1
|
Zhang CJ, Mou H, Yuan J, Wang YH, Sun SN, Wang W, Xu ZH, Yu SJ, Jin K, Jin ZB. Effects of fluorescent protein tdTomato on mouse retina. Exp Eye Res 2024; 243:109910. [PMID: 38663720 DOI: 10.1016/j.exer.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Fluorescent proteins (FPs) have been widely used to investigate cellular and molecular interactions and trace biological events in many applications. Some of the FPs have been demonstrated to cause undesirable cellular damage by light-induced ROS production in vivo or in vitro. However, it remains unknown if one of the most popular FPs, tdTomato, has similar effects in neuronal cells. In this study, we discovered that tdTomato expression led to unexpected retinal dysfunction and ultrastructural defects in the transgenic mouse retina. The retinal dysfunction mainly manifested in the reduced photopic electroretinogram (ERG) responses and decreased contrast sensitivity in visual acuity, caused by mitochondrial damages characterized with cellular redistribution, morphological modifications and molecular profiling alterations. Taken together, our findings for the first time demonstrated the retinal dysfunction and ultrastructural defects in the retinas of tdTomato-transgenic mice, calling for a more careful design and interpretation of experiments involved in FPs.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Hao Mou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Jing Yuan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Ya-Han Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Shu-Ning Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Ze-Hua Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Si-Jian Yu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
2
|
Wal P, Wal A, Vig H, Mahmood D, Khan MMU. Potential Applications of Mitochondrial Therapy with a Focus on Parkinson's Disease and Mitochondrial Transplantation. Adv Pharm Bull 2024; 14:147-160. [PMID: 38585467 PMCID: PMC10997929 DOI: 10.34172/apb.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/28/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Both aging and neurodegenerative illnesses are thought to be influenced by mitochondrial malfunction and free radical formation. Deformities of the energy metabolism, mitochondrial genome polymorphisms, nuclear DNA genetic abnormalities associated with mitochondria, modifications of mitochondrial fusion or fission, variations in shape and size, variations in transit, modified mobility of mitochondria, transcription defects, and the emergence of misfolded proteins associated with mitochondria are all linked to Parkinson's disease. Methods This review is a condensed compilation of data from research that has been published between the years of 2014 and 2022, using search engines like Google Scholar, PubMed, and Scopus. Results Mitochondrial transplantation is a one-of-a-kind treatment for mitochondrial diseases and deficits in mitochondrial biogenesis. The replacement of malfunctioning mitochondria with transplanted viable mitochondria using innovative methodologies has shown promising outcomes as a cure for Parkinson's, involving tissue sparing coupled with enhanced energy generation and lower oxidative damage. Numerous mitochondria-targeted therapies, including mitochondrial gene therapy, redox therapy, and others, have been investigated for their effectiveness and potency. Conclusion The development of innovative therapeutics for mitochondria-directed treatments in Parkinson's disease may be aided by optimizing mitochondrial dynamics. Many neurological diseases have been studied in animal and cellular models, and it has been found that mitochondrial maintenance can slow the death of neuronal cells. It has been hypothesized that drug therapies for neurodegenerative diseases that focus on mitochondrial dysfunction will help to delay the onset of neuronal dysfunction.
Collapse
Affiliation(s)
- Pranay Wal
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Ankita Wal
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Himangi Vig
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Unaizah 51911, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Unaizah 51911, Saudi Arabia
| |
Collapse
|
3
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. Proc Natl Acad Sci U S A 2024; 121:e2307904121. [PMID: 38207075 PMCID: PMC10801874 DOI: 10.1073/pnas.2307904121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS-based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III, and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP, and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA94143
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, University of California, San Francisco, CA94158
| |
Collapse
|
4
|
Doni D, Cavion F, Bortolus M, Baschiera E, Muccioli S, Tombesi G, d'Ettorre F, Ottaviani D, Marchesan E, Leanza L, Greggio E, Ziviani E, Russo A, Bellin M, Sartori G, Carbonera D, Salviati L, Costantini P. Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain. Cell Death Dis 2023; 14:805. [PMID: 38062036 PMCID: PMC10703789 DOI: 10.1038/s41419-023-06320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Federica Cavion
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, 35131, Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women's and Children Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, 35127, Padova, Italy
| | - Silvia Muccioli
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | - Elena Marchesan
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, 35121, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Milena Bellin
- Department of Biology, University of Padova, 35121, Padova, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, ZA, Leiden, The Netherlands
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children Health, University of Padova, 35128, Padova, Italy.
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, 35127, Padova, Italy.
| | - Paola Costantini
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
5
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562276. [PMID: 37904938 PMCID: PMC10614765 DOI: 10.1101/2023.10.14.562276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS- based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Adam L. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA
| |
Collapse
|
6
|
Cotticelli MG, Xia S, Truitt R, Doliba NM, Rozo AV, Tobias JW, Lee T, Chen J, Napierala JS, Napierala M, Yang W, Wilson RB. Acute frataxin knockdown in induced pluripotent stem cell-derived cardiomyocytes activates a type I interferon response. Dis Model Mech 2023; 16:dmm049497. [PMID: 36107856 PMCID: PMC9637271 DOI: 10.1242/dmm.049497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Friedreich ataxia, the most common hereditary ataxia, is a neuro- and cardio-degenerative disorder caused, in most cases, by decreased expression of the mitochondrial protein frataxin. Cardiomyopathy is the leading cause of premature death. Frataxin functions in the biogenesis of iron-sulfur clusters, which are prosthetic groups that are found in proteins involved in many biological processes. To study the changes associated with decreased frataxin in human cardiomyocytes, we developed a novel isogenic model by acutely knocking down frataxin, post-differentiation, in cardiomyocytes derived from induced pluripotent stem cells (iPSCs). Transcriptome analysis of four biological replicates identified severe mitochondrial dysfunction and a type I interferon response as the pathways most affected by frataxin knockdown. We confirmed that, in iPSC-derived cardiomyocytes, loss of frataxin leads to mitochondrial dysfunction. The type I interferon response was activated in multiple cell types following acute frataxin knockdown and was caused, at least in part, by release of mitochondrial DNA into the cytosol, activating the cGAS-STING sensor pathway.
Collapse
Affiliation(s)
- M. Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shujuan Xia
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rachel Truitt
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolai M. Doliba
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea V. Rozo
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Department of Genetics, Penn Genomics Analysis Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taehee Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Justin Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill S. Napierala
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Napierala
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenli Yang
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B. Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15060764. [PMID: 35745683 PMCID: PMC9228961 DOI: 10.3390/ph15060764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.
