1
|
Rusu EC, Clavero-Mestres H, Sánchez-Álvarez M, Veciana-Molins M, Bertran L, Monfort-Lanzas P, Aguilar C, Camaron J, Auguet T. Uncovering hepatic transcriptomic and circulating proteomic signatures in MASH: A meta-analysis and machine learning-based biomarker discovery. Comput Biol Med 2025; 191:110170. [PMID: 40220593 DOI: 10.1016/j.compbiomed.2025.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Metabolic-associated steatohepatitis (MASH), the progressive form of metabolic-associated steatotic liver disease (MASLD), poses significant risks for liver fibrosis and cardiovascular complications. Despite extensive research, reliable biomarkers for MASH diagnosis and progression remain elusive. This study aimed to identify hepatic transcriptomic and circulating proteomic signatures specific to MASH, and to develop a machine learning-based biomarker discovery model. METHODS A systematic review of RNA-Seq and proteomic datasets was conducted, retrieving 7 hepatic transcriptomics and 3 circulating proteomics studies, encompassing 483 liver samples and 169 serum/plasma samples, respectively. Differential gene and protein expression analyses were performed, and pathways were enriched using gene set enrichment analysis. A machine learning (ML) model was developed to identify MASH-specific biomarkers, utilizing biologically significant protein ratios. KEY FINDINGS Hepatic transcriptomic analysis identified 5017 differentially expressed genes (DEGs), with significant enrichment of extracellular matrix (ECM) pathways. Serum proteomics revealed six differentially expressed proteins (DEPs), including complement-related proteins. Integration of transcriptomic and proteomic data highlighted the complement cascade as a key pathway in MASH, with discordant regulation between the liver and circulation. The ML-based biomarker discovery model, utilizing protein ratios, achieved an F1 scores of 0.83 and 0.64 in the training sets and 0.67 in an external validation set. CONCLUSION Our findings indicate ECM deregulation and complement system involvement in MASH progression. The novel ML model incorporating protein ratios offers a potential tool for MASH diagnosis. However, further refinement and validation across larger and more diverse cohorts is needed to generalize these results.
Collapse
Affiliation(s)
- Elena Cristina Rusu
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and the Spanish National Research Council (CSIC), 46980, Valencia, Spain.
| | - Helena Clavero-Mestres
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Mario Sánchez-Álvarez
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Marina Veciana-Molins
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Laia Bertran
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria; Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Carmen Aguilar
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Javier Camaron
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Teresa Auguet
- GEMMAIR research Unit (AGAUR) - Applied Medicine (URV). Department of Medicine and Surgery. University Rovira I Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain; Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| |
Collapse
|
2
|
De Nardo W, Lee O, Johari Y, Bayliss J, Pensa M, Miotto PM, Keenan SN, Ryan A, Rucinski A, Svinos TM, Ooi GJ, Brown WA, Kemp W, Roberts SK, Parker BL, Montgomery MK, Larance M, Burton PR, Watt MJ. Integrated liver-secreted and plasma proteomics identify a predictive model that stratifies MASH. Cell Rep Med 2025; 6:102085. [PMID: 40250425 DOI: 10.1016/j.xcrm.2025.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/30/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Obesity is a major risk factor for metabolic-associated steatotic liver disease (MASLD), which can progress to metabolic-associated steatohepatitis (MASH). There are no validated non-invasive tests to stratify persons with obesity with a greater risk for MASH. Herein, we assess plasma and liver from 266 obese individuals spanning the MASLD spectrum. Ninety-six human livers were precision-cut, and mass spectrometry-based proteomics identifies 3,333 proteins in the liver-secretion medium, of which 107 are differentially secreted in MASH compared with no pathology. The plasma proteome is markedly remodeled in MASH but is not different between patients with steatosis and no pathology. The APASHA model, comprising plasma apolipoprotein F (APOF), proprotein convertase subtilisin/kexin type 9 (PCSK9), afamin (AFM), S100 calcium-binding protein A6 (S100A6), HbA1c, and zinc-alpha-2-glycoprotein (AZGP1), stratifies MASH (area under receiver operating characteristic [AUROC] = 0.88). Our investigations detail the evolution of liver-secreted and plasma proteins with MASLD progression, providing a rich resource defining human liver-secreted proteins and creating a predictive model to stratify patients with obesity at risk of MASH.
Collapse
Affiliation(s)
- William De Nardo
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Olivia Lee
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yazmin Johari
- Department of Surgery, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Bariatric Unit, Department of General Surgery, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marcus Pensa
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paula M Miotto
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew Ryan
- TissuPath, Mount Waverley, VIC 3149, Australia
| | - Amber Rucinski
- Department of Oncology, Bendigo Health, Bendigo, VIC 3550, Australia
| | - Tessa M Svinos
- Department of General Surgery, Barwon Health, Geelong, VIC 3220, Australia
| | - Geraldine J Ooi
- Department of Surgery, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Bariatric Unit, Department of General Surgery, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Wendy A Brown
- Department of Surgery, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Bariatric Unit, Department of General Surgery, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - William Kemp
- Department of Gastroenterology, The Alfred Hospital and Monash University, Melbourne, VIC 3181, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, The Alfred Hospital and Monash University, Melbourne, VIC 3181, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Paul R Burton
- Department of Surgery, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Bariatric Unit, Department of General Surgery, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
3
|
Ou LL, Jiang JL, Guo ML, Wu JH, Zhong WW, He YH. Research progress on the roles of complement in liver injury. World J Hepatol 2025; 17:103839. [PMID: 40177195 PMCID: PMC11959660 DOI: 10.4254/wjh.v17.i3.103839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
The complement system is crucial for maintaining immunological homeostasis in the liver, playing a significant role in both innate and adaptive immune responses. Dysregulation of this system is closely linked to the pathogenesis of various liver diseases. Modulating the complement system can affect the progression of these conditions. To provide insights into treating liver injury by targeting the regulation of the complement system, we conducted a comprehensive search of major biomedical databases, including MEDLINE, PubMed, EMBASE, and Web of Science, to identify articles on complement and liver injury and reviewed the functions and mechanisms of the complement system in liver injury.
