1
|
Zhao M, Wang Y, Shen Y, Wei C, Zhang G, Sun L. A review of the roles of pathogens in Alzheimer's disease. Front Neurosci 2024; 18:1439055. [PMID: 39224577 PMCID: PMC11366636 DOI: 10.3389/fnins.2024.1439055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia and is characterized by memory loss, mental and behavioral abnormalities, and impaired ability to perform daily activities. Even as a global disease that threatens human health, effective treatments to slow the progression of AD have not been found, despite intensive research and significant investment. In recent years, the role of infections in the etiology of AD has sparked intense debate. Pathogens invade the central nervous system through a damaged blood-brain barrier or nerve trunk and disrupt the neuronal structure and function as well as homeostasis of the brain microenvironment through a series of molecular biological events. In this review, we summarize the various pathogens involved in AD pathology, discuss potential interactions between pathogens and AD, and provide an overview of the promising future of anti-pathogenic therapies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
2
|
Biagio P, Isabella DF, Federica C, Elena S, Ivan G. Alzheimer's disease and herpes viruses: Current events and perspectives. Rev Med Virol 2024; 34:e2550. [PMID: 38801246 DOI: 10.1002/rmv.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aβ) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.
Collapse
Affiliation(s)
- Pinchera Biagio
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Di Filippo Isabella
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Cuccurullo Federica
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Salvatore Elena
- Division of Neurology, Department of Neuroscience Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Gentile Ivan
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
Sanami S, Shamsabadi S, Dayhimi A, Pirhayati M, Ahmad S, Pirhayati A, Ajami M, Hemati S, Shirvani M, Alagha A, Abbarin D, Alizadeh A, Pazoki-Toroudi H. Association between cytomegalovirus infection and neurological disorders: A systematic review. Rev Med Virol 2024; 34:e2532. [PMID: 38549138 DOI: 10.1002/rmv.2532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Cytomegalovirus (CMV) belongs to the Herpesviridae family and is also known as human herpesvirus type 5. It is a common virus that usually doesn't cause any symptoms in healthy individuals. However, once infected, the virus remains in the host's body for life and can reactivate when the host's immune system weakens. This virus has been linked to several neurological disorders, including Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, Huntington's disease (HD), ataxia, Bell's palsy (BP), and brain tumours, which can cause a wide range of symptoms and challenges for those affected. CMV may influence inflammation, contribute to brain tissue damage, and elevate the risk of moderate-to-severe dementia. Multiple studies suggest a potential association between CMV and ataxia in various conditions, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, acute cerebellitis, etc. On the other hand, the evidence regarding CMV involvement in BP is conflicting, and also early indications of a link between CMV and HD were challenged by subsequent research disproving CMV's presence. This systematic review aims to comprehensively investigate any link between the pathogenesis of CMV and its potential role in neurological disorders and follows the preferred reporting items for systematic review and meta-analysis checklist. Despite significant research into the potential links between CMV infection and various neurological disorders, the direct cause-effect relationship is not fully understood and several gaps in knowledge persist. Therefore, continued research is necessary to gain a better understanding of the role of CMV in neurological disorders and potential treatment avenues.
Collapse
Affiliation(s)
- Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahnam Shamsabadi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Dayhimi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Pirhayati
- Psychiatric Department, Rasool Akram Hospital, Iran University of Medical Science, Tehran, Iran
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | | | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Hemati
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoud Shirvani
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Ahmad Alagha
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Davood Abbarin
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Li Z, Wang H, Yin Y. Peripheral inflammation is a potential etiological factor in Alzheimer's disease. Rev Neurosci 2024; 35:99-120. [PMID: 37602685 DOI: 10.1515/revneuro-2023-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| |
Collapse
|
5
|
Adelman JW, Rosas-Rogers S, Schumacher ML, Mokry RL, Terhune SS, Ebert AD. Human cytomegalovirus induces significant structural and functional changes in terminally differentiated human cortical neurons. mBio 2023; 14:e0225123. [PMID: 37966250 PMCID: PMC10746155 DOI: 10.1128/mbio.02251-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Human cytomegalovirus (HCMV) is a highly prevalent viral pathogen that can cause serious neurological deficits in infants experiencing an in utero infection. Also, as a life-long infection, HCMV has been associated with several diseases in the adult brain. HCMV is known to infect early neural progenitor cells, but whether it also infects terminally differentiated neurons is still debated. Here, we differentiated human-induced pluripotent stem cells into neurons for 84-120 days to test the ability of HCMV to infect terminally differentiated neurons and assess the downstream functional consequences. We discovered that mature human neurons are highly permissive to HCMV infection, exhibited late replication hallmarks, and produced infectious virus. Moreover, infection in terminally differentiated neurons essentially eliminated neuron function. These results demonstrate that terminally differentiated human neurons are permissive to HCMV infection, which can significantly alter both structural and functional features of this mature neuron population.
Collapse
Affiliation(s)
- Jacob W. Adelman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Suzette Rosas-Rogers
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Tan S, Chen W, Kong G, Wei L, Xie Y. Peripheral inflammation and neurocognitive impairment: correlations, underlying mechanisms, and therapeutic implications. Front Aging Neurosci 2023; 15:1305790. [PMID: 38094503 PMCID: PMC10716308 DOI: 10.3389/fnagi.2023.1305790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 08/22/2024] Open
Abstract
Cognitive impairments, such as learning and memory deficits, may occur in susceptible populations including the elderly and patients who are chronically ill or have experienced stressful events, including surgery, infection, and trauma. Accumulating lines of evidence suggested that peripheral inflammation featured by the recruitment of peripheral immune cells and the release of pro-inflammatory cytokines may be activated during aging and these conditions, participating in peripheral immune system-brain communication. Lots of progress has been achieved in deciphering the core bridging mechanism connecting peripheral inflammation and cognitive impairments, which may be helpful in developing early diagnosis, prognosis evaluation, and prevention methods based on peripheral blood circulation system sampling and intervention. In this review, we summarized the evolving evidence on the prevalence of peripheral inflammation-associated neurocognitive impairments and discussed the research advances in the underlying mechanisms. We also highlighted the prevention and treatment strategies against peripheral inflammation-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
8
|
Elhalag RH, Motawea KR, Talat NE, Rouzan SS, Reyad SM, Elsayed SM, Chébl P, Abowafia M, Shah J. Herpes Zoster virus infection and the risk of developing dementia: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e34503. [PMID: 37904465 PMCID: PMC10615483 DOI: 10.1097/md.0000000000034503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Herpes Zoster, commonly known as shingles, is a viral infection that affects a significant portion of the adult population; however, its potential role in the onset or progression of neurodegenerative disorders like dementia remains unclear. METHODS We searched the following databases: PubMed, Scopus, Cochrane library, and Web of Science. We included any randomized control trials and controlled observational studies as Cross-sectional, prospective, or retrospective cohort and case-control studies that investigated the prevalence of dementia in Herpes Zoster Virus (HZV)-infected patients and HZV-free control group or if the study investigated the prevalence of HZV in demented patients. Also, if the studies measured the levels of dementia biomarkers in patients with HZV compared with a healthy control group. RESULTS After the complete screening, 9 studies were included in the meta-analysis. In the outcome of the incidence of HZV, the pooled analysis showed no statistically significant difference between the dementia group and the No dementia group (RR = 1.04% CI = 0.86-1.25, P = .70). In the outcome of incidences of dementia and Alzheimer's disease, the pooled analysis showed no statistically significant difference between the HZV group and the incidence of dementia (RR = 0.99, 95% CI = 0.92-1.08, P = .89), (RR = 3.74, 95% CI = 0.22-62.70, P = .36) respectively. In the outcome of incidences of Herpes Zoster ophthalmicus (HZO), the generic inverse variance showed a statistically significant association between patients who have HZO and increased incidence of dementia (RR = 6.26, 95% CI = 1.30-30.19, P = .02). CONCLUSION Our study showed no significant association between HZV and the incidence of dementia or Alzheimer's disease, but it shows a significant association between HZO and the incidence of dementia. More multicenter studies are needed to establish the actual association between the HZV and dementia.
