1
|
Martins AC, Oliveira-Paula GH, Tinkov AA, Skalny AV, Tizabi Y, Bowman AB, Aschner M. Role of manganese in brain health and disease: Focus on oxidative stress. Free Radic Biol Med 2025; 232:306-318. [PMID: 40086492 PMCID: PMC11985276 DOI: 10.1016/j.freeradbiomed.2025.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Manganese (Mn) is an essential trace element crucial for various physiological processes, but excessive exposure can lead to significant health concerns, particularly neurotoxicity. This review synthesizes current knowledge on Mn-induced oxidative stress and its role in cellular dysfunction and disease. We discuss how Mn promotes toxicity through multiple mechanisms, primarily through reactive oxygen species (ROS) generation, which leads to oxidative stress and disruption of cellular processes. The review examines key pathways affected by Mn toxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome activation, and epigenetic modifications. Recent studies have identified promising therapeutic compounds, including both synthetic and natural substances such as probucol, metformin, curcumin, resveratrol, and daidzein, which demonstrate protective effects through various mechanisms, including antioxidant enhancement, mitochondrial function preservation, and epigenetic pathway modulation. Understanding these mechanisms provides new insights into potential therapeutic strategies for Mn-induced disorders. This review also highlights future research directions, emphasizing the need for developing targeted therapies and investigating combination approaches to address multiple aspects of Mn toxicity simultaneously.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gustavo H Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, 20059, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Lanzillotta S, Esteve D, Lanzillotta C, Tramutola A, Lloret A, Forte E, Pesce V, Picca A, Di Domenico F, Perluigi M, Barone E. Altered mitochondrial unfolded protein response and protein quality control promote oxidative distress in down syndrome brain. Free Radic Biol Med 2025; 227:80-93. [PMID: 39586382 DOI: 10.1016/j.freeradbiomed.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Down Syndrome (DS) is a genetic disorder caused by the presence of an extra copy of chromosome 21, and leading to various developmental and cognitive defects. A critical feature of DS is the occurrence of oxidative distress particularly in the brain, which exacerbates neurodevelopmental processes. Mitochondria play a crucial role in cell energy metabolism and their impairment is one of the major causes of oxidative distress in several pathologies. Hence, this study investigates mitochondrial proteostasis by the mean of the mitochondrial Unfolded Protein Response (UPRmt) and the mitochondrial protein quality control (MQC) mechanisms in the context of DS, focusing on their implications in redox homeostasis in brain development. We analyzed key UPRmt markers and mitochondrial function in the frontal cortex isolated fromTs2Cje mice, a model for DS, across different developmental stages. Our results demonstrate significant alterations in UPRmt markers, particularly at postnatal day 0 (P0) and 1 month (1M). These changes indicate early UPRmt activation, primarily driven by the ATF5/GRP75 axis, although compromised by reduced levels of other components. Impaired UPRmt correlates with decreased mitochondrial activity, evidenced by reduced oxygen consumption rates and altered expression of OXPHOS complexes. Additionally, elevated oxidative stress markers such as 3-nitrotyrosine (3-NT), 4-hydroxynonenal (HNE), and protein carbonyls (PC) were observed, linking mitochondrial dysfunction to increased oxidative damage. Defects of MQC, including disrupted biogenesis, increased fission, and the activation of mitophagy were evident mostly at P0 and 1M consistent with UPRmt activation. Principal Component Analysis revealed distinct phenotypic differences between Ts2Cje and control mice, driven by these molecular alterations. Our findings underscore the critical role of UPRmt and MQC in DS brain development, highlighting potential therapeutic targets to mitigate mitochondrial dysfunction and oxidative distress, thereby alleviating some of the neurodevelopmental and cognitive impairments associated with DS.
Collapse
Affiliation(s)
- Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain; Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
4
|
Wei S, Ma X, Liang G, He J, Wang J, Chen H, Lu W, Qin H, Zou Y. The role of circHmbox1(3,4) in ferroptosis-mediated cognitive impairments induced by manganese. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135212. [PMID: 39024764 DOI: 10.1016/j.jhazmat.2024.135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Excessive environmental exposure to manganese (Mn) has been linked to cognitive impairments, circular RNAs (circRNAs) have been recognized for their roles in epigenetic regulation in various biological processes, including neurological pathogenesis. Previous studies found that ferroptosis, an iron ion-dependent programmed cell death, may be involved in cognitive impairments. However, specific mechanisms underlying the relationship among circRNA, ferroptosis, and neurotoxicity of Mn are not well-understood. In the current study, RNA sequencing was performed to profile RNA expression in Neuro-2a (N2a) cells that were treated with 300 μM Mn. The potential molecular mechanisms of circHmbox1(3,4) in Mn-induced cognitive impairments were investigated via various experiments, such as Western blot and intracerebroventricular injection in mice. We observed a significant decrease in the expression of circHmbox1(3,4) both in vitro and in vivo following Mn treatment. The results of Y maze test and Morris water maze test demonstrated an improvement in learning and memory abilities following circHmbox1(3,4) overexpression in Mn treated mice. Mn treatment may reduce circHmbox1(3,4) biogenesis through lowered expression of E2F1/QKI. Inhibiting circHmbox1(3,4) expression led to GPX4 protein degradation through protein ligation and ubiquitination. Overall, the current study showed that Mn exposure-induced cognitive dysfunction may be mediated through ferroptosis regulated by circHmbox1(3,4).
Collapse
Affiliation(s)
- Shengtao Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Guiqiang Liang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiacheng He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jian Wang
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Chen
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Wenmin Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huiyan Qin
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530028, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning 530021, Guangxi, China.
| |
Collapse
|
5
|
Pajarillo E, Kim S, Digman A, Ajayi I, Nyarko-Danquah I, Son DS, Aschner M, Lee E. Dopaminergic REST/NRSF is protective against manganese-induced neurotoxicity in mice. J Biol Chem 2024; 300:107707. [PMID: 39178947 PMCID: PMC11421342 DOI: 10.1016/j.jbc.2024.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Chronic exposure to elevated levels of manganese (Mn) may cause a neurological disorder referred to as manganism. The transcription factor REST is dysregulated in several neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. REST upregulated tyrosine hydroxylase and induced protection against Mn toxicity in neuronal cultures. In the present study, we investigated if dopaminergic REST plays a critical role in protecting against Mn-induced toxicity in vivo using dopaminergic REST conditional knockout (REST-cKO) mice and REST loxP mice as wild-type (WT) controls. Restoration of REST in the substantia nigra (SN) with neuronal REST AAV vector infusion was performed to further support the role of REST in Mn toxicity. Mice were exposed to Mn (330 μg, intranasal, daily for 3 weeks), followed by behavioral tests and molecular biology experiments. Results showed that Mn decreased REST mRNA/protein levels in the SN-containing midbrain, as well as locomotor activity and motor coordination in WT mice, which were further decreased in REST-cKO mice. Mn-induced mitochondrial insults, such as impairment of fission/fusion and mitophagy, apoptosis, and oxidative stress, in the midbrain of WT mice were more pronounced in REST-cKO mice. However, REST restoration in the SN of REST-cKO mice attenuated Mn-induced neurotoxicity. REST's molecular target for its protection is unclear, but REST attenuated Mn-induced mitochondrial dysregulation, indicating that it is a primary intracellular target for both Mn and REST. These novel findings suggest that dopaminergic REST in the nigrostriatal pathway is critical in protecting against Mn toxicity, underscoring REST as a potential therapeutic target for treating manganism.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Itunu Ajayi
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
6
|
Liu Y, Lv S, He G, Wang C, Ou C. Ferroptosis at the crossroads of manganese-induced neurotoxicity: A retrospective study. Toxicology 2024; 502:153727. [PMID: 38216111 DOI: 10.1016/j.tox.2024.153727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Manganese is an essential trace element, but overexposure can cause neurotoxicity and subsequent neurodegenerative diseases. Ferroptosis is a form of cell death characterized by lipid peroxidation and iron overload inside cells, which is closely related to manganese neurotoxicity. Manganese can induce ferroptosis through multiple pathways: causing oxidative stress and increased cellular reactive oxygen species (ROS), resulting in lipid peroxidation; depleting glutathione (GSH) and weakening the antioxidant capacity of cells; disrupting iron metabolism and increasing iron-dependent lipid peroxidation; damaging mitochondrial function and disrupting the electron transport chain, leading to increased ROS production. Oxidative stress, iron metabolism disorders, lipid peroxidation, GSH depletion, and mitochondrial dysfunction, typical features of ferroptosis, have been observed in animal and cell models after manganese exposure. In summary, manganese can participate in the pathogenesis of neurodegenerative diseases by inducing events related to ferroptosis. This provides new insights into studying the mechanism of manganese neurotoxicity and developing therapeutic drugs.