Collapse
Affiliation(s)
- Li-Li Ou
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Jin-Lian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Man-Lu Guo
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Jin-Hua Wu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei-Wei Zhong
- Department of Infectious Diseases, Jingmen Central Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen 448000, Hubei Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| |
Collapse
|
4
|
Homan EA, Gilani A, Rubio-Navarro A, Johnson MA, Schaepkens OM, Cortada E, Pereira de Lima R, Stoll L, Lo JC. Complement 3a receptor 1 on macrophages and Kupffer cells is not required for the pathogenesis of metabolic dysfunction-associated steatotic liver disease. eLife 2025; 13:RP100708. [PMID: 39773465 PMCID: PMC11709426 DOI: 10.7554/elife.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.
Collapse
Affiliation(s)
- Edwin A Homan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Maya A Johnson
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Odin M Schaepkens
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Eric Cortada
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Renan Pereira de Lima
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - James C Lo
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
5
|
Alic L, Dendinovic K, Papac-Milicevic N. The complement system in lipid-mediated pathologies. Front Immunol 2024; 15:1511886. [PMID: 39635529 PMCID: PMC11614835 DOI: 10.3389/fimmu.2024.1511886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The complement system, a coordinator and facilitator of the innate immune response, plays an essential role in maintaining host homeostasis. It promotes clearance of pathogen- and danger-associated molecular patterns, regulates adaptive immunity, and can modify various metabolic processes such as energy expenditure, lipid metabolism, and glucose homeostasis. In this review, we will focus on the intricate interplay between complement components and lipid metabolism. More precisely, we will display how alterations in the activation and regulation of the complement system affect pathological outcome in lipid-associated diseases, such as atherosclerosis, obesity, metabolic syndrome, age-related macular degeneration, and metabolic dysfunction-associated steatotic liver disease. In addition to that, we will present and evaluate underlying complement-mediated physiological mechanisms, observed both in vitro and in vivo. Our manuscript will demonstrate the clinical significance of the complement system as a bridging figure between innate immunity and lipid homeostasis.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Kristina Dendinovic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Homan EA, Gilani A, Rubio-Navarro A, Johnson MA, Schaepkens OM, Cortada E, de Lima RP, Stoll L, Lo JC. Complement 3a Receptor 1 on Macrophages and Kupffer cells is not required for the Pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.26.24309550. [PMID: 38978661 PMCID: PMC11230319 DOI: 10.1101/2024.06.26.24309550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3aR1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.
Collapse
Affiliation(s)
- Edwin A. Homan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Maya A. Johnson
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Odin M. Schaepkens
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Eric Cortada
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Renan Pereira de Lima
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - James C. Lo
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| |
Collapse
|
7
|
Magdy A, Kim HJ, Go H, Lee JM, Sohn HA, Haam K, Jung HJ, Park JL, Yoo T, Kwon ES, Lee DH, Choi M, Kang KW, Kim W, Kim M. DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2024; 30:824-844. [PMID: 39048522 PMCID: PMC11540403 DOI: 10.3350/cmh.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND/AIMS Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD. METHODS Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction-associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing. RESULTS Methylome and transcriptome analyses of liver biopsies revealed significant (P<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA, and SERPING1, as well as hypomethylation (P<0.0005) and upregulation (P<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data. CONCLUSION Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.
Collapse
Affiliation(s)
- Amal Magdy
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hee-Jin Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hanyong Go
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jun Min Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hyun Ahm Sohn
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hyo-Jung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jong-Lyul Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Mirang Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - on behalf of the Innovative Target Exploration of NAFLD (ITEN) Consortium
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
DiStefano JK, Piras IS, Wu X, Sharma R, Garcia-Mansfield K, Willey M, Lovell B, Pirrotte P, Olson ML, Shaibi GQ. Changes in proteomic cargo of circulating extracellular vesicles in response to lifestyle intervention in adolescents with hepatic steatosis. Clin Nutr ESPEN 2024; 60:333-342. [PMID: 38479932 PMCID: PMC10937812 DOI: 10.1016/j.clnesp.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Recent studies suggest that proteomic cargo of extracellular vesicles (EVs) may play a role in metabolic improvements following lifestyle interventions. However, the relationship between changes in liver fat and circulating EV-derived protein cargo following intervention remains unexplored. METHODS The study cohort comprised 18 Latino adolescents with obesity and hepatic steatosis (12 males/6 females; average age 13.3 ± 1.2 y) who underwent a six-month lifestyle intervention. EV size distribution and concentration were determined by light scattering intensity; EV protein composition was characterized by liquid chromatography tandem-mass spectrometry. RESULTS Average hepatic fat fraction (HFF) decreased 23% by the end of the intervention (12.5% [5.5] to 9.6% [4.9]; P = 0.0077). Mean EV size was smaller post-intervention compared to baseline (120.2 ± 16.4 nm to 128.4 ± 16.5 nm; P = 0.031), although the difference in mean EV concentration (1.1E+09 ± 4.1E+08 particles/mL to 1.1E+09 ± 1.8E+08 particles/mL; P = 0.656)) remained unchanged. A total of 462 proteins were identified by proteomic analysis of plasma-derived EVs from participants pre- and post-intervention, with 113 proteins showing differential abundance (56 higher and 57 lower) between the two timepoints (adj-p <0.05). Pathway analysis revealed enrichment in complement cascade, initial triggering of complement, creation of C4 and C2 activators, and regulation of complement cascade. Hepatocyte-specific EV affinity purification identified 40 proteins with suggestive (p < 0.05) differential abundance between pre- and post-intervention samples. CONCLUSIONS Circulating EV-derived proteins, particularly those associated with the complement cascade, may contribute to improvements in liver fat in response to lifestyle intervention.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Xiumei Wu
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Krystine Garcia-Mansfield
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Maya Willey
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Brooke Lovell
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Micah L Olson
- Division of Endocrinology and Diabetes, Phoenix Children's, Phoenix, AZ, USA; Center for Health Promotion and Disease Prevention, Edson College of Nursing, Arizona State University, Phoenix, AZ, USA
| | - Gabriel Q Shaibi
- Division of Endocrinology and Diabetes, Phoenix Children's, Phoenix, AZ, USA; Center for Health Promotion and Disease Prevention, Edson College of Nursing, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
9
|
Nguyen VD, Hughes TR, Zhou Y. From complement to complosome in non-alcoholic fatty liver disease: When location matters. Liver Int 2024; 44:316-329. [PMID: 38010880 DOI: 10.1111/liv.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing public health threat and becoming the leading cause of liver transplantation. Nevertheless, no approved specific treatment is currently available for NAFLD. The pathogenesis of NAFLD is multifaceted and not yet fully understood. Accumulating evidence suggests a significant role of the complement system in the development and progression of NAFLD. Here, we provide an overview of the complement system, incorporating the novel concept of complosome, and summarise the up-to-date evidence elucidating the association between complement dysregulation and the pathogenesis of NAFLD. In this process, the extracellular complement system is activated through various pathways, thereby directly contributing to, or working together with other immune cells in the disease development and progression. We also introduce the complosome and assess the evidence that implicates its potential influence in NAFLD through its direct impact on hepatocytes or non-parenchymal liver cells. Additionally, we expound upon how complement system and the complosome may exert their effects in relation with hepatic zonation in NAFLD. Furthermore, we discuss the potential therapeutic implications of targeting the complement system, extracellularly and intracellularly, for NAFLD treatment. Finally, we present future perspectives towards a better understanding of the complement system's contribution to NAFLD.