Collapse
Affiliation(s)
| | | | | | - Samah S. Rouzan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sarraa M. Reyad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Pensée Chébl
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwan Abowafia
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
9
|
Clement M. The association of microbial infection and adaptive immune cell activation in Alzheimer's disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad015. [PMID: 38567070 PMCID: PMC10917186 DOI: 10.1093/discim/kyad015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Early symptoms include the loss of memory and mild cognitive ability; however, as the disease progresses, these symptoms can present with increased severity manifesting as mood and behaviour changes, disorientation, and a loss of motor/body control. AD is one of the leading causes of death in the UK, and with an ever-increasing ageing society, patient numbers are predicted to rise posing a significant global health emergency. AD is a complex neurophysiological disorder where pathology is characterized by the deposition and aggregation of misfolded amyloid-beta (Aβ)-protein that in-turn promotes excessive tau-protein production which together drives neuronal cell dysfunction, neuroinflammation, and neurodegeneration. It is widely accepted that AD is driven by a combination of both genetic and immunological processes with recent data suggesting that adaptive immune cell activity within the parenchyma occurs throughout disease. The mechanisms behind these observations remain unclear but suggest that manipulating the adaptive immune response during AD may be an effective therapeutic strategy. Using immunotherapy for AD treatment is not a new concept as the only two approved treatments for AD use antibody-based approaches to target Aβ. However, these have been shown to only temporarily ease symptoms or slow progression highlighting the urgent need for newer treatments. This review discusses the role of the adaptive immune system during AD, how microbial infections may be contributing to inflammatory immune activity and suggests how adaptive immune processes can pose as therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Adelman JW, Rosas-Rogers S, Schumacher ML, Mokry RL, Terhune SS, Ebert AD. Human Cytomegalovirus Induces Significant Structural and Functional Changes in Terminally Differentiated Human Cortical Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531045. [PMID: 36945635 PMCID: PMC10028818 DOI: 10.1101/2023.03.03.531045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent viral pathogen that typically presents asymptomatically in healthy individuals despite lifelong latency. However, in 10-15% of congenital cases, this beta-herpesvirus demonstrates direct effects on the central nervous system, including microcephaly, cognitive/learning delays, and hearing deficits. HCMV has been widely shown to infect neural progenitor cells, but the permissiveness of fully differentiated neurons to HCMV is controversial and chronically understudied, despite potential associations between HCMV infection with neurodegenerative conditions. Using a model system representative of the human forebrain, we demonstrate that induced pluripotent stem cell (iPSC)-derived, excitatory glutamatergic and inhibitory GABAergic neurons are fully permissive to HCMV, demonstrating complete viral replication, competent virion production, and spread within the culture. Interestingly, while cell proliferation was not induced in these post-mitotic neurons, HCMV did increase expression of proliferative markers Ki67 and PCNA suggesting alterations in cell cycle machinery. These finding are consistent with previous HCMV-mediated changes in various cell types and implicate the virus' ability to alter proliferative pathways to promote virion production. HCMV also induces significant structural changes in forebrain neurons, such as the formation of syncytia and retraction of neurites. Finally, we demonstrate that HCMV disrupts calcium signaling and decreases neurotransmission, with action potential generation effectively silenced after 15 days post infection. Taken together, our data highlight the potential for forebrain neurons to be permissive to HCMV infection in the CNS, which could have significant implications on overall brain health and function.
Collapse
Affiliation(s)
- Jacob W. Adelman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Suzette Rosas-Rogers
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Rebekah L. Mokry
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Farina MP, Kim JK, Hayward MD, Crimmins EM. Links between inflammation and immune functioning with cognitive status among older Americans in the Health and Retirement Study. Brain Behav Immun Health 2022; 26:100559. [PMID: 36439057 PMCID: PMC9694056 DOI: 10.1016/j.bbih.2022.100559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Elevated inflammation and poor immune functioning are tied to worse cognitive health. Both processes are fundamental to aging and are strongly implicated in the development of age-related health outcomes, including cognitive status. However, results from prior studies evaluating links between indicators of inflammation and immune function and cognitive impairment have been inconsistent due to biomarker selection, sample selection, and cognitive outcome. Using the Health and Retirement Study (HRS), a nationally representative study of older adults in the United States, we assessed how indicators of inflammation (neutrophil-lymphocyte ratio (NLR), albumin, CRP, IL6, IL10, IL-1Ra, sTNFR1, and TGFβ1) and immune functioning (CMV, CD4+ TN/TM, and CD8+ TN/TM) are associated with cognitive status. First, to examine the association between each biomarker and cognitive status, we tested whether markers of inflammation and immune functioning varied across cognitive status categories. We found that dementia and cognitive impairment without dementia (CIND) were associated with elevated inflammation and poorer immune functioning across biomarkers except for CD4+ TN/TM. Next, we estimated multinomial logistic regression models to assess which biomarkers would continue to be associated with dementia and CIND, net of each other. In these models, albumin, cytokines, CMV, CD4+ TN/TM, and CD8+ TN/TM are associated with cognitive status. Because poor immune functioning and increased inflammation are associated with cognitive impairment, improving immune functioning and reducing inflammation may provide a mechanism for reducing ADRD risk in the population.
Collapse
Affiliation(s)
- Mateo P. Farina
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Mark D. Hayward
- Population Research Center and Department of Sociology, University of Texas at Austin, USA
| | - Eileen M. Crimmins
- Leonard Davis School of Gerontology, University of Southern California, USA
| |
Collapse
|
12
|
Nemergut M, Batkova T, Vigasova D, Bartos M, Hlozankova M, Schenkmayerova A, Liskova B, Sheardova K, Vyhnalek M, Hort J, Laczó J, Kovacova I, Sitina M, Matej R, Jancalek R, Marek M, Damborsky J. Increased occurrence of Treponema spp. and double-species infections in patients with Alzheimer's disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157114. [PMID: 35787909 DOI: 10.1016/j.scitotenv.2022.157114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Although the link between microbial infections and Alzheimer's disease (AD) has been demonstrated in multiple studies, the involvement of pathogens in the development of AD remains unclear. Here, we investigated the frequency of the 10 most commonly cited viral (HSV-1, EBV, HHV-6, HHV-7, and CMV) and bacterial (Chlamydia pneumoniae, Helicobacter pylori, Borrelia burgdorferi, Porphyromonas gingivalis, and Treponema spp.) pathogens in serum, cerebrospinal fluid (CSF) and brain tissues of AD patients. We have used an in-house multiplex PCR kit for simultaneous detection of five bacterial and five viral pathogens in serum and CSF samples from 50 AD patients and 53 healthy controls (CTRL). We observed a significantly higher frequency rate of AD patients who tested positive for Treponema spp. compared to controls (AD: 62.2 %; CTRL: 30.3 %; p-value = 0.007). Furthermore, we confirmed a significantly higher occurrence of cases with two or more simultaneous infections in AD patients compared to controls (AD: 24 %; CTRL 7.5 %; p-value = 0.029). The studied pathogens were detected with comparable frequency in serum and CSF. In contrast, Borrelia burgdorferi, human herpesvirus 7, and human cytomegalovirus were not detected in any of the studied samples. This study provides further evidence of the association between microbial infections and AD and shows that paralleled analysis of multiple sample specimens provides complementary information and is advisable for future studies.