Collapse
|
8
|
Ansari F, Yoval B, Niatsetskaya Z, Ten V, Wittig I, Galkin A. How many molecules of mitochondrial complex I are in a cell? Anal Biochem 2022; 646:114646. [PMID: 35259403 PMCID: PMC9018534 DOI: 10.1016/j.ab.2022.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022]
Abstract
Mitochondrial complex I is the only enzyme responsible for oxidation of matrix NADH and regeneration of NAD+ for catabolism. Nuclear and mtDNA mutations, assembly impairments, and enzyme damage are implicated in inherited diseases, ischemia-reperfusion injury, neurodegeneration, and tumorogenesis. Here we introduce a novel method to measure the absolute content of complex I. The method is based on flavin fluorescence scanning of a polyacrylamide gel after separation of complexes by Clear Native electrophoresis. Using mouse primary astrocytes as an example, we calculated an average value of 2.2 × 105 complex I molecules/cell. Our method can be used for accurate quantification of complex I content.
Collapse
Affiliation(s)
- Fariha Ansari
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Belem Yoval
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Zoya Niatsetskaya
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA; Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Vadim Ten
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA; Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, 60590, Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Coordination of mitochondrial and nuclear gene expression regulation in health, evolution and disease. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Genetic Alterations in Mitochondrial DNA Are Complementary to Nuclear DNA Mutations in Pheochromocytomas. Cancers (Basel) 2022; 14:cancers14020269. [PMID: 35053433 PMCID: PMC8773562 DOI: 10.3390/cancers14020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Mitochondrial DNA (mtDNA) alterations have been reported to play important roles in cancer development and metastasis. However, there is scarce information about pheochromocytomas and paragangliomas (PCCs/PGLs) formation. To determine the potential roles of mtDNA alterations in PCCs/PGLs, we analyzed a panel of 26 nuclear susceptibility genes and the entire mtDNA sequence of 77 human tumors, using NGS. We also performed an analysis of copy-number alterations, large mtDNA deletion, and gene/protein expression. Our results revealed that 53.2% of the tumors harbor a mutation in the susceptibility genes and 16.9% harbor complementary mitochondrial mutations. Large deletions and depletion of mtDNA were found in 26% and 87% of tumors, respectively, accompanied by a reduced expression of the mitochondrial biogenesis markers (PCG1α, NRF1, and TFAM). Furthermore, P62 and LC3a gene expression suggested increased mitophagy, which is linked to mitochondrial dysfunction. These finding suggest a complementarity and a potential contributing role in PCCs/PGLs tumorigenesis. Abstract Background: Somatic mutations, copy-number variations, and genome instability of mitochondrial DNA (mtDNA) have been reported in different types of cancers and are suggested to play important roles in cancer development and metastasis. However, there is scarce information about pheochromocytomas and paragangliomas (PCCs/PGLs) formation. Material: To determine the potential roles of mtDNA alterations in sporadic PCCs/PGLs, we analyzed a panel of 26 nuclear susceptibility genes and the entire mtDNA sequence of seventy-seven human tumors, using next-generation sequencing, and compared the results with normal adrenal medulla tissues. We also performed an analysis of copy-number alterations, large mtDNA deletion, and gene and protein expression. Results: Our results revealed that 53.2% of the tumors harbor a mutation in at least one of the targeted susceptibility genes, and 16.9% harbor complementary mitochondrial mutations. More than 50% of the mitochondrial mutations were novel and predicted pathogenic, affecting mitochondrial oxidative phosphorylation. Large deletions were found in 26% of tumors, and depletion of mtDNA occurred in more than 87% of PCCs/PGLs. The reduction of the mitochondrial number was accompanied by a reduced expression of the regulators that promote mitochondrial biogenesis (PCG1α, NRF1, and TFAM). Further, P62 and LC3a gene expression suggested increased mitophagy, which is linked to mitochondrial dysfunction. Conclusion: The pathogenic role of these finding remains to be shown, but we suggest a complementarity and a potential contributing role in PCCs/PGLs tumorigenesis.
Collapse
|
11
|
Niu K, Qin JL, Lu GF, Guo J, Williams JP, An JX. Dexmedetomidine Reverses Postoperative Spatial Memory Deficit by Targeting Surf1 and Cytochrome c. Neuroscience 2021; 466:148-161. [PMID: 33895343 DOI: 10.1016/j.neuroscience.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Anesthesia and surgery are associated with perioperative neurocognitive disorders (PND). Dexmedetomidine is known to improve PND in rats; however, little is known about the mechanisms. Male Sprague-Dawley rats were subjected to resection of the hepatic apex under propofol anesthesia to clinically mimic human abdominal surgery. The rats were divided into four groups: control group (C), anesthesia group (A), model group (M), and model + dex group (D). Cognitive function was evaluated with the Morris water maze (MWM). Neuronal morphology was observed with H&E staining, Nissl's staining and immunohistochemistry. Transcriptome analysis and quantitative real-time PCR were performed to investigate functional mitochondrial mRNA changes in the hippocampus. Protein levels were measured by Western blotting at 1, 3, and 7 days after surgery. Surgery-induced cognitive decline lasted for three days, but not seven days after surgery in the M group; however, rats in the D group were significantly improved by dexmedetomidine. No significant differences in the number of neurons were observed between the groups after surgery. Rats from the M group showed significantly greater expression levels of Iba-1 and GFAP compared with the C group and the D group. Rats in the M group demonstrated increased Surf1 and Cytochrome c expression on days 1 and 3, but not day 7; similar changes were not induced in rats in the D group. Dexmedetomidine appears to reverse surgery-induced behavior, mitigate the higher density of Iba-1 and GFAP, and downregulate the expression of Surf1 and Cytochrome c protein in the hippocampus of rats in a PND model.
