1
|
Massaro A, Calvi P, Restivo I, Giardina M, Mulè F, Tesoriere L, Amato A, Nuzzo D, Picone P, Terzo S, Allegra M. Kumquat Fruit Administration Counteracts Dysmetabolism-Related Neurodegeneration and the Associated Brain Insulin Resistance in the High-Fat Diet-Fed Mice. Int J Mol Sci 2025; 26:3077. [PMID: 40243721 PMCID: PMC11988715 DOI: 10.3390/ijms26073077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic disorders and brain insulin resistance (IR) are major risk factors for the development of neurodegenerative conditions. Kumquat fruit (KF) administration has demonstrated significant anti-dysmetabolic effects, improving peripheral IR in murine models of metabolic syndrome. Along these lines, this study evaluated the neuroprotective effects of KF supplementation in a model of dysmetabolism-induced neuronal damage and its ability to counteract the disruption of brain insulin signalling. To this end, biochemical and histological analysis assessed neuroapoptosis, disruption of brain insulin signalling and neuroinflammation in a model of high-fat diet (HFD)-induced neuronal damage. Our findings demonstrate, for the first time, that KF supplementation significantly counteracts HFD-induced neuroapoptosis downregulating pro-apoptotic genes (FAS-L, BIM and P27) and upregulating the anti-apoptotic ones (BDNF and BCL-2). Coherently, KF positively influenced the expression of selected genes related to Alzheimer's Disease. Relevantly, these effects were associated to KF ability to restore brain insulin signalling by increasing insulin receptor expression, reducing IRS-1 serine phosphorylation, enhancing both AKT activation and GSK-3β inactivation. Accordingly, KF suppressed HFD-neuroinflammation, counteracting the overexpression of NF-κB and its downstream enzymatic products, iNOS and COX-2. Collectively, these findings demonstrate the neuroprotective benefits of KF administration, supporting its potential as a dietary intervention for dysmetabolic-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Alessandro Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Pasquale Calvi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Ignazio Restivo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Marta Giardina
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Luisa Tesoriere
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Domenico Nuzzo
- Institute for Biomedical Research and Innovation—IRIB, 90146 Palermo, Italy; (D.N.); (P.P.)
| | - Pasquale Picone
- Institute for Biomedical Research and Innovation—IRIB, 90146 Palermo, Italy; (D.N.); (P.P.)
| | - Simona Terzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| |
Collapse
|
2
|
Naomi R, Teoh SH, Halim S, Embong H, Hasain Z, Bahari H, Kumar J. Unraveling Obesity: Transgenerational Inheritance, Treatment Side Effects, Flavonoids, Mechanisms, Microbiota, Redox Balance, and Bioavailability-A Narrative Review. Antioxidants (Basel) 2023; 12:1549. [PMID: 37627544 PMCID: PMC10451614 DOI: 10.3390/antiox12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is known as a transgenerational vicious cycle and has become a global burden due to its unavoidable complications. Modern approaches to obesity management often involve the use of pharmaceutical drugs and surgeries that have been associated with negative side effects. In contrast, natural antioxidants, such as flavonoids, have emerged as a promising alternative due to their potential health benefits and minimal side effects. Thus, this narrative review explores the potential protective role of flavonoids as a natural antioxidant in managing obesity. To identify recent in vivo studies on the efficiency of flavonoids in managing obesity, a comprehensive search was conducted on Wiley Online Library, Scopus, Nature, and ScienceDirect. The search was limited to the past 10 years; from the search, we identified 31 articles to be further reviewed. Based on the reviewed articles, we concluded that flavonoids offer novel therapeutic strategies for preventing obesity and its associated co-morbidities. This is because the appropriate dosage of flavonoid compounds is able to reduce adipose tissue mass, the formation of intracellular free radicals, enhance endogenous antioxidant defences, modulate the redox balance, and reduce inflammatory signalling pathways. Thus, this review provides an insight into the domain of a natural product therapeutic approach for managing obesity and recapitulates the transgenerational inheritance of obesity, the current available treatments to manage obesity and its side effects, flavonoids and their sources, the molecular mechanism involved, the modulation of gut microbiota in obesity, redox balance, and the bioavailability of flavonoids. In toto, although flavonoids show promising positive outcome in managing obesity, a more comprehensive understanding of the molecular mechanisms responsible for the advantageous impacts of flavonoids-achieved through translation to clinical trials-would provide a novel approach to inculcating flavonoids in managing obesity in the future as this review is limited to animal studies.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology Mara (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Zubaidah Hasain