Collapse
Affiliation(s)
- Michal Nemergut
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Tereza Batkova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Masaryk University, St. Anne's University Hospital Brno, Brno, Czech Republic; BioVendor R&D, Brno, Czech Republic
| | - Dana Vigasova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | | | | | - Andrea Schenkmayerova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Barbora Liskova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Katerina Sheardova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Masaryk University, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnalek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczó
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Ingrid Kovacova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michal Sitina
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czech Republic and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Marek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
13
|
Kouli A, Williams-Gray CH. Age-Related Adaptive Immune Changes in Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S93-S104. [PMID: 35661020 PMCID: PMC9535571 DOI: 10.3233/jpd-223228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ageing is a major risk factor for most neurodegenerative diseases, including Parkinson’s disease (PD). Progressive age-related dysregulation of the immune system is termed immunosenescence and is responsible for the weakened response to novel antigens, increased susceptibility to infections and reduced effectiveness of vaccines seen in the elderly. Immune activation, both within the brain and periphery, is heavily implicated in PD but the role of immunosenescence has not been fully explored. Studies to date provide some evidence for an attenuation in immunosenescence in PD, particularly a reduction in senescent CD8 T lymphocytes in PD cases compared to similarly aged controls. Here, we discuss recent evidence of age-related immune abnormalities in PD with a focus on T cell senescence and explore their potential role in disease pathogenesis and development.
Collapse
Affiliation(s)
- Antonina Kouli
- Department of Clinical Neurosciences, University of Cambridge, John Van Geest Centre for Brain Repair, Cambridge, UK
| | - Caroline H. Williams-Gray
- Department of Clinical Neurosciences, University of Cambridge, John Van Geest Centre for Brain Repair, Cambridge, UK
| |
Collapse
|
14
|
Zheng H, Savitz J. Effect of Cytomegalovirus Infection on the Central Nervous System: Implications for Psychiatric Disorders. Curr Top Behav Neurosci 2022; 61:215-241. [PMID: 35505056 DOI: 10.1007/7854_2022_361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a common herpesvirus that establishes lifelong latent infections and interacts extensively with the host immune system, potentially contributing to immune activation and inflammation. Given its proclivity for infecting the brain and its reactivation by inflammatory stimuli, CMV is well known for causing central nervous system complications in the immune-naïve (e.g., in utero) and in the immunocompromised (e.g., in neonates, individuals receiving transplants or cancer chemotherapy, or people living with HIV). However, its potentially pathogenic role in diseases that are characterized by more subtle immune dysregulation and inflammation such as psychiatric disorders is still a matter of debate. In this chapter, we briefly summarize the pathogenic role of CMV in immune-naïve and immunocompromised populations and then review the evidence (i.e., epidemiological studies, serological studies, postmortem studies, and recent neuroimaging studies) for a link between CMV infection and psychiatric disorders with a focus on mood disorders and schizophrenia. Finally, we discuss the potential mechanisms through which CMV may cause CNS dysfunction in the context of mental disorders and conclude with a summary of the current state of play as well as potential future research directions in this area.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.,Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
15
|
Dow CT, Greenblatt CL, Chan ED, Dow JF. Evaluation of BCG Vaccination and Plasma Amyloid: A Prospective, Pilot Study with Implications for Alzheimer’s Disease. Microorganisms 2022; 10:microorganisms10020424. [PMID: 35208878 PMCID: PMC8880735 DOI: 10.3390/microorganisms10020424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
BCG vaccine has been used for 100 years to prevent tuberculosis. Not all countries, including the United States, adopted the initial World Health Organization recommendation to use BCG. Moreover, many Western countries that had routinely used BCG have discontinued its use. Recent population studies demonstrate lower prevalence of Alzheimer’s disease (AD) in countries with high BCG coverage. Intravesicular instillation of BCG is also used to treat bladder cancer that has not invaded the bladder muscle wall and has been shown to reduce recurrence. Several retrospective studies of bladder cancer patients demonstrated that BCG treatment was associated with a significantly reduced risk of developing AD. Plasma amyloid β assessment has become a fertile area of study for an AD biomarker that is predictive of a positive amyloid PET scan. Mass spectrometry-based plasma amyloid 42/40 ratio has proven to be accurate and robust, and when combined with age and ApoE, is shown to accurately predict current and future brain amyloid status. These parameters, amyloid 42/40 ratio, age and ApoE genotype are incorporated into an Amyloid Probability Score (APS)–a score that identifies low, intermediate or high risk of having a PET scan positive for cerebral amyloid. Community recruitment was used for this open-label pilot study. Forty-nine BCG-naïve, immunocompetent individuals completed our study: prior to BCG prime and boost, as determined by the APS, 34 had low risk (APS 0–35), 5 had intermediate risk (APS 36–57) and 10 had high risk (APS 58–100). The APS range for the participant group was 0 to 94. Follow-up plasma amyloid testing 9 months after vaccination revealed a reduction in the APS in all the risk groups: low risk group (p = 0. 37), intermediate risk group (p = 0.13) and the high-risk group (statistically significant, p = 0.016). Greater benefit was seen in younger participants and those with the highest risk. The small number of participants and the nascent status of plasma amyloid testing will rightfully temper embracement of these results. However, both the favorable direction of change after BCG as well as the utility of the APS—a valuable surrogate AD biomarker—may prompt a definitive large-scale multicenter investigation of BCG and AD risk as determined by plasma amyloid peptide ratios and APS.
Collapse
Affiliation(s)
- Coad Thomas Dow
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
- Mindful Diagnostics and Therapeutics, Eau Claire, WI 54701, USA
- Correspondence:
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University, Jerusalem 9103401, Israel;
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO 80218, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80217, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Jordan F. Dow
- Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
- Northwestern Wisconsin Region Mayo Clinic Health System, Eau Claire, WI 54703, USA
| |
Collapse
|
16
|
Chakravarthi ST, Joshi SG. An Association of Pathogens and Biofilms with Alzheimer's Disease. Microorganisms 2021; 10:microorganisms10010056. [PMID: 35056505 PMCID: PMC8778325 DOI: 10.3390/microorganisms10010056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
As one of the leading causes of dementia, Alzheimer's disease (AD) is a condition in which individuals experience progressive cognitive decline. Although it is known that beta-amyloid (Aβ) deposits and neurofibrillary tangles (NFT) of tau fibrils are hallmark characteristics of AD, the exact causes of these pathologies are still mostly unknown. Evidence that infectious diseases may cause AD pathology has been accumulating for decades. The association between microbial pathogens and AD is widely studied, and there are noticeable correlations between some bacterial species and AD pathologies, especially spirochetes and some of the oral microbes. Borrelia burgdorferi has been seen to correlate with Aβ plaques and NFTs in infected cells. Because of the evidence of spirochetes in AD patients, Treponema pallidum and other oral treponemes are speculated to be a potential cause of AD. T. pallidum has been seen to form aggregates in the brain when the disease disseminates to the brain that closely resemble the Aβ plaques of AD patients. This review examines the evidence as to whether pathogens could be the cause of AD and its pathology. It offers novel speculations that treponemes may be able to induce or correlate with Alzheimer's disease.
Collapse
Affiliation(s)
- Sandhya T. Chakravarthi
- Center for Surgical Infection and Biofilm, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
| | - Suresh G. Joshi
- Center for Surgical Infection and Biofilm, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
- Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA
- Correspondence: or ; Tel.: +1-215-895-1988
| |
Collapse
|
17
|
Lophatananon A, Mekli K, Cant R, Burns A, Dobson C, Itzhaki R, Muir K. Shingles, Zostavax vaccination and risk of developing dementia: a nested case-control study-results from the UK Biobank cohort. BMJ Open 2021; 11:e045871. [PMID: 34625411 PMCID: PMC8504358 DOI: 10.1136/bmjopen-2020-045871] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To investigate the association between shingles and dementia, and between Zostavax vaccination and dementia. DESIGN Nested case-control study. SETTINGS Data were drawn from the UK Biobank cohort study with a total of 228 223 participants with Hospital Episodes Statistics and primary care linkage health records. PARTICIPANTS The analyses included 2378 incident dementia cases and 225 845 controls. Inclusion criteria for incident cases were a dementia diagnosis 3 years or more after the first assessment date derived from all sources including International Classification of Diseases (ICD)-10, ICD-9, self-report and primary care linkage records. Subjects with no dementia code from all sources were coded as controls. Both shingles and Zostavax vaccination were investigated for their association with dementia risk. RESULTS There was a small but non-significant increase in the risk of dementia in subjects with shingles diagnosed 3 years or more prior to dementia diagnosis (OR: 1.088 with 95% CI: 0.978 to 1.211). In those subjects who had had Zostavax vaccination, the risk of dementia significantly decreased (OR: 0.808 with 95% CI: 0.657 to 0.993). CONCLUSION A history of shingles was not associated with an increased risk of dementia. In subjects who were eligible for the immunisation and vaccinated with Zostavax, we saw reduced risk of developing dementia.