Collapse
Affiliation(s)
- Kun Niu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China.
| | - Jia-Lin Qin
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China.
| | - Guo-Fang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Jian Guo
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburg 15213, PA, USA.
| | - Jian-Xiong An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China; School of Medical Science & Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
12
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
13
|
Doni D, Rigoni G, Palumbo E, Baschiera E, Peruzzo R, De Rosa E, Caicci F, Passerini L, Bettio D, Russo A, Szabò I, Soriano ME, Salviati L, Costantini P. The displacement of frataxin from the mitochondrial cristae correlates with abnormal respiratory supercomplexes formation and bioenergetic defects in cells of Friedreich ataxia patients. FASEB J 2021; 35:e21362. [PMID: 33629768 DOI: 10.1096/fj.202000524rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disease resulting from a severe decrease of frataxin (FXN). Most patients carry a GAA repeat expansion in both alleles of the FXN gene, whereas a small fraction of them are compound heterozygous for the expansion and a point mutation in the other allele. FXN is involved in the mitochondrial biogenesis of the FeS-clusters. Distinctive feature of FRDA patient cells is an impaired cellular respiration, likely due to a deficit of key redox cofactors working as electrons shuttles through the respiratory chain. However, a definite relationship between FXN levels, FeS-clusters assembly dysregulation and bioenergetics failure has not been established. In this work, we performed a comparative analysis of the mitochondrial phenotype of cell lines from FRDA patients, either homozygous for the expansion or compound heterozygotes for the G130V mutation. We found that, in healthy cells, FXN and two key proteins of the FeS-cluster assembly machinery are enriched in mitochondrial cristae, the dynamic subcompartment housing the respiratory chain. On the contrary, FXN widely redistributes to the matrix in FRDA cells with defects in respiratory supercomplexes assembly and altered respiratory function. We propose that this could be relevant for the early mitochondrial defects afflicting FRDA cells and that perturbation of mitochondrial morphodynamics could in turn be critical in terms of disease mechanisms.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, Padova, Italy
| | | | - Elisa Palumbo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
| | | | - Edith De Rosa
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Daniela Bettio
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ildiko Szabò
- Department of Biology, University of Padova, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
- Myology Center, University of Padova, Padova, Italy
| | | |
Collapse
|
14
|
Destiarani W, Mulyani R, Yusuf M, Maksum IP. Molecular Dynamics Simulation of T10609C and C10676G Mutations of Mitochondrial ND4L Gene Associated With Proton Translocation in Type 2 Diabetes Mellitus and Cataract Patients. Bioinform Biol Insights 2020; 14:1177932220978672. [PMID: 33402819 PMCID: PMC7747115 DOI: 10.1177/1177932220978672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
The mutation rate of mitochondrial DNA (mtDNA) is 17 times higher than nuclear DNA, and these mutations can cause mitochondrial disease in 1 of 10.000 people. The T10609C mutation was identified in type 2 diabetes mellitus (T2DM) patients and the C10676G mutation in cataract patients, with both mutations occurring in the ND4L gene of mtDNA that encodes ND4L protein. ND4L protein, a subunit of complex I in the respiratory complex, has been shown to play a role in the proton translocation process. The purpose of this study was to investigate the effect of both mutations on the proton translocation mechanism. Mutation mapping showed changes in amino acids M47T (T10609C) and C69W (C10676G). The 100 ns molecular dynamics (MD) simulations performed on native and mutants of ND4L-ND6 subunits. It is revealed that the native model had a similar proton translocation pathway to that of complex I from other organisms. Interestingly, the mutant M47T and C69W showed the interruption of the translocation pathway by a hydrogen bond formation between Glu34 and Tyr157. It is observed that the mutations were restricting the passage of water molecules through the transmembrane region. These results could help to develop the computational assay for the validation of a specific genetic biomarker for T2DM and cataracts.
Collapse
Affiliation(s)
- Wanda Destiarani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rahmaniar Mulyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
15
|
Seco-Cervera M, González-Cabo P, Pallardó FV, Romá-Mateo C, García-Giménez JL. Thioredoxin and Glutaredoxin Systems as Potential Targets for the Development of New Treatments in Friedreich's Ataxia. Antioxidants (Basel) 2020; 9:antiox9121257. [PMID: 33321938 PMCID: PMC7763308 DOI: 10.3390/antiox9121257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The thioredoxin family consists of a small group of redox proteins present in all organisms and composed of thioredoxins (TRXs), glutaredoxins (GLRXs) and peroxiredoxins (PRDXs) which are found in the extracellular fluid, the cytoplasm, the mitochondria and in the nucleus with functions that include antioxidation, signaling and transcriptional control, among others. The importance of thioredoxin family proteins in neurodegenerative diseases is gaining relevance because some of these proteins have demonstrated an important role in the central nervous system by mediating neuroprotection against oxidative stress, contributing to mitochondrial function and regulating gene expression. Specifically, in the context of Friedreich’s ataxia (FRDA), thioredoxin family proteins may have a special role in the regulation of Nrf2 expression and function, in Fe-S cluster metabolism, controlling the expression of genes located at the iron-response element (IRE) and probably regulating ferroptosis. Therefore, comprehension of the mechanisms that closely link thioredoxin family proteins with cellular processes affected in FRDA will serve as a cornerstone to design improved therapeutic strategies.
Collapse
Affiliation(s)
- Marta Seco-Cervera
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Pilar González-Cabo
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Carlos Romá-Mateo
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (J.L.G.-G.); Tel.: +34-963-864-646 (C.R.-M. & J.L.G.-G.)
| | - José Luis García-Giménez
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (J.L.G.-G.); Tel.: +34-963-864-646 (C.R.-M. & J.L.G.-G.)
| |
Collapse
|
16
|
Rai NK, Mathur S, Singh SK, Tiwari M, Singh VK, Haque R, Tiwari S, Kumar Sharma L. Differential regulation of mitochondrial complex I and oxidative stress based on metastatic potential of colorectal cancer cells. Oncol Lett 2020; 20:313. [PMID: 33093922 PMCID: PMC7573887 DOI: 10.3892/ol.2020.12176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Mitochondria serve a vital role in cellular homeostasis as they regulate cell proliferation and death pathways, which are attributed to mitochondrial bioenergetics, free radicals and metabolism. Alterations in mitochondrial functions have been reported in various diseases, including cancer. Colorectal cancer (CRC) is one of the most common metastatic cancer types with high mortality rates. Although mitochondrial oxidative stress has been associated with CRC, its specific mechanism and contribution to metastatic progression remain poorly understood. Therefore, the aims of the present study were to investigate the role of mitochondria in CRC cells with low and high metastatic potential and to evaluate the contribution of mitochondrial respiratory chain (RC) complexes in oncogenic signaling pathways. The present results demonstrated that cell lines with low metastatic potential were resistant to mitochondrial complex I (C-I)-mediated oxidative stress, and had C-I inhibition with impaired mitochondrial functions. These adaptations enabled cells to cope with higher oxidative stress. Conversely, cells with high metastatic potential demonstrated functional C-I with improved mitochondrial function due to coordinated upregulation of mitochondrial biogenesis and metabolic reprogramming. Pharmacological inhibition of C-I in high metastatic cells resulted in increased sensitivity to cell death and decreased metastatic signaling. The present findings identified the differential regulation of mitochondrial functions in CRC cells, based on CRC metastatic potential. Specifically, it was suggested that a functional C-I is required for high metastatic features of cancer cells, and the role of C-I could be further examined as a potential target in the development of novel therapies for diagnosing high metastatic cancer types.