Collapse
Affiliation(s)
- Yaoyang Liu
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China
| | - Shanyu Lv
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China
| | - Guoguo He
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China
| | - Changyong Wang
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China.
| | - Chaoyan Ou
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China.
| |
Collapse
|
7
|
Mishra E, Thakur MK. Vitamin B 12-folic acid supplementation improves memory by altering mitochondrial dynamics, dendritic arborization, and neurodegeneration in old and amnesic male mice. J Nutr Biochem 2024; 124:109536. [PMID: 37981108 DOI: 10.1016/j.jnutbio.2023.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Memory impairment during aging and amnesia is attributed to compromised mitochondrial dynamics and mitophagy and other mitochondrial quality control mechanisms. Mitochondrial dynamics involves the continuous process of fission and fusion of mitochondria within a cell and is a fundamental mechanism for regulating mitochondrial quality and function. An extensive range of potential nutritional supplements has been shown to improve mitochondrial health, synaptic plasticity, and cognitive functions. Previous findings revealed that supplementation of vitamin B12-folic acid reduces locomotor deficits and mitochondrial abnormalities but enhances mitochondrial and neuronal health. The present study aims to explore the impact of combined vitamin B12-folic acid supplementation on mitochondrial dynamics, neuronal health, and memory decline in old age and scopolamine-induced amnesia, which remains elusive. The results demonstrated that supplementation led to a noteworthy increase in recognition and spatial memory and expression of memory-related protein BDNF in old and amnesic mice. Moreover, the decrease in the fragmented mitochondrial number was validated by the downregulation of mitochondrial fission p-Drp1 (S616) protein and the increase in elongated mitochondria by the upregulation of mitochondrial fusion Mfn2 protein. The increased spine density and dendritic arborization in old and amnesic mice upon supplementation were confirmed by the enhanced expression level of PSD95 and synaptophysin. Furthermore, supplementation reduced ROS production, inhibited Caspase-3 activation, mitigated neurodegeneration, and enhanced mitochondrial membrane potential, ATP production, Vdac1 expression, myelination, in old and amnesic mice. Collectively, our findings imply that combined supplementation of vitamin B12-folic acid improves mitochondrial dynamics and neuronal health, and leads to recovery of memory during old age and amnesia.
Collapse
Affiliation(s)
- Ela Mishra
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Mahendra Kumar Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
8
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
9
|
Vue Z, Neikirk K, Vang L, Garza-Lopez E, Christensen TA, Shao J, Lam J, Beasley HK, Marshall AG, Crabtree A, Anudokem J, Rodriguez B, Kirk B, Bacevac S, Barongan T, Shao B, Stephens DC, Kabugi K, Koh HJ, Koh A, Evans CS, Taylor B, Reddy AK, Miller-Fleming T, Actkins KV, Zaganjor E, Daneshgar N, Murray SA, Mobley BC, Damo SM, Gaddy JA, Riggs B, Wanjalla C, Kirabo A, McReynolds M, Gomez JA, Phillips MA, Exil V, Dai DF, Hinton A. Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across aging. Am J Physiol Heart Circ Physiol 2023; 325:H965-H982. [PMID: 37624101 PMCID: PMC10977873 DOI: 10.1152/ajpheart.00202.2023] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, Minnesota, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, United States
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Josephs Anudokem
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Serif Bacevac
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Taylor Barongan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Dominique C Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, United States
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Brittany Taylor
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Tyne Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ky'Era V Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Nastaran Daneshgar
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, United States
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Tennessee Valley Healthcare Systems, United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Blake Riggs
- Department of Biology at San Francisco State University, San Francisco, California, United States
| | - Celestine Wanjalla
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States
| | - Jose A Gomez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States
| | - Vernat Exil
- Division of Cardiology, Department of Pediatrics, St. Louis University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Dao-Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
10
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 355] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
11
|
Mishra E, Thakur MK. Mdivi-1 Rescues Memory Decline in Scopolamine-Induced Amnesic Male Mice by Ameliorating Mitochondrial Dynamics and Hippocampal Plasticity. Mol Neurobiol 2023; 60:5426-5449. [PMID: 37314656 DOI: 10.1007/s12035-023-03397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Memory loss, often known as amnesia, is common in the elderly population and refers to forgetting facts and experiences. It is associated with increased mitochondrial fragmentation, though the contribution of mitochondrial dynamics in amnesia is poorly understood. Therefore, the present study is aimed at elucidating the role of Mdivi-1 in mitochondrial dynamics, hippocampal plasticity, and memory during scopolamine (SC)-induced amnesia. The findings imply that Mdivi-1 significantly increased the expression of Arc and BDNF proteins in the hippocampus of SC-induced amnesic mice, validating improved recognition and spatial memory. Moreover, an improved mitochondrial ultrastructure was attributed to a decline in the percentage of fragmented and spherical-shaped mitochondria after Mdivi-1 treatment in SC-induced mice. The significant downregulation of p-Drp1 (S616) protein and upregulation of Mfn2, LC3BI, and LC3BII proteins in Mdivi-1-treated SC-induced mice indicated a decline in fragmented mitochondrial number and healthy mitochondrial dynamics. Mdivi-1 treatment alleviated ROS production and Caspase-3 activity and elevated mitochondrial membrane potential, Vdac1 expression, ATP production, and myelination, resulting in reduced neurodegeneration in SC mice. Furthermore, the decline of pro-apoptotic protein cytochrome-c and increase of anti-apoptotic proteins Procaspase-9 and Bcl-2 in Mdivi-1-treated SC-induced mice suggested improved neuronal health. Mdivi-1 also increased the dendritic arborization and spine density, which was further corroborated by increased expression of synaptophysin and PSD95. In conclusion, the current study suggests that Mdivi-1 treatment improves mitochondrial ultrastructure and function through the regulation of mitochondrial dynamics. These changes further improve neuronal cell density, myelination, dendritic arborization, and spine density, decrease neurodegeneration, and improve recognition and spatial memory. Schematic presentation depicts that Mdivi-1 rescues memory decline in scopolamine-induced amnesic male mice by ameliorating mitochondrial dynamics and hippocampal plasticity.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
12
|
Roy R, Paul R, Bhattacharya P, Borah A. Combating Dopaminergic Neurodegeneration in Parkinson's Disease through Nanovesicle Technology. ACS Chem Neurosci 2023; 14:2830-2848. [PMID: 37534999 DOI: 10.1021/acschemneuro.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration, resulting in dopamine depletion and motor behavior deficits. Since the discovery of L-DOPA, it has been the most prescribed drug for symptomatic relief in PD, whose prolonged use, however, causes undesirable motor fluctuations like dyskinesia and dystonia. Further, therapeutics targeting the pathological hallmarks of PD including α-synuclein aggregation, oxidative stress, neuroinflammation, and autophagy impairment have also been developed, yet PD treatment is a largely unmet success. The inception of the nanovesicle-based drug delivery approach over the past few decades brings add-on advantages to the therapeutic strategies for PD treatment in which nanovesicles (basically phospholipid-containing artificial structures) are used to load and deliver drugs to the target site of the body. The present review narrates the characteristic features of nanovesicles including their blood-brain barrier permeability and ability to reach dopaminergic neurons of the brain and finally discusses the current status of this technology in the treatment of PD. From the review, it becomes evident that with the assistance of nanovesicle technology, the therapeutic efficacy of anti-PD pharmaceuticals, phyto-compounds, as well as that of nucleic acids targeting α-synuclein aggregation gained a significant increment. Furthermore, owing to the multiple drug-carrying abilities of nanovesicles, combination therapy targeting multiple pathogenic events of PD has also found success in preclinical studies and will plausibly lead to effective treatment strategies in the near future.
Collapse
Affiliation(s)
- Rubina Roy
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj 788723, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
13
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
14
|
de la Parra S, González V, Solórzano Vives P, Curiel-Alegre S, Velasco-Arroyo B, Rad C, Barros R, Tamayo-Ramos JA, Rumbo C. Comparative toxicological assessment of three soils polluted with different levels of hydrocarbons and heavy metals using in vitro and in vivo approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120472. [PMID: 36272604 DOI: 10.1016/j.envpol.2022.120472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The biological effects induced by the pollutants present in soils, together with the chemical and physical characterizations, are good indicators to provide a general overview of their quality. However, the existence of studies where the toxicity associated to soils contaminated with mixtures of pollutants applying both in vitro and in vivo models are scarce. In this work, three soils (namely, Soil 001, Soil 002 and Soil 013) polluted with different concentrations of hydrocarbons and heavy metals were evaluated using different organisms representative of human (HepG2 human cell line) and environmental exposure (the yeast Saccharomyces cerevisiae, the Gram-negative bacterium Pseudomonas putida and, for the in vivo evaluation, the annelid Enchytraeus crypticus). In vitro assays showed that the soluble fraction of the Soil 001, which presented the highest levels of heavy metals, represented a great impact in the viability of the HepG2 cells and S. cerevisiae, while organic extracts from Soils 002 and 013 caused a slight decrease in the viability of HepG2 cells. In addition, in vivo experiments showed that Soils 001 and 013 affected the survival and the reproduction of E. crypticus. Altogether, these results provide a general overview of the potential hazards associated to three specific contaminated sites in a variety of organisms, showing how different concentrations of similar pollutants affect them, and highlights the relevance of testing both organic and soluble extracts when in vitro safety assays of soils are performed.