Collapse
Affiliation(s)
- Van-Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Romualdo GR, Valente LC, Dos Santos ACS, Grandini NA, Camacho CRC, Vinken M, Cogliati B, Hou DX, Barbisan LF. Effects of glyphosate exposure on western diet-induced non-alcoholic fatty liver disease in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104286. [PMID: 37805155 DOI: 10.1016/j.etap.2023.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
We evaluated whether glyphosate promotes western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed WD and received intragastrical glyphosate (0.05, 5 or 50 mg/kg) for 6 months. Glyphosate did not promote WD-induced obesity, hypercholesterolemia, glucose intolerance, hepatic steatosis, and fibrosis. Nonetheless, the higher dose (50 mg) enhanced hepatic CD68+ macrophage density, p65, TNF-α, and IL-6 protein levels. Furthermore, this dose decreased hepatic Nrf2 levels, while enhancing lipid peroxidation in the liver and adipose tissue. Hepatic transcriptome revealed that glyphosate at 50 mg upregulated 212 genes and downregulated 731 genes. Genes associated with oxidative stress and inflammation were upregulated, while key cell cycle-related genes were downregulated. Our results indicate that glyphosate exposure - in a dose within the toxicological limits - impairs hepatic inflammation/redox dynamics in a NAFLD microenvironment.
Collapse
Affiliation(s)
- Guilherme R Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| | - Letícia Cardoso Valente
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil; Federal University of Grande Dourados (UFGD), Faculty of Health Sciences, Dourados, MS, Brazil
| | | | - Núbia Alves Grandini
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Botucatu, SP, Brazil
| | - Camila Renata Correa Camacho
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Botucatu, SP, Brazil
| | - Mathieu Vinken
- Vrije Universiteit Brussel. Brussels, Department of In Vitro Toxicology and Dermato-Cosmetology, Belgium
| | - Bruno Cogliati
- University of São Paulo (USP), School of Veterinary Medicine and Animal Science, Department of Pathology, São Paulo, SP, Brazil
| | - De-Xing Hou
- Kagoshima University, Faculty of Agriculture, Department of Food Science and Biotechnology, Japan
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| |
Collapse
|
11
|
Kountouras J, Kazakos E, Kyrailidi F, Polyzos SA, Zavos C, Arapoglou S, Boziki M, Mouratidou MC, Tzitiridou-Chatzopoulou M, Chatzopoulos D, Doulberis M, Papaefthymiou A, Vardaka E. Innate immunity and nonalcoholic fatty liver disease. Ann Gastroenterol 2023; 36:244-256. [PMID: 37144011 PMCID: PMC10152810 DOI: 10.20524/aog.2023.0793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 05/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed as metabolic (dysfunction)-associated fatty liver disease (MAFLD), is a complex, multifactorial disease that progresses via nonalcoholic steatohepatitis (NASH) towards severe liver complications. MAFLD/NAFLD affects up to a third of the global population. It is connected with metabolic syndrome parameters and has been increasing in parallel with the rates of metabolic syndrome parameters worldwide. This disease entity exhibits a strong immune-inflammatory dimension. In MAFLD/NAFLD/NASH, a vast network of innate immune cells is mobilized that can provoke liver damage, leading to advanced fibrosis, cirrhosis and its complications, including hepatocellular carcinoma. However, our understanding of the inflammatory signals that drive the onset and progression of MAFLD/NAFLD/NASH is fragmented. Thus, further investigation is required to better understand the role of specific innate immune cell subsets in the disease, and to aid the design of innovative therapeutic agents to target MAFLD/NAFLD/NASH. In this review, we discuss current concepts regarding the role of innate immune system involvement in MAFLD/NAFLD/NASH onset and progression, along with presenting potential stress signals affecting immune tolerance that may trigger aberrant immune responses. A comprehensive understanding of the innate immune mechanisms involved in MAFLD/NAFLD/NASH pathophysiology will help the discovery of early interventions to prevent the disease, and lead to potential innovative therapeutic strategies that may limit its worldwide burden.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, Macedonia, Greece (Evangelos Kazakos)
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Macedonia, Greece (Stergios A. Polyzos, Michael Doulberis, Apostolis Papaefthymiou)
| | - Christos Zavos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Stergios Arapoglou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- Fifth Surgical Department, Medical School, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Stergios Arapoglou)
| | - Marina Boziki
- 2 Neurology Department, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Macedonia, Greece (Marina Boziki)
| | - Maria C. Mouratidou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, Macedonia, Greece (Maria Tzitiridou-Chatzopoulou)
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Macedonia, Greece (Stergios A. Polyzos, Michael Doulberis, Apostolis Papaefthymiou)
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland (Michael Doulberis)
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Macedonia, Greece (Stergios A. Polyzos, Michael Doulberis, Apostolis Papaefthymiou)
- Pancreaticobiliary Medicine Unit, University College London Hospitals (UCLH), London, UK (Apostolis Papaefthymiou)
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, Macedonia, Greece (Jannis Kountouras, Evangelos Kazakos, Foteini Kyrailidi, Christos Zavos, Stergios Arapoglou, Maria C. Mouratidou, Maria Tzitiridou-Chatzopoulou, Dimitrios Chatzopoulos, Michael Doulberis, Apostolis Papaefthymiou, Elisabeth Vardaka)
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, Macedonia, Greece (Elisabeth Vardaka)
| |
Collapse
|
12
|