Collapse
Affiliation(s)
- Neeraj Kumar Rai
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Shashank Mathur
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Suraj Kumar Singh
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences-Patna, Patna, Bihar 801507, India
| | - Meenakshi Tiwari
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences-Patna, Patna, Bihar 801507, India
| | - Vijay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
17
|
Cell-Free Circulating Mitochondrial DNA: A Potential Blood-Based Marker for Atrial Fibrillation. Cells 2020; 9:cells9051159. [PMID: 32397106 PMCID: PMC7290331 DOI: 10.3390/cells9051159] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF), the most common, progressive tachyarrhythmia is associated with serious complications, such as stroke and heart failure. Early recognition of AF, essential to prevent disease progression and therapy failure, is hampered by the lack of accurate diagnostic serum biomarkers to identify the AF stage. As we previously showed mitochondrial dysfunction to drive experimental and human AF, we evaluated whether cell-free circulating mitochondrial DNA (cfc-mtDNA) represents a potential serum marker. Therefore, the levels of two mtDNA genes, COX3 and ND1, were measured in 84 control patients (C), 59 patients undergoing cardiac surgery without a history of AF (SR), 100 paroxysmal (PAF), 116 persistent (PeAF), and 20 longstanding-persistent (LS-PeAF) AF patients undergoing either cardiac surgery or AF treatment (electrical cardioversion or pulmonary vein isolation). Cfc-mtDNA levels were significantly increased in PAF patients undergoing AF treatment, especially in males and patients with AF recurrence after AF treatment. In PeAF and LS-PeAF, cfc-mtDNA levels gradually decreased. Importantly, cfc-mtDNA in serum may originate from cardiomyocytes, as in vitro tachypaced cardiomyocytes release mtDNA in the medium. The findings suggest that cfc-mtDNA is associated with AF stage, especially in males, and with patients at risk for AF recurrence after treatment.
Collapse
|
18
|
Idebenone Has Distinct Effects on Mitochondrial Respiration in Cortical Astrocytes Compared to Cortical Neurons Due to Differential NQO1 Activity. J Neurosci 2020; 40:4609-4619. [PMID: 32350039 DOI: 10.1523/jneurosci.1632-17.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Idebenone is a synthetic quinone that on reduction in cells can bypass mitochondrial Complex I defects by donating electrons to Complex III. The drug is used clinically to treat the Complex I disease Leber's hereditary optic neuropathy (LHON), but has been less successful in clinical trials for other neurodegenerative diseases. NAD(P)H:quinone oxidoreductase 1 (NQO1) appears to be the main intracellular enzyme catalyzing idebenone reduction. However, NQO1 is not universally expressed by cells of the brain. Using primary rat cortical cells pooled from both sexes, we tested the hypotheses that the level of endogenous NQO1 activity limits the ability of neurons, but not astrocytes, to use idebenone as an electron donor to support mitochondrial respiration. We then tested the prediction that NQO1 induction by pharmacological activation of the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) enables idebenone to bypass Complex I in cells with poor NQO1 expression. We found that idebenone stimulated respiration by astrocytes but reduced the respiratory capacity of neurons. Importantly, idebenone supported mitochondrial oxygen consumption in the presence of a Complex I inhibitor in astrocytes but not neurons, and this ability was reversed by inhibiting NQO1. Conversely, recombinant NQO1 delivery to neurons prevented respiratory impairment and conferred Complex I bypass activity. Nrf2 activators failed to increase NQO1 in neurons, but carnosic acid induced NQO1 in COS-7 cells that expressed little endogenous enzyme. Carnosic acid-idebenone combination treatment promoted NQO1-dependent Complex I bypass activity in these cells. Thus, combination drug strategies targeting NQO1 may promote the repurposing of idebenone for additional disorders.SIGNIFICANCE STATEMENT Idebenone is used clinically to treat loss of visual acuity in Leber's hereditary optic neuropathy. Clinical trials for several additional diseases have failed. This study demonstrates a fundamental difference in the way idebenone affects mitochondrial respiration in cortical neurons compared with cortical astrocytes. Cortical neurons are unable to use idebenone as a direct mitochondrial electron donor due to NQO1 deficiency. Our results suggest that idebenone behaves as an NQO1-dependent prodrug, raising the possibility that lack of neuronal NQO1 activity has contributed to the limited efficacy of idebenone in neurodegenerative disease treatment. Combination therapy with drugs able to safely induce NQO1 in neurons, as well as other brain cell types, may be able to unlock the neuroprotective therapeutic potential of idebenone or related quinones.
Collapse
|
19
|
Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular Performance of Nanoparticles in Cancer Therapy. Int J Nanomedicine 2020; 15:675-704. [PMID: 32103936 PMCID: PMC7008395 DOI: 10.2147/ijn.s226186] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
With the advent of nanotechnology, various modes of traditional treatment strategies have been transformed extensively owing to the advantageous morphological, physiochemical, and functional attributes of nano-sized materials, which are of particular interest in diverse biomedical applications, such as diagnostics, sensing, imaging, and drug delivery. Despite their success in delivering therapeutic agents, several traditional nanocarriers often end up with deprived selectivity and undesired therapeutic outcome, which significantly limit their clinical applicability. Further advancements in terms of improved selectivity to exhibit desired therapeutic outcome toward ablating cancer cells have been predominantly made focusing on the precise entry of nanoparticles into tumor cells via targeting ligands, and subsequent delivery of therapeutic cargo in response to specific biological or external stimuli. However, there is enough room intracellularly, where diverse small-sized nanomaterials can accumulate and significantly exert potentially specific mechanisms of antitumor effects toward activation of precise cancer cell death pathways that can be explored. In this review, we aim to summarize the intracellular pathways of nanoparticles, highlighting the principles and state of their destructive effects in the subcellular structures as well as the current limitations of conventional therapeutic approaches. Next, we give an overview of subcellular performances and the fate of internalized nanoparticles under various organelle circumstances, particularly endosome or lysosome, mitochondria, nucleus, endoplasmic reticulum, and Golgi apparatus, by comprehensively emphasizing the unique mechanisms with a series of interesting reports. Moreover, intracellular transformation of the internalized nanoparticles, prominent outcome and potential affluence of these interdependent subcellular components in cancer therapy are emphasized. Finally, we conclude with perspectives with a focus on the contemporary challenges in their clinical applicability.