Collapse
Affiliation(s)
- Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care,School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Krisztina Mekli
- Division of Population Health, Health Services Research and Primary Care,School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Cant
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alistair Burns
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Curtis Dobson
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ruth Itzhaki
- The Oxford Institute of Population Ageing, University of Oxford, Oxford, UK
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care,School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Leblhuber F, Steiner K, Geisler S, Fuchs D, Gostner JM. On the Possible Relevance of Bottom-up Pathways in the Pathogenesis of Alzheimer's Disease. Curr Top Med Chem 2021; 20:1415-1421. [PMID: 32407280 DOI: 10.2174/1568026620666200514090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Dementia is an increasing health problem in older aged populations worldwide. Age-related changes in the brain can be observed decades before the first symptoms of cognitive decline appear. Cognitive impairment has chronic inflammatory components, which can be enhanced by systemic immune activation. There exist mutual interferences between inflammation and cognitive deficits. Signs of an activated immune system i.e. increases in the serum concentrations of soluble biomarkers such as neopterin or accelerated tryptophan breakdown along the kynurenine axis develop in a significant proportion of patients with dementia and correlate with the course of the disease, and they also have a predictive value. Changes in biomarker concentrations are reported to be associated with systemic infections by pathogens such as cytomegalovirus (CMV) and bacterial content in saliva. More recently, the possible influence of microbiome composition on Alzheimer's disease (AD) pathogenesis has been observed. These observations suggest that brain pathology is not the sole factor determining the pathogenesis of AD. Interestingly, patients with AD display drastic changes in markers of immune activation in the circulation and in the cerebrospinal fluid. Other data have suggested the involvement of factors extrinsic to the brain in the pathogenesis of AD. However, currently, neither the roles of these factors nor their importance has been clearly defined.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Giacconi R, Maggi F, Macera L, Spezia PG, Pistello M, Provinciali M, Piacenza F, Basso A, Bürkle A, Moreno-Villanueva M, Dollé MET, Jansen E, Grune T, Stuetz W, Gonos ES, Schön C, Bernhardt J, Grubeck-Loebenstein B, Sikora E, Dudkowska M, Janiszewska D, Toussaint O, Debacq-Chainiaux F, Franceschi C, Capri M, Hervonen A, Hurme M, Slagboom E, Breusing N, Mocchegiani E, Malavolta M. Prevalence and Loads of Torquetenovirus in the European MARK-AGE Study Population. J Gerontol A Biol Sci Med Sci 2021; 75:1838-1845. [PMID: 31838498 DOI: 10.1093/gerona/glz293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Torquetenovirus (TTV) viremia has been associated with increased mortality risk in the elderly population. This work aims to investigate TTV viremia as a potential biomarker of immunosenescence. We compared levels of circulating TTV in 1813 participants of the MARK-AGE project, including human models of delayed (offspring of centenarians [GO]) and premature (Down syndrome [DS]) immunosenescence. The TTV load was positively associated with age, cytomegalovirus (CMV) antibody levels, and the Cu/Zn ratio and negatively associated with platelets, total cholesterol, and total IgM. TTV viremia was highest in DS and lowest in GO, with intermediate levels in the SGO (spouses of GO) and RASIG (Randomly Recruited Age-Stratified Individuals From The General Population) populations. In the RASIG population, TTV DNA loads showed a slight negative association with CD3+T-cells and CD4+T-cells. Finally, males with ≥4log TTV copies/mL had a higher risk of having a CD4/CD8 ratio<1 than those with lower viremia (odds ratio [OR] = 2.85, 95% confidence interval [CI]: 1.06-7.62), as well as reduced CD3+ and CD4+T-cells compared to males with lower replication rates (<4log), even after adjusting for CMV infection. In summary, differences in immune system preservation are reflected in the models of delayed and premature immunosenescence, displaying the best and worst control over TTV replication, respectively. In the general population, TTV loads were negatively associated with CD4+ cell counts, with an increased predisposition for an inverted CD4/CD8 ratio for individuals with TTV loads ≥4log copies/mL, thus promoting an immune risk phenotype.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Fabrizio Maggi
- Department of Translational Research, University of Pisa, Italy
| | - Lisa Macera
- Department of Translational Research, University of Pisa, Italy
| | | | - Mauro Pistello
- Department of Translational Research, University of Pisa, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Andrea Basso
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, Germany
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, Germany.,Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Wolfgang Stuetz
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | | | | | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Janiszewska
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Claudio Franceschi
- CIG-Interdepartmental Center "L. Galvani," Alma Mater Studiorum, University of Bologna, Italy
| | - Miriam Capri
- CIG-Interdepartmental Center "L. Galvani," Alma Mater Studiorum, University of Bologna, Italy
| | | | - Mikko Hurme
- Faculty of Medicine and Biosciences, University of Tampere, Finland
| | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, The Netherlands
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
20
|
Ng TKS, Tagawa A, Ho RCM, Larbi A, Kua EH, Mahendran R, Carollo JJ, Heyn PC. Commonalities in biomarkers and phenotypes between mild cognitive impairment and cerebral palsy: a pilot exploratory study. Aging (Albany NY) 2021; 13:1773-1816. [PMID: 33497355 PMCID: PMC7880365 DOI: 10.18632/aging.202563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022]
Abstract
Clinically, individuals with cerebral palsy (CP) experience symptoms of accelerated biological aging. Accumulative deficits in both molecular underpinnings and functions in young adults with CP can lead to premature aging, such as heart disease and mild cognitive impairment (MCI). MCI is an intermediate stage between healthy aging and dementia that normally develops at old age. Owing to their intriguingly parallel yet “inverted” disease trajectories, CP might share similar pathology and phenotypes with MCI, conferring increased risk for developing dementia at a much younger age. Thus, we examined this hypothesis by evaluating these two distinct populations (MCI= 55, CP = 72). A total of nine measures (e.g., blood biomarkers, neurocognition, Framingham Heart Study Score (FHSS) were compared between the groups. Compared to MCI, upon controlling for covariates, delta FHSS, brain-derived neurotrophic factor (BDNF) levels, and systolic blood pressure were significantly lower in CP. Intriguingly, high-sensitivity CRP, several metabolic outcomes, and neurocognitive function were similar between the two groups. This study supports a shared biological underpinning and key phenotypes between CP and MCI. Thus, we proposed a double-hit model for the development of premature aging outcomes in CP through shared biomarkers. Future longitudinal follow-up studies are warranted to examine accelerated biological aging.