Collapse
Affiliation(s)
- Sandra de la Parra
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Verónica González
- LEITAT Technological Center, c/Pallars 179-185, 08005, Barcelona, Spain
| | | | - Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain; Research Group in Composting (UBUCOMP). Universidad de Burgos, Faculty of Sciences. Plaza Misael Bañuelos s/n. 09001, Burgos, Spain
| | - Blanca Velasco-Arroyo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP). Universidad de Burgos, Faculty of Sciences. Plaza Misael Bañuelos s/n. 09001, Burgos, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Juan Antonio Tamayo-Ramos
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
15
|
Kim H, Harrison FE, Aschner M, Bowman AB. Exposing the role of metals in neurological disorders: a focus on manganese. Trends Mol Med 2022; 28:555-568. [PMID: 35610122 PMCID: PMC9233117 DOI: 10.1016/j.molmed.2022.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Metals are ubiquitous chemical entities involved in a myriad of biological processes. Despite their integral role in sustaining life, overexposure can lead to deleterious neurological outcomes posing a public health concern. Excess exposure to metals has been associated with aberrant neurodevelopmental and neurodegenerative diseases and prominently contributes to environmental risk for neurological disorders. Here, we use manganese (Mn) to exemplify the gap in our understanding of the mechanisms behind acute metal toxicity and their relationship to chronic toxicity and disease. This challenge frustrates understanding of how individual exposure histories translate into preventing and treating brain diseases from childhood through old age. We discuss ways to enhance the predictive value of preclinical models and define mechanisms of chronic, persistent, and latent neurotoxicity.
Collapse
Affiliation(s)
- Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
16
|
van der Stel W, Yang H, le Dévédec SE, van de Water B, Beltman JB, Danen EHJ. High-content high-throughput imaging reveals distinct connections between mitochondrial morphology and functionality for OXPHOS complex I, III, and V inhibitors. Cell Biol Toxicol 2022:10.1007/s10565-022-09712-6. [PMID: 35505273 DOI: 10.1007/s10565-022-09712-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/07/2022] [Indexed: 11/02/2022]
Abstract
Cells can adjust their mitochondrial morphology by altering the balance between mitochondrial fission and fusion to adapt to stressful conditions. The connection between a chemical perturbation, changes in mitochondrial function, and altered mitochondrial morphology is not well understood. Here, we made use of high-throughput high-content confocal microscopy to assess the effects of distinct classes of oxidative phosphorylation (OXPHOS) complex inhibitors on mitochondrial parameters in a concentration and time resolved manner. Mitochondrial morphology phenotypes were clustered based on machine learning algorithms and mitochondrial integrity patterns were mapped. In parallel, changes in mitochondrial membrane potential (MMP), mitochondrial and cellular ATP levels, and viability were microscopically assessed. We found that inhibition of MMP, mitochondrial ATP production, and oxygen consumption rate (OCR) using sublethal concentrations of complex I and III inhibitors did not trigger mitochondrial fragmentation. Instead, complex V inhibitors that suppressed ATP and OCR but increased MMP provoked a more fragmented mitochondrial morphology. In agreement, complex V but not complex I or III inhibitors triggered proteolytic cleavage of the mitochondrial fusion protein, OPA1. The relation between increased MMP and fragmentation did not extend beyond OXPHOS complex inhibitors: increasing MMP by blocking the mPTP pore did not lead to OPA1 cleavage or mitochondrial fragmentation and the OXPHOS uncoupler FCCP was associated with OPA1 cleavage and MMP reduction. Altogether, our findings connect vital mitochondrial functions and phenotypes in a high-throughput high-content confocal microscopy approach that help understanding of chemical-induced toxicity caused by OXPHOS complex perturbing chemicals.
Collapse
Affiliation(s)
- Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Huan Yang
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands
| | - Erik H J Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg, 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
17
|
A Novel Selenium Polysaccharide Alleviates the Manganese (Mn)-Induced Toxicity in Hep G2 Cells and Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23084097. [PMID: 35456914 PMCID: PMC9029073 DOI: 10.3390/ijms23084097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is now known to have a variety of toxicities, particularly when exposed to it in the workplace. However, there are still ineffective methods for reducing Mn's hazardous effects. In this study, a new selenium polysaccharide (Se-PCS) was developed from the shell of Camellia oleifera to reduce Mn toxicity in vitro and in vivo. The results revealed that Se-PCS may boost cell survival in Hep G2 cells exposed to Mn and activate antioxidant enzyme activity, lowering ROS and cell apoptosis. Furthermore, after being treated with Se-PCS, Caenorhabditis elegans survived longer under Mn stress. daf-16, a tolerant critical gene, was turned on. Moreover, the antioxidant system was enhanced as the increase in strong antioxidant enzyme activity and high expression of the sod-3, ctl-2, and gst-1 genes. A variety of mutations were also used to confirm that Se-PCS downregulated the insulin signaling pathway. These findings showed that Se-PCS protected Hep G2 cells and C. elegans via the insulin/IGF-1 signaling pathway and that it could be developed into a promising medication to treat Mn toxicity.
Collapse
|
18
|
Lu F, Zhang Q, Zhang M, Sun S, Yang X, Yan H. Blocking exosomal secretion aggravates 1,4-Benzoquinone-induced mitochondrial fission activated by the AMPK/MFF/Drp1 pathway in HL-60 cells. J Appl Toxicol 2022; 42:1618-1627. [PMID: 35383983 DOI: 10.1002/jat.4328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 11/11/2022]
Abstract
There is in vivo and in vitro evidence that exposure to benzene or its metabolites could affect the mitochondrial function. However, the underlying molecular mechanism of mitochondrial damage remains to be elucidated. In this study, exposure of human promyelocytic leukemia cells (HL-60) to 1,4-benzoquinone (1,4-BQ; an active metabolite of benzene) increased the intracellular reactive oxygen species levels, decreased the mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA (mtDNA) copy number, up-regulated the expression of mitochondrial fission proteins Drp1 and Fis1, and down-regulated the expression of mitochondrial fusion proteins Mfn2 and Opa1. Further study showed that 1,4-BQ mediated mitochondrial fission through activation of the AMP-activated protein kinase/mitochondrial fission factor/dynamin-related protein 1 pathway. Additionally, we also examined the role of exosomal secretion in mitochondrial damage under 1,4-BQ treatment. Results showed that 1,4-BQ increased the total protein level and mtDNA content in exosomes. Upon pre-treatment with the mitochondria-targeted antioxidant SS-31, there was attenuation of the mitochondrial damage induced by 1,4-BQ, accompanied by a change in the exosome release characteristics, while inhibition of exosomal secretion using GW4869 aggravated the 1,4-BQ-mediated mitochondrial fission. We concluded that exosomal secretion may serve as a self-protective mechanism of cells against 1,4-BQ-induced mitochondria damage and mitochondrial dynamics interference.