Collapse
Affiliation(s)
- Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| |
Collapse
|
20
|
Solanki A, Rajendran A, Mohan S, Raj R, Vundinti BR. Mitochondrial DNA variations and mitochondrial dysfunction in Fanconi anemia. PLoS One 2020; 15:e0227603. [PMID: 31940411 PMCID: PMC6961948 DOI: 10.1371/journal.pone.0227603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/23/2019] [Indexed: 11/18/2022] Open
Abstract
In-vitro studies with different Fanconi anemia (FA) cell lines and FANC gene silenced cell lines indicating involvement of mitochondria function in pathogenesis of FA have been reported. However, in-vivo studies have not been studied so far to understand the role of mitochondrial markers in pathogenesis of FA. We have carried out a systematic set of biomarker studies for elucidating involvement of mitochondrial dysfunction in disease pathogenesis for Indian FA patients. We report changes in the mtDNA number in 59% of FA patients studied, a high frequency of mtDNA variations (37.5% of non-synonymous variations and 62.5% synonymous variations) and downregulation of mtDNA complex-I and complex-III encoding genes of OXPHOS (p<0.05) as strong biomarkers for impairment of mitochondrial functions in FA. Deregulation of expression of mitophagy genes (ATG; p>0.05, Beclin-1; p>0.05, and MAP1-LC3, p<0.05) has also been observed, suggesting inability of FA cells to clear off impaired mitochondria. We hypothesize that accumulation of such impaired mitochondria in FA cells therefore may be the principal cause for bone marrow failure (BMF) and a plausible effect of inefficient clearance of impaired mitochondria in FA.
Collapse
Affiliation(s)
- Avani Solanki
- Department of Cytogenetics, National Institute of Immunohaematology, K.E.M. Hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Aruna Rajendran
- Department of Hematology, Institute of Child Health and Hospital for Children, Egmore, Chennai, Tamil Nadu, India
| | - Sheila Mohan
- Pediatric Haematology Department, Apollo Children’s Hospital, Chennai, Tamil Nadu, India
| | - Revathy Raj
- Pediatric Haematology Department, Apollo Children’s Hospital, Chennai, Tamil Nadu, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, National Institute of Immunohaematology, K.E.M. Hospital Campus, Parel, Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
21
|
Mollá B, Muñoz-Lasso DC, Calap P, Fernandez-Vilata A, de la Iglesia-Vaya M, Pallardó FV, Moltó MD, Palau F, Gonzalez-Cabo P. Phosphodiesterase Inhibitors Revert Axonal Dystrophy in Friedreich's Ataxia Mouse Model. Neurotherapeutics 2019; 16:432-449. [PMID: 30761510 PMCID: PMC6554462 DOI: 10.1007/s13311-018-00706-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion within intron 1 of the FXN gene and characterized by peripheral neuropathy. A major feature of FRDA is frataxin deficiency with the loss of large sensory neurons of the dorsal root ganglia (DRG), namely proprioceptive neurons, undergoing dying-back neurodegeneration with progression to posterior columns of the spinal cord and cerebellar ataxia. We used isolated DRGs from a YG8R FRDA mouse model and C57BL/6J control mice for a proteomic study and a primary culture of sensory neurons from DRG to test novel pharmacological strategies. We found a decreased expression of electron transport chain (ETC) proteins, the oxidative phosphorylation (OXPHOS) system and antioxidant enzymes, confirming a clear impairment in mitochondrial function and an oxidative stress-prone phenotype. The proteomic profile also showed a decreased expression in Ca2+ signaling related proteins and G protein-coupled receptors (GPCRs). These receptors modulate intracellular cAMP/cGMP and Ca2+ levels. Treatment of frataxin-deficient sensory neurons with phosphodiesterase (PDE) inhibitors was able to restore improper cytosolic Ca2+ levels and revert the axonal dystrophy found in DRG neurons of YG8R mice. In conclusion, the present study shows the effectiveness of PDE inhibitors against axonal degeneration of sensory neurons in YG8R mice. Our findings indicate that PDE inhibitors may become a future FRDA pharmacological treatment.
Collapse
Affiliation(s)
- Belén Mollá
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
- Instituto de Biomedicina de Valencia (IBV), CSIC, 46010, Valencia, Spain
| | - Diana C Muñoz-Lasso
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez, 46010, Valencia, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, 46010, Spain
| | - Pablo Calap
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez, 46010, Valencia, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, 46010, Spain
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100, Valencia, Spain
| | - Angel Fernandez-Vilata
- Brain Connectivity Laboratory, Joint Unit FISABIO & Prince Felipe Research Centre (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vaya
- Brain Connectivity Laboratory, Joint Unit FISABIO & Prince Felipe Research Centre (CIPF), 46012, Valencia, Spain
- Regional Ministry of Health in Valencia, Hospital Sagunto (CEIB-CSUSP), Valencia, 46500, Spain
- CIBER de Salud Mental (CIBERSAM), Valencia, 46010, Spain
| | - Federico V Pallardó
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez, 46010, Valencia, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, 46010, Spain
- Biomedical Research Institute INCLIVA, 46010, Valencia, Spain
| | - Maria Dolores Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100, Valencia, Spain
- CIBER de Salud Mental (CIBERSAM), Valencia, 46010, Spain
- Biomedical Research Institute INCLIVA, 46010, Valencia, Spain
| | - Francesc Palau
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
- Institut de Recerca Sant Joan de Déu and Department of Genetic & Molecular Medicine and IPER, Hospital Sant Joan de Déu, 08950, Barcelona, Spain
- Department of Pediatrics, University of Barcelona School of Medicine, Barcelona, 08036, Spain
| | - Pilar Gonzalez-Cabo
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain.
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez, 46010, Valencia, Spain.
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, 46010, Spain.