Zhao J, Wu Y, Lu P, Wu X, Han J, Shi Y, Liu Y, Cheng Y, Gao L, Zhao J, Wang Z, Fan X. Association of complement components with the risk and severity of NAFLD: A systematic review and meta-analysis. Front Immunol 2022; 13:1054159. [PMID: 36569882 PMCID: PMC9782972 DOI: 10.3389/fimmu.2022.1054159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background It is generally believed that complement system is strongly associated with the risk of nonalcoholic fatty liver disease (NAFLD). However, complement system contains a variety of complement components, and the relationship between complement components and the risk and severity of NAFLD is inconsistent. The aim of this meta-analysis was to evaluate the association of complement components with the risk and severity of NAFLD. Methods We searched PubMed, Embase, Cochrane Library, Google Scholar, Scopus, and ZhiWang Chinese databases from inception to May 2022 for observational studies reporting the risk of NAFLD with complement components. Random-effects meta-analysis was used to obtain pooled estimates of the effect due to heterogeneity. Results We identified 18 studies with a total of 18560 included subjects. According to recent studies, levels of complement component 3 (C3) (mean difference (MD): 0.43, 95% confidence interval (CI) 0.26-0.60), complement component 4 (C4) (MD: 0.04, 95% CI 0.02-0.07), complement component 5(C5) (MD: 34.03, 95% CI 30.80-37.27), complement factor B (CFB) (MD: 0.22, 95% CI 0.13-0.31) and acylation stimulating protein (ASP) (standard mean difference (SMD): 5.17, 95% CI 2.57-7.77) in patients with NAFLD were significantly higher than those in the control group. However, no statistical significance was obtained in complement factor D (CFD) levels between NAFLD and non-NAFLD (MD=156.51, 95% CI -59.38-372.40). Moreover, the levels of C3, C5, CFB, and ASP in patients with moderate and severe NAFLD were significantly higher than those in patients with mild NAFLD. Except for C4 and CFD, the included studies did not explore the changes in the severity of NAFLD according to the concentration of C4 and CFD. Conclusions This meta-analysis demonstrates that an increase in complement components including C3, C5, CFB, and ASP is associated with an increased risk and severity of NAFLD, indicating that they may be good biomarkers and targets for the diagnosis and treatment of NAFLD. Systematic review registration PROSPERO [https://www.crd.york.ac.uk/PROSPERO/], identifier CRD42022348650.
Collapse
Affiliation(s)
- Jianbo Zhao
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yafei Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, OH, Cleveland, United States
| | - Junming Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yingzhou Shi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yue Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yiping Cheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Jiajun Zhao
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Zhen Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
13
|
Guo Z, Fan X, Yao J, Tomlinson S, Yuan G, He S. The role of complement in nonalcoholic fatty liver disease. Front Immunol 2022; 13:1017467. [PMID: 36248852 PMCID: PMC9562907 DOI: 10.3389/fimmu.2022.1017467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver diseases globally. NAFLD includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis, cirrhosis or even hepatocellular carcinoma. Although the pathogenesis of NAFLD is incompletely understood, insulin resistance and lipid metabolism disorder are implicated. The complement system is an essential part of the immune system, but it is also involved in lipid metabolism. In particular, activation of the alternative complement pathway and the production of complement activation products such as C3a, C3adesArg (acylation stimulating protein or ASP) and C5a, are strongly associated with insulin resistance, lipid metabolism disorder, and hepatic inflammation. In this review, we briefly summarize research on the role of the complement system in NAFLD, aiming to provide a basis for the development of novel therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Yao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Cortes C, Desler C, Mazzoli A, Chen JY, Ferreira VP. The role of properdin and Factor H in disease. Adv Immunol 2022; 153:1-90. [PMID: 35469595 DOI: 10.1016/bs.ai.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complement system consists of three pathways (alternative, classical, and lectin) that play a fundamental role in immunity and homeostasis. The multifunctional role of the complement system includes direct lysis of pathogens, tagging pathogens for phagocytosis, promotion of inflammatory responses to control infection, regulation of adaptive cellular immune responses, and removal of apoptotic/dead cells and immune complexes from circulation. A tight regulation of the complement system is essential to avoid unwanted complement-mediated damage to the host. This regulation is ensured by a set of proteins called complement regulatory proteins. Deficiencies or malfunction of these regulatory proteins may lead to pro-thrombotic hematological diseases, renal and ocular diseases, and autoimmune diseases, among others. This review focuses on the importance of two complement regulatory proteins of the alternative pathway, Factor H and properdin, and their role in human diseases with an emphasis on: (a) characterizing the main mechanism of action of Factor H and properdin in regulating the complement system and protecting the host from complement-mediated attack, (b) describing the dysregulation of the alternative pathway as a result of deficiencies, or mutations, in Factor H and properdin, (c) outlining the clinical findings, management and treatment of diseases associated with mutations and deficiencies in Factor H, and (d) defining the unwanted and inadequate functioning of properdin in disease, through a discussion of various experimental research findings utilizing in vitro, mouse and human models.