- Unit of Physiology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Yu C, Guo C, Geng X, Yao Y, Guo J, Zhang Y, Zhang J, Mi S. Effects of fruits and vegetables on gut microbiota in a mouse model of metabolic syndrome induced by high-fat diet. Food Sci Nutr 2023; 11:794-805. [PMID: 36789067 PMCID: PMC9922138 DOI: 10.1002/fsn3.3114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to evaluate the effect of fruit and vegetable intake on gut microbiota using a mouse model of metabolic syndrome (MS) induced by a high-fat diet. Forty-eight male mice were randomly divided into four groups, control group (C), high-fat diet-fed model group (H), high fat plus low intake of fruits and vegetables diet-fed group (H.LFV), high fat plus high intake of fruits and vegetables diet-fed group (H.HFV), and each group were fed for 60 days. During the experiment, mouse body weights were recorded and fecal samples were collected. Cetyltrimethyl ammonium bromide (CTAB) method was used to extract fecal bacterial DNA, and the purity and concentration of the DNA were detected by electrophoresis. DNA samples underwent PCR amplification (primers in 16 S V4 (515F and 806R)). Raw sequencing data were processed, and sample complexity and multiple-sample comparisons were investigated. Mouse organ coefficient, serum lipid levels, fecal TC (total cholesterol) and TBA (total bile acid) levels, and hepatic glutathione and malondialdehyde levels were determined. Compared to the H group, the fecal TC and TBA levels decreased significantly in the H.HFV group (p < .05), and hepatic glutathione and malondialdehyde levels decreased significantly in both H.LFV and H.HFV groups (p < .05). Decreased abundance of Firmicutes, Burkholderiales, Syntrophomonas, and Pseudomonadales in gut microbiota was observed in H.LFV and H.HFV groups compared to the H group. The Anosim results showed significant differences in pairwise comparison between groups. The linear discriminant analysis effect size (LEfSe) results showed that k_bacteria not only exhibited statistically differences between H and C groups but also among H.LFV, H.LFV, and H groups, and hence, could be used as a biomarker between groups. To sum up, fruit and vegetable powder could increase the fecal excretion of TC and TBA, and the antioxidant capacity in C57BL/6N mice. Meanwhile, the mechanism that fruit and vegetable powder could prevent MS in C57BL/6N mice was related to the decreased abundance of gut microbiota, including Firmicutes, Syntrophomonadales, and Pseudomonadales. Hence, fruit and vegetable powder could be used as a recommended food to regulate gut microbiota and prevent the occurrence of MS-related diseases.
Collapse
Affiliation(s)
- Congcong Yu
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Cang Guo
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
- Changping LaboratoryBeijingChina
| | - Xueying Geng
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Yuyang Yao
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Junxia Guo
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
- Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingChina
| | - Yanzhen Zhang
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
- Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingChina
| | - Jing Zhang
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
- Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingChina
| | - Shengquan Mi
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
- Beijing Key Laboratory of Bioactive Substances and Functional FoodsBeijing Union UniversityBeijingChina
| |
Collapse
|
4
|
Huang HH, Chen JH, Zhang G, Zhang YP, Zhang M. A New Flavonoid from Fortunella margarita. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Associations of the Mediterranean-Style Dietary Pattern Score with Coronary Artery Calcification and Pericardial Adiposity in a Sample of US Adults. Nutrients 2022; 14:nu14163385. [PMID: 36014891 PMCID: PMC9415980 DOI: 10.3390/nu14163385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have identified improvements in the risks of cardiovascular disease in adults following a Mediterranean dietary pattern. However, data are scarce on its association with coronary artery calcification (CAC) and pericardial adiposity (PAT) in US adults with and without diabetes. To address this gap, we conducted a case-control study using baseline data from the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study [n = 1255; Type 1 Diabetes (T1D): n = 563; non-Diabetes Mellitus (non-DM): n = 692]. Participants completed a validated food frequency questionnaire, fasting (12 h overnight fast) biochemical analyses, and a physical examination including anthropometric measures. CAC and PAT were measured using electron beam-computed tomography. Logistic regression models were used to examine the associations of the Mediterranean-Style Dietary Pattern Score (MSDPS) with CAC (presence or absence), and linear regression models were applied to PAT analyses. In all of the adjusted models, no significant associations with CAC were found. For PAT, an increasing MSDPS was consistently associated with its lower volume in models adjusted for age, sex, diabetes status, total calories, and body mass index (all p < 0.05). The association between MSDPS and PAT was attenuated after adjusting for serum lipids and physical activity. In conclusion, the baseline data from the CACTI study show that a greater adherence to MSDPS is associated with a lower PAT volume and provide evidence that the Mediterranean dietary pattern is associated with lower cardiovascular risk markers.