Collapse
Affiliation(s)
- Fangfang Lu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Qianqian Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China.,Department of Pharmacology, School of Pharmacy, Qilu Medical University, Shandong, PR China
| | - Mengyan Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Shuqiang Sun
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Xinjun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Hongtao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| |
Collapse
|
19
|
Mishra E, Thakur MK. Alterations in hippocampal mitochondrial dynamics are associated with neurodegeneration and recognition memory decline in old male mice. Biogerontology 2022; 23:251-271. [PMID: 35266060 DOI: 10.1007/s10522-022-09960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/25/2022] [Indexed: 12/18/2022]
Abstract
Mitochondrial dynamics is a key process that modulates the ultrastructure, quality and function of mitochondria. It is disrupted in numerous major neurodegenerative disorders including Parkinson's, Alzheimer's and Huntington's disease. Mitochondrial dysfunction has been correlated with the loss of memory. Previous studies suggest the involvement of Vdac1 and Drp1 in outer mitochondrial membrane permeabilization and promotion of mitochondrial fragmentation through Drp1 phosphorylation at S616. However, alterations in mitochondrial dynamics with respect to aging, memory loss and neurodegeneration remain unexplored. Therefore, the present study focuses on the involvement of mitochondrial dynamics in neurodegeneration and recognition memory decline during aging. The recognition memory decline was validated by the novel object recognition test and measurement of hippocampal Arc protein level during aging. The ultrastructure analysis revealed a decline in mitochondrial length and area, while an increase in the number of fragmented, round and disrupted mitochondria in the hippocampus during aging. Disruption was also evident in mitochondrial cristae and membrane with advancing age. The change in mitochondrial morphology was corroborated by an increase in the expression of phospho-Drp1 (S616) and Cyt-c proteins but decline in Mfn2, LC3B, Vdac1, Bcl-XL and Bcl-2 proteins in the hippocampus during aging. Taken together, our findings reveal that an increase in the expression of phospho-Drp1 (S616) and decrease in Mfn2 and LC3B proteins in the hippocampus bring about a reduction in mitochondrial length and area, and rise in mitochondrial fragmentation leading to reduced neuronal cell density, increased neurodegeneration and recognition memory decline in old male mice. Diagram depicts the increase in hippocampal mitochondrial fragmentation during aging of mice. Increased mitochondrial fragmentation causes distorted mitochondrial function such as decrease in ATP/ADP transportation due to decrease in Vdac1 protein level and increase in oxidative damage. These alterations result in hippocampal neurodegeneration and consequently impairment in recognition memory during aging.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
20
|
Yu Y, Chen W, Yu M, Liu J, Sun H, Yang P. Exercise-Generated β-Aminoisobutyric Acid (BAIBA) Reduces Cardiomyocyte Metabolic Stress and Apoptosis Caused by Mitochondrial Dysfunction Through the miR-208b/AMPK Pathway. Front Cardiovasc Med 2022; 9:803510. [PMID: 35282369 PMCID: PMC8915946 DOI: 10.3389/fcvm.2022.803510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the cardioprotective effects of exercise-derived β-aminoisobutyric (BAIBA) on cardiomyocyte apoptosis and energy metabolism in a rat model of heart failure (HF). Methods In male Sprague-Dawley rats (8-week-old), myocardial infarction (MI) was used to induce HF by ligating the left anterior descending branch of the coronary artery. In the Sham group, the coronary artery was threaded but not ligated. After HF development, Sham and HF rats were exercised 60 min daily, 5 days/week on a treadmill for 8 weeks (50–60% maximal intensity) and exercise-induced cardiac remodeling after MI were assessed using echocardiography, hematoxylin and eosin (H&E), Masson's Trichrome, and TUNEL staining for the detection of apoptosis-associated factors in cardiac tissue. High-throughput sequencing and mass spectrometry were used to measure BAIBA production and to explore its cardioprotective effects and molecular actions. To further characterize the cardioprotective effects of BAIBA, an in vitro model of apoptosis was generated by applying H2O2 to H9C2 cells to induce mitochondrial dysfunction. In addition, cells were transfected with either a miR-208b analog or a miR-208b inhibitor. Apoptosis-related proteins were detected by Western Blotting (WB). ATP production was also assessed by luminometry. After administration of BAIBA and Compound C, the expression of proteins related to apoptosis, mitochondrial function, lipid uptake, and β-oxidative were determined. Changes in the levels of reactive oxygen species (ROS) were assessed by fluorescence microscopy. In addition, alterations in membrane potential (δψm) were obtained by confocal microscopy. Results Rats with HF after MI are accompanied by mitochondrial dysfunction, metabolic stress and apoptosis. Reduced expression of apoptosis-related proteins was observed, together with increased ATP production and reduced mitochondrial dysfunction in the exercised compared with the Sham (non-exercised) HF group. Importantly, exercise increased the production of BAIBA, irrespective of the presence of HF. To assess whether BAIBA had similar effects to exercise in ameliorating HF-induced adverse cardiac remodeling, rats were treated with 75 mg/kg/ day of BAIBA and we found BAIBA had a similar cardioprotective effect. Transcriptomic analyses found that the expression of miR-208b was increased after BAIBA administration, and subsequent transfection with an miR-208b analog ameliorated both the expression of apoptosis-related proteins and energy metabolism in H2O2-treated H9C2 cells. In combining transcriptomic with metabolomic analyses, we identified AMPK as a downstream target for BAIBA in attenuating metabolic stress in HF. Further cell experiments confirmed that BAIBA increased AMPK phosphorylation and had a cardioprotective effect on downstream fatty acid uptake, oxidative efficiency, and mitochondrial function, which was prevented by the AMPK inhibitor Compound C. Conclusion Exercise-generated BAIBA can reduce cardiomyocyte metabolic stress and apoptosis induced by mitochondrial dysfunction through the miR-208b/AMPK pathway.
Collapse
Affiliation(s)
- Yanan Yu
- Department of Rehabilitation, China-Japan Union Hospital, Changchun, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
| | - Wewei Chen
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
| | - Ming Yu
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
| | - Jinsha Liu
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
| | - Huan Sun
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
- *Correspondence: Huan Sun
| | - Ping Yang
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
- Ping Yang
| |
Collapse
|
21
|
Mishra A, Dahia A, Jaiswal A. Protective effect of Monoisoamyl-2, 3-Dimercaptosuccinic Acid against Manganese-induced Neurotoxicity in rats. Cent Nerv Syst Agents Med Chem 2021; 21:165-171. [PMID: 34433405 DOI: 10.2174/1871524921666210825093134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Apart from being an essential heavy metal, manganese (Mn) serves as an important component of the antioxidant enzyme system in humans. Overexposure to manganese leads to the development of manganism, which is characterized by motor dysfunction along with neurodegeneration. The management of manganism often utilizes chelation therapy. In this regard, Monoisoamyl-2, 3-Dimercaptosuccinic Acid (MiADMSA) has been reported as a novel arsenic chelator, due to the presence of vicinal sulfhydril group. MiADMSA has been reported to reduce the level in divalent ions (like copper) therefore, it may be hypothesized that MiADMSA would be helpful in Mn-induced neurotoxicity. OBJECTIVE This study is envisaged to explore the protective effect of MiADMSA on Mn-induced neurotoxicity. METHOD Mn exposure was carried out by intraperitoneal administration of Mn (as manganese chloride, 10 mg/kg; i.p.). The animals were treated with MiADMSA (50 mg/kg; p.o.) either alone or in combination with Mn. The effect of different treatments on neurobehavioral functions was observed by assessing spontaneous locomotor activity, motor rotarod test, and depression-like behavior in the forced swim test. After behavioral evaluations, all the animals were sacrificed and the brain and liver were isolated for metal estimations. RESULTS Mn exposure leads to loss of motor coordination as observed in spontaneous locomotor activity and rotarod test. However, treatment with MiADMSA significantly improved motor impairments as compared to Mn exposed animals. Accumulation of Mn in the liver and brain has been recorded with Mn exposure; however, MiADMSA treatment significantly reduced the Mn content from the liver and brain. CONCLUSION The outcome of the study suggests that treatment with MiADMSA reversed Mn-induced neurotoxicity by reducing Mn load. Therefore, the use of MiADMSA may be suggested in manganese toxicity, after careful investigation.
Collapse
Affiliation(s)
- Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)- 226002. India
| | - Anjali Dahia
- Department of Biotechnology, Amity University, Jaipur. India
| | - Amit Jaiswal
- Department of Microbiology, Jiwaji University, Gwalior. India
| |
Collapse
|
22
|
Chen Z, Rasheed M, Deng Y. The epigenetic mechanisms involved in mitochondrial dysfunction: Implication for Parkinson's disease. Brain Pathol 2021; 32:e13012. [PMID: 34414627 PMCID: PMC9048811 DOI: 10.1111/bpa.13012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is one of the crucial factors involved in PD’s pathogenicity, which emerges from a combination of genetic and environmental factors. These factors cause differential molecular expression in neurons, such as varied transcriptional regulation of genes, elevated oxidative stress, α‐synuclein aggregation and endogenous neurotoxins release, which induces epigenetic modifications and triggers energy crisis by damaging mitochondria of the dopaminergic neurons (DN). So far, these events establish a complicated relationship with underlying mechanisms of mitochondrial anomalies in PD, which has remained unclear for years and made PD diagnosis and treatment extremely difficult. Therefore, in this review, we endeavored to discuss the complex association of epigenetic modifications and other associated vital factors in mitochondrial dysfunction. We propose a hypothesis that describes a vicious cycle in which mitochondrial dysfunction and oxidative stress act as a hub for regulating DA neuron's fate in PD. Oxidative stress triggers the release of endogenous neurotoxins (CTIQs) that lead to mitochondrial dysfunction along with abnormal α‐synuclein aggregation and epigenetic modifications. These disturbances further intensify oxidative stress and mitochondrial damage, amplifying the synthesis of CTIQs and works vice versa. This vicious cycle may result in the degeneration of DN to hallmark Parkinsonism. Furthermore, we have also highlighted various endogenous compounds and epigenetic marks (neurotoxic and neuroprotective), which may help for devising future diagnostic biomarkers and target specific drugs using novel PD management strategies.
Collapse
Affiliation(s)
- Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Madiha Rasheed
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
23
|
Xiaoli F, Yaqing Z, Ruhui L, Xuan L, Aijie C, Yanli Z, Chen H, Lili C, Longquan S. Graphene oxide disrupted mitochondrial homeostasis through inducing intracellular redox deviation and autophagy-lysosomal network dysfunction in SH-SY5Y cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126158. [PMID: 34492938 DOI: 10.1016/j.jhazmat.2021.126158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) nanomaterials have significant advantages for drug delivery and electrode materials in neural science, however, their exposure risks to the central nervous system (CNS) and toxicity concerns are also increased. The current studies of GO-induced neurotoxicity remain still ambiguous, let alone the mechanism of how complicated GO chemistry affects its biological behavior with neural cells. In this study, we characterized the commercially available GO in detail and investigated its biological adverse effects using cultured SH-SY5Y cells. We found that ultrasonic processing in medium changed the oxidation status and surface reactivity on the planar surface of GO due to its hydration activity, causing lipid peroxidation and cell membrane damage. Subsequently, ROS-disrupted mitochondrial homeostasis, resulting from the activation of NOX2 signaling, was observed following GO internalization. The autophagy-lysosomal network was initiated as a defensive reaction to obliterate oxidative damaged mitochondria and foreign nanomaterials, which was ineffective due to reduced lysosomal degradation capacity. These sequential cellular responses exacerbated mitochondrial stress, leading to apoptotic cell death. These data highlight the importance of the structure-related activity of GO on its biological properties and provide an in-depth understanding of how GO-derived cellular redox signaling induces mitochondrion-related cascades that modulate cell functionality and survival.