Collapse
Affiliation(s)
- Claudio Cortes
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Caroline Desler
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Amanda Mazzoli
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Jin Y Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
15
|
Gu Y, Luo J, Chen Q, Qiu Y, Zhou Y, Wang X, Qian X, Liu Y, Xie J, Xu Z, Ling W, Chen Y, Yang L. Inverse Association of Serum Adipsin with the Remission of Nonalcoholic Fatty-Liver Disease: A 3-Year Community-Based Cohort Study. ANNALS OF NUTRITION AND METABOLISM 2021; 78:21-32. [PMID: 34814152 DOI: 10.1159/000520368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022]
Abstract
PURPOSES Adipokine alterations contribute to the development and remission of nonalcoholic fatty-liver disease (NAFLD). Adipsin is one of the most abundant adipokines and is almost exclusively produced by adipocytes. However, data on adipsin in human NAFLD are limited and controversial. We performed this study to investigate the association between adipsin and the remission of NAFLD in middle-aged and elderly Chinese adults. METHODS Whether adipsin is associated with the remission of NAFLD in a 3-year community-based prospective cohort study was investigated. Baseline levels of adipsin were measured in serum samples collected from 908 NAFLD participants. NAFLD was diagnosed using abdominal ultrasonography. Logistic regression analysis and a multiple stepwise logistic regression model including different variables were conducted to evaluate the association between serum adipsin levels and the remission of NAFLD. RESULTS During a mean follow-up of 3.14 ± 0.36 years, 247 (27.20%) participants with NAFLD at baseline were in remission. At baseline, serum adipsin concentration was positively correlated with body mass index (r: 0.39, p < 0.001), insulin (r: 0.31, p < 0.001), and homeostasis model assessment of insulin resistance (r: 0.31, p < 0.001) and was inversely associated with NAFLD remission with a fully adjusted odds ratio (OR) of 0.28 (0.16-0.48) (p trend < 0.001). In a multiple stepwise logistic regression model, circulating adipsin independently predicted NAFLD remission (OR: 0.284, 95% confidence interval [CI]: 0.172-0.471, p for trend <0.001). The area under the receiver operating characteristic curve was 0.751 (95% CI: 0.717-0.785) (p < 0.001) for the prediction model of NAFLD remission. CONCLUSIONS We provide evidence for an association between serum adipsin levels and the remission of NAFLD in a community-based prospective cohort study. Serum adipsin can be a potential biomarker for predicting NAFLD remission.
Collapse
Affiliation(s)
- Yingying Gu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China, .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China,
| | - Jing Luo
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.,Huaian Center for Disease Prevention and Control, Huaian, China
| | - Qian Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.,Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yun Qiu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Yujia Zhou
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xu Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xiaoyun Qian
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Yao Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Jiewen Xie
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Zhongliang Xu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Yuming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.,Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China
| | - Lili Yang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| |
Collapse
|
16
|
Li L, Huang L, Yang A, Feng X, Mo Z, Zhang H, Yang X. Causal Relationship Between Complement C3, C4, and Nonalcoholic Fatty Liver Disease: Bidirectional Mendelian Randomization Analysis. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:211-221. [PMID: 36939807 PMCID: PMC9590569 DOI: 10.1007/s43657-021-00023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
The complement system is activated during the development of nonalcoholic fatty liver disease (NAFLD). We aimed to evaluate the causal relationship between serum C3 and C4 levels and NAFLD. After exclusion criteria, a total of 1600 Chinese Han men from the Fangchenggang Area Male Health and Examination Survey cohort were enrolled in cross-sectional analysis, while 572 participants were included in the longitudinal analysis (average follow-up of 4 years). We performed a bidirectional Mendelian randomization (MR) analysis using two C3-related, eight C4-related and three NAFLD-related gene loci as instrumental variables to evaluate the causal associations between C3, C4, and NAFLD risk in cross-sectional analysis. Per SD increase in C3 levels was significantly associated with higher risk of NAFLD (OR = 1.65, 95% CI 1.40, 1.94) in cross-sectional analysis while C4 was not (OR = 1.04, 95% CI 0.89, 1.21). Longitudinal analysis produced similar results (HRC3 = 1.20, 95% CI 1.02, 1.42; HRC4 = 1.10, 95% CI 0.94, 1.28). In MR analysis, there were no causal relationships for genetically determined C3 levels and NAFLD risk using unweighted or weighted GRS_C3 (βE_unweighted = -0.019, 95% CI -0.019, -0.019, p = 0.202; βE_weighted = -0.019, 95% CI -0.019, -0.019, p = 0.322). Conversely, serum C3 levels were significantly effected by the genetically determined NAFLD (βE_unweighted = 0.020, 95% CI 0.020, 0.020, p = 0.004; βE_weighted = 0.021, 95% CI 0.020, 0.021, p = 0.004). Neither the direction from C4 to NAFLD nor the one from NAFLD to C4 showed significant association. Our results support that the change in serum C3 levels but not C4 levels might be caused by NAFLD in Chinese Han men. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00023-0.