Collapse
|
6
|
Tan S, Wang Y, Fu W, Luo Y, Cheng S, Li W. Drying kinetics and physicochemical properties of kumquat under hot air and air-impingement jet dryings. Food Sci Biotechnol 2022; 31:711-719. [PMID: 35646408 PMCID: PMC9133289 DOI: 10.1007/s10068-022-01080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Kumquat is famous for its unique flavor and nutritional value. In this study, the drying kinetics, moisture effective diffusivity, phytochemical properties, and antioxidant capacities of kumquat dried by hot air drying (HAD) and air-impingement jet drying (AIJD) were comparatively investigated. The results showed that drying rate, moisture effective diffusivity, and nutrient retention under AIJD were better than those under HAD. Fourteen polyphenols were identified by UPLC-QqQ-MS/MS in kumquat slices. The content of limonoid was significantly increased after AIJD. It was also found that high temperature contributed to a higher drying rate. However, most of the polyphenol components decreased at high drying temperatures. Accordingly, AIJD 60 °C was regarded as the optimum condition for kumquat drying. This work contributed to a better understanding of the drying character of kumquat under AIJD and showed the bioactive compounds and antioxidant activities are affected by drying methods.
Collapse
Affiliation(s)
- Si Tan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100 People’s Republic of China
- College of Food Science, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Yu Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100 People’s Republic of China
| | - Wenwen Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100 People’s Republic of China
| | - Yuping Luo
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100 People’s Republic of China
| | - Shan Cheng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100 People’s Republic of China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100 People’s Republic of China
| |
Collapse
|
7
|
Pistell PJ, Utsuki T, Francis J, Ebenezer PJ, Terrebonne J, Roth GS, Ingram DK. An Avocado Extract Enriched in Mannoheptulose Prevents the Negative Effects of a High-Fat Diet in Mice. Nutrients 2021; 14:155. [PMID: 35011030 PMCID: PMC8746741 DOI: 10.3390/nu14010155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/24/2022] Open
Abstract
Beginning at 16 weeks of age and continuing for 44 weeks, male C57BL/6J were fed either a control (CON) diet; a high-fat (HF) diet (60% unsaturated); or the HF diet containing an extract of unripe avocados (AvX) enriched in the 7-carbon sugar mannoheptulose (MH), designed to act as a glycolytic inhibitor (HF + MH). Compared to the CON diet, mice on the HF diet exhibited higher body weights; body fat; blood lipids; and leptin with reduced adiponectin levels, insulin sensitivity, VO2max, and falls from a rotarod. Mice on the HF + MH diet were completely protected against these changes in the absence of significant diet effects on food intake. Compared to the CON diet, oxidative stress was also increased by the HF diet indicated by higher levels of total reactive oxygen species, superoxide, and peroxynitrite measured in liver samples by electron paramagnetic resonance spectroscopy, whereas the HF + MH diet attenuated these changes. Compared to the CON, the HF diet increased signaling in the mechanistic target of the rapamycin (mTOR) pathway, and the addition of the MH-enriched AvX to this diet attenuated these changes. Beyond generating further interest in the health benefits of avocados, these results draw further new attention to the effects of this rare sugar, MH, as a botanical intervention for preventing obesity.
Collapse
Affiliation(s)
- Paul J. Pistell
- Department of Psychology, Towson University, 8000 York Road, Towson, MD 21252, USA;
| | - Tadanobu Utsuki
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA;
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA; (J.F.); (P.J.E.)
| | - Philip J. Ebenezer
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA; (J.F.); (P.J.E.)
