1
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
2
|
Rangert A, Oldin C, Golsäter M, Ludvigsson J, Åkesson K. No association between incidence of type 1 diabetes and rotavirus vaccination in Swedish children. Front Immunol 2023; 14:1175071. [PMID: 37638044 PMCID: PMC10456946 DOI: 10.3389/fimmu.2023.1175071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background Rotavirus infection is a potential trigger of type 1 diabetes (T1D) and rotavirus vaccination is hypothesized to decrease the incidence of T1D. In Sweden, rotavirus vaccination was introduced in 2014 in two regions and from 2019, nationwide. This study aims to investigate the association between rotavirus vaccination and incidence of T1D in Swedish children and whether rotavirus vaccination is associated with a change in clinical manifestation at diabetes onset. Methods A nationwide register-based study with all Swedish children <15 years of age, diagnosed with T1D 2009-2019 was conducted. 7893 children were retrieved. Nationwide vaccine coverage was collected from Child Health Services. Three vaccine groups were created: I: Vaccination start 2014; II: Gradual vaccination start 2016-2018; III: No vaccination. Incidence rates of T1D before (2009-2014) and after (2014-2019) introduction of rotavirus vaccine were compared. Findings The mean incidence of T1D in children <15 years was 42·61 per 100 000 during the observed period. When comparing the years before and after 2014 the incidence rate ratio (IRR) for children <5 years was 0·86 in group I (p=0·10), 0·85 (p=0·05) in group II and 0·87 (p=0·06) in group III. A similar IRR reduction was also seen among older children who received no vaccine. Children developing or not developing T1D were vaccinated to the same extent. No differences regarding clinical manifestation at onset associated with rotavirus vaccination were seen. Interpretation There is no association between rotavirus vaccination in children and incidence or clinical manifestation of T1D.
Collapse
Affiliation(s)
- Amanda Rangert
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Futurum – Academy of Health and Care, Region Jönköping County, Jönköping, Sweden
| | - Carin Oldin
- Child Health Services, Jönköping, Region Jönköping County, Jönköping, Sweden
| | - Marie Golsäter
- Futurum – Academy of Health and Care, Region Jönköping County, Jönköping, Sweden
- Child Health Services, Jönköping, Region Jönköping County, Jönköping, Sweden
- CHILD - Research Group, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children´s Hospital, Linköping, Sweden
| | - Karin Åkesson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Pediatrics, Ryhov County Hospital, Jönköping, Sweden
| |
Collapse
|
3
|
Klatka M, Rysz I, Hymos A, Polak A, Mertowska P, Mertowski S, Smolak K, Grywalska E. Effect of Epstein-Barr Virus Infection on Selected Immunological Parameters in Children with Type 1 Diabetes. Int J Mol Sci 2023; 24:ijms24032392. [PMID: 36768715 PMCID: PMC9917181 DOI: 10.3390/ijms24032392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders with different etiologies, pathogeneses and clinical pictures, characterized by chronic hyperglycemia due to abnormal insulin secretion or action. Type 1 diabetes mellitus is the most common type of diabetes mellitus in children and adolescents, accounting for about 90% of diabetes in the population under the age of 18. The etiopathogenesis of type 1 diabetes is multifactorial. The disease occurs as a result of the interaction of three factors: genetic predisposition, environmental factors and the immune response. Research in recent years has focused on the involvement of Epstein-Barr virus (EBV) in the pathogenesis of type I diabetes. The goals of treating type 1 diabetes include maintaining blood-glucose, fructosamine and glycated hemoglobin (HbA1c) levels; therefore, the main purpose of this study was to evaluate the effect of EBV infection on the activation of selected immune cells, fructosamine levels and HbA1c levels in children with type I diabetes. Based on our study, we found a lower percentage of CD8+ T lymphocytes with expression of the CD69 molecule in patients with anti-VCA antibodies in the IgG class, and a lower percentage of CD8+ T lymphocytes with expression of the CD25+ molecule in patients with anti-EBNA-1 antibodies in the IgG class, which may indicate limited control of the immune system during EBV infection in patients. There was a lower percentage of CD3+CD4+ T lymphocytes secreting IL-4 in the study group, indicating that a deficiency in IL-4 production may be related to the development of type 1 diabetes. There was an increase in the percentage of CD4+CD3+IL-10 lymphocytes in the study group with anti-VCA antibodies present in the IgG class and anti-EBNA-1 antibodies in the IgG class compared to the patients without antibodies. In addition, there was a significant increase in fructosamine levels and higher glycated hemoglobin levels in the study group with antibodies to EBV antigens. In addition, an increase in the percentage of T lymphocytes with a CD4+CD3+IL-17+ phenotype in the patients with anti-VCA IgG antibodies was confirmed, and higher HbA1c levels may suggest that EBV infection is accompanied by an increase in IL-17 secretion.
Collapse
Affiliation(s)
- Maria Klatka
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Izabela Rysz
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Hymos
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Polak
- Department of Endocrinology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (P.M.); (S.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (P.M.); (S.M.)