Collapse
Affiliation(s)
- Ted Kheng Siang Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alex Tagawa
- Children's Hospital Colorado, Center for Gait and Movement Analysis (CGMA), Aurora, CO 80045, USA.,University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roger Chun-Man Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore, Singapore.,Biomedical Global Institute of Healthcare Research and Technology (BIGHEART), National University of Singapore, Singapore, Singapore.,Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,Faculty of Education, Huaibei Normal University, Huaibei, China
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ee Heok Kua
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore, Singapore
| | - Rathi Mahendran
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore, Singapore.,Academic Development Department, Duke-NUS Medical School, Singapore, Singapore
| | - James J Carollo
- Children's Hospital Colorado, Center for Gait and Movement Analysis (CGMA), Aurora, CO 80045, USA.,University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patricia C Heyn
- Children's Hospital Colorado, Center for Gait and Movement Analysis (CGMA), Aurora, CO 80045, USA.,University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, Kurz K. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021; 13:361. [PMID: 33504065 PMCID: PMC7912578 DOI: 10.3390/nu13020361] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota-gut-brain axis plays an important role in the development of neurodegenerative diseases. Commensal and pathogenic enteric bacteria can influence brain and immune system function by the production of lipopolysaccharides and amyloid. Dysbiosis of the intestinal microbiome induces local and consecutively systemic immune-mediated inflammation. Proinflammatory cytokines then trigger neuroinflammation and finally neurodegeneration. Immune-mediated oxidative stress can lead to a deficiency of vitamins and essential micronutrients. Furthermore, the wrong composition of gut microbiota might impair the intake and metabolization of nutrients. In patients with Alzheimer's disease (AD) significant alterations of the gut microbiota have been demonstrated. Standard Western diet, infections, decreased physical activity and chronic stress impact the composition and diversity of gut microbiota. A higher abundancy of "pro-inflammatory" gut microbiota goes along with enhanced systemic inflammation and neuroinflammatory processes. Thus, AD beginning in the gut is closely related to the imbalance of gut microbiota. Modulation of gut microbiota by Mediterranean diet, probiotics and curcumin can slow down cognitive decline and alter the gut microbiome significantly. A multi-domain intervention approach addressing underlying causes of AD (inflammation, infections, metabolic alterations like insulin resistance and nutrient deficiency, stress) appears very promising to reduce or even reverse cognitive decline by exerting positive effects on the gut microbiota.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Daniela Ehrlich
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Lukas Lanser
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| | - Katharina Kurz
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
22
|
Stojković D, Kostić M, Smiljković M, Aleksić M, Vasiljević P, Nikolić M, Soković M. Linking Antimicrobial Potential of Natural Products Derived from Aquatic Organisms and Microbes Involved in Alzheimer's Disease - A Review. Curr Med Chem 2020. [PMID: 29521212 DOI: 10.2174/0929867325666180309103645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The following review is oriented towards microbes linked to Alzheimer's disease (AD) and antimicrobial effect of compounds and extracts derived from aquatic organisms against specific bacteria, fungi and viruses which were found previously in patients suffering from AD. Major group of microbes linked to AD include bacteria: Chlamydia pneumoniae, Helicobacter pylori, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Actinomyces naeslundii, spirochete group; fungi: Candida sp., Cryptococcus sp., Saccharomyces sp., Malassezia sp., Botrytis sp., and viruses: herpes simplex virus type 1 (HSV-1), Human cytomegalovirus (CMV), hepatitis C virus (HCV). In the light of that fact, this review is the first to link antimicrobial potential of aquatic organisms against these sorts of microbes. This literature review might serve as a starting platform to develop novel supportive therapy for patients suffering from AD and to possibly prevent escalation of the disease in patients already having high-risk factors for AD occurrence.
Collapse
Affiliation(s)
- Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Smiljković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Milena Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
| | - Miloš Nikolić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
23
|
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer's disease. Brain 2020; 142:2905-2929. [PMID: 31532495 DOI: 10.1093/brain/awz244] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease is associated with cerebral accumulation of amyloid-β peptide and hyperphosphorylated tau. In the past 28 years, huge efforts have been made in attempting to treat the disease by reducing brain accumulation of amyloid-β in patients with Alzheimer's disease, with no success. While anti-amyloid-β therapies continue to be tested in prodromal patients with Alzheimer's disease and in subjects at risk of developing Alzheimer's disease, there is an urgent need to provide therapeutic support to patients with established Alzheimer's disease for whom current symptomatic treatment (acetylcholinesterase inhibitors and N-methyl d-aspartate antagonist) provide limited help. The possibility of an infectious aetiology for Alzheimer's disease has been repeatedly postulated over the past three decades. Infiltration of the brain by pathogens may act as a trigger or co-factor for Alzheimer's disease, with Herpes simplex virus type 1, Chlamydia pneumoniae, and Porphyromonas gingivalis being most frequently implicated. These pathogens may directly cross a weakened blood-brain barrier, reach the CNS and cause neurological damage by eliciting neuroinflammation. Alternatively, pathogens may cross a weakened intestinal barrier, reach vascular circulation and then cross blood-brain barrier or cause low grade chronic inflammation and subsequent neuroinflammation from the periphery. The gut microbiota comprises a complex community of microorganisms. Increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may impact Alzheimer's disease pathogenesis. Inflammatory microorganisms in gut microbiota are associated with peripheral inflammation and brain amyloid-β deposition in subjects with cognitive impairment. Oral microbiota may also influence Alzheimer's disease risk through circulatory or neural access to the brain. At least two possibilities can be envisaged to explain the association of suspected pathogens and Alzheimer's disease. One is that patients with Alzheimer's disease are particularly prone to microbial infections. The other is that microbial infection is a contributing cause of Alzheimer's disease. Therapeutic trials with antivirals and/or antibacterials could resolve this dilemma. Indeed, antiviral agents are being tested in patients with Alzheimer's disease in double-blind placebo-controlled studies. Although combined antibiotic therapy was found to be effective in animal models of Alzheimer's disease, antibacterial drugs are not being widely investigated in patients with Alzheimer's disease. This is because it is not clear which bacterial populations in the gut of patients with Alzheimer's disease are overexpressed and if safe, selective antibacterials are available for them. On the other hand, a bacterial protease inhibitor targeting P. gingivalis toxins is now being tested in patients with Alzheimer's disease. Clinical studies are needed to test if countering bacterial infection may be beneficial in patients with established Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- 'C. Frugoni' Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mark Watling
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
24
|
Westman G, Schoofs C, Ingelsson M, Järhult JD, Muradrasoli S. Torque teno virus viral load is related to age, CMV infection and HLA type but not to Alzheimer's disease. PLoS One 2020; 15:e0227670. [PMID: 31917803 PMCID: PMC6952092 DOI: 10.1371/journal.pone.0227670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/24/2019] [Indexed: 11/30/2022] Open
Abstract
Torque teno virus (TTV) is an unenveloped, circular, single stranded DNA virus with a genome size of approximately 3.8 kb. Previous studies have demonstrated varying grades of association between TTV DNA levels and immune deficiencies related to age, chronic infections and cancer. Alzheimer's disease (AD) has been related to persistent viral infections such as HSV-1 and CMV, but it is not known whether TTV viral load could serve as a functional biomarker of cellular immunity in this setting. Therefore, the objective of this study was to investigate whether TTV infection and viral load is related to AD status, CMV immunity, systemic inflammation or HLA types connected to anti-viral immunity. A total of 50 AD subjects and 51 non-demented controls were included in the study. AD subjects were diagnosed according to NINCDS-ADRDA and DSM-IV criteria and neuroradiologic findings were consistent with the diagnosis. TTV viral load was analyzed in plasma samples using a quantitative real-time PCR. Using a cut-off for TTV status at 200 copies/ml, 88% (89/101) of the study subjects were classified as TTV positive. TTV viral load significantly increased with age (beta 0.049 per year, p<0.001) but significantly decreased in relation to CMV IgG levels (beta -0.022 per 1000 units, p = 0.005) and HLA-B27 positivity (beta -0.53, p = 0.023). In conclusion, TTV immune control is not significantly affected by AD status, but appears related to age, CMV humoral immune response and HLA type.