| | - Jennifer Terrebonne
- Pennington Biomedical Research Center, Louisiana State University, 5600 Perkins Road, Baton Rouge, LA 70808, USA;
| | - George S. Roth
- GeroScience, Inc., 19895 Southern Hills, Baton Rouge, LA 70809, USA;
| | - Donald K. Ingram
- Pennington Biomedical Research Center, Louisiana State University, 5600 Perkins Road, Baton Rouge, LA 70808, USA;
- GeroScience, Inc., 19895 Southern Hills, Baton Rouge, LA 70809, USA;
| |
Collapse
|
8
|
Pawełczyk A, Żwawiak J, Zaprutko L. Kumquat Fruits as an Important Source of Food Ingredients and Utility Compounds. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Żwawiak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Ji-Ping L, Ren-Chao T, Xiao-Meng S, Hao-Yue Z, Shuai S, Ai-Zhen X, Zheng-Tao W, Li Y. Comparison of main chemical composition of Plantago asiatica L. and P. depressa Willd. seed extracts and their anti-obesity effects in high-fat diet-induced obese mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153362. [PMID: 33296814 DOI: 10.1016/j.phymed.2020.153362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/18/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nowadays, the pharmacological effects of Plantaginis semen was getting more and more attention because of the great effect of treating diuresis, hypertension, hyperlipidemia, and hyperglycemia. According to the Chinese Pharmacopoeia, Plantaginis semen is the seed of Plantago asiatica L. or P. depressa Willd. This was verified by examining chemical composition differences in a preliminary experiment, predicting their differences in pharmacology. PURPOSE In this study, we aimed to compared the the differences in main components and anti-obesity effects of Plantago asiatica L. seed extract (PASE) and P. depressa Willd. seed extract (PDSE). STUDY DESIGN AND METHODS The ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis was used to characterize and compare the differences chemical constituents of PASE and PDSE. The difference therapeutic effects between PASE and PDSE on obesity and associated metabolic disorders was investigated by high-fat (HF) diet induced mice model. RESULTS The fingerprint of Plantaginis semen were established by screening and identified 15 main components, including iridoids, phenethanol glycosides, flavonoids, guanidines, and fatty acids. Pentahydroxy flavanone was observed only in PDSE but not in PASE. The quantitative analysis results indicated that the main bioactive components in PASE were geniposidic acid and acteoside; their concentrations were three times higher in PASE than in PDSE. In anti-obesity effects, the result show the levels of fasting blood glucose were improved in both PASE and PDSE when compared with the HF group, while the PASE is show a significant effect then the PDSE group and improved the glucose tolerance but not in PDSE. The results also displayed that the Plantaginis semen did not modify food intake or body weight but decreased abdominal white/brown adipocyte size, serum total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-c), hepatic TG and TC, fecal TG and TC concentrations when compared with the HF group. Among these indicators, serum TG, liver TG, fecal TC and TG levels were significantly improved in PASE compared with PDSE. The results indicated that PASE treatment more effectively improved lipid and glucose metabolism in HF diet-induced obese mice than did PDSE. CONCLUSION As Plantaginis semen sources, P. asiatica L. seeds demonstrated more bioactive components and favorable metabolic disorder treatment outcomes than did P. depressa Willd. seeds.
Collapse
Affiliation(s)
- Lan Ji-Ping
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Ren-Chao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sun Xiao-Meng
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhang Hao-Yue
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sun Shuai
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiong Ai-Zhen
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wang Zheng-Tao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Li
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
11
|
Zhang X, Li X, Fang H, Guo F, Li F, Chen A, Huang S. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr Metab (Lond) 2019; 16:47. [PMID: 31346342 PMCID: PMC6637576 DOI: 10.1186/s12986-019-0370-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background Flavonoids are a class of plant and fungus secondary metabolites and are the most common group of polyphenolic compounds in the human diet. In recent studies, flavonoids have been shown to induce browning of white adipocytes, increase energy consumption, inhibit high-fat diet (HFD)-induced obesity and improve metabolic status. Promoting the activity of brown adipose tissue (BAT) and inducing white adipose tissue (WAT) browning are promising means to increase energy expenditure and improve glucose and lipid metabolism. This review summarizes recent advances in the knowledge of flavonoid compounds and their metabolites. Methods We searched the following databases for all research related to flavonoids and WAT browning published through March 2019: PubMed, MEDLINE, EMBASE, and the Web of Science. All included studies are summarized and listed in Table 1. Result We summarized the effects of flavonoids on fat metabolism and the specific underlying mechanisms in sub-categories. Flavonoids activated the sympathetic nervous system (SNS), promoted the release of adrenaline and thyroid hormones to increase thermogenesis and induced WAT browning through the AMPK-PGC-1α/Sirt1 and PPAR signalling pathways. Flavonoids may also promote brown preadipocyte differentiation, inhibit apoptosis and produce inflammatory factors in BAT. Conclusion Flavonoids induced WAT browning and activated BAT to increase energy consumption and non-shivering thermogenesis, thus inhibiting weight gain and preventing metabolic diseases.