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Denner J. Xenotransplantation of pig islet cells: Potential adverse impact of virus infections on their functionality and insulin production. Xenotransplantation 2022; 30:e12789. [PMID: 36495163 DOI: 10.1111/xen.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology Free University Berlin Berlin Germany
| |
Collapse
|
5
|
Khalil RG, Abdel-Moneim A, Arafa AA, Allam G, El-Senousy WM, Mabrouk D. Possible association of rotavirus IgG with cytokine expression levels and dyslipidemia in rotavirus-infected type 1 diabetic children. Mol Biol Rep 2022; 49:7587-7599. [PMID: 35733062 PMCID: PMC9216291 DOI: 10.1007/s11033-022-07573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Background Rotavirus (RV) has been postulated as a viral trigger for the onset of autoimmune disorders, such as type 1 diabetes (T1D). This study aimed to examine the conceivable association of RV IgG with cytokine levels and dyslipidemia in the pathogenesis of pediatric T1D. Methods This study included 30 healthy controls and 80 children with T1D who were divided into two groups based on the time since their T1D diagnosis: newly diagnosed (ND ≤ 1 year; n = 30) and previously diagnosed (PD > 1 year; n = 50). ND and PD patients were also separated into negative and positive according to IgG detection (RV IgG−, ND−, and PD−; RV IgG+, ND+, and PD+). Results Positive polymerase chain reaction for RVs was evidenced in 7.5% of children with T1D. Anti-RV IgG was 30% and 36% in ND and PD, respectively, compared to healthy controls (2 of 30, 6.6%; P < 0.05). Fasting blood sugar and hemoglobin A1c significantly increased in PD+ compared to PD−. Interferon-γ and interleukin (IL)-15 levels significantly increased. IL-12 and IL-22 mRNA expression was upregulated in ND+ patients compared to that in ND− patients. IL-37 mRNA expression was significantly downregulated in ND− and ND+ patients compared to that in healthy controls. Total cholesterol and high- and low-density lipoprotein-cholesterol levels were significantly lower in PD+ than in PD−; whereas triglyceride levels were higher than those in healthy controls. Conclusions This study suggested that anti-RV IgG may have a role in the pathogenesis, development, and progression of T1D, and RV infections are implicated in dyslipidemia and inflammation status. Supplementary information The online version contains supplementary material available at 10.1007/s11033-022-07573-0.
Collapse
Affiliation(s)
- Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt. Salah Salem St, 62511, Beni-Suef, Egypt.
| | - Amany A Arafa
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Allam
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Waled M El-Senousy
- Department of Water Pollution Research, Environmental Research Division, National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Doaa Mabrouk
- Department of Microbiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Zhang X, Xu XF, Jin J. Rotavirus vaccination and the risk of type 1 diabetes and celiac disease: A systematic review and meta-analysis. Front Pediatr 2022; 10:951127. [PMID: 36090563 PMCID: PMC9459138 DOI: 10.3389/fped.2022.951127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rotavirus vaccination has been proven to effectively protect against rotavirus gastroenteritis. However, there are concerns about the relationship between rotavirus vaccination and the risk of autoimmune disorders. Thus, we conducted a systematic review and meta-analysis to comprehensively assess the association between rotavirus vaccination and type 1 diabetes (T1D) or celiac disease (CD) risk. METHODS A systematic review and meta-analysis were conducted to evaluate the type 1 diabetes or celiac disease associated with rotavirus vaccination. The following journal databases were searched to identify potential studies for inclusion: PubMed, Embase, and Cochrane Library databases. RESULTS Seven articles involving more than 5,793,055 children were included. Our results showed that rotavirus vaccination does not alter the subsequent risk of T1D (RR 0.94, 95% CI: 0.82-1.09) or CD (RR 0.86, 95% CI: 0.64-1.17) after vaccination. Furthermore, the risk of T1D was not increased or decreased for children fully exposed to rotavirus vaccination (RR 0.86, 95% CI, 0.54-1.36) and for children partially exposed to rotavirus vaccination (RR 1.05, 95% CI, 0.87-1.26). However, younger (<5 years) vaccinated children at the end of study (RR 0.84, 95% CI = 0.75-0.95) may be at a lower risk for T1D than older (≥5 years) vaccinated children (RR 0.93, 95% CI, 0.81-1.07). CONCLUSION The findings of this study suggest that rotavirus vaccination does not appear to be associated with T1D or CD in children. The protective effect of rotavirus vaccination on T1D may be presented by time dependent.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Infectious Diseases, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiang-Fei Xu
- Department of Infectious Diseases, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Jin
- Department of Infectious Diseases, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Hamza KH, Dunér E, Ulmert I, Arias A, Sorobetea D, Lahl K. Minor alterations in the intestinal microbiota composition upon Rotavirus infection do not affect susceptibility to DSS colitis. Sci Rep 2021; 11:13485. [PMID: 34188111 PMCID: PMC8242028 DOI: 10.1038/s41598-021-92796-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Viral triggers at the intestinal mucosa can have multiple global effects on intestinal integrity, causing elevated intestinal barrier strength and relative protection from subsequent inflammatory bowel disease (IBD) induction in various models. As viruses can interfere with the intestinal immune system both directly and indirectly through commensal bacteria, cause-effect relationships are difficult to define. Due to the complexity of putatively causative factors, our understanding of such virus-mediated protection is currently very limited. We here set out to better understand the impact that adult enteric infection with rotavirus (RV) might have on the composition of the intestinal microbiome and on the severity of IBD. We found that RV infection neither induced significant long-lasting microbiota community changes in the small or large intestine nor affected the severity of subsequent dextran sulfate sodium-induced colitis. Hence, adult murine RV infection does not exert lasting effects on intestinal homeostasis.
Collapse
Affiliation(s)
| | - Emma Dunér
- Immunology Section, Lund University, 221 84, Lund, Sweden
| | - Isabel Ulmert
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Armando Arias
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha (UCLM), 02008, Albacete, Spain
| | - Daniel Sorobetea
- Immunology Section, Lund University, 221 84, Lund, Sweden
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharina Lahl
- Immunology Section, Lund University, 221 84, Lund, Sweden.
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Aggarwal S, Hassan E, Baldridge MT. Experimental Methods to Study the Pathogenesis of Human Enteric RNA Viruses. Viruses 2021; 13:975. [PMID: 34070283 PMCID: PMC8225081 DOI: 10.3390/v13060975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Every year, millions of children are infected with viruses that target the gastrointestinal tract, causing acute gastroenteritis and diarrheal illness. Indeed, approximately 700 million episodes of diarrhea occur in children under five annually, with RNA viruses norovirus, rotavirus, and astrovirus serving as major causative pathogens. Numerous methodological advancements in recent years, including the establishment of novel cultivation systems using enteroids as well as the development of murine and other animal models of infection, have helped provide insight into many features of viral pathogenesis. However, many aspects of enteric viral infections remain elusive, demanding further study. Here, we describe the different in vitro and in vivo tools available to explore different pathophysiological attributes of human enteric RNA viruses, highlighting their advantages and limitations depending upon the question being explored. In addition, we discuss key areas and opportunities that would benefit from further methodological progress.