Collapse
Affiliation(s)
- Feng Xiaoli
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhang Yaqing
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Luo Ruhui
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lai Xuan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Aijie
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Yanli
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hu Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Lili
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shao Longquan
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
24
|
Zheng F, Chen P, Li H, Aschner M. Drp-1-Dependent Mitochondrial Fragmentation Contributes to Cobalt Chloride-Induced Toxicity in Caenorhabditis elegans. Toxicol Sci 2021; 177:158-167. [PMID: 32617571 DOI: 10.1093/toxsci/kfaa105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Excess cobalt may lead to metallosis, characterized by sensorineural hearing loss, visual, and cognitive impairment, and peripheral neuropathy. In the present study, we sought to address the molecular mechanisms of cobalt-induced neurotoxicity, using Caenorhabditis elegans as an experimental model. Exposure to cobalt chloride for 2 h significantly decreased the survival rate and lifespan in nematodes. Cobalt chloride exposure led to increased oxidative stress and upregulation of glutathione S-transferase 4. Consistently, its upstream regulator skn-1, a mammalian homolog of the nuclear factor erythroid 2-related factor 2, was activated. Among the mRNAs examined by quantitative real-time polymerase chain reactions, apoptotic activator egl-1, proapoptotic gene ced-9, autophagic (bec-1 and lgg-1), and mitochondrial fission regulator drp-1 were significantly upregulated upon cobalt exposure, concomitant with mitochondrial fragmentation, as determined by confocal microscopy. Moreover, drp-1 inhibition suppressed the cobalt chloride-induced reactive oxygen species generation, growth defects, and reduced mitochondrial fragmentation. Our novel findings suggest that the acute toxicity of cobalt is mediated by mitochondrial fragmentation and drp-1 upregulation.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
25
|
Yang L, Dong L, Zhang L, Bai J, Chen F, Luo Y. Acrylamide Induces Abnormal mtDNA Expression by Causing Mitochondrial ROS Accumulation, Biogenesis, and Dynamics Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7765-7776. [PMID: 34191505 DOI: 10.1021/acs.jafc.1c02569] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrylamide, a well-documented neurotoxicant, is commonly found as a byproduct of the Maillard reaction in carbohydrate-rich foods. Numerous studies have indicated that acrylamide-induced apoptosis accompanied by mitochondrial dysfunction contributes to its neurotoxicity. However, the mechanisms of how acrylamide causes mitochondrial impairment is not well understood. In this study, we observed destroyed redox balance, accumulated mitochondrial reactive oxygen species (ROS), damaged mitochondrial structures, and activated apoptosis in astrocytes following acrylamide treatment. Furthermore, acrylamide decreased the expression of mitochondrial biogenesis- and dynamics-related genes, including PGC-1α, TFAM, Mfn2, and Opa1, and altered the expression of mitochondrial DNA (mtDNA)-encoded mitochondrial respiratory chain complexes, along with the inhibited mitochondrial respiration. Pretreatment with a mitochondrial ROS scavenger mitoquinone dramatically restored the expressions of PGC-1α, TFAM, Mfn2, and Opa1; protected the mitochondrial structure; and decreased acrylamide-induced apoptosis. Further in vivo experiments confirmed that acrylamide decreased the expressions of PGC-1α, TFAM, Mfn2, and Opa1 in rat brain tissues. These results revealed that acrylamide triggered the mitochondrial ROS accumulation to interfere with mitochondrial biogenesis and dynamics, causing mtDNA damage and finally resulting in mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
- Liuqing Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Lujia Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jie Bai
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
26
|
Morcillo P, Cordero H, Ijomone OM, Ayodele A, Bornhorst J, Gunther L, Macaluso FP, Bowman AB, Aschner M. Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity. Mol Neurobiol 2021; 58:3270-3289. [PMID: 33666854 PMCID: PMC9009155 DOI: 10.1007/s12035-021-02341-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Perturbations in mitochondrial dynamics have been observed in most neurodegenerative diseases. Here, we focus on manganese (Mn)-induced Parkinsonism-like neurodegeneration, a disorder associated with the preferential of Mn in the basal ganglia where the mitochondria are considered an early target. Despite the extensive characterization of the clinical presentation of manganism, the mechanism by which Mn mediated mitochondrial toxicity is unclear. In this study we hypothesized whether Mn exposure alters mitochondrial activity, including axonal transport of mitochondria and mitochondrial dynamics, morphology, and network. Using primary neuron cultures exposed to 100 μM Mn (which is considered the threshold of Mn toxicity in vitro) and intraperitoneal injections of MnCl2 (25mg/kg) in rat, we observed that Mn increased mitochondrial fission mediated by phosphorylation of dynamin-related protein-1 at serine 616 (p-s616-DRP1) and decreased mitochondrial fusion proteins (MFN1 and MFN2) leading to mitochondrial fragmentation, defects in mitochondrial respiratory capacity, and mitochondrial ultrastructural damage in vivo and in vitro. Furthermore, Mn exposure impaired mitochondrial trafficking by decreasing dynactin (DCTN1) and kinesin-1 (KIF5B) motor proteins and increasing destabilization of the cytoskeleton at protein and gene levels. In addition, mitochondrial communication may also be altered by Mn exposure, increasing the length of nanotunnels to reach out distal mitochondria. These findings revealed an unrecognized role of Mn in dysregulation of mitochondrial dynamics providing a potential explanation of early hallmarks of the disorder, as well as a possible common pathway with neurological disorders arising upon chronic Mn exposure.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Akinyemi Ayodele
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Leslie Gunther
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
27
|
Jin C, Miao X, Zhong Y, Han J, Liu Q, Zhu J, Xia X, Peng X. The renoprotective effect of diosgenin on aristolochic acid I-induced renal injury in rats: impact on apoptosis, mitochondrial dynamics and autophagy. Food Funct 2021; 11:7456-7467. [PMID: 32789347 DOI: 10.1039/d0fo00401d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aristolochic acid I (AA-I) remains a leading cause of aristolochic acid nephropathy (AAN), however few prevention and treatment strategies exist. In this work, the nephroprotective effect of diosgenin, a steroidal saponin distributed abundantly in several plants, on AA-I-induced renal injury and its underlying mechanism were investigated. Sprague-Dawley rats were intragastrically administered with 30 mg kg-1 d-1 diosgenin two hours before exposure to 10 mg kg-1 d-1 AA-I for consecutive four weeks, and the histological change, the renal and liver function, apoptosis, autophagy and the involved pathways were investigated. The results showed that diosgenin relieved AA-I-induced renal histological damage, including mild edematous disorder of renal tubular arrangement and widening of renal tubular lumen. No obvious changes in the hepatic tissue structure were observed in all treatment groups. Moreover, diosgenin up-regulated the expression of Bcl-2 and down-regulated Bax, and subsequently inhibited AIF expression and the cleaved form of Caspase-3, thereby alleviating apoptosis triggered by AA-I. Diosgenin also mitigated AA-I-induced renal mitochondrial dynamics disorder by increasing the expression of mitochondrial dynamics-related proteins including DRP1 and MFN2. Diosgenin inhibited AA-I-evoked autophagy via ULK1-mediated inhibition of the mTOR pathway. Overall, these results suggest that diosgenin has a protective effect against AA-I-induced renal damage and it may be a potential agent for preventing AA-I-induced AAN.
Collapse
Affiliation(s)
- Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xin Miao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiahui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qi Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiachang Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
28
|
Kulkarni N, Gadde R, Gugnani KS, Vu N, Yoo C, Zaveri R, Betharia S. Neuroprotective effects of disubstituted dithiolethione ACDT against manganese-induced toxicity in SH-SY5Y cells. Neurochem Int 2021; 147:105052. [PMID: 33905764 DOI: 10.1016/j.neuint.2021.105052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Dithiolethiones are lipophilic, organosulfur compounds that activate the Nrf2 transcription factor causing an upregulation of various phase II antioxidant enzymes. A disubstituted dithiolethione 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester (ACDT) retains the functional pharmacophore while also containing modifiable functional groups. Neuroprotection against autoimmune encephalomyelitis in vivo and 6-hydroxy dopamine (a model for Parkinson's disease) in vitro have been previously reported with ACDT. Manganese (Mn) is a metal essential for metabolic processes at low concentrations. Overexposure and accumulation of Mn leads to a neurological condition called manganism which shares pathophysiological sequelae with parkinsonism. Here we hypothesized ACDT to be protective against manganese-induced cytotoxicity. SH-SY5Y human neuroblastoma cells exposed to 300 μM MnCl2 displayed approximately 50% cell death, and a 24-h pretreatment with 75 μM ACDT significantly reversed this cytotoxicity. ACDT pretreatment was also found to increase total GSH levels (2.18-fold) and the protein levels of NADPH:quinone oxidoreductase-1 (NQO1) enzyme (6.33-fold), indicating an overall increase in the cells' antioxidant defense stores. A corresponding 2.32-fold reduction in the level of Mn-induced reactive oxygen species was also observed in cells pretreated with ACDT. While no changes were observed in the protein levels of apoptotic markers Bax and Bcl-2, pretreatment with 75 μM ACDT led to a 2.09-fold downregulation of ZIP14 import transporter, indicating a potential reduction in the cellular uptake of Mn as an additional neuroprotective mechanism. These effects did not extend to other transporters like the divalent metal transporter 1 (DMT1) or ferroportin. Collectively, ACDT showed substantial neuroprotection against Mn-induced cytotoxicity, opening a path for dithiolethiones as a potential novel therapeutic option against heavy metal neurotoxicity.