Collapse
Affiliation(s)
- Xuejun Zhang
- Department of Orthopedics, First People's Hospital of Yichang, No.4 Hudi Street, Yichang, 443000 Hubei Province China
| | - Xin Li
- 2Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jie Fang Avenue, Wuhan, 430022 Hubei Province China
| | - Huang Fang
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Fengjin Guo
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Feng Li
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Anmin Chen
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Shilong Huang
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| |
Collapse
|
12
|
Sasso S, Sampaio E Souza PC, Santana LF, Cardoso CAL, Alves FM, Portugal LC, de Faria BB, da Silva AF, Motta-Castro ARC, Soares LS, Bandeira LM, Guimarães RDCA, Freitas KDC. Use of an Extract of Annona muricata Linn to Prevent High-Fat Diet Induced Metabolic Disorders in C57BL/6 Mice. Nutrients 2019; 11:nu11071509. [PMID: 31269728 PMCID: PMC6682994 DOI: 10.3390/nu11071509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/06/2019] [Accepted: 06/30/2019] [Indexed: 12/27/2022] Open
Abstract
Annona muricata Linn, commonly known as graviola, is one of the most popular plants used in Brazil for weight loss. The aim of this study is to evaluate the therapeutic effects of three different doses (50 mg/kg, 100 mg/kg, and 150 mg/kg) of aqueous graviola leaf extract (AGE) supplemented by oral gavage, on obese C57BL/6 mice. Food intake, body weight, an oral glucose tolerance test (OGTT), an insulin sensitivity test, quantification of adipose tissue cytokines, weight of fat pads, and serum biochemical and histological analyses of the liver, pancreas, and epididymal adipose tissue were measured. AGE had an anti-inflammatory effect by increasing IL-10 at doses of 50 and 100 mg/kg. Regarding the cholesterol profile, there was a significant decrease in LDL-cholesterol levels in the AGE 150 group, and VLDL-cholesterol and triglycerides in the AGE 100 and 150 groups. There was an increase in HDL cholesterol in the AGE 150 group. The extract was able to reduce the adipocyte area of the epididymal adipose tissue in the AGE 100 and 150 groups. According to the histological analysis of the liver and pancreas, no significant difference was found among the groups. There were no significant effects of AGE on OGTT and serum fasting glucose concentration. However, the extract was effective in improving glucose tolerance in the AGE 150 group.
Collapse
Affiliation(s)
- Sandramara Sasso
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Priscilla Cristovam Sampaio E Souza
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Lidiani Figueiredo Santana
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | | | - Flávio Macedo Alves
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Luciane Candeloro Portugal
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | | | - Anderson Fernandes da Silva
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Ana Rita Coimbra Motta-Castro
- Laboratory of Clinical Immunology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
- Oswaldo Cruz Foundation, Campo Grande, 79074-460 Mato Grosso do Sul, Brazil
| | - Luana Silva Soares
- Laboratory of Clinical Immunology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Larissa Melo Bandeira
- Laboratory of Clinical Immunology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Karine de Cássia Freitas
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil.
| |
Collapse
|
13
|
Li H, Liu Y, Liu C, Luo L, Yao Y, Li F, Yin L, Xu L, Tong Q, Huang C, Fan S. Notoginsenoside Fe suppresses diet induced obesity and activates paraventricular hypothalamic neurons. RSC Adv 2019; 9:1290-1298. [PMID: 35518019 PMCID: PMC9059641 DOI: 10.1039/c8ra07842d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/24/2018] [Indexed: 01/13/2023] Open
Abstract
Obesity has become a major public health challenge worldwide. Energy imbalance between calorie acquisition and consumption is the fundamental cause of obesity. Notoginsenoside Fe is a naturally occurring compound in Panax notoginseng, a herb used in the treatment of cardiovascular diseases in traditional Chinese medicine. Here, we evaluated the effect of notoginsenoside Fe on obesity development induced by high-fat diet in C57BL/6 mice. Our results demonstrated that notoginsenoside Fe decreased food intake and body weight, as well as protected liver structure integrity and normal function. Metabolic cage analysis showed that notoginsenoside Fe also promoted resting metabolic rate. In addition, intracerebroventricular (i.c.v) injection of notoginsenoside Fe induced C-Fos expression in the paraventricular nucleus (PVH) but not the arcuate nucleus (ARC) of the hypothalamus. These results suggest that Fe may reduce body weight through the activation of energy-sensing neurons in the hypothalamus. Notoginsenoside Fe, a naturally occurring compound in Panax notoginseng, significantly reduces body weight, promotes metabolic rate, and suppresses food intake through activating C-Fos expression in PVH in high-fat diet induced obese mice.![]()
Collapse
|
14
|
Choi SY, Ryu SH, Park JI, Jeong ES, Park JH, Ham SH, Jeon HY, Kim JY, Kyeong IG, Kim DG, Shin JY, Choi YK. Anti-obesity effect of robusta fermented with Leuconostoc mesenteroides in high-fat diet-induced obese mice. Exp Ther Med 2017; 14:3761-3767. [PMID: 29042976 DOI: 10.3892/etm.2017.4990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/02/2017] [Indexed: 11/05/2022] Open
Abstract
Robusta beans cultivated with Monascus ruber (RMR) were successively fermented with Leuconostoc mesenteroides (LM) and the antiobesity effects were examined. To produce an obese mouse model to investigate the hypolipidemic effects, ICR mice were fed the same high-fat diet for 6 weeks. Treatment groups were given 10 or 20% RMR-LM. Body weight changes in the 20% RMR-LM group were lower compared with those in the control group. Visceral adipose tissue weight and adipose size were significantly lower in the 20% RMR-LM group compared with those in the control group. Significant improvement in glucose tolerance was observed in the 10 and 20% RMR-LM groups compared with the control group. The 20% RMR-LM group exhibited a significant reduction in serum glucose concentration. Hepatic mRNA levels of sterol regulatory element-binding protein 1, fas cell surface death receptor, and peroxisome proliferator-activated receptor γ, which are associated with lipid, and fatty acid metabolism, in the 20% RMR-LM group were significantly lower compared with those in the control group. The results of the present study demonstrated that 20% RMR-LM may be used to prevent obesity, and ameliorate diabetes and lipid metabolism imbalances.