Collapse
Affiliation(s)
- Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Dian Z, Sun Y, Zhang G, Xu Y, Fan X, Yang X, Pan Q, Peppelenbosch M, Miao Z. Rotavirus-related systemic diseases: clinical manifestation, evidence and pathogenesis. Crit Rev Microbiol 2021; 47:580-595. [PMID: 33822674 DOI: 10.1080/1040841x.2021.1907738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rotaviruses, double-stranded, non-enveloped RNA viruses, are a global health concern, associated with acute gastroenteritis and secretory-driven watery diarrhoea, especially in infants and young children. Conventionally, rotavirus is primarily viewed as a pathogen for intestinal enterocytes. This notion is challenged, however, by data from patients and animal models documenting extra-intestinal clinical manifestations and viral replication following rotavirus infection. In addition to acute gastroenteritis, rotavirus infection has been linked to various neurological disorders, hepatitis and cholestasis, type 1 diabetes, respiratory illness, myocarditis, renal failure and thrombocytopenia. Concomitantly, molecular studies have provided insight into potential mechanisms by which rotavirus can enter and replicate in non-enterocyte cell types and evade host immune responses. Nevertheless, it is fair to say that the extra-intestinal aspect of the rotavirus infectious process is largely being overlooked by biomedical professionals, and there are gaps in the understanding of mechanisms of pathogenesis. Thus with the aim of increasing public and professional awareness we here provide a description of our current understanding of rotavirus-related extra-intestinal clinical manifestations and associated molecular pathogenesis. Further understanding of the processes involved should prove exceedingly useful for future diagnosis, treatment and prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Ziqin Dian
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Yi Sun
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Guiqian Zhang
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Ya Xu
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Xin Fan
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Xuemei Yang
- Department of Clinical laboratory, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Burke RM, Tate JE, Jiang B, Parashar UD. Rotavirus and Type 1 Diabetes-Is There a Connection? A Synthesis of the Evidence. J Infect Dis 2021; 222:1076-1083. [PMID: 32249284 DOI: 10.1093/infdis/jiaa168] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 12/26/2022] Open
Abstract
Although the etiology of type 1 diabetes (T1D) is not well understood, it is believed to comprise both genetic and environmental factors. Viruses are the most well studied environmental trigger, and there is a small but growing body of research on the potential influence of rotavirus on T1D. Rotavirus infections were initially identified as possible triggers of T1D given similarities between viral peptide sequences and T1D autoantigen peptide sequences. Furthermore, rotavirus infection has been shown to modify T1D risk in T1D-prone mice. However, research into associations of rotavirus infections with T1D development in humans have yielded mixed findings and suggested interactions with age and diet. As global availability of rotavirus vaccines increases, recent studies have assessed whether rotavirus vaccination modifies T1D development, finding null or protective associations. Overall, evidence to date suggests a possible triggering relationship between some wild-type rotavirus infections and T1D, but the potential effect of rotavirus vaccination remains unclear.
Collapse
Affiliation(s)
- Rachel M Burke
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline E Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Rivero-Calle I, Gómez-Rial J, Bont L, Gessner BD, Kohn M, Dagan R, Payne DC, Bruni L, Pollard AJ, García-Sastre A, Faustman DL, Osterhaus A, Butler R, Giménez Sánchez F, Álvarez F, Kaforou M, Bello X, Martinón-Torres F. TIPICO X: report of the 10th interactive infectious disease workshop on infectious diseases and vaccines. Hum Vaccin Immunother 2021; 17:759-772. [PMID: 32755474 PMCID: PMC7996078 DOI: 10.1080/21645515.2020.1788301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 11/03/2022] Open
Abstract
TIPICO is an expert meeting and workshop that aims to provide the most recent evidence in the field of infectious diseases and vaccination. The 10th Interactive Infectious Disease TIPICO workshop took place in Santiago de Compostela, Spain, on November 21-22, 2019. Cutting-edge advances in vaccination against respiratory syncytial virus, Streptococcus pneumoniae, rotavirus, human papillomavirus, Neisseria meningitidis, influenza virus, and Salmonella Typhi were discussed. Furthermore, heterologous vaccine effects were updated, including the use of Bacillus Calmette-Guérin (BCG) vaccine as potential treatment for type 1 diabetes. Finally, the workshop also included presentations and discussion on emergent virus and zoonoses, vaccine resilience, building and sustaining confidence in vaccination, approaches to vaccine decision-making, pros and cons of compulsory vaccination, the latest advances in decoding infectious diseases by RNA gene signatures, and the application of big data approaches.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Louis Bont
- Wilhelmina’s Children’s Hospital University Medical Center Utrecht, The Netherlands
| | | | - Melvin Kohn
- Vaccines and Infectious Diseases Medical Affairs, Global Medical and Scientific Affairs, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel C. Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laia Bruni
- Cancer Epidemiology Research Program, Institut Català d’Oncologia (ICO) - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Andrew J. Pollard
- Oxford Vaccines Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise L. Faustman
- The Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Osterhaus
- Artemis One Health, Utrecht, The Netherlands
- Research Center Emerging Infections and Zoonoses, Hannover, Germany
| | - Robb Butler
- WHO Regional Office for Europe, Copenhagen, Denmark
| | | | | | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| |
Collapse
|
12
|