- Biomedical Research Institute INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
22
|
Gorvin CM, Ahmad BN, Stechman MJ, Loh NY, Hough TA, Leo P, Marshall M, Sethi S, Bentley L, Piret SE, Reed A, Jeyabalan J, Christie PT, Wells S, Simon MM, Mallon AM, Schulz H, Huebner N, Brown MA, Cox RD, Brown SD, Thakker RV. An N-Ethyl-N-Nitrosourea (ENU)-Induced Tyr265Stop Mutation of the DNA Polymerase Accessory Subunit Gamma 2 (Polg2) Is Associated With Renal Calcification in Mice. J Bone Miner Res 2019; 34:497-507. [PMID: 30395686 PMCID: PMC6446808 DOI: 10.1002/jbmr.3624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 12/24/2022]
Abstract
Renal calcification (RCALC) resulting in nephrolithiasis and nephrocalcinosis, which affects ∼10% of adults by 70 years of age, involves environmental and genetic etiologies. Thus, nephrolithiasis and nephrocalcinosis occurs as an inherited disorder in ∼65% of patients, and may be associated with endocrine and metabolic disorders including: primary hyperparathyroidism, hypercalciuria, renal tubular acidosis, cystinuria, and hyperoxaluria. Investigations of families with nephrolithiasis and nephrocalcinosis have identified some causative genes, but further progress is limited as large families are unavailable for genetic studies. We therefore embarked on establishing mouse models for hereditary nephrolithiasis and nephrocalcinosis by performing abdominal X-rays to identify renal opacities in N-ethyl-N-nitrosourea (ENU)-mutagenized mice. This identified a mouse with RCALC inherited as an autosomal dominant trait, designated RCALC type 2 (RCALC2). Genomewide mapping located the Rcalc2 locus to a ∼16-Mbp region on chromosome 11D-E2 and whole-exome sequence analysis identified a heterozygous mutation in the DNA polymerase gamma-2, accessory subunit (Polg2) resulting in a nonsense mutation, Tyr265Stop (Y265X), which co-segregated with RCALC2. Kidneys of mutant mice (Polg2+/Y265X ) had lower POLG2 mRNA and protein expression, compared to wild-type littermates (Polg2+/+ ). The Polg2+/Y265X and Polg2+/+ mice had similar plasma concentrations of sodium, potassium, calcium, phosphate, chloride, urea, creatinine, glucose, and alkaline phosphatase activity; and similar urinary fractional excretion of calcium, phosphate, oxalate, and protein. Polg2 encodes the minor subunit of the mitochondrial DNA (mtDNA) polymerase and the mtDNA content in Polg2+/Y265X kidneys was reduced compared to Polg2+/+ mice, and cDNA expression profiling revealed differential expression of 26 genes involved in several biological processes including mitochondrial DNA function, apoptosis, and ubiquitination, the complement pathway, and inflammatory pathways. In addition, plasma of Polg2+/Y265X mice, compared to Polg2+/+ littermates had higher levels of reactive oxygen species. Thus, our studies have identified a mutant mouse model for inherited renal calcification associated with a Polg2 nonsense mutation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bushra N Ahmad
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael J Stechman
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nellie Y Loh
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Siddharth Sethi
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Liz Bentley
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Sian E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anita Reed
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeshmi Jeyabalan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul T Christie
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Michelle M Simon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Ann-Marie Mallon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Herbert Schulz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Steve D Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Morgan S, Duguez S, Duddy W. Personalized Medicine and Molecular Interaction Networks in Amyotrophic Lateral Sclerosis (ALS): Current Knowledge. J Pers Med 2018; 8:E44. [PMID: 30551677 PMCID: PMC6313785 DOI: 10.3390/jpm8040044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple genes and mechanisms of pathophysiology have been implicated in amyotrophic lateral sclerosis (ALS), suggesting it is a complex systemic disease. With this in mind, applying personalized medicine (PM) approaches to tailor treatment pipelines for ALS patients may be necessary. The modelling and analysis of molecular interaction networks could represent valuable resources in defining ALS-associated pathways and discovering novel therapeutic targets. Here we review existing omics datasets and analytical approaches, in order to consider how molecular interaction networks could improve our understanding of the molecular pathophysiology of this fatal neuromuscular disorder.
Collapse
Affiliation(s)
- Stephen Morgan
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, BT47 6SB, Northern Ireland, UK.
| | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, BT47 6SB, Northern Ireland, UK.
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, BT47 6SB, Northern Ireland, UK.
| |
Collapse
|
24
|
Télot L, Rousseau E, Lesuisse E, Garcia C, Morlet B, Léger T, Camadro JM, Serre V. Quantitative proteomics in Friedreich's ataxia B-lymphocytes: A valuable approach to decipher the biochemical events responsible for pathogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:997-1009. [DOI: 10.1016/j.bbadis.2018.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
|
25
|
Lin H, Magrane J, Rattelle A, Stepanova A, Galkin A, Clark EM, Dong YN, Halawani SM, Lynch DR. Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia. Dis Model Mech 2017; 10:1343-1352. [PMID: 29125827 PMCID: PMC5719255 DOI: 10.1242/dmm.030502] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common recessive inherited ataxia, results from deficiency of frataxin, a small mitochondrial protein crucial for iron-sulphur cluster formation and ATP production. Frataxin deficiency is associated with mitochondrial dysfunction in FRDA patients and animal models; however, early mitochondrial pathology in FRDA cerebellum remains elusive. Using frataxin knock-in/knockout (KIKO) mice and KIKO mice carrying the mitoDendra transgene, we show early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in this FRDA model. At asymptomatic stages, the levels of PGC-1α (PPARGC1A), the mitochondrial biogenesis master regulator, are significantly decreased in cerebellar homogenates of KIKO mice compared with age-matched controls. Similarly, the levels of the PGC-1α downstream effectors, NRF1 and Tfam, are significantly decreased, suggesting early impaired cerebellar mitochondrial biogenesis pathways. Early mitochondrial deficiency is further supported by significant reduction of the mitochondrial markers GRP75 (HSPA9) and mitofusin-1 in the cerebellar cortex. Moreover, the numbers of Dendra-labeled mitochondria are significantly decreased in cerebellar cortex, confirming asymptomatic cerebellar mitochondrial biogenesis deficits. Functionally, complex I and II enzyme activities are significantly reduced in isolated mitochondria and tissue homogenates from asymptomatic KIKO cerebella. Structurally, levels of the complex I core subunit NUDFB8 and complex II subunits SDHA and SDHB are significantly lower than those in age-matched controls. These results demonstrate complex I and II deficiency in KIKO cerebellum, consistent with defects identified in FRDA patient tissues. Thus, our findings identify early cerebellar mitochondrial biogenesis deficits as a potential mediator of cerebellar dysfunction and ataxia, thereby providing a potential therapeutic target for early intervention of FRDA.