Collapse
Affiliation(s)
- Soo-Young Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin-Il Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Eui-Suk Jeong
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea.,Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jong-Hyung Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hoon Ham
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Yeon Jeon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun-Young Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Inn-Goo Kyeong
- R&D Center, CosisBio Corporation, Chungbuk 27867, Republic of Korea
| | - Dong-Goo Kim
- R&D Center, CosisBio Corporation, Chungbuk 27867, Republic of Korea
| | - Ji-Young Shin
- R&D Center, CosisBio Corporation, Chungbuk 27867, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
15
|
Yang Q, Qi M, Tong R, Wang D, Ding L, Li Z, Huang C, Wang Z, Yang L. Plantago asiatica L. Seed Extract Improves Lipid Accumulation and Hyperglycemia in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2017; 18:ijms18071393. [PMID: 28665305 PMCID: PMC5535886 DOI: 10.3390/ijms18071393] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
Obesity and its common association with type 2 diabetes, dyslipidemia, and cardiovascular diseases are worldwide epidemics. Currently, to prevent or treat obesity and associated metabolic disorders, herbal dietary supplements or medicines have attracted more and more attention owing to their relative effectiveness with fewer significant side effects. We investigate the therapeutic effects and underlying mechanisms of Plantago asiatica L. seed extract (PSE) on obesity and associated metabolic disorders in high-fat (HF) diet-induced mice. Our results displayed that PSE did not modify food intake or body weight but decreased abdominal white adipose tissue ratio, white/brown adipocyte size, serum total cholesterol, triglyceride (TG), low density lipoprotein cholesterol, free fatty acid, and hepatic TG concentrations when compared with the HF group. The levels of fasting blood glucose and glucose tolerance were improved in the PSE group when compared with the HF group. Furthermore, PSE upregulated mRNA expressions of peroxisome proliferator activated receptors (PPARs) and target genes related to fatty acid metabolism and energy expenditure in liver and adipose tissue of obese mice when compared with the HF group. PSE treatment effectively improved lipid and glucose metabolism in HF diet-induced obese mice. These effects might be attributed to the upregulation of PPAR signaling.
Collapse
Affiliation(s)
- Qiming Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Meng Qi
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Renchao Tong
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Dandan Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zeyun Li
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
16
|
Zhao S, Kanno Y, Li W, Sasaki T, Zhang X, Wang J, Cheng M, Koike K, Nemoto K, Li H. Identification of Picrasidine C as a Subtype-Selective PPARα Agonist. JOURNAL OF NATURAL PRODUCTS 2016; 79:3127-3133. [PMID: 27958735 DOI: 10.1021/acs.jnatprod.6b00883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Picrasidine C (1), a dimeric β-carboline-type alkaloid isolated from the root of Picrasma quassioides, was identified to have PPARα agonistic activity by a mammalian one-hybrid assay from a compound library. Among the PPAR subtypes, 1 selectively activated PPARα in a concentration-dependent manner. Remarkably, 1 also promoted PPARα transcriptional activity by a peroxisome proliferator response element-driven luciferase reporter assay. Furthermore, 1 induced the expression of PPARα-regulated genes involved in lipid, glucose, and cholesterol metabolism, such as CPT-1, PPARα, PDK4, and ABCA1, which was abrogated by the PPARα antagonist MK-886, indicating that the effect of 1 was dependent on PPARα activation. This is the first report to demonstrate 1 to be a subtype-selective PPARα agonist with potential application in treating metabolic diseases, such as hyperlipidemia, atherosclerosis, and hypercholesterolemia.