Collapse
Affiliation(s)
- Neha Kulkarni
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA.
| | - Rajitha Gadde
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Nguyen Vu
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Claude Yoo
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Rohan Zaveri
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Swati Betharia
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
29
|
Audano M, Pedretti S, Ligorio S, Gualdrini F, Polletti S, Russo M, Ghisletti S, Bean C, Crestani M, Caruso D, De Fabiani E, Mitro N. Zc3h10 regulates adipogenesis by controlling translation and F-actin/mitochondria interaction. J Cell Biol 2021; 220:e202003173. [PMID: 33566069 PMCID: PMC7879490 DOI: 10.1083/jcb.202003173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Ligorio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Humanitas University (Hunimed), Pieve Emanuele, Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marta Russo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Camilla Bean
- Department of Biology, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
30
|
Pajarillo E, Nyarko-Danquah I, Adinew G, Rizor A, Aschner M, Lee E. Neurotoxicity mechanisms of manganese in the central nervous system. ADVANCES IN NEUROTOXICOLOGY 2021; 5:215-238. [PMID: 34263091 DOI: 10.1016/bs.ant.2020.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Getinet Adinew
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
31
|
Svaguša T, Martinić M, Martinić M, Kovačević L, Šepac A, Miličić D, Bulum J, Starčević B, Sirotković-Skerlev M, Seiwerth F, Kulić A, Sedlić F. Mitochondrial unfolded protein response, mitophagy and other mitochondrial quality control mechanisms in heart disease and aged heart. Croat Med J 2020. [PMID: 32378379 PMCID: PMC7230417 DOI: 10.3325/cmj.2020.61.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are involved in crucial homeostatic processes in the cell: the production of adenosine triphosphate and reactive oxygen species, and the release of pro-apoptotic molecules. Thus, cell survival depends on the maintenance of proper mitochondrial function by mitochondrial quality control. The most important mitochondrial quality control mechanisms are mitochondrial unfolded protein response, mitophagy, biogenesis, and fusion-fission dynamics. This review deals with mitochondrial quality control in heart diseases, especially myocardial infarction and heart failure. Some previous studies have demonstrated that the activation of mitochondrial quality control mechanisms may be beneficial for the heart, while others have shown that it may lead to heart damage. Our aim was to describe the mechanisms by which mitochondrial quality control contributes to heart protection or damage and to provide evidence that may resolve the seemingly contradictory results from the previous studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Filip Sedlić
- Filip Sedlić, Department of Pathophysiology, University of Zagreb School of Medicine, Kišpatićeva 12, 10 000 Zagreb, Croatia,
| |
Collapse
|
32
|
García CC, Vázquez CA, Giovannoni F, Russo CA, Cordo SM, Alaimo A, Damonte EB. Cellular Organelles Reorganization During Zika Virus Infection of Human Cells. Front Microbiol 2020; 11:1558. [PMID: 32774331 PMCID: PMC7381349 DOI: 10.3389/fmicb.2020.01558] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is an enveloped positive stranded RNA virus belonging to the genus Flavivirus in the family Flaviviridae that emerged in recent decades causing pandemic outbreaks of human infections occasionally associated with severe neurological disorders in adults and newborns. The intracellular steps of flavivirus multiplication are associated to cellular membranes and their bound organelles leading to an extensive host cell reorganization. Importantly, the association of organelle dysfunction with diseases caused by several human viruses has been widely reported in recent studies. With the aim to increase the knowledge about the impact of ZIKV infection on the host cell functions, the present study was focused on the evaluation of the reorganization of three cell components, promyelocytic leukemia nuclear bodies (PML-NBs), mitochondria, and lipid droplets (LDs). Relevant human cell lines including neural progenitor cells (NPCs), hepatic Huh-7, and retinal pigment epithelial (RPE) cells were infected with the Argentina INEVH116141 ZIKV strain and the organelle alterations were studied by using fluorescent cell imaging analysis. Our results have shown that these three organelles are targeted and structurally modified during ZIKV infection. Considering the nuclear reorganization, the analysis by confocal microscopy of infected cells showed a significantly reduced number of PML-NBs in comparison to uninfected cells. Moreover, a mitochondrial morphodynamic perturbation with an increased fragmentation and the loss of mitochondrial membrane potential was observed in ZIKV infected RPE cells. Regarding lipid structures, a decrease in the number and volume of LDs was observed in ZIKV infected cells. Given the involvement of these organelles in host defense processes, the reported perturbations may be related to enhanced virus replication through protection from innate immunity. The understanding of the cellular remodeling will enable the design of new host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Cybele C García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Cecilia A Vázquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Federico Giovannoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Constanza A Russo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Sandra M Cordo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
33
|
Porte Alcon S, Gorojod RM, Kotler ML. Kinetic and protective role of autophagy in manganese-exposed BV-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118787. [PMID: 32592735 DOI: 10.1016/j.bbamcr.2020.118787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) plays an important role in many physiological processes. Nevertheless, Mn accumulation in the brain can cause a parkinsonian-like syndrome known as manganism. Unfortunately, the therapeutic options for this disease are scarce and of limited efficacy. For this reason, a great effort is being made to understand the cellular and molecular mechanisms involved in Mn toxicity in neuronal and glial cells. Even though evidence indicates that Mn activates autophagy in microglia, the consequences of this activation in cell death remain unknown. In this study, we demonstrated a key role of reactive oxygen species in Mn-induced damage in microglial cells. These species generated by Mn2+ induce lysosomal alterations, LMP, cathepsins release and cell death. Besides, we described for the first time the kinetic of Mn2+-induced autophagy in BV-2 microglial cells and its relevance to cell fate. We found that Mn promotes a time-dependent increase in LC3-II and p62 expression levels, suggesting autophagy activation. Possibly, cells trigger autophagy to neutralize the risks associated with lysosomal rupture. In addition, pre-treatment with both Rapamycin and Melatonin enhanced autophagy and retarded Mn2+ cytotoxicity. In summary, our results demonstrated that, despite the damage inflicted on a subset of lysosomes, the autophagic pathway plays a protective role in Mn-induced microglial cell death. We propose that 2 h Mn2+ exposure will not induce disturbances in the autophagic flux. However, as time passes, the accumulated damage inside the cell could trigger a dysfunction of this mechanism. These findings may represent a valuable contribution to future research concerning manganism therapies.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
34
|
Effects of deoxynivalenol on mitochondrial dynamics and autophagy in pig spleen lymphocytes. Food Chem Toxicol 2020; 140:111357. [DOI: 10.1016/j.fct.2020.111357] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/23/2020] [Accepted: 04/10/2020] [Indexed: 11/23/2022]
|
35
|
Park JH, Burgess JD, Faroqi AH, DeMeo NN, Fiesel FC, Springer W, Delenclos M, McLean PJ. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol Neurodegener 2020; 15:5. [PMID: 31931835 PMCID: PMC6956494 DOI: 10.1186/s13024-019-0349-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Misfolding and aggregation of the presynaptic protein alpha-synuclein (αsyn) is a hallmark of Parkinson's disease (PD) and related synucleinopathies. Although predominantly localized in the cytosol, a body of evidence has shown that αsyn localizes to mitochondria and contributes to the disruption of key mitochondrial processes. Mitochondrial dysfunction is central to the progression of PD and mutations in mitochondrial-associated proteins are found in familial cases of PD. The sirtuins are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes that play a broad role in cellular metabolism and aging. Interestingly, mitochondrial sirtuin 3 (SIRT3) plays a major role in maintaining mitochondrial function and preventing oxidative stress, and is downregulated in aging and age-associated diseases such as neurodegenerative disorders. Herein, we hypothesize that αsyn is associated with decreased SIRT3 levels contributing to impaired mitochondrial dynamics and biogenesis in PD. METHODS The level of mitochondrial SIRT3 was assessed in cells expressing oligomeric αsyn within the cytosolic and mitochondrial-enriched fractions. Mitochondrial integrity, respiration, and health were examined using several markers of mitochondrial dynamics and stress response and by measuring the rate of oxygen consumption (OCR). Our findings were validated in a rodent model of PD as well as in human post-mortem Lewy body disease (LBD) brain tissue. RESULTS Here, we demonstrate that αsyn associates with mitochondria and induces a decrease in mitochondrial SIRT3 levels and mitochondrial biogenesis. We show that SIRT3 downregulation is accompanied by decreased phosphorylation of AMPK and cAMP-response element binding protein (CREB), as well as increased phosphorylation of dynamin-related protein 1 (DRP1), indicative of impaired mitochondrial dynamics. OCR was significantly decreased suggesting a mitochondria respiratory deficit. Interestingly treatment with AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) restores SIRT3 expression, improves mitochondrial function, and decreases αsyn oligomer formation in a SIRT3-dependent manner. CONCLUSIONS Together, our findings suggest that pharmacologically increasing SIRT3 levels can counteract αsyn-induced mitochondrial dysfunction by reducing αsyn oligomers and normalizing mitochondrial bioenergetics. These data support a protective role for SIRT3 in PD-associated pathways and contribute significant mechanistic insight into the interplay of SIRT3 and αsyn.