Collapse
Affiliation(s)
- Hong Lin
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jordi Magrane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amy Rattelle
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anna Stepanova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisia M Clark
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Na Dong
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah M Halawani
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Jasoliya MJ, McMackin MZ, Henderson CK, Perlman SL, Cortopassi GA. Frataxin deficiency impairs mitochondrial biogenesis in cells, mice and humans. Hum Mol Genet 2017; 26:2627-2633. [PMID: 28444186 PMCID: PMC6251520 DOI: 10.1093/hmg/ddx141] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by inherited deficiency of the mitochondrial protein Frataxin (FXN), which has no approved therapy and is an area in which biomarkers are needed for clinical development. Here, we investigated the consequences of FXN deficiency in patient-derived FRDA fibroblast cell models, the FRDA mouse model KIKO, and in whole blood collected from patients with FRDA. We observed decreased mitochondrial copy number in all the three FRDA models tested: cells, mice and patient blood. In addition, we observed 40% residual mitochondrial gene expression in FRDA patient blood. These deficiencies of mitochondrial biogenesis in FRDA cells and patient blood are significantly correlated with FXN expression, consistent with the idea that the decreased mitochondrial biogenesis is a consequence of FXN deficiency. The observations appear relevant to the FRDA pathophysiological mechanism, as FXN-dependent deficiency in mitochondrial biogenesis and consequent mitochondrial bioenergetic defect could contribute to the neurodegenerative process. The observations may also have translational potential, as mitochondrial biogenesis could now be followed as a clinical biomarker of FRDA as a correlate of disease severity, progression, and therapeutic effect. Also, mitochondrial copy number in blood is objective, scalar and more investigator-independent than clinical-neurological patient rating scales. Thus, FXN deficiency causes mitochondrial deficiency in FRDA cells, the KIKO mouse model, and in whole blood of patients with FRDA, and this deficiency could potentially be used in clinical trial design.
Collapse
Affiliation(s)
- Mittal J. Jasoliya
- Department of Molecular Biosciences, University of California School of Veterinary Medicine, Davis, CA 95616, USA
| | - Marissa Z. McMackin
- Department of Molecular Biosciences, University of California School of Veterinary Medicine, Davis, CA 95616, USA
| | - Chelsea K. Henderson
- Department of Molecular Biosciences, University of California School of Veterinary Medicine, Davis, CA 95616, USA
| | - Susan L. Perlman
- Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095, USA
| | - Gino A. Cortopassi
- Department of Molecular Biosciences, University of California School of Veterinary Medicine, Davis, CA 95616, USA
| |
Collapse
|
27
|
Subramony SH. Degenerative Ataxias: challenges in clinical research. Ann Clin Transl Neurol 2016; 4:53-60. [PMID: 28078315 PMCID: PMC5221462 DOI: 10.1002/acn3.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
The degenerative ataxias are a very heterogeneous group of disorders that include numerous genetic diseases as well as apparently “sporadic” entities. There has been an explosion of discoveries related to genetic defects and related pathomechanisms that has brought us to the threshold of meaningful therapies in some but not all of these diseases. There also continues to be lack of knowledge of the causation of disease in a sizeable proportion of these patients. The overall rarity of ataxias as a whole and certainly of the individual genetic entities together with slow and variable progression and variable prognosis in juxtaposition with a rapid development of possible therapies in the horizon such as gene replacement and gene knock‐down strategies places the ataxias in a unique position distinct from other similar neurodegenerative diseases. The pace of laboratory research seems not matched by the pace of clinical research and clinical trial readiness. This review summarizes the author's views on the various challenges in translational research in ataxias and hopes to stimulate further thought and discussions on how to bring real help to these patients.
Collapse
Affiliation(s)
- Sub H Subramony
- Department of Neurology University of Florida College of Medicine and McKnight Brain Institute Gainesville Florida
| |
Collapse
|
28
|
Abrahao A, Pedroso JL, de Carvalho Aguiar PM, Barsottini OGP. Gene Expression Profile in Peripheral Blood Cells of Friedreich Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2016; 15:306-13. [PMID: 26170003 DOI: 10.1007/s12311-015-0700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia characterized by a combination of neurological involvement, cardiomyopathy, and skeletal and glucose metabolism disturbances. FRDA is caused by mutations in FXN gene that results in reduction of mRNA and protein levels of frataxin. Previous microarray and real-time quantitative PCR (qPCR) studies showed that the downregulation of FXN is associated with a complex gene expression profile. However, these studies showed a wide variability in the subset of genes with altered expression among tissues and models. Genes differentially expressed in peripheral blood cells (PBC) could potentially help in the understanding of FRDA pathophysiology and also function as reliable disease biomarkers obtained from an easily accessible tissue, which could have implications in clinical practice. This study aimed to validate by qPCR the expression of 26 genes, revealed as differentially expressed by other studies, using peripheral blood cells (PBC) of 11 FRDA patients compared to 11 healthy controls. We found a robust downregulation of FXN, but no statistically significant differences were found between FRDA and controls for the remaining genes. Except for FXN, our study did not find a differential gene expression profile in PBC of FRDA patients and a reliable gene expression profile biomarker in a clinical relevant and noninvasive tissue remains unclear.
Collapse
Affiliation(s)
- Agessandro Abrahao
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Jose Luiz Pedroso
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Patricia Maria de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Division of Movement Disorders, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo - UNIFESP, Rua Pedro de Toledo 650, Vila Clementino, São Paulo, SP, 04039-002, Brazil.
| | - Orlando Graziani Povoas Barsottini
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Balali M, Kamalidehghan B, Farhadi M, Ahmadipour F, Ashkezari MD, Hemami MR, Arabzadeh H, Falah M, Meng GY, Houshmand M. Association of nuclear and mitochondrial genes with audiological examinations in Iranian patients with nonaminoglycoside antibiotics-induced hearing loss. Ther Clin Risk Manag 2016; 12:117-28. [PMID: 26889084 PMCID: PMC4743636 DOI: 10.2147/tcrm.s90581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA mutations play an important role in causing sensorineural hearing loss. The purpose of this study was to determine the association of the mitochondrial genes RNR1, MT-TL1, and ND1 as well as the nuclear genes GJB2 and GJB6 with audiological examinations in nonfamilial Iranians with cochlear implants, using polymerase chain reaction, DNA sequencing, and RNA secondary structure analysis. We found that there were no novel mutations in the mitochondrial gene 12S rRNA (MT-RNR1) in patients with and without GJB2 mutation (GJB2+ and GJB2−, respectively), but a total of six polymorphisms were found. No mutations were observed in tRNALeu(UUR) (MT-TL1). Furthermore, eight polymorphisms were found in the mitochondrial ND1 gene. Additionally, no mutations were observed in the nuclear GJB6 gene in patients in the GJB2− and GJB2+ groups. The speech intelligibility rating and category of auditory perception tests were statistically assessed in patients in the GJB2− and GJB2+ groups. The results indicated that there was a significant difference (P<0.05) between the categories of auditory perception score in the GJB2− group compared to that in the GJB2+ group. Successful cochlear implantation was observed among individuals with GJB2 mutations (GJB2+) and mitochondrial polymorphisms compared to those without GJB2 mutations (GJB2−). In conclusion, the outcome of this study suggests that variation in the mitochondrial and nuclear genes may influence the penetrance of deafness. Therefore, further genetic and functional studies are required to help patients in making the best choice for cochlear implants.