Collapse
Affiliation(s)
- Shuai Zhao
- College of Life Science, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yuichiro Kanno
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Tatsunori Sasaki
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Huicheng Li
- College of Life Science, Northeast Forestry University , Harbin 150040, People's Republic of China
| |
Collapse
|
17
|
Lou SN, Ho CT. Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin. J Food Drug Anal 2016; 25:162-175. [PMID: 28911534 PMCID: PMC9333435 DOI: 10.1016/j.jfda.2016.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
Kumquat and calamondin are two small-size citrus fruits. Owing to their health benefits, they are traditionally used as folk medicine in Asian countries. However, the research on flavonoids and biological activities of kumquat and calamondin have received less attention. This review summarizes the reported quantitative and qualitative data of phenolic compositions in these two fruits. Effects of maturity, harvest time, various solvent extractions and heat treatment of phenolic compositions, and bioactivities were discussed; distributions of the forms of phenolic compounds existing in kumquat and calamondin were also summarized. Furthermore, biological activities, including antioxidant, anti-tyrosinase, antimicrobial, antitumor, and antimetabolic disorder effects, have also been discussed. Effective phenolic components were proposed for a certain bioactivity. It was found that C-glycoside flavonoids are dominant phenolic compounds in kumquat and calamondin, unlike in other citrus fruits. Up to now, biological activities and chemical characteristics of C-glycoside flavonoids in kumquat and calamondin are largely unknown.
Collapse
Affiliation(s)
- Shyi-Neng Lou
- Department of Food Science, National Ilan University, Ilan, Taiwan.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
18
|
Tan S, Zhao X, Yang Y, Ke Z, Zhou Z. Chemical Profiling Using Uplc Q-Tof/Ms and Antioxidant Activities ofFortunellaFruits. J Food Sci 2016; 81:C1646-53. [DOI: 10.1111/1750-3841.13352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Si Tan
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| | - Xijuan Zhao
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| | - Ying Yang
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| | - Zunli Ke
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| |
Collapse
|
19
|
Qiu X, Gao DH, Xiang X, Xiong YF, Zhu TS, Liu LG, Sun XF, Hao LP. Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats. World J Gastroenterol 2015; 21:8061-8072. [PMID: 26185377 PMCID: PMC4499348 DOI: 10.3748/wjg.v21.i26.8061] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effects of lutein against non-alcoholic fatty liver disease (NAFLD) and the related underlying mechanism.
METHODS: After 9 d of acclimation to a constant temperature-controlled room (20 °C-22 °C) under 12 h light/dark cycles, male Sprague-Darley rats were randomly divided into two groups and fed a standard commercial diet (n = 8) or a high-fat diet (HFD) (n = 32) for 10 d. Animals receiving HFD were then randomly divided into 4 groups and administered with 0, 12.5, 25, or 50 mg/kg (body weight) per day of lutein for the next 45 d. At the end of the experiment, the perinephric and abdominal adipose tissues of the rats were isolated and weighed. Additionally, serum and liver lipid metabolic condition parameters were measured, and liver function and insulin resistance state indexes were assessed. Liver samples were collected and stained with hematoxylin eosin and Oil Red O, and the expression of the key factors related to insulin signaling and lipid metabolism in the liver were detected using Western blot and real-time polymerase chain reaction analyses.
RESULTS: Our data showed that after being fed a high-fat diet for 10 d, the rats showed a significant gain in body weight, energy efficiency, and serum total cholesterol (TC) and triglyceride (TG) levels. Lutein supplementation induced fat loss in rats fed a high-fat diet, without influencing body weight or energy efficiency, and decreased serum TC and hepatic TC and TG levels. Moreover, lutein supplementation decreased hepatic levels of lipid accumulation and glutamic pyruvic transaminase content, and also improved insulin sensitivity. Lutein administration also increased the expression of key factors in hepatic insulin signaling, such as insulin receptor substrate-2, phosphatidylinositol 3-kinase, and glucose transporter-2 at the gene and protein levels. Furthermore, high-dose lutein increased the expression of peroxisome proliferators activated receptor-α and sirtuin 1, which are associated with lipid metabolism and insulin signaling.
CONCLUSION: These results demonstrate that lutein has positive effects on NAFLD via the modulation of hepatic lipid accumulation and insulin resistance.