Collapse
Affiliation(s)
- Jae-Hyeon Park
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jeremy D. Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Ayman H. Faroqi
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Natasha N. DeMeo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
36
|
Alaimo A, Di Santo MC, Domínguez Rubio AP, Chaufan G, García Liñares G, Pérez OE. Toxic effects of A2E in human ARPE-19 cells were prevented by resveratrol: a potential nutritional bioactive for age-related macular degeneration treatment. Arch Toxicol 2019; 94:553-572. [PMID: 31792590 DOI: 10.1007/s00204-019-02637-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/26/2019] [Indexed: 01/23/2023]
Abstract
Age-related macular degeneration (AMD) is a late-onset retinal disease and the leading cause of central vision loss in the elderly. Degeneration of retinal pigment epithelial cells (RPE) is a crucial contributing factor responsible for the onset and progression of AMD. The toxic fluorophore N-retinyl-N-retinylidene ethanolamine (A2E), a major lipofuscin component, accumulates in RPE cells with age. Phytochemicals with antioxidant properties may have a potential role in both the prevention and treatment of this age-related ocular disease. Particularly, there is an increased interest in the therapeutic effects of resveratrol (RSV), a naturally occurring polyphenol (3,4',5-trihydroxystilbene). However, the underlying mechanism of the RSV antioxidative effect in ocular diseases has not been well explored. We hypothesized that this bioactive compound may have beneficial effects for AMD. To this end, to investigate the potential profits of RSV against A2E-provoked oxidative damage, we used human RPE cell line (ARPE-19). RSV (25 µM) attenuates the cytotoxicity and the typical morphological characteristics of apoptosis observed in 25 µM A2E-laden cells. RSV pretreatment strengthened cell monolayer integrity through the preservation of the transepithelial electrical resistance and reduced the fluorescein isothiocyanate (FITC)-dextran diffusion rate as well as cytoskeleton architecture. In addition, RSV exhorts protective effects against A2E-induced modifications in the intracellular redox balance. Finally, RSV also prevented A2E-induced mitochondrial network fragmentation. These findings reinforce the idea that RSV represents an attractive bioactive for therapeutic intervention against ocular diseases associated with oxidative stress such as AMD.
Collapse
Affiliation(s)
- Agustina Alaimo
- Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| | - Mariana Carolina Di Santo
- Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Gabriela Chaufan
- Departamento de Química Biológica, Laboratorio de Enzimología, Estrés Oxidativo y Metabolismo, CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Guadalupe García Liñares
- Departamento de Química Orgánica, Laboratorio de Biocatálisis, CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 2019; 49:269-283. [PMID: 31228566 DOI: 10.1016/j.mito.2019.06.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/02/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial dynamics shape the mitochondrial network and contribute to mitochondrial function and quality control. Mitochondrial fusion and division are integrated into diverse cellular functions and respond to changes in cell physiology. Imbalanced mitochondrial dynamics are associated with a range of diseases that are broadly characterized by impaired mitochondrial function and increased cell death. In various disease models, modulating mitochondrial fusion and division with either small molecules or genetic approaches has improved function. Although additional mechanistic understanding of mitochondrial fusion and division will be critical to inform further therapeutic approaches, mitochondrial dynamics represent a powerful therapeutic target in a wide range of human diseases.
Collapse
|
38
|
MitoQ ameliorates testis injury from oxidative attack by repairing mitochondria and promoting the Keap1-Nrf2 pathway. Toxicol Appl Pharmacol 2019; 370:78-92. [DOI: 10.1016/j.taap.2019.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 11/21/2022]
|
39
|
Toxicity of blue led light and A2E is associated to mitochondrial dynamics impairment in ARPE-19 cells: implications for age-related macular degeneration. Arch Toxicol 2019; 93:1401-1415. [PMID: 30778631 DOI: 10.1007/s00204-019-02409-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is a multifactorial retinal disease characterized by a progressive loss of central vision. Retinal pigment epithelium (RPE) degeneration is a critical event in AMD. It has been associated to A2E accumulation, which sensitizes RPE to blue light photodamage. Mitochondrial quality control mechanisms have evolved to ensure mitochondrial integrity and preserve cellular homeostasis. Particularly, mitochondrial dynamics involve the regulation of mitochondrial fission and fusion to preserve a healthy mitochondrial network. The present study aims to clarify the cellular and molecular mechanisms underlying photodamage-induced RPE cell death with particular focus on the involvement of defective mitochondrial dynamics. Light-emitting diodes irradiation (445 ± 18 nm; 4.43 mW/cm2) significantly reduced the viability of both unloaded and A2E-loaded human ARPE-19 cells and increased reactive oxygen species production. A2E along with blue light, triggered apoptosis measured by MC540/PI-flow cytometry and activated caspase-3. Blue light induced mitochondrial fusion/fission imbalance towards mitochondrial fragmentation in both non-loaded and A2E-loaded cells which correlated with the deregulation of mitochondria-shaping proteins level (OPA1, DRP1 and OMA1). To our knowledge, this is the first work reporting that photodamage causes mitochondrial dynamics deregulation in RPE cells. This process could possibly contribute to AMD pathology. Our findings suggest that the regulation of mitochondrial dynamics may be a valuable strategy for treating retinal degeneration diseases, such as AMD.
Collapse
|
40
|
Gorojod RM, Porte Alcon S, Dittler ML, Gonzalez MC, Kotler ML. Nanohydroxyapatite Exerts Cytotoxic Effects and Prevents Cellular Proliferation and Migration in Glioma Cells. Toxicol Sci 2019; 169:34-42. [DOI: 10.1093/toxsci/kfz019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina
| | - Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina
| | - María Laura Dittler
- Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mónica Cristina Gonzalez
- Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
41
|
El-Hady WM, Galal AAA. Neurotoxic Outcomes of Subchronic Manganese Chloride Exposure via Contaminated Water in Adult Male Rats and the Potential Benefits of Ebselen. Biol Trace Elem Res 2018. [PMID: 29516356 DOI: 10.1007/s12011-018-1291-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neurological effects of manganese (Mn) exposure on adults consuming contaminated water remain unclear. Accordingly, the current experiment was planned to explore the neurotoxic consequences of subchronic Mn exposure via contaminated water and to examine whether ebselen (Ebs) improved these outcomes. Rats exposed to oral MnCl2 (50 mg/kg body weight) for 30 successive days exhibited reduced rearing and ambulation. Furthermore, Mn administration increased brain Mn concentrations and induced superoxide dismutase, catalase, and glutathione depletion. Mn administration also increased lipid peroxidation biomarker levels. Additionally, Mn increased interleukin1-β and prostaglandin E2 levels and altered caspase-3 and Bcl-2 expression. Mn intoxication also induced marked gliosis, numerous vacuolations, and disoriented and pyknotic Purkinje cells as well as marked vascular congestion in brain tissue. Meanwhile, intraperitoneal administration of Ebs (15 mg/kg body weight) to Mn-intoxicated rats improved the behavioral performance and oxidative damage as well as inflammatory, apoptotic, and histopathological changes. The above results indicate that Ebs alleviated Mn neurotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic activities. Therefore, Ebs could represent a promising agent in the prevention of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Walaa M El-Hady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Azza A A Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
42
|
Bové H, Devoght J, Rasking L, Peters M, Slenders E, Roeffaers M, Jorge-Peñas A, Van Oosterwyck H, Ameloot M. Combustion-derived particles inhibit in vitro human lung fibroblast-mediated matrix remodeling. J Nanobiotechnology 2018; 16:82. [PMID: 30368242 PMCID: PMC6204012 DOI: 10.1186/s12951-018-0410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The continuously growing human exposure to combustion-derived particles (CDPs) drives in depth investigation of the involved complex toxicological mechanisms of those particles. The current study evaluated the hypothesis that CDPs could affect cell-induced remodeling of the extracellular matrix due to their underlying toxicological mechanisms. The effects of two ultrafine and one fine form of CDPs on human lung fibroblasts (MRC-5 cell line) were investigated, both in 2D cell culture and in 3D collagen type I hydrogels. A multi-parametric analysis was employed. RESULTS In vitro dynamic 3D analysis of collagen matrices showed that matrix displacement fields induced by human lung fibroblasts are disturbed when exposed to carbonaceous particles, resulting in inhibition of matrix remodeling. In depth analysis using general toxicological assays revealed that a plausible explanation comprises a cascade of numerous detrimental effects evoked by the carbon particles, including oxidative stress, mitochondrial damage and energy storage depletion. Also, ultrafine particles revealed stronger toxicological and inhibitory effects compared to their larger counterparts. The inhibitory effects can be almost fully restored when treating the impaired cells with antioxidants like vitamin C. CONCLUSIONS The unraveled in vitro pathway, by which ultrafine particles alter the fibroblasts' vital role of matrix remodeling, extends our knowledge about the contribution of these biologically active particles in impaired lung tissue repair mechanisms, and development and exacerbation of chronic lung diseases. The new insights may even pave the way to precautionary actions. The results provide justification for toxicological assessments to include mechanism-linked assays besides the traditional in vitro toxicological screening assays.