Glanz JM, Clarke CL, Xu S, Daley MF, Shoup JA, Schroeder EB, Lewin BJ, McClure DL, Kharbanda E, Klein NP, DeStefano F. Association Between Rotavirus Vaccination and Type 1 Diabetes in Children. JAMA Pediatr 2020; 174:455-462. [PMID: 32150236 PMCID: PMC7063538 DOI: 10.1001/jamapediatrics.2019.6324] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Because rotavirus infection is a hypothesized risk factor for type 1 diabetes, live attenuated rotavirus vaccination could increase or decrease the risk of type 1 diabetes in children. OBJECTIVE To examine whether there is an association between rotavirus vaccination and incidence of type 1 diabetes in children aged 8 months to 11 years. DESIGN, SETTING, AND PARTICIPANTS A retrospective cohort study of 386 937 children born between January 1, 2006, and December 31, 2014, was conducted in 7 US health care organizations of the Vaccine Safety Datalink. Eligible children were followed up until a diagnosis of type 1 diabetes, disenrollment, or December 31, 2017. EXPOSURES Rotavirus vaccination for children aged 2 to 8 months. Three exposure groups were created. The first group included children who received all recommended doses of rotavirus vaccine by 8 months of age (fully exposed to rotavirus vaccination). The second group had received some, but not all, recommended rotavirus vaccines (partially exposed to rotavirus vaccination). The third group did not receive any doses of rotavirus vaccines (unexposed to rotavirus vaccination). MAIN OUTCOMES AND MEASURES Incidence of type 1 diabetes among children aged 8 months to 11 years. Type 1 diabetes was identified by International Classification of Diseases codes: 250.x1, 250.x3, or E10.xx in the outpatient setting. Cox proportional hazards regression models were used to analyze time to type 1 diabetes incidence from 8 months to 11 years. Hazard ratios and 95% CIs were calculated. Models were adjusted for sex, race/ethnicity, birth year, mother's age, birth weight, gestational age, number of well-child visits, and Vaccine Safety Datalink site. RESULTS In a cohort of 386 937 children (51.1% boys and 41.9% non-Hispanic white), 360 169 (93.1%) were fully exposed to rotavirus vaccination, 15 765 (4.1%) were partially exposed to rotavirus vaccination, and 11 003 (2.8%) were unexposed to rotavirus vaccination. Children were followed up a median of 5.4 years (interquartile range, 3.8-7.8 years). The total person-time follow-up in the cohort was 2 253 879 years. There were 464 cases of type 1 diabetes in the cohort, with an incidence rate of 20.6 cases per 100 000 person-years. Compared with children unexposed to rotavirus vaccination, the adjusted hazard ratio was 1.03 (95% CI, 0.62-1.72) for children fully exposed to rotavirus vaccination and 1.50 (95% CI, 0.81-2.77) for children partially exposed to rotavirus vaccination. CONCLUSIONS AND RELEVANCE The findings of this study suggest that rotavirus vaccination does not appear to be associated with type 1 diabetes in children.
Collapse
Affiliation(s)
- Jason M. Glanz
- Institute for Health Research, Kaiser Permanente Colorado, Aurora,Department of Epidemiology, Colorado School of Public Health, Aurora
| | | | - Stanley Xu
- Institute for Health Research, Kaiser Permanente Colorado, Aurora
| | - Matthew F. Daley
- Institute for Health Research, Kaiser Permanente Colorado, Aurora
| | - Jo Ann Shoup
- Institute for Health Research, Kaiser Permanente Colorado, Aurora
| | - Emily B. Schroeder
- Institute for Health Research, Kaiser Permanente Colorado, Aurora,Department of Endocrinology, Parkview Health and Parkview Physicians Group, Fort Wayne, Indiana
| | - Bruno J. Lewin
- Kaiser Permanente Department of Research and Evaluation, Kaiser Permanente of Southern California, Pasadena
| | - David L. McClure
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, Wisconsin
| | - Elyse Kharbanda
- Division of Research, HealthPartners Institute, Minneapolis, Minnesota
| | - Nicola P. Klein
- Kaiser Permanente Division of Research, Kaiser Permanente of Northern California, Oakland
| | - Frank DeStefano
- Immunization Safety Office, Vaccine Safety Datalink, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
13
|
Gómez-Rial J, Rivero-Calle I, Salas A, Martinón-Torres F. Rotavirus and autoimmunity. J Infect 2020; 81:183-189. [PMID: 32360880 DOI: 10.1016/j.jinf.2020.04.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/01/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Rotavirus, a major etiological agent of acute diarrhea in children worldwide, has historically been linked to autoimmunity. In the last few years, several physiopathological approaches have been proposed to explain the leading mechanism triggering autoimmunity, from the old concept of molecular mimicry to the emerging theory of bystander activation and break of tolerance. Epidemiological and immunological data indicate a strong link between rotavirus infection and two of the autoimmune pathologies with the highest incidence: celiac disease and diabetes. The role for current oral rotavirus vaccines is now being elucidated, with a so far positive protective association demonstrated.
Collapse
Affiliation(s)
- J Gómez-Rial
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Hospital Clínico Universitario and Universidade de Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain; Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain.
| | - I Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Hospital Clínico Universitario and Universidade de Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Travesa da Choupana s/n 15706 Galicia, Spain
| | - A Salas
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Hospital Clínico Universitario and Universidade de Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain
| | - F Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Hospital Clínico Universitario and Universidade de Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Travesa da Choupana s/n 15706 Galicia, Spain
| |
Collapse
|
14
|
Affiliation(s)
- Leonard C. Harrison
- Walter and Eliza Hall Institute for Medical Research, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Kirsten P. Perrett
- Vaccine and Immunization Research Group, Murdoch Children’s Research Institute and the Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kim Jachno
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Terry M. Nolan
- Vaccine and Immunization Research Group, Murdoch Children’s Research Institute and the Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Margo C. Honeyman
- Walter and Eliza Hall Institute for Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun 2019; 103:102301. [PMID: 31326230 DOI: 10.1016/j.jaut.2019.06.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
Abstract
The interaction over time of genetic, epigenetic and environmental factors (i.e., autoimmune ecology) increases or decreases the liability an individual would have to develop an autoimmune disease (AD) depending on the misbalance between risk and protective effects. Pathogens have been the most common antecedent events studied, but multiple other environmental factors including xenobiotic chemicals, drugs, vaccines, and nutritional factors have been implicated into the development of ADs. Three main mechanisms have been offered to explain the development of autoimmunity: molecular mimicry, epitope spreading, and bystander activation. The latter is characterized by auto-reactive B and T cells that undergo activation in an antigen-independent manner, influencing the development and course of autoimmunity. Activation occurs due to a combination of an inflammatory milieu, co-signaling ligands, and interactions with neighboring cells. In this review, we will discuss the studies performed seeking to define the role of bystander activation in systemic and organ-specific ADs. In all cases, we are cognizant of individual differences between hosts and the variable latency time for clinical expression of disease, all of which have made our understanding of the etiology of loss of immune tolerance difficult and enigmatic.