Collapse
Affiliation(s)
- Gabriel Westman
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Catherine Schoofs
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Shaman Muradrasoli
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Cytomegalovirus-Specific CD4+ T-cell Responses and CMV-IgG Levels Are Associated With Neurocognitive Impairment in People Living With HIV. J Acquir Immune Defic Syndr 2019; 79:117-125. [PMID: 29781883 DOI: 10.1097/qai.0000000000001753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mechanisms leading to neurocognitive impairment (NCI) in people living with HIV (PLWHIV) on stable combination antiretroviral therapy (cART) remain unknown. We investigated the association between immunity against cytomegalovirus (CMV), HIV-specific variables, and NCI in PLWHIV on stable cART and with low comorbidity. METHODS Fifty-two PLWHIV on stable cART and 31 HIV-uninfected controls matched on age, sex, education, and comorbidity were tested with a neurocognitive test battery, and CMV-immunoglobulin G (CMV-IgG) levels were measured. In PLWHIV, CMV-specific (CMV-pp65 and CMV-gB) CD4 and CD8 T-cell responses were measured using intracellular cytokine staining and flow cytometry. NCI was defined as a global deficit scale score (GDS score) ≥0.5. GDS scores and domain-specific scores defined severity of NCI. Logistic and linear multivariable regression analyses were used. RESULTS NCI was detected in 30.8% of PLWHIV, and HIV was associated with an adjusted odds ratio (aOR) of 5.18 [95% confidence interval (CI): 1.15 to 23.41, P = 0.033] for NCI. In PLWHIV, higher CMV-specific CD4 T-cell responses increased the probability of NCI with an aOR of 1.68 (95% CI: 1.10 to 2.57) for CMV-pp65 or an aOR of 3.73 (95% CI: 1.61 to 16.98) for CMV-gB, respectively. Similar associations were not found with CMV-IgG or CMV-specific CD8 T cells, but when assessing severity of NCI, higher CMV-IgG (per 100 U/mL) was associated with worse GDS scores (β = 0.08) (0.01-0.16), P = 0.044), specifically in the domain of speed of information processing (β = 0.20 (0.04-0.36, P = 0.019). CONCLUSIONS PLWHIV had increased risk of NCI. Excess risk may be associated with CMV-specific CD4 T-cell responses and CMV-IgG. Larger longitudinal studies investigating the impact of immunity against CMV on risk of NCI are warranted.
Collapse
|
26
|
Qin Q, Li Y. Herpesviral infections and antimicrobial protection for Alzheimer's disease: Implications for prevention and treatment. J Med Virol 2019; 91:1368-1377. [PMID: 30997676 DOI: 10.1002/jmv.25481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Accumulating evidence suggests that infections by herpesviruses might be closely linked to Alzheimer's disease (AD). Pathological hallmarks of AD brains include senile plaques induced by amyloid β peptide (Aβ) in the extracellular space and intracellular neurofibrillary tangles (NFTs) consisting of phosphorylated tau protein. The prevailing hypothesis for the mechanism of AD is amyloid cascade reaction. Recent studies revealed that infections by herpesviruses induce the similar pathological hallmarks of AD, including Aβ production, phosphorylation of tau (P-tau), oxidative stress, neuroinflammation, etc. Aβ peptide is regarded as one of the antimicrobial peptides, which inhibits HSV-1 replication. In the elderly, reactivation of herpesviruses might act as an initiator for amyloid cascade reaction in vulnerable individuals, triggering the neurofibrillary formation of phosphorylated tau and inducing oxidative stress and neuroinflammation, which can further contribute to the accumulation of Aβ and P-tau by impairing mitochondria and autophagosome. Epidemiological studies have shown AD susceptibility genes, such as APOE-ε4 allele, are highly linked to infections by herpesviruses. Interestingly, anti-herpesviral therapy significantly reduced the risk of AD in a large population study. Given that herpesviruses are arguably the most prevalent opportunistic pathogens and often reactivate in the elderly, it is reasonable to argue reactivation of herpesviruses might be major culprits for initiating AD in individuals carrying AD susceptibility genes. In this review, we summarize epidemiological and molecular evidence that support for a hypothesis of herpesviral infections and antimicrobial protection in the development of AD, and discuss the implications for future prevention and treatment of the disease.
Collapse
Affiliation(s)
- Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Li
- Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
27
|
Clement M, Humphreys IR. Cytokine-Mediated Induction and Regulation of Tissue Damage During Cytomegalovirus Infection. Front Immunol 2019; 10:78. [PMID: 30761144 PMCID: PMC6362858 DOI: 10.3389/fimmu.2019.00078] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus with high sero-prevalence within the human population. Primary HCMV infection and life-long carriage are typically asymptomatic. However, HCMV is implicated in exacerbation of chronic conditions and associated damage in individuals with intact immune systems. Furthermore, HCMV is a significant cause of morbidity and mortality in the immunologically immature and immune-compromised where disease is associated with tissue damage. Infection-induced inflammation, including robust cytokine responses, is a key component of pathologies associated with many viruses. Despite encoding a large number of immune-evasion genes, HCMV also triggers the induction of inflammatory cytokine responses during infection. Thus, understanding how cytokines contribute to CMV-induced pathologies and the mechanisms through which they are regulated may inform clinical management of disease. Herein, we discuss our current understanding based on clinical observation and in vivo modeling of disease of the role that cytokines play in CMV pathogenesis. Specifically, in the context of the different tissues and organs in which CMV replicates, we give a broad overview of the beneficial and adverse effects that cytokines have during infection and describe how cytokine-mediated tissue damage is regulated. We discuss the implications of findings derived from mice and humans for therapeutic intervention strategies and our understanding of how host genetics may influence the outcome of CMV infections.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff, United Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff, United Kingdom
| |
Collapse
|
28
|
Giacconi R, Maggi F, Macera L, Pistello M, Provinciali M, Giannecchini S, Martelli F, Spezia PG, Mariani E, Galeazzi R, Costarelli L, Iovino L, Galimberti S, Nisi L, Piacenza F, Malavolta M. Torquetenovirus (TTV) load is associated with mortality in Italian elderly subjects. Exp Gerontol 2018; 112:103-111. [PMID: 30223047 DOI: 10.1016/j.exger.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/22/2018] [Accepted: 09/09/2018] [Indexed: 12/20/2022]
Abstract
An age-related dysregulation of immune response, known as immunosenescence, contributes to increased susceptibility to infections, frailty and high risk of mortality in the elderly. Torquetenovirus (TTV), a circular, single-stranded DNA virus, is highly prevalent in the general population and it may persist in the organism, also in association with other viruses such as cytomegalovirus (CMV), causing chronic viremia. The relationship that TTV establishes with the immune system of infected hosts is not clear. It is known that TTV encodes microRNAs (miRNAs) that might contribute to immune evasion and that the highest viral loads are found in peripheral blood cells. Moreover, it is suspected that TTV infection lead to increased production of inflammatory mediators, thus playing a role in immunosenescence. We investigated the association of TTV load and miRNAs expression with inflammatory and immune markers and the influence of TTV load on mortality within a cohort of 379 elderly subjects who were followed up for 3 years. TTV DNA load in polymorphonuclear leukocytes was slightly positively correlated with age and negatively associated with serum albumin levels and NK cell activity. A marginal positive correlation between TTV DNA load, monocytes and IL-8 plasma levels was found in females and males respectively. TTV DNA copies ≥4.0 log represented a strong predictor of mortality (Hazard ratio = 4.78, 95% CI: 1.70-13.44, after adjusting for age, sex and the main predictors of mortality rate) and this association remained significant even after the CMV IgG antibody titer was included in the model (HR = 9.83; 95% CI: 2.48-38.97; N = 343 subjects). Moreover, multiple linear regression model showed that TTV miRNA-t3b of genogroup 3 was inversely associated with triglycerides, monocytes and C-reactive protein, and directly associated with IL6. Overall these findings suggest a role of TTV in immunesenescence and in the prediction of all-cause mortality risk in Italian elderly subjects. Further studies are needed to fully understand the pathogenic mechanisms of TTV infection during aging.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy.