Collapse
Affiliation(s)
- Hannelore Bové
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium. .,Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, Louvain, Belgium.
| | - Jens Devoght
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| | - Leentje Rasking
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| | - Martijn Peters
- Institute for Materials Research, Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Eli Slenders
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| | - Maarten Roeffaers
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, Louvain, Belgium
| | - Alvaro Jorge-Peñas
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, Box 2419, Louvain, Belgium
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, Box 2419, Louvain, Belgium.,Prometheus, div. Skeletal Tissue Engineering, KU Leuven, Louvain, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| |
Collapse
|
43
|
Porte Alcon S, Gorojod RM, Kotler ML. Regulated Necrosis Orchestrates Microglial Cell Death in Manganese-Induced Toxicity. Neuroscience 2018; 393:206-225. [PMID: 30316909 DOI: 10.1016/j.neuroscience.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Microglia, the brain resident immune cells, play prominent roles in immune surveillance, tissue repair and neural regeneration. Despite these pro-survival actions, the relevance of these cells in the progression of several neuropathologies has been established. In the context of manganese (Mn) overexposure, it has been proposed that microglial activation contributes to enhance the neurotoxicity. However, the occurrence of a direct cytotoxic effect of Mn on microglial cells remains controversial. In the present work, we investigated the potential vulnerability of immortalized mouse microglial cells (BV-2) toward Mn2+, focusing on the signaling pathways involved in cell death. Evidence obtained showed that Mn2+ induces a decrease in cell viability which is associated with reactive oxygen species (ROS) generation. In this report we demonstrated, for the first time, that Mn2+ triggers regulated necrosis (RN) in BV-2 cells involving two central mechanisms: parthanatos and lysosomal disruption. The occurrence of parthanatos is supported by several cellular and molecular events: (i) DNA damage; (ii) AIF translocation from mitochondria to the nucleus; (iii) mitochondrial membrane permeabilization; and (iv) PARP1-dependent cell death. On the other hand, Mn2+ induces lysosomal membrane permeabilization (LMP) and cathepsin D (CatD) release into the cytosol supporting the lysosomal disruption. Pre-incubation with CatB and D inhibitors partially prevented the Mn2+-induced cell viability decrease. Altogether these events point to lysosomes as players in the execution of RN. In summary, our results suggest that microglial cells could be direct targets of Mn2+ damage. In this scenario, Mn2+ triggers cell death involving RN pathways.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Heme Oxygenase-1 protects astroglia against manganese-induced oxidative injury by regulating mitochondrial quality control. Toxicol Lett 2018; 295:357-368. [DOI: 10.1016/j.toxlet.2018.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
|
45
|
Leptin-induced cardiomyocyte hypertrophy is associated with enhanced mitochondrial fission. Mol Cell Biochem 2018; 454:33-44. [PMID: 30251118 DOI: 10.1007/s11010-018-3450-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Cardiac pathology including hypertrophy has been associated with an imbalance between mitochondrial fission and fusion. Generally, well-balanced mitochondrial fission and fusion are essential for proper functions of mitochondria. Leptin is a 16-kDa appetite-suppressing protein which has been shown to induce cardiomyocyte hypertrophy. In the present study, we determined whether leptin can influence mitochondrial fission or fusion and whether this can be related to its hypertrophic effect. Cardiomyocytes treated for 24 h with 3.1 nM leptin (50 ng/ml), a concentration representing plasma levels in obese individuals, demonstrated an increase in surface area and a significant 1.6-fold increase in the expression of the β-myosin heavy chain. Mitochondrial staining with MitoTracker Green dye showed elongated structures in control cells with an average length of 4.5 µm. Leptin produced a time-dependent increase in mitochondrial fragmentation with decreasing mitochondrial length. The hypertrophic response to leptin was also associated with increased protein levels of the mitochondrial fission protein dynamin-related protein1 (Drp1) although gene expression of Drp1 was unaffected possibly suggesting post-translational modifications of Drp1. Indeed, leptin treatment was associated with decreased levels of phosphorylated Drp1 and increased translocation of Drp1 to the mitochondria thereby demonstrating a pro-fission effect of leptin. As calcineurin may dephosphorylate Drp1, we determined the effect of a calcineurin inhibitor, FK506, which prevented leptin-induced hypertrophy as well as mitochondrial fission and mitochondrial dysfunction. In conclusion, our data show that leptin-induced cardiomyocyte hypertrophy is associated with enhanced mitochondrial fission via a calcineurin-mediated pathway. The ability of leptin to stimulate mitochondrial fission may be important in understanding the role of this protein in cardiac pathology especially that related to mitochondrial dysfunction.
Collapse
|
46
|
A Disturbance in the Force: Cellular Stress Sensing by the Mitochondrial Network. Antioxidants (Basel) 2018; 7:antiox7100126. [PMID: 30249006 PMCID: PMC6211095 DOI: 10.3390/antiox7100126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
As a highly dynamic organellar network, mitochondria are maintained as an organellar network by delicately balancing fission and fusion pathways. This homeostatic balance of organellar dynamics is increasingly revealed to play an integral role in sensing cellular stress stimuli. Mitochondrial fission/fusion balance is highly sensitive to perturbations such as loss of bioenergetic function, oxidative stress, and other stimuli, with mechanistic contribution to subsequent cell-wide cascades including inflammation, autophagy, and apoptosis. The overlapping activity with m-AAA protease 1 (OMA1) metallopeptidase, a stress-sensitive modulator of mitochondrial fusion, and dynamin-related protein 1 (DRP1), a regulator of mitochondrial fission, are key factors that shape mitochondrial dynamics in response to various stimuli. As such, OMA1 and DRP1 are critical factors that mediate mitochondrial roles in cellular stress-response signaling. Here, we explore the current understanding and emerging questions in the role of mitochondrial dynamics in sensing cellular stress as a dynamic, responsive organellar network.
Collapse
|
47
|
Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment. Arch Biochem Biophys 2018; 651:1-12. [PMID: 29702063 DOI: 10.1016/j.abb.2018.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
α-synuclein is involved in both familial and sporadic Parkinson's disease. Although its interaction with mitochondria has been well documented, several aspects remains unknown or under debate such as the specific sub-mitochondrial localization or the dynamics of the interaction. It has been suggested that α-synuclein could only interact with ER-associated mitochondria. The vast use of model systems and experimental conditions makes difficult to compare results and extract definitive conclusions. Here we tackle this by analyzing, in a simplified system, the interaction between purified α-synuclein and isolated rat brain mitochondria. This work shows that wild type α-synuclein interacts with isolated mitochondria and translocates into the mitochondrial matrix. This interaction and the irreversibility of α-synuclein translocation depend on incubation time and α-synuclein concentration. FRET experiments show that α-synuclein localizes close to components of the TOM complex suggesting a passive transport of α-synuclein through the outer membrane. In addition, α-synuclein binding alters mitochondrial function at the level of Complex I leading to a decrease in ATP synthesis and an increase of ROS production.
Collapse
|
48
|
Martinez JH, Alaimo A, Gorojod RM, Porte Alcon S, Fuentes F, Coluccio Leskow F, Kotler ML. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein. Mol Cell Neurosci 2018; 88:107-117. [PMID: 29414102 DOI: 10.1016/j.mcn.2018.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration.
Collapse
Affiliation(s)
- Jimena Hebe Martinez
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, Argentina.
| | - Agustina Alaimo
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Federico Fuentes
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Federico Coluccio Leskow
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| |
Collapse
|
49
|
de Moura TC, Afadlal S, Hazell AS. Potential for stem cell treatment in manganism. Neurochem Int 2018; 112:134-145. [DOI: 10.1016/j.neuint.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
|
50
|
Helley MP, Pinnell J, Sportelli C, Tieu K. Mitochondria: A Common Target for Genetic Mutations and Environmental Toxicants in Parkinson's Disease. Front Genet 2017; 8:177. [PMID: 29204154 PMCID: PMC5698285 DOI: 10.3389/fgene.2017.00177] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurological movement disorder. Since its first discovery 200 years ago, genetic and environmental factors have been identified to play a role in PD development and progression. Although genetic studies have been the predominant driving force in PD research over the last few decades, currently only a small fraction of PD cases can be directly linked to monogenic mutations. The remaining cases have been attributed to other risk associated genes, environmental exposures and gene-environment interactions, making PD a multifactorial disorder with a complex etiology. However, enormous efforts from global research have yielded significant insights into pathogenic mechanisms and potential therapeutic targets for PD. This review will highlight mitochondrial dysfunction as a common pathway involved in both genetic mutations and environmental toxicants linked to PD.
Collapse
Affiliation(s)
- Martin P. Helley
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| | - Jennifer Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Carolina Sportelli
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|