Collapse
Affiliation(s)
- Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA; Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia.
| |
Collapse
|
16
|
Lower Incidence Rate of Type 1 Diabetes after Receipt of the Rotavirus Vaccine in the United States, 2001-2017. Sci Rep 2019; 9:7727. [PMID: 31197227 PMCID: PMC6565744 DOI: 10.1038/s41598-019-44193-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/10/2019] [Indexed: 01/02/2023] Open
Abstract
We evaluated whether rotavirus vaccination is associated with the incidence of type 1 diabetes among children. We designed a cohort study of 1,474,535 infants in the United States from 2001–2017, using data from a nationwide health insurer. There was a 33% reduction in the risk of type 1 diabetes with completion of the rotavirus vaccine series compared to the unvaccinated (95% CI: 17%, 46%). Completion of the pentavalent vaccine series was associated with 37% lower risk of type 1 diabetes (95% CI: 22%, 50%). Partial vaccination (incompletion of the series) was not associated with the incidence of type 1 diabetes. There was a 31% reduction in hospitalizations in the 60-day period after vaccination (95% CI: 27%, 35%) compared to unvaccinated children. Overall, there was a 3.4% decrease in incidence annually in children ages 0–4 in the United States from 2006–2017 which coincides with the vaccine introduction in 2006. We conclude that rotavirus vaccination is associated with a reduced incidence of type 1 diabetes. Rotavirus vaccination may be the first practical measure that could play a role in the prevention of this disease.
Collapse
|
17
|
Rotavirus Vaccination Does Not Increase Type 1 Diabetes and May Decrease Celiac Disease in Children and Adolescents. Pediatr Infect Dis J 2019; 38:539-541. [PMID: 30986791 DOI: 10.1097/inf.0000000000002281] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rotavirus (RV) infection has been proposed to trigger type 1 diabetes mellitus (DM1) and celiac disease (CD) by molecular mimicry in genetically susceptible children. If so, a live attenuated oral RV vaccine could also trigger these autoimmune diseases, or else, prevent the effect of wild-type RV infection. METHODS In Rotavirus Efficacy and Safety Trial, conducted between 2001 and 2003, the participant children received RotaTeq (Kenilworth, NJ) vaccine or placebo in 1:1 ratio. The surveillance was extended as Finnish Extension Study. A questionnaire was sent in 2015 to the parents of 19,133 Finnish Extension Study participants and 5764 (30%) returned the questionnaire. Diagnosis of DM1, biopsy-proven CD and other autoimmune disease over the 11-14 year period were inquired. RESULTS At the time of questionnaire, the prevalence of DM1 was similar in both groups, 0.97% (25 of 2580 children) in the placebo group and 1.04% (33 of 3184 children) in the vaccine group (P = 0.810). The prevalence of CD was significantly higher in placebo recipients (1.11%; confidence interval: 0.78%-1.6%) than in vaccine recipients (0.60%; confidence interval: 0.38%-0.93%) (P = 0.027). CONCLUSIONS RV vaccination using RotaTeq did not alter the occurrence of DM1 but decreased the prevalence of CD in childhood and adolescence. We propose that wild-type RV may trigger CD and the triggering effect can be prevented or reduced by RV vaccination.
Collapse
|
18
|
Ataei-Pirkooh A, Tehrani M, Keyvani H, Esghaei M, Tavakoli A, Nikmanesh B, Farahmand M, Ghaffari H, Monavari SH. Rotavirus Infection Enhances Levels of Autoantibodies Against Islet Cell Antigens GAD65 and IA-2 in Children with Type 1 Diabetes. Fetal Pediatr Pathol 2019; 38:103-111. [PMID: 30588857 DOI: 10.1080/15513815.2018.1547338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Some studies implicate rotavirus infection as a trigger for the development of type 1 diabetes mellitus (T1DM) in children, however findings are controversial. OBJECTIVES We investigated the link between rotavirus infection and autoantibodies against islet antigens and T1DM in children. METHODS Serum samples from 80 new-onset diabetic and 80 nondiabetic children were screened for anti-rotavirus IgG, anti-GAD65 and anti-IA-2 autoantibodies using ELISA kits. RESULTS Positivity percentages of anti-rotavirus IgG detection in diabetic and nondiabetic children were 51.3% and 35.0%, respectively (p = 0.03). The mean anti-GAD65 and anti-IA-2 antibody titers in anti-rotavirus IgG positive samples were statistically higher than that the anti-rotavirus IgG negative samples. A positive correlation was found between anti-rotavirus IgG and anti-GAD65 antibody levels (p = 0.004; r = 0.22). CONCLUSIONS Our findings support the hypothesis that rotovirus infection may induce T1DM in children.