Collapse
Affiliation(s)
- Longman Li
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- Nanhu Zhuxi Community Healthcare Center, Qingxiu District, Nanning, 530021 Guangxi China
- grid.412594.fDepartment of Urology, Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Lulu Huang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Aimin Yang
- grid.194645.b0000000121742757School of Public Health, The University of Hong Kong, Hong Kong SAR, 999077 China
| | - Xiuming Feng
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Zengnan Mo
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.412594.fDepartment of Urology, Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Haiying Zhang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Xiaobo Yang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.440719.f0000 0004 1800 187XDepartment of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006 Guangxi China
| |
Collapse
|
17
|
Li J, Shen Y, Tian H, Xie S, Ji Y, Li Z, Lu J, Lu H, Liu B, Liu F. The role of complement factor H in gestational diabetes mellitus and pregnancy. BMC Pregnancy Childbirth 2021; 21:562. [PMID: 34404360 PMCID: PMC8369714 DOI: 10.1186/s12884-021-04031-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complement factor H (CFH) has been found to be associated with insulin resistance. This study assessed the correlation between CFH and other clinical parameters, and determined whether CFH played a role in gestational diabetes mellitus (GDM) and adverse pregnancy outcomes. METHODS A total of 397 pregnant women were included for analysis in this nested case-control study. Clinical parameters and serum were collected within the 11-17th gestational age at the first prenatal visit. At 24-28 weeks of gestation, a 75 g oral glucose tolerance test was performed and subjects were divided into a GDM (n = 80) and a non-GDM control group (n = 317). The delivery data were also followed. The serum CFH level was assayed by ELISA. RESULTS CFH was higher in GDM than in non-GDM controls (280.02 [58.60] vs. 264.20 [68.77]; P = 0.014). CFH level was moderately associated with pre-pregnancy body mass index (BMI), BMI and total triglycerides (TG), and slightly associated with gestational age, low density lipoprotein cholesterol (LDL-C), total cholesterol (TC) in GDM and non-GDM (all P < 0.05). Moreover, CFH level was moderately correlated with alkaline phosphatase (ALP) and slightly correlated with age, uric acid (UA) and total bilirubin (TB) in non-GDM (all P < 0.05). After adjustment for clinical confounding factors, BMI, TG, gestational age, ALP, TB, age and UA were independent risk factors for log10 CFH levels (all P < 0.05) in all subjects. In addition, overweight or obese pregnant women, women with hypertriglyceridemia and women in the second trimester had significantly higher CFH levels than normal weight and underweight group (P < 0.001), the non-hypertriglyceridemia group (P < 0.001) and women in the first trimester group (P < 0.05) in all pregnant women respectively. Following binary logistic regression, CFH was not independently associated with GDM and related pregnant outcomes. CONCLUSIONS The CFH in 11-17th weeks of gestation might be affected by many factors, including BMI, TG, gestational age, ALP, TB, age and UA. CFH was not an independent risk factor for GDM and avderse pregnancy outcomes.
Collapse
Affiliation(s)
- Junxian Li
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, 200233, China
| | - Ying Shen
- Department of Endocrinology & Metabolism, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Hairong Tian
- Department of Endocrinology and Metabolism, Jin Shan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Shuting Xie
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, 200233, China
| | - Ye Ji
- Department of Endocrinology and Metabolism, Jin Shan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Ziyun Li
- Department of Endocrinology and Metabolism, Jin Shan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Junxi Lu
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, 200233, China
| | - Huijuan Lu
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, 200233, China
| | - Bo Liu
- Department of Endocrinology and Metabolism, Jin Shan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Fang Liu
- Department of Endocrinology & Metabolism, Shanghai Jiao-Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, 200233, China. .,Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
18
|
Subudhi S, Drescher HK, Dichtel LE, Bartsch LM, Chung RT, Hutter MM, Gee DW, Meireles OR, Witkowski ER, Gelrud L, Masia R, Osganian SA, Gustafson JL, Rwema S, Bredella MA, Bhatia SN, Warren A, Miller KK, Lauer GM, Corey KE. Distinct Hepatic Gene-Expression Patterns of NAFLD in Patients With Obesity. Hepatol Commun 2021; 6:77-89. [PMID: 34558849 PMCID: PMC8710788 DOI: 10.1002/hep4.1789] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
Approaches to manage nonalcoholic fatty liver disease (NAFLD) are limited by an incomplete understanding of disease pathogenesis. The aim of this study was to identify hepatic gene‐expression patterns associated with different patterns of liver injury in a high‐risk cohort of adults with obesity. Using the NanoString Technologies (Seattle, WA) nCounter assay, we quantified expression of 795 genes, hypothesized to be involved in hepatic fibrosis, inflammation, and steatosis, in liver tissue from 318 adults with obesity. Liver specimens were categorized into four distinct NAFLD phenotypes: normal liver histology (NLH), steatosis only (steatosis), nonalcoholic steatohepatitis without fibrosis (NASH F0), and NASH with fibrosis stage 1‐4 (NASH F1‐F4). One hundred twenty‐five genes were significantly increasing or decreasing as NAFLD pathology progressed. Compared with NLH, NASH F0 was characterized by increased inflammatory gene expression, such as gamma‐interferon‐inducible lysosomal thiol reductase (IFI30) and chemokine (C‐X‐C motif) ligand 9 (CXCL9), while complement and coagulation related genes, such as C9 and complement component 4 binding protein beta (C4BPB), were reduced. In the presence of NASH F1‐F4, extracellular matrix degrading proteinases and profibrotic/scar deposition genes, such as collagens and transforming growth factor beta 1 (TGFB1), were simultaneously increased, suggesting a dynamic state of tissue remodeling. Conclusion: In adults with obesity, distinct states of NAFLD are associated with intrahepatic perturbations in genes related to inflammation, complement and coagulation pathways, and tissue remodeling. These data provide insights into the dynamic pathogenesis of NAFLD in high‐risk individuals.