| | - Fabrizio Maggi
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Lisa Macera
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Martelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Giorgio Spezia
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Roberta Galeazzi
- Clinical Laboratory & Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - Laura Costarelli
- Clinical Laboratory & Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - Lorenzo Iovino
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Nisi
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|
29
|
Pantaleão L, Rocha GHO, Reutelingsperger C, Tiago M, Maria-Engler SS, Solito E, Farsky SP. Connections of annexin A1 and translocator protein-18 kDa on toll like receptor stimulated BV-2 cells. Exp Cell Res 2018; 367:282-290. [DOI: 10.1016/j.yexcr.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 01/27/2023]
|
30
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
31
|
Doyon P, Johansson O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med Hypotheses 2017; 106:71-87. [PMID: 28818275 DOI: 10.1016/j.mehy.2017.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
|
32
|
McManus RM, Heneka MT. Role of neuroinflammation in neurodegeneration: new insights. ALZHEIMERS RESEARCH & THERAPY 2017; 9:14. [PMID: 28259169 PMCID: PMC5336609 DOI: 10.1186/s13195-017-0241-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously, the contribution of peripheral infection to cognitive decline was largely overlooked however, the past 15 years have established a key role for infectious pathogens in the progression of age-related neurodegeneration. It is now accepted that the immune privilege of the brain is not absolute, and that cells of the central nervous system are sensitive to both the inflammatory events occurring in the periphery and to the infiltration of peripheral immune cells. This is particularly relevant for the progression of Alzheimer’s disease, in which it has been demonstrated that patients are more vulnerable to infection-related cognitive changes. This can occur from typical infectious challenges such as respiratory tract infections, although a number of specific viral, bacterial, and fungal pathogens have also been associated with the development of the disease. To date, it is not clear whether these microorganisms are directly related to Alzheimer’s disease progression or if they are opportune pathogens that easily colonize those with dementia and exacerbate the ongoing inflammation observed in these individuals. This review will discuss the impact of each of these challenges, and examine the changes known to occur with age in the peripheral immune system, which may contribute to the age-related vulnerability to infection-induced cognitive decline.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127, Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127, Bonn, Germany. .,Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
33
|
Westman G, Blomberg J, Yun Z, Lannfelt L, Ingelsson M, Eriksson BM. Decreased HHV-6 IgG in Alzheimer's Disease. Front Neurol 2017; 8:40. [PMID: 28265256 PMCID: PMC5316842 DOI: 10.3389/fneur.2017.00040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/27/2017] [Indexed: 01/20/2023] Open
Abstract
Human herpesviruses have previously been implicated in the pathogenesis of Alzheimer's disease (AD) but whether they are causal, facilitating, or confounding factors is yet to be established. A total of 50 AD subjects and 52 non-demented (ND) controls were analyzed in a multiplex assay for IgG reactivity toward herpes simplex virus (HSV), varicella zoster virus (VZV), cytomegalovirus (CMV), and human herpesvirus 6 (HHV-6). The HHV-6 IgG reactivity was significantly lower in AD subjects compared to ND controls, whereas there were no differences in HSV, VZV, or CMV antibody levels between the groups. Analysis of peripheral blood mononuclear cells with a subtype-specific HHV-6 PCR revealed no signs of reactivation, as AD and ND subjects presented with comparable HHV-6 DNA levels in PBMCs, and all positive samples were of subtype B. Whether HHV-6 is a factor in AD remains to be elucidated in future studies.
Collapse
Affiliation(s)
- Gabriel Westman
- Department of Medical Sciences, Uppsala University , Uppsala , Sweden
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University , Uppsala , Sweden
| | - Zhibing Yun
- Department of Laboratory Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University , Uppsala , Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University , Uppsala , Sweden
| | | |
Collapse
|
34
|
Deng LL, Yuan D, Zhou ZY, Wan JZ, Zhang CC, Liu CQ, Dun YY, Zhao HX, Zhao B, Yang YJ, Wang T. Saponins from Panax japonicus attenuate age-related neuroinflammation via regulation of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways. Neural Regen Res 2017; 12:1877-1884. [PMID: 29239335 PMCID: PMC5745843 DOI: 10.4103/1673-5374.219047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuroinflammation is recognized as an important pathogenic factor for aging and related cognitive disorders. Mitogen-activated protein kinase and nuclear factor kappa B signaling pathways may mediate neuroinflammation. Saponins from Panax japonicus are the most abundant and bioactive members in rhizomes of Panax japonicus, and show anti-inflammatory activity. However, it is not known whether saponin from Panax japonicus has an anti-inflammatory effect in the aging brain, and likewise its underlying mechanisms. Sprague-Dawley rats were divided into control groups (3-, 9-, 15-, and 24-month-old groups) and saponins from Panax japonicus-treated groups. Saponins from Panax japonicus-treated groups were orally administrated saponins from Panax japonicus at three doses of 10, 30, and 60 mg/kg once daily for 6 months until the rats were 24 months old. Immunohistochemical staining and western blot assay results demonstrated that many microglia were activated in 24-month-old rats compared with 3- and 9-month-old rats. Expression of interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and inducible nitric oxide synthase increased. Each dose of saponins from Panax japonicus visibly suppressed microglial activation in the aging rat brain, and inhibited expression levels of the above factors. Each dose of saponins from Panax japonicus markedly diminished levels of nuclear factor kappa B, IκBα, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. These results confirm that saponins from Panax japonicus can mitigate neuroinflammation in the aging rat brain by inhibition of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways.
Collapse
Affiliation(s)
- Li-Li Deng
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province; Renhe Hospital, Second College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Ding Yuan
- Renhe Hospital, Second College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Yong Zhou
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Jing-Zhi Wan
- Renhe Hospital, Second College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Chang-Cheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Chao-Qi Liu
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Yao-Yan Dun
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Hai-Xia Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Bo Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Yuan-Jian Yang
- Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ting Wang
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
35
|
Bourgade K, Dupuis G, Frost EH, Fülöp T. Anti-Viral Properties of Amyloid-β Peptides. J Alzheimers Dis 2016; 54:859-878. [DOI: 10.3233/jad-160517] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tamàs Fülöp
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
36
|
Licastro F, Porcellini E. Persistent infections, immune-senescence and Alzheimer's disease. Oncoscience 2016; 3:135-42. [PMID: 27489858 PMCID: PMC4965253 DOI: 10.18632/oncoscience.309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/15/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Classical hallmarks of AD such as amyloid deposition and neurofibrillary tangles do not completely explain AD pathogenesis. Recent investigations proposed Aβ peptide as an anti-microbial factor. Our previous works suggested that the concomitant presence of single nucleotide polymorphisms (SNPs) from AD genetic studies might impair antiviral defenses and increase the individual susceptibility to herpes virus infection. Viruses of herpes family by inducing frequent cycles of reactivation and latency constantly challenge the immune response and drive the accumulation of memory T cells. However, the immune system is not able to completely eradicate these viruses. The continuous antigen stimulation activates chronic inflammatory responses that may progressively induce neurodegenerative mechanisms in genetically susceptible elderly. The aim of this paper is to suggest new perspectives in clinical pathogenesis of AD with potential prevention and new medical treatment of the age associated cognitive decline.
Collapse
Affiliation(s)
- Federico Licastro
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna 40126, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
37
|
Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer's Disease. J Alzheimers Dis 2016; 48:319-53. [PMID: 26401998 PMCID: PMC4923765 DOI: 10.3233/jad-142853] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer's disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials.