Collapse
Affiliation(s)
- Angila Ataei-Pirkooh
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| | - Mona Tehrani
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| | - Hossein Keyvani
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| | - Maryam Esghaei
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| | - Ahmad Tavakoli
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| | - Bahram Nikmanesh
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| | - Mohammad Farahmand
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| | - Hadi Ghaffari
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| | - Seyed Hamidreza Monavari
- a Department of Virology , Faculty of Medicine, Iran University of Medical Sciences , Tehran , The Islamic Republic of Iran
| |
Collapse
|
19
|
Perrett KP, Jachno K, Nolan TM, Harrison LC. Association of Rotavirus Vaccination With the Incidence of Type 1 Diabetes in Children. JAMA Pediatr 2019; 173:280-282. [PMID: 30667473 PMCID: PMC6439878 DOI: 10.1001/jamapediatrics.2018.4578] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study examines the association between rotavirus vaccination and declining rates of type 1 diabetes in children.
Collapse
Affiliation(s)
- Kirsten P. Perrett
- Murdoch Children’s Research Institute, Royal Children’s Hospital, School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kim Jachno
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Terry M. Nolan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Leonard C. Harrison
- Walter and Eliza Hall Institute for Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Yang J, Jing L, James EA, Gebe JA, Koelle DM, Kwok WW. A Novel Approach of Identifying Immunodominant Self and Viral Antigen Cross-Reactive T Cells and Defining the Epitopes They Recognize. Front Immunol 2018; 9:2811. [PMID: 30619245 PMCID: PMC6298415 DOI: 10.3389/fimmu.2018.02811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Infection and vaccination can lead to activation of autoreactive T cells, including the activation of cross-reactive T cells. However, detecting these cross-reactive T cells and identifying the non-self and self-antigen epitopes is difficult. The current study demonstrates the utility of a novel approach that effectively accomplishes both. We utilized surface expression of CD38 on newly activated CD4 memory T cells as a strategy to identify type 1 diabetes associated autoreactive T cells activated by influenza vaccination in healthy subjects. We identified an influenza A matrix protein (MP) specific CD4+ T cell clone that cross-recognizes an immunodominant epitope from Glutamic Acid Decarboxylase 65 (GAD65) protein. The sequences of the MP and GAD65 peptides are rather distinct, with only 2 identical amino acids within the HLA-DR binding region. This result suggests that activation of autoreactive T cells by microbial infection under certain physiological conditions can occur amongst peptides with minimum amino acid sequence homology. This novel strategy also provides a new research pathway in which to examine activation of autoreactive CD4+ T cells after vaccination or natural infection.
Collapse
Affiliation(s)
- Junbao Yang
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - John A Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - David M Koelle
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
21
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
22
|
Principi N, Berioli MG, Bianchini S, Esposito S. Type 1 diabetes and viral infections: What is the relationship? J Clin Virol 2017; 96:26-31. [PMID: 28934695 DOI: 10.1016/j.jcv.2017.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is the most common chronic metabolic disorder in children. Epigenetic and environmental factors capable of altering the penetrance of major susceptibility genes or capable of increasing the penetrance of low-risk genes are currently thought to play a role in triggering autoimmunity and T1D development. This paper discusses the current knowledge of the role of viruses in T1D. Most studies that have evaluated the potential association between viral infections and T1D have indicated that it is highly likely that some of these infectious agents play a role in T1D development. However, most T1D cases are immune-mediated, and it is supposed that the initial viral infection is capable of creating, in genetically predisposed subjects, a particular condition in which chronic local inflammation occurs through the persistence of the infecting virus in pancreatic tissue and the activation of autoimmunity by means of molecular mimicry, bystander activation, or both. Theoretically, this knowledge could lead to possible prophylaxis and therapy for T1D. Further studies devoted to evaluating which infectious agents are linked to T1D and which immune mechanisms induce or protect against the disease are needed before adequate prophylactic and therapeutic measures can be developed.
Collapse
Affiliation(s)
- Nicola Principi
- Professor Emeritus, Università degli Studi di Milano, Milan, Italy
| | | | - Sonia Bianchini
- Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy.
| |
Collapse
|
23
|
Paim FC, Langel SN, Fischer DD, Kandasamy S, Shao L, Alhamo MA, Huang HC, Kumar A, Rajashekara G, Saif LJ, Vlasova AN. Effects of Escherichia coli Nissle 1917 and Ciprofloxacin on small intestinal epithelial cell mRNA expression in the neonatal piglet model of human rotavirus infection. Gut Pathog 2016; 8:66. [PMID: 27999620 PMCID: PMC5154029 DOI: 10.1186/s13099-016-0148-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/03/2016] [Indexed: 02/08/2023] Open
Abstract
We evaluated the effects of the probiotic Escherichia coli Nissle 1917 (EcN) and the antibiotic Ciprofloxacin (Cipro) on mRNA expression of intestinal epithelial cells (IEC) in gnotobiotic (Gn) piglets colonized with a defined commensal microflora (DMF) and inoculated with human rotavirus (HRV) that infects IECs. We analyzed mRNA levels of IEC genes for enteroendocrine cells [chromogranin A (CgA)], goblet cells [mucin 2 (MUC2)], transient amplifying progenitor cell [proliferating cell nuclear antigen (PCNA)], intestinal epithelial stem cell (SOX9) and enterocytes (villin). Cipro treatment enhanced HRV diarrhea and decreased the mRNA levels of MUC2 and villin but increased PCNA. These results suggest that Cipro alters the epithelial barrier, potentially decreasing the numbers of mature enterocytes (villin) and goblet cells secreting protective mucin (MUC2). These alterations may induce increased IEC proliferation (PCNA expression) to restore the integrity of the epithelial layer. Coincidental with decreased diarrhea severity in EcN treated groups, the expression of CgA and villin was increased, while SOX9 expression was decreased representing higher epithelial integrity indicative of inhibition of cellular proliferation. Thus, EcN protects the intestinal epithelium from damage by increasing the gene expression of enterocytes and enteroendocrine cells, maintaining the absorptive function and, consequently, decreasing the severity of diarrhea in HRV infection.
