8(+) T cells by vaccination and demonstrates that strategies other than gene fragmentation may be required to significantly alter immunodominance in primates. Although some of the regimens tested here were extremely immunogenic, vaccine efficacy was limited to a modest reduction in set point viremia after challenge with SIVmac239. No correlates of protection were identified. These results reinforce the notion that vaccine immunogenicity does not predict control of AIDS virus replication.
Collapse
Affiliation(s)
- Mauricio A Martins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nancy A Wilson
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shari M Piaskowski
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica R Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Richard A Rudersdorf
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karen D Keating
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maria J Chiuchiolo
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - David B Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
29
|
Abstract
UNLABELLED Host and viral factors influence the HIV-1 infection course. Reduced Nef function has been observed in HIV-1 controllers during the chronic phase, but the kinetics and mechanisms of Nef attenuation in such individuals remain unclear. We examined plasma RNA-derived Nef clones from 10 recently infected individuals who subsequently suppressed viremia to less than 2,000 RNA copies/ml within 1 year postinfection (acute controllers) and 50 recently infected individuals who did not control viremia (acute progressors). Nef clones from acute controllers displayed a lesser ability to downregulate CD4 and HLA class I from the cell surface and a reduced ability to enhance virion infectivity compared to those from acute progressors (all P<0.01). HLA class I downregulation activity correlated inversely with days postinfection (Spearman's R=-0.85, P=0.004) and positively with baseline plasma viral load (Spearman's R=0.81, P=0.007) in acute controllers but not in acute progressors. Nef polymorphisms associated with functional changes over time were identified in follow-up samples from six controllers. For one such individual, mutational analyses indicated that four polymorphisms selected by HLA-A*31 and B*37 acted in combination to reduce Nef steady-state protein levels and HLA class I downregulation activity. Our results demonstrate that relative control of initial HIV-1 viremia is associated with Nef clones that display reduced function, which in turn may influence the course of HIV-1 infection. Transmission of impaired Nef sequences likely contributed in part to this observation; however, accumulation of HLA-associated polymorphisms in Nef that impair function also suggests that CD8+ T-cell pressures play a role in this phenomenon. IMPORTANCE Rare individuals can spontaneously control HIV-1 viremia in the absence of antiretroviral treatment. Understanding the host and viral factors that contribute to the controller phenotype may identify new strategies to design effective vaccines or therapeutics. The HIV-1 Nef protein enhances viral pathogenesis through multiple mechanisms. We examined the function of plasma HIV-1 RNA-derived Nef clones isolated from 10 recently infected individuals who subsequently controlled HIV viremia compared to the function of those from 50 individuals who failed to control viremia. Our results demonstrate that early Nef clones from HIV controllers displayed lower HLA class I and CD4 downregulation activity, as well as a reduced ability to enhance virion infectivity. The accumulation of HLA-associated polymorphisms in Nef during the first year postinfection was associated with impaired protein function in some controllers. This report highlights the potential for host immune responses to modulate HIV pathogenicity and disease outcome by targeting cytotoxic T lymphocyte (CTL) epitopes in Nef.
Collapse
|
30
|
Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol 2014; 88:9514-28. [PMID: 24899193 DOI: 10.1128/jvi.00802-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The ability of CD8+ T cells to effectively limit HIV-1 replication and block HIV-1 acquisition is determined by the capacity to rapidly respond to HIV-1 antigens. Understanding both the functional properties and regulation of an effective CD8+ response would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies. We assessed the antigen specificity, cytokine signature, and mechanisms that regulate antiviral gene expression in CD8+ T cells from a cohort of HIV-1-infected virus controllers (VCs) (<5,000 HIV-1 RNA copies/ml and CD4+ lymphocyte counts of >400 cells/μl) capable of soluble inhibition of HIV-1. Gag p24 and Nef CD8+ T cell-specific soluble virus inhibition was common among the VCs and correlated with substantial increases in the abundance of mRNAs encoding the antiviral cytokines macrophage inflammatory proteins MIP-1α, MIP-1αP (CCL3L1), and MIP-1β; granulocyte-macrophage colony-stimulating factor (GM-CSF); lymphotactin (XCL1); tumor necrosis factor receptor superfamily member 9 (TNFRSF9); and gamma interferon (IFN-γ). The induction of several of these mRNAs was driven through a coordinated response of both increased transcription and stabilization of mRNA, which together accounted for the observed increase in mRNA abundance. This coordinated response allows rapid and robust induction of mRNA messages that can enhance the CD8+ T cells' ability to inhibit virus upon antigen encounter. IMPORTANCE We show that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells. Regulation at the level of RNA helps enable rapid recall of memory CD8+ T cell effector functions for HIV-1 inhibition. By uncovering and understanding the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, we can identify new strategies for comprehensive identification of other important antiviral genes. This will, in turn, enhance our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.
Collapse
|
31
|
Differential impact of magnitude, polyfunctional capacity, and specificity of HIV-specific CD8+ T cell responses on HIV set point. J Virol 2013; 88:1819-24. [PMID: 24227857 DOI: 10.1128/jvi.02968-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Defining the characteristics of HIV-specific CD8(+) T cell responses that lead to viral control is crucial for vaccine development. We evaluated the differential impact of magnitude, polyfunctional capacity, and specificity of the CD8(+) response at approximately 6 months postinfection on the viral set point at 12 months in a cohort of HIV-infected individuals. High frequencies of Gag and Nef responses endowed with four functions were the best predictors of a low viral set point.
Collapse
|