Collapse
Affiliation(s)
- Maryam Balali
- Department of Biology, Islamic Azad University, Ashkezar Branch, Ashkezar, Iran; Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Kamalidehghan
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Farhadi
- Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadipour
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Mohsen Rezaei Hemami
- Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Arabzadeh
- Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Falah
- Department and Research Centre of ENT and Head & Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Goh Yong Meng
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Massoud Houshmand
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
30
|
Zhang W, Hou L, Wang T, Lu W, Tao Y, Chen W, Du X, Huang Y. The expression characteristics of mt-ND2 gene in chicken. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3787-92. [PMID: 26332376 DOI: 10.3109/19401736.2015.1079904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p < 0.05) and hepatic tissues (p < 0.05) at 42 d-old were affected by the type of dietary fats in 5% level, while not in abdominal fat tissues. The expression of mt-ND2 in hepatic tissues was down-regulated with chicken age (p < 0.01). The interactive effect of dietary fat types with chicken age (p < 0.05) was significant on mt-ND2 mRNA level. The study demonstrated that mt-ND2 gene was extensively expressed in tissues, and the expression was affected by dietary fat types and chicken age.
Collapse
Affiliation(s)
- Wenwen Zhang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Lingling Hou
- b Animal Science College, Sichuan Agricultural University , Ya'an, Sichuan China
| | - Ting Wang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Weiwei Lu
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Yafei Tao
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Wen Chen
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Xiaohui Du
- b Animal Science College, Sichuan Agricultural University , Ya'an, Sichuan China
| | - Yanqun Huang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| |
Collapse
|
31
|
Quesada MP, Jones J, Rodríguez-Lozano FJ, Moraleda JM, Martinez S. Novel aberrant genetic and epigenetic events in Friedreich's ataxia. Exp Cell Res 2015; 335:51-61. [PMID: 25929520 DOI: 10.1016/j.yexcr.2015.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/21/2022]
Abstract
It is generally accepted that Friedreich's ataxia (FRDA) is caused by a deficiency in frataxin expression, a mitochondrial protein involved in iron homeostasis, which mainly affects the brain, dorsal root ganglia of the spinal cord, heart and in certain cases the pancreas. However, there is little knowledge as to other possible genes that may be affected in this disorder, and which can contribute to its complexity. In the current study we compared human periodontal ligament cells gene expression of healthy individuals and FRDA patients. The expression of active-caspase 3, as well as other apoptosis-related genes, was increased in the FRDA cells. Furthermore, iron-sulphur cluster genes, as well as oxidative stress-related genes were overexpressed in FRDA. Moreover, brain-derived neurotrophic factor, neuregulin 1 and miR-132 were all upregulated. These three genes are capable of regulating the expression of each other. Interestingly, when the cells from FRDA patients were co-cultured in the presence of idebenone and deferiprone, caspase expression decreased while antioxidant gene expression, as well as frataxin expression, increased. Regarding epigenetic mechanisms, the frataxin gene was hypermethylated, compared to the healthy counterparts, in the upstream GAA repetitive region. Of the three DNA methyltransferases, DNMT1 but not DNMT3׳s gene expression was higher in FRDA cells. In conclusion, our data show that FRDA cells present altered expression of genes related to cell cycle, oxidative stress and iron homeostasis which may be implicated in the increased apoptotic levels. Also, the altered expression is in a certain degree normalized in the presence of idebenone and deferiprone.
Collapse
Affiliation(s)
- Mari Paz Quesada
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain; IMIB-Arrixaca and Centro de Investigación Biomédica en Red en el Área de Salud Mental (CIBERSAM), University of Murcia, Murcia, Spain
| | - Jonathan Jones
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain
| | | | - Jose M Moraleda
- Hematology Department, Hematopoietic Transplant and Cellular Therapy Unit, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, Spain
| | - Salvador Martinez
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain; IMIB-Arrixaca and Centro de Investigación Biomédica en Red en el Área de Salud Mental (CIBERSAM), University of Murcia, Murcia, Spain.
| |
Collapse
|
32
|
Weiss SL, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Shanley TP, Bigham MT, Fitzgerald J, Banschbach S, Beckman E, Howard K, Frank E, Harmon K, Wong HR. Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:623. [PMID: 25410281 PMCID: PMC4247726 DOI: 10.1186/s13054-014-0623-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/28/2014] [Indexed: 01/09/2023]
Abstract
Introduction Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis. Methods We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock. Results In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C. Conclusions Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis. Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0623-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott L Weiss
- Division of Critical Care Medicine, Department of Anesthesia and Critical Care, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA. .,Center for Resuscitation Science, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Natalie Z Cvijanovich
- UCSF Benioff Children's Hospital Oakland, 1411 East 31st Street, Oakland, CA, 94602, USA.
| | - Geoffrey L Allen
- Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| | - Neal J Thomas
- Penn State Children's Hospital, 500 University Drive, Hershey, PA, 17033, USA.
| | - Robert J Freishtat
- Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, 20010, USA.
| | - Nick Anas
- Children's Hospital of Orange County, 1201 W La Veta Avenue, Orange, CA, 92868, USA.
| | - Keith Meyer
- Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL, 33155, USA.
| | - Paul A Checchia
- Texas Children's Hospital, 6621 Fannin Street, Houston, TX, 77030, USA.
| | - Thomas P Shanley
- CS Mott Children's Hospital at the University of Michigan, 1540 E Hospital Drive, Ann Arbor, MI, 48109, USA.
| | - Michael T Bigham
- Akron Children's Hospital, 1 Perkins Square, Akron, OH, 44302, USA.
| | - Julie Fitzgerald
- Division of Critical Care Medicine, Department of Anesthesia and Critical Care, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Sharon Banschbach
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Eileen Beckman
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Kelli Howard
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Erin Frank
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Kelli Harmon
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
| |
Collapse
|