Collapse
Affiliation(s)
- Francine C Paim
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Stephanie N Langel
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - David D Fischer
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Sukumar Kandasamy
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Lulu Shao
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA ; Hillman Cancer Center, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260 USA
| | - Moyasar A Alhamo
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Huang-Chi Huang
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Anand Kumar
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA ; Genomics and Systems Biology, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Linda J Saif
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
24
|
Li JT, Wei J, Guo HX, Han JB, Ye N, He HY, Yu TT, Wu YZ. Development of a human rotavirus induced diarrhea model in Chinese mini-pigs. World J Gastroenterol 2016; 22:7135-7145. [PMID: 27610023 PMCID: PMC4988310 DOI: 10.3748/wjg.v22.i31.7135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a new animal model for the research of human rotavirus (HRV) infection, its pathogenesis and immunity and evaluation of potential vaccines.
METHODS: 5-d, 30-d and 60-d-old Chinese mini-pigs, Guizhou and Bamma, were inoculated with a single oral dose of attenuated strain Wa, G1, G3 of HRV, and PBS (control), respectively, and fecal samples of pigs from 0 to 7 d post infection (DPI) were collected individually. Enzyme linked immunosorbent assay was used to detect HRV antigen in feces. The HRV was tested by real-time PCR (RT-PCR). The sections of the intestinal tissue were stained with hematoxylin and eosin to observe the morphologic variation by microscopy. Immunofluorescence was used to determine the HRV in intestinal tissue. HRV particles in cells of the ileum were observed by electron micrography.
RESULTS: When inoculated with HRV, mini-pigs younger than 30 d developed diarrhea in an age-dependent manner and shed HRV antigen of the same inoculum, as demonstrated by RT-PCR. Histopathological changes were observed in HRV inoculated mini-pigs including small intestinal cell tumefaction and necrosis. HRV that was distributed in the small intestine was restricted to the top part of the villi on the internal wall of the ileum, which was observed by immunofluorescence and transmission electron microscopy. Virus particles were observed in Golgi like follicles in HRV-infected neonatal mini-pigs. Guizhou mini-pigs were more sensitive to HRV than Bamma with respect to RV antigen shedding and clinical diarrhea.
CONCLUSION: These results indicate that we have established a mini-pig model of HRV induced diarrhea. Our findings are useful for the understanding of the pathogenic mechanisms of HRV infection.
Collapse
|
25
|
Rodriguez-Calvo T, Sabouri S, Anquetil F, von Herrath MG. The viral paradigm in type 1 diabetes: Who are the main suspects? Autoimmun Rev 2016; 15:964-9. [PMID: 27491567 DOI: 10.1016/j.autrev.2016.07.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the loss of pancreatic beta cells in the islets of Langerhans. Although genetic predisposition plays an important role in T1D development, studies of identical twins suggest that environmental factors such as viruses and other pathogens may be critical triggers either through direct cytolytic effect and gradual beta cell destruction, or by bystander activation of the immune system. In addition, viruses may circumvent the host immune response and have the capacity to establish chronic lifelong infections. The association of various viral infections with the induction of T1D has been extensively studied at the serological and epidemiological level. However, there is still little evidence from studies of human pancreas to confirm their presence or a causal role in disease pathogenesis. In this review, we identify possible suspects for viral triggers of disease and explain their potential roles in the "viral paradigm" of T1D.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Somayeh Sabouri
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Florence Anquetil
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Novo Nordisk Diabetes Research & Development Center, Seattle, WA, USA.
| |
Collapse
|
26
|
Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling. Sci Rep 2016; 6:29697. [PMID: 27405244 PMCID: PMC4942798 DOI: 10.1038/srep29697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Rotavirus infection is associated with childhood progression to type 1 diabetes. Infection by monkey rotavirus RRV accelerates diabetes onset in non-obese diabetic (NOD) mice, which relates to regional lymph node infection and a T helper 1-specific immune response. When stimulated ex vivo with RRV, plasmacytoid dendritic cells (pDCs) from naïve NOD mice secrete type I interferon, which induces the activation of bystander lymphocytes, including islet-autoreactive T cells. This is our proposed mechanism for diabetes acceleration by rotaviruses. Here we demonstrate bystander lymphocyte activation in RRV-infected NOD mice, which showed pDC activation and strong upregulation of interferon-dependent gene expression, particularly within lymph nodes. The requirement for type I interferon signalling was analysed using NOD mice lacking a functional type I interferon receptor (NOD.IFNAR1(-/-) mice). Compared with NOD mice, NOD.IFNAR1(-/-) mice showed 8-fold higher RRV titers in lymph nodes and 3-fold higher titers of total RRV antibody in serum. However, RRV-infected NOD.IFNAR1(-/-) mice exhibited delayed pDC and lymphocyte activation, no T helper 1 bias in RRV-specific antibodies and unaltered diabetes onset when compared with uninfected controls. Thus, the type I interferon signalling induced by RRV infection is required for bystander lymphocyte activation and accelerated type 1 diabetes onset in genetically susceptible mice.
Collapse
|
27
|
Abstract
A growing body of evidence warrants a revision of the received/conventional wisdom of rotavirus infection as synonymous with acute gastroenteritis. Rotavirus vaccines have boosted our interest and knowledge of this virus, but also importantly, they may have changed the landscape of the disease. Extraintestinal spread of rotavirus is well documented, and the clinical spectrum of the disease is widening. Furthermore, the positive impact of current rotavirus vaccines in reducing seizure hospitalization rates should prompt a reassessment of the actual burden of extraintestinal manifestations of rotavirus diseases. This article discusses current knowledge of the systemic extraintestinal manifestations of rotavirus infection and their underlying mechanisms, and aims to pave the way for future clinical, public health and research questions.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - José Gómez-Rial
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain.