Collapse
|
20
|
Zhang L, Yang B, Yu B. Paeoniflorin Protects against Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice. Biol Pharm Bull 2015; 38:1005-11. [PMID: 25972092 DOI: 10.1248/bpb.b14-00892] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Paeoniflorin, a natural product and active ingredient of Paeonia lactiflora, has been demonstrated to have many pharmacological effects including antiinflammatory and antihyperglycemic activity. We investigated the effects of paeoniflorin on NAFLD in mice and its underlying mechanisms. We examined this hypothesis using a well-established animal model of NAFLD. The effects of paeoniflorin on inflammation and glucolipid metabolism disorder were evaluated. The corresponding signaling pathways were measured using real-time polymerase chain reaction (PCR). We demonstrated that the mice developed obesity, dyslipidemia, and fatty liver, which formed the NAFLD model. Paeoniflorin attenuated NAFLD and exhibited potential cardiovascular protective effects in vivo by lowering body weight, hyperlipidemia, and insulin resistance; blocking inflammation; and inhibiting lipid ectopic deposition. Further investigation revealed that the antagonistic effect on hyperlipidemia and lipid ectopic deposition was related to lowering the lipid synthesis pathway (de novo pathway, 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoAR)), promoting fatty acid oxidation [peroxisome proliferator-activated receptor-alpha (PPARα), carnitine palmitoyltransferase-1, etc.] and increasing cholesterol output (PPARγ-liver X receptor-α-ATP-binding cassette transporter-1); the inhibitory effects on inflammation and hyperglycemia were mediated by blocking inflammatory genes activation and reducing gluconeogenic genes expression (phosphoenolpyruvate carboxykinase and G6Pase). These results suggest that paeoniflorin prevents the development of NAFLD and reduces the risks of atherosclerosis through multiple intracellular signaling pathways. It may therefore be a potential therapeutic compound for NAFLD.
Collapse
Affiliation(s)
- Lijing Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University
| | | | | |
Collapse
|
21
|
Nagahama K, Eto N, Shimojo T, Kondoh T, Nakahara K, Sakakibara Y, Fukui K, Suiko M. Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo. Biosci Biotechnol Biochem 2015; 79:1327-36. [PMID: 25849817 DOI: 10.1080/09168451.2015.1025033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Natural killer (NK) cells play a key role in innate immune defense against infectious disease and cancer. A reduction of NK activity is likely to be associated with increased risk of these types of disease. In this study, we investigate the activation potential of kumquat pericarp acetone fraction (KP-AF) on NK cells. It is shown to significantly increase IFN-γ production and NK cytotoxic activity in human KHYG-1 NK cells. Moreover, oral administration of KP-AF significantly improves both suppressed plasma IFN-γ levels and NK cytotoxic activity per splenocyte in restraint-stressed mice. These results indicate that raw kumquat pericarp activates NK cells in vitro and in vivo. To identify the active constituents, we also examined IFN-γ production on KHYG-1 cells by the predicted active components. Only β-cryptoxanthin increased IFN-γ production, suggesting that NK cell activation effects of KP-AF may be caused by carotenoids such as β-cryptoxanthin.
Collapse
Affiliation(s)
- Kiyoko Nagahama
- a Interdisciplinary Graduate School of Agriculture and Engineering , University of Miyazaki , Miyazaki , Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Network pharmacology-based antioxidant effect study of zhi-zi-da-huang decoction for alcoholic liver disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:492470. [PMID: 25922610 PMCID: PMC4398926 DOI: 10.1155/2015/492470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/06/2014] [Accepted: 08/13/2014] [Indexed: 12/15/2022]
Abstract
Zhi-Zi-Da-Huang decoction (ZZDHD), a classic traditional Chinese medicine (TCM) formula, has been used for centuries to treat alcoholic liver disease. Reliable therapeutics of ZZDHD has also been validated in clinical practice. In this study, molecular docking and network analysis were carried out to explore the antioxidative mechanism of ZZDHD as an effective therapeutic approach to treat alcoholic liver disease. Multiple active compounds of ZZDHD were screened based on four key original enzymes (cytochrome P450 2E1, xanthine oxidase, inducible nitric oxide synthase, and cyclooxygenase-2) involved in ethanol-induced oxidative stress damage. A drug-target network was constructed through network pharmacology analysis, which predicted the relationships of active ingredients to the targets. Some results had been verified by the previous experimental pharmacological studies; meanwhile, it was first reported that xanthine oxidase and eriocitrin, neoeriocitrin, isorhoifolin, and poncirin had interactions. The network pharmacology strategy used provided a forceful tool for searching the mechanism of action of TCM formula and novel bioactive ingredients.
Collapse
|
23
|
Taghizad H, Yeasin M, Cherry T, Abedi V. Obnet: Network of semantic associations for obesity. BMC Bioinformatics 2014. [PMCID: PMC4196097 DOI: 10.1186/1471-2105-15-s10-p6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|