Collapse
Affiliation(s)
- Sonu Subudhi
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura E Dichtel
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raymond T Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew M Hutter
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Denise W Gee
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ozanan R Meireles
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elan R Witkowski
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Louis Gelrud
- Department of Medicine, St. Mary's Hospital Bon Secours, Richmond, VA, USA
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie A Osganian
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jenna L Gustafson
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steve Rwema
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miriam A Bredella
- Division of Musculoskeletal Radiology and Interventions, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sangeeta N Bhatia
- Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Warren
- Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Lamadrid P, Alonso-Peña M, San Segundo D, Arias-Loste M, Crespo J, Lopez-Hoyos M. Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Front Immunol 2021; 12:651728. [PMID: 33859644 PMCID: PMC8042647 DOI: 10.3389/fimmu.2021.651728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Patricia Lamadrid
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Marta Alonso-Peña
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Mayte Arias-Loste
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Javier Crespo
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Marcos Lopez-Hoyos
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| |
Collapse
|
20
|
Proteomic screening of plasma identifies potential noninvasive biomarkers associated with significant/advanced fibrosis in patients with nonalcoholic fatty liver disease. Biosci Rep 2021; 40:221652. [PMID: 31860081 PMCID: PMC6944676 DOI: 10.1042/bsr20190395] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/16/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Noninvasive biomarkers are clinically useful for evaluating liver fibrosis stage in patients with nonalcoholic fatty liver disease (NAFLD). The aim of the present study was to compare plasma proteins in patients with early nonalcoholic steatohepatitis (NASH) (F0-F1) versus NASH with significant/advanced fibrosis (F2–F4) to determine whether candidate proteins could be used as potential noninvasive biomarkers. Nineteen biopsy-proven NAFLD patients including ten early NASH patients and nine NASH patients with significant/advanced fibrosis were enrolled in the present study. High-resolution proteomics screening of plasma was performed with the SCIEX TripleTOF 5600 System. Proteins were quantified using two different software platforms, Progenesis Qi and Scaffold Q+, respectively. Progenesis Qi analysis resulted in the discovery of 277 proteins compared with 235 proteins in Scaffold Q+. Five consensus proteins (i.e. Complement component C7; α-2-macroglobulin; Complement component C8 γ chain; Fibulin-1; α-1-antichymotrypsin) were identified. Complement component C7 was three-fold higher in the NASH group with significant/advanced fibrosis (F2–F4) compared with the early NASH (F0-F1) group (q-value = 3.6E-6). Complement component C7 and Fibulin-1 are positively correlated with liver stiffness (P=0.000, P=0.002, respectively); whereas, Complement component C8 γ chain is negatively correlated (P=0.009). High levels of Complement C7 are associated with NASH with significant/advanced fibrosis and Complement C7 is a perfect classifier of patients included in this pilot study. Further studies will be needed in a larger validation cohort to confirm the utility of complement proteins as biomarkers or mechanistic determinants of NASH with significant/advanced fibrosis.
Collapse
|
21
|
Jin Z, Liu L, Xu C, Yan C, Li S, Geng T, Gong D. Differential regulation on C5 expression in goose versus mammals by glucose/palmitate provides a potential protection for goose fatty liver. Anim Sci J 2021; 92:e13672. [PMID: 34904771 DOI: 10.1111/asj.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Goose fatty liver is a specific type of nonalcoholic fatty liver that is protected from harmful effects associated with severe steatosis. Our previous findings suggest that suppression of the complement C5 may be relevant, but the mechanism is unclear. Therefore, in this study, we first verified the expression pattern of complement genes (including C5) during goose fatty liver formation and then determined the liver fat content and fatty acid composition by high-performance liquid chromatography (HPLC), followed by selecting the differential metabolites to treat HepG2, goose and mouse primary hepatocytes, aiming to explore the mechanism of C5 and inflammation suppression in goose fatty liver. The data confirmed the suppression of complement genes (including C5) in goose fatty livers. Moreover, fat content was significantly higher in fatty liver versus normal ones, with oleic acid and palmitic acid dominantly accounting for the difference. In line with this, high concentration of palmitate led to down regulation of C5 expression in goose primary hepatocytes whereas upregulation in mouse primary hepatocytes and HepG2 cells. In conclusion, regulation on C5 expression by fatty liver related factors including high level of palmitic acid may contribute to the protection of goose liver from severe hepatic steatosis.
Collapse
Affiliation(s)
- Zidi Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Cheng Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chunchi Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuo Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Núñez K, Hamed M, Fort D, Bruce D, Thevenot P, Cohen A. Links between donor macrosteatosis, interleukin-33 and complement after liver transplantation. World J Transplant 2020; 10:117-128. [PMID: 32864357 PMCID: PMC7428792 DOI: 10.5500/wjt.v10.i5.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/07/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As prevalence of nonalcoholic fatty liver disease increases in the population, livers with steatosis will continue to infiltrate the donor pool. Safe utilization of these extended criteria grafts is paramount given the increased risk associated with their use in transplantation. Prognostic factors that can predict liver dysfunction immediately after transplantation with macrosteatotic grafts are lacking. AIM To understand the relationship between interleukin-33 (IL-33) and complement in recipients immediately following liver reperfusion as a marker of liver dysfunction. METHODS Cohort consisted of patients who received a liver transplant from September 2016-September 2019 at our institution. Clinical variables were retrospectively extracted from the electronic medical record. Back-table donor biopsies were obtained with donor steatosis percentage retrospectively determined by a board-certified pathologist. Blood samples were available immediately following liver transplantation. Quantification of plasma IL-33 and complement proteins, C3a and C5a, were determined by enzyme-linked immunosorbent assay. For mRNA expression, RNA was extracted from donor biopsies and used against a 780 gene panel. RESULTS Cohort consisted of 99 donor and recipients. Donor median age was 45 years and 55% male. Recipients had a median age of 59 years with 62% male. The main etiologies were alcoholic hepatitis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Median MELD-Na at transplant was 21. Donors were grouped based on moderate macrosteatosis (≥ 30%). Recipients implanted with moderate macrosteatotic grafts had significantly higher peak alanine aminotransferase/aspartate aminotransferase (P < 0.001 and P < 0.004), and increased incidence of early allograft dysfunction (60% compared to 18%). Circulating IL-33 levels were significantly elevated in recipients of ≥ 30% macrosteatotic grafts (P < 0.05). Recipients with detectable levels of circulating IL-33 immediately following reperfusion had significantly higher alanine aminotransferase/aspartate aminotransferase (P < 0.05 and P < 0.01). Activated complement (C3a and C5a) were elevated in recipients implanted with moderate macrosteatotic grafts. RNA expression analysis of donor biopsies revealed moderate steatotic grafts upregulated genes inflammatory processes while downregulated hepatocyte-produced complement factors. CONCLUSION Circulating IL-33 and activated complement levels immediately following liver reperfusion in recipients of moderate macrosteatotic grafts may identify which patients are at risk of early allograft dysfunction.