| |
Collapse
|
28
|
Rodriguez-Calvo T, Suwandi JS, Amirian N, Zapardiel-Gonzalo J, Anquetil F, Sabouri S, von Herrath MG. Heterogeneity and Lobularity of Pancreatic Pathology in Type 1 Diabetes during the Prediabetic Phase. J Histochem Cytochem 2015. [PMID: 26216138 DOI: 10.1369/0022155415576543] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells are destroyed in the islets of Langerhans. One of its main pathological manifestations is the hyper-expression of Major Histocompatibility Complex I (MHC-I) by beta cells, which was first described over 3 decades ago yet its cause remains unknown. It might not only be a sign of beta cell dysfunction but could also render the cells susceptible to autoimmune destruction; for example, by islet-infiltrating CD8 T cells. In this report, we studied pancreas tissue from a 22-year-old non-diabetic male cadaveric organ donor who had been at high risk of developing T1D, in which autoantibodies against GAD and IA-2 were detected. Pancreas sections were analyzed for signs of inflammation. Multiple insulin-containing islets were identified, which hyper-expressed MHC-I. However, islet density and MHC-I expression exhibited a highly lobular and heterogeneous pattern even within the same section. In addition, many islets with high expression of MHC-I presented higher levels of CD8 T cell infiltration than normal islets. These results demonstrate the heterogeneity of human pathology that occurs early during the pre-diabetic, autoantibody positive phase, and should contribute to the understanding of human T1D.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Jessica S Suwandi
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH),Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands (JSS)
| | - Natalie Amirian
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Jose Zapardiel-Gonzalo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Florence Anquetil
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Somayeh Sabouri
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH),Novo Nordisk Diabetes Research & Development Center, Seattle, Washington (MGVH)
| |
Collapse
|
29
|
Fichna M, Żurawek M, Fichna P, Januszkiewicz-Lewandowska D, Ruchała M, Nowak J. Polymorphisms of the Toll-Like Receptor-3 Gene in Autoimmune Adrenal Failure and Type 1 Diabetes in Polish Patients. Arch Immunol Ther Exp (Warsz) 2015; 64:83-7. [PMID: 26318769 PMCID: PMC4713709 DOI: 10.1007/s00005-015-0360-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022]
Abstract
Infectious agents are plausible environmental triggers for autoimmunity in genetically susceptible individuals. Polymorphic variants of genes implicated in innate immunity may affect immune responses and hence promote auto-aggressive reactions. Genes such as Toll-like receptor-3 (TLR3), which participate in recognizing conserved foreign molecules and mounting the first line of defence against viral infections, are promising functional candidates in autoimmune conditions. We investigated the association of the TLR3 variants, rs13126816 and rs3775291, with the autoimmune endocrine disorders, Addison's disease (AD) and type 1 diabetes (T1D) in the Polish population. The study comprised 168 AD patients, 524 individuals with T1D and 592 healthy controls. Genotyping was performed by real-time PCR. Distribution of the TLR3 genotypes and alleles did not reveal significant differences between patients and controls (p > 0.05). No effect on age at disease onset was found in affected cohorts. This analysis does not support an association between TLR3 variants and the risk for autoimmune destruction of the adrenal cortex and beta cells. However, innate immunity merits further studies in autoimmune endocrine conditions.
Collapse
Affiliation(s)
- Marta Fichna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland. .,Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland. .,Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Piotr Fichna
- Department of Paediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| |
Collapse
|
30
|
van der Pouw Kraan TCTM, Chen WJ, Bunck MCM, van Raalte DH, van der Zijl NJ, van Genugten RE, van Bloemendaal L, Baggen JM, Serné EH, Diamant M, Horrevoets AJG. Metabolic changes in type 2 diabetes are reflected in peripheral blood cells, revealing aberrant cytotoxicity, a viral signature, and hypoxia inducible factor activity. BMC Med Genomics 2015; 8:20. [PMID: 25956355 PMCID: PMC4446948 DOI: 10.1186/s12920-015-0096-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/30/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is characterized by central obesity, insulin resistance, dysglycemia, and a pro-atherogenic plasma lipid profile. MetS creates a high risk for development of type 2 diabetes (T2DM) and cardiovascular disease (CVD), presumably by altering inflammatory responses. Presently, it is unknown how the chronic metabolic disturbances in acute hyperglycemia, MetS and T2DM affect the immune activity of peripheral blood cells. METHODS We performed genome-wide expression analysis of peripheral blood cells obtained from patients with T2DM (n = 6) and age-, sex- , BMI- and blood pressure-matched obese individuals with MetS (n = 4) and lean healthy normoglycemic controls (n = 3), both under fasting conditions and after controlled induction of acute hyperglycemia during a 70 min hyperglycemic clamp. Differential gene expression during fasting conditions was confirmed by real-time PCR, for which we included additional age-, sex-, BMI-, and blood pressure-matched obese individuals with (n = 4) or without (n = 4) MetS. RESULTS Pathway and Gene ontology analysis applied to baseline expression profiles of peripheral blood cells from MetS and T2DM patients revealed metabolic changes, highly similar to a reoviral infection gene signature in T2DM patients. Transcription factor binding site analysis indicated that increased HIF-1α activity, a transcription factor induced by either hypoxia or oxidative stress, is responsible for this aberrant metabolic profile in peripheral blood cells from T2DM patients. Acute hyperglycemia in healthy controls resulted in reduced expression of cytotoxicity-related genes, representing NK- and CD8(+) cells. In obese controls, MetS and especially T2DM patients, baseline expression of genes involved in cytotoxicity was already low, compared to healthy controls and did not further decrease upon acute hyperglycemia. CONCLUSIONS The reduced activity of cytotoxic genes in T2DM is explained by chronic hyperglycemia, but its acute effects are restricted to healthy controls. Genome expression of circulating leukocytes from T2DM patients differs from MetS individuals by a specific reovirus signature. Our data thus suggest a role for suppressed anti-viral capacity in the etiology of diabetes.
Collapse
Affiliation(s)
| | - Weena J Chen
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Mathijs C M Bunck
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Daniel H van Raalte
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Nynke J van der Zijl
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Renate E van Genugten
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Liselotte van Bloemendaal
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Josefien M Baggen
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Erik H Serné
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands.
| | - Michaela Diamant
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J G Horrevoets
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|