Collapse
Affiliation(s)
- Steven A Harris
- St. Vincent Medical Group, Northside Internal Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
38
|
Rothe K, Quandt D, Schubert K, Rossol M, Klingner M, Jasinski-Bergner S, Scholz R, Seliger B, Pierer M, Baerwald C, Wagner U. Latent Cytomegalovirus Infection in Rheumatoid Arthritis and Increased Frequencies of Cytolytic LIR-1+CD8+ T Cells. Arthritis Rheumatol 2016; 68:337-46. [PMID: 26314621 PMCID: PMC5066744 DOI: 10.1002/art.39331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
Objective Leukocyte immunoglobulin‐like receptor 1 (LIR‐1) is up‐regulated by cytomegalovirus (CMV), which in turn, has been associated with premature aging and more severe joint disease in patients with rheumatoid arthritis (RA). The aim of this study was to investigate the expression and functional significance of LIR‐1 in CMV‐positive RA patients. Methods We determined the phenotype, cytolytic potential, CMV‐specific proliferation, and HLA–G–triggered, LIR‐1–mediated inhibition of interferon‐γ secretion of LIR‐1+ T cells in RA patients and healthy controls. Results We found increased frequencies of CD8+ T cells with CMV pp65–specific T cell receptors in CMV‐positive RA patients as compared to CMV‐positive healthy controls. CMV‐specific CD8+ T cells in these patients were preferentially LIR‐1+ and exhibited a terminally differentiated polyfunctional phenotype. The numbers of LIR‐1+CD8+ T cells increased with age and disease activity, and showed high levels of reactivity to CMV antigens. Ligation of LIR‐1 with soluble HLA–G molecules in vitro confirmed an inhibitory role of the molecule when expressed on CD8+ T cells in RA patients. Conclusion We propose that latent CMV infection in the context of a chronic autoimmune response induces the recently described “chronic infection phenotype” in CD8+ T cells, which retains anti‐infectious effector features while exhibiting autoreactive cytolytic potential. This response is likely dampened by LIR‐1 to avoid overwhelming immunopathologic changes in the setting of the autoimmune disease RA. The known deficiency of soluble HLA–G in RA and the observed association of LIR‐1 expression with disease activity suggest, however, that LIR‐1+ T cells are insufficiently controlled in RA and are still likely to be involved in the pathogenesis of the disease.
Collapse
|
39
|
Shmeleva EV, Boag SE, Murali S, Bennaceur K, Das R, Egred M, Purcell I, Edwards R, Todryk S, Spyridopoulos I. Differences in immune responses between CMV-seronegative and -seropositive patients with myocardial ischemia and reperfusion. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:56-70. [PMID: 26029366 PMCID: PMC4444149 DOI: 10.1002/iid3.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 12/24/2022]
Abstract
CMV infection is responsible for acceleration of immune senescence and linked to systemic pathologies, including cardiovascular diseases. In this study, we investigated differences in the immune response between CMV-seropositive and seronegative patients undergoing primary percutaneous coronary intervention (PPCI) for acute myocardial infarction (MI). Peripheral blood samples were taken at six different time points: pre-, 15, 30, 90 min, 24 h after PPCI and at 3 months after MI. Absolute counts of lymphocyte subpopulations, immune response to specific and nonspecific stimulation, serum cytokines and levels of CMV-IgG, cardiolipin-IgG, and anti-endothelial cell antibodies were assessed. CMV-seropositive patients with MI showed a twofold higher IFN-γ production to PHA-stimulation, up to 2.5-fold higher levels of IP-10 in serum and up to 30% lower serum levels of IL-16 compared to CMV-seronegative individuals. CMV-seropositive patients could be divided into two subgroups with high (IL-10Hi) and low (IL-10Lo) IL-10 serum levels during the acute stage of MI. The IL-10Hi CMV-seropositive subgroup showed an increased exit of late-differentiated T lymphocytes, NK and NKT-like cells from the circulation, which may potentially enhance cytotoxic damage in the ischemic myocardium. Finally, we did not observe an acceleration of autoimmunity by MI in CMV-seropositive individuals. The immune response during acute MI showed characteristic differences between CMV seronegative and seropositive patients, with a stronger pro-inflammatory response in seropositive patients. The effects of IP-10, IL-16, and IL-10 on characteristics of acute immune responses and formation of different immune profiles in CMV-seropositive individuals require further investigation.
Collapse
Affiliation(s)
| | - Stephen E Boag
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Santosh Murali
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK ; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University Newcastle upon Tyne, UK
| | - Karim Bennaceur
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Rajiv Das
- Institute of Cellular Medicine, Newcastle University Newcastle upon Tyne, UK ; Department of Cardiology, Freeman Hospital Newcastle upon Tyne, UK
| | - Mohaned Egred
- Institute of Cellular Medicine, Newcastle University Newcastle upon Tyne, UK ; Department of Cardiology, Freeman Hospital Newcastle upon Tyne, UK
| | - Ian Purcell
- Department of Cardiology, Freeman Hospital Newcastle upon Tyne, UK
| | - Richard Edwards
- Department of Cardiology, Freeman Hospital Newcastle upon Tyne, UK
| | - Stephen Todryk
- Institute of Cellular Medicine, Newcastle University Newcastle upon Tyne, UK ; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University Newcastle upon Tyne, UK
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK ; Department of Cardiology, Freeman Hospital Newcastle upon Tyne, UK ; Institute of Ageing and Health, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Sun Q, Zhang J, Zhou N, Liu X, Shen Y. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy. PLoS One 2015; 10:e0112305. [PMID: 25647400 PMCID: PMC4315396 DOI: 10.1371/journal.pone.0112305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/16/2014] [Indexed: 12/31/2022] Open
Abstract
IgA nephropathy (IgAN) is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase (Cosmc) is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26), other renal diseases (n = 11) and healthy children (n = 13). B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2’-deoxycytidine (AZA). The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations (P = 0.113), but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 (P<0.0001) or AZA (P<0.0001). Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups (P<0.0001). The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups (P<0.0001). After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups (P<0.0001) with more markedly decreased Cosmc mRNA content (P<0.0001). After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups (P<0.0001), while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups (P<0.0001). The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated IgA1 (r = −0.948, r = 0. 707). Our results suggested that hypermethylation of Cosmc promoter region could be a key mechanism for the reduction of Cosmc mRNA expression in IgAN lymphocytes with associated increase in aberrantly glycosylated IgA1.
Collapse
Affiliation(s)
- Qiang Sun
- Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jianqian Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Nan Zhou
- Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiaorong Liu
- Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Ying Shen
- Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Itzhaki RF. Herpes simplex virus type 1 and Alzheimer's disease: increasing evidence for a major role of the virus. Front Aging Neurosci 2014; 6:202. [PMID: 25157230 PMCID: PMC4128394 DOI: 10.3389/fnagi.2014.00202] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1), when present in brain of carriers of the type 4 allele of the apolipoprotein E gene (APOE), has been implicated as a major factor in Alzheimer's disease (AD). It is proposed that virus is normally latent in many elderly brains but reactivates periodically (as in the peripheral nervous system) under certain conditions, for example stress, immunosuppression, and peripheral infection, causing cumulative damage and eventually development of AD. Diverse approaches have provided data that explicitly support, directly or indirectly, these concepts. Several have confirmed HSV1 DNA presence in human brains, and the HSV1-APOE-ε4 association in AD. Further, studies on HSV1-infected APOE-transgenic mice have shown that APOE-e4 animals display a greater potential for viral damage. Reactivated HSV1 can cause direct and inflammatory damage, probably involving increased formation of beta amyloid (Aβ) and of AD-like tau (P-tau)-changes found to occur in HSV1-infected cell cultures. Implicating HSV1 further in AD is the discovery that HSV1 DNA is specifically localized in amyloid plaques in AD. Other relevant, harmful effects of infection include the following: dynamic interactions between HSV1 and amyloid precursor protein (APP), which would affect both viral and APP transport; induction of toll-like receptors (TLRs) in HSV1-infected astrocyte cultures, which has been linked to the likely effects of reactivation of the virus in brain. Several epidemiological studies have shown, using serological data, an association between systemic infections and cognitive decline, with HSV1 particularly implicated. Genetic studies too have linked various pathways in AD with those occurring on HSV1 infection. In relation to the potential usage of antivirals to treat AD patients, acyclovir (ACV) is effective in reducing HSV1-induced AD-like changes in cell cultures, and valacyclovir, the bioactive form of ACV, might be most effective if combined with an antiviral that acts by a different mechanism, such as intravenous immunoglobulin (IVIG).
Collapse
Affiliation(s)
- Ruth F. Itzhaki
- Faculty of Life Sciences, University of ManchesterManchester, Lancs, UK
| |
Collapse
|