Collapse
Affiliation(s)
- Kelley Núñez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Mohammad Hamed
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Daniel Fort
- Center for Outcomes and Health Services Research, Research Administration, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - David Bruce
- Multi-Organ Transplant Program, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Ari Cohen
- Multi-Organ Transplant Program, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| |
Collapse
|
23
|
Hendrikx T, Binder CJ. Oxidation-Specific Epitopes in Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2020; 11:607011. [PMID: 33362721 PMCID: PMC7756077 DOI: 10.3389/fendo.2020.607011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
An improper balance between the production and elimination of intracellular reactive oxygen species causes increased oxidative stress. Consequently, DNA, RNA, proteins, and lipids are irreversibly damaged, leading to molecular modifications that disrupt normal function. In particular, the peroxidation of lipids in membranes or lipoproteins alters lipid function and promotes formation of neo-epitopes, such as oxidation-specific epitopes (OSEs), which are found to be present on (lipo)proteins, dying cells, and extracellular vesicles. Accumulation of OSEs and recognition of OSEs by designated pattern recognition receptors on immune cells or soluble effectors can contribute to the development of chronic inflammatory diseases. In line, recent studies highlight the involvement of modified lipids and OSEs in different stages of the spectrum of non-alcoholic fatty liver disease (NAFLD), including inflammatory non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. Targeting lipid peroxidation products shows high potential in the search for novel, better therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Tim Hendrikx
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), Vienna, Austria
- *Correspondence: Christoph J. Binder,
| |
Collapse
|
24
|
Lung T, Sakem B, Risch L, Würzner R, Colucci G, Cerny A, Nydegger U. The complement system in liver diseases: Evidence-based approach and therapeutic options. J Transl Autoimmun 2019; 2:100017. [PMID: 32743505 PMCID: PMC7388403 DOI: 10.1016/j.jtauto.2019.100017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Complement is usually seen to largely originate from the liver to accomplish its tasks systemically - its return to the production site has long been underestimated. Recent progress in genomics, therapeutic effects on complement, standardised possibilities in medical laboratory tests and involvement of complosome brings the complement system with its three major functions of opsonization, cytolysis and phagocytosis back to liver biology and pathology. The LOINC™ system features 20 entries for the C3 component of complement to anticipate the application of artificial intelligence data banks algorythms of which are fed with patient-specific data connected to standard lab assays for liver function. These advancements now lead to increased vigilance by clinicians. This reassessment article will further elucidate the distribution of synthesis sites to the three germ layer-derived cell systems and the role complement now known to play in embryogenesis, senescence, allotransplantation and autoimmune disease. This establishes the liver as part of the gastro-intestinal system in connection with nosological entities never thought of, such as the microbiota-liver-brain axis. In neurological disease etiology infectious and autoimmune hepatitis play an important role in the context of causative viz reactive complement activation. The mosaic of autoimmunity, i.e. multiple combinations of the many factors producing varying clinical pictures, leads to the manifold facets of liver autoimmunity.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Lagerstrasse 30, CH-9470, Buchs, Switzerland
| | - Benjamin Sakem
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Reinhard Würzner
- Medical University Innsbruck, Division of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Giuseppe Colucci
- Clinica Luganese Moncucco, Lugano, Via Moncucco, CH-6900, Lugano, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Andreas Cerny
- Epatocentro Ticino, Via Soldino 5, CH-6900, Lugano, Switzerland
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| |
Collapse
|
25
|
Saleh J, Al-Maqbali M, Abdel-Hadi D. Role of Complement and Complement-Related Adipokines in Regulation of Energy Metabolism and Fat Storage. Compr Physiol 2019; 9:1411-1429. [PMID: 31688967 DOI: 10.1002/cphy.c170037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adipose tissue releases many cytokines and inflammatory factors described as adipokines. In obesity, adipokines released from expanding adipose tissue are implicated in disease progression and metabolic dysfunction. However, mechanisms controlling the progression of adiposity and metabolic complications are not fully understood. It has been suggested that expanding fat mass and sustained release of inflammatory adipokines in adipose tissue lead to hypoxia, oxidative stress, apoptosis, and cellular damage. These changes trigger an immune response involving infiltration of adipose tissue with immune cells, complement activation and generation of factors involved in opsonization and clearance of damaged cells. Abundant evidence now indicates that adipose tissue is an active secretory source of complement and complement-related adipokines that, in addition to their inflammatory role, contribute to the regulation of metabolic function. This article highlights advances in knowledge regarding the role of these adipokines in energy regulation of adipose tissue through modulating lipogenic and lipolytic pathways. Several adipokines will be discussed including adipsin, Factor H, properdin, C3a, Acylation-Stimulating Protein, C1q/TNF-related proteins, and response gene to complement-32 (RGC-32). Interactions between these factors will be described considering their immune-metabolic roles in the adipose tissue microenvironment and their potential contribution to progression of adiposity and metabolic dysfunction. The differential expression and the role of complement factors in gender-related fat partitioning will also be addressed. Identifying lipogenic adipokines and their specific autocrine/paracrine roles may provide means for adipose-tissue-targeted therapeutic interventions that may disrupt the vicious circle of adiposity and disease progression. © 2019 American Physiological Society. Compr Physiol 9:1411-1429, 2019.
Collapse
Affiliation(s)
- Jumana Saleh
- Biochemistry Department, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muna Al-Maqbali
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
26
|
Thorgersen EB, Barratt‐Due A, Haugaa H, Harboe M, Pischke SE, Nilsson PH, Mollnes TE. The Role of Complement in Liver Injury, Regeneration, and Transplantation. Hepatology 2019; 70:725-736. [PMID: 30653682 PMCID: PMC6771474 DOI: 10.1002/hep.30508] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
The liver is both an immunologically complex and a privileged organ. The innate immune system is a central player, in which the complement system emerges as a pivotal part of liver homeostasis, immune responses, and crosstalk with other effector systems in both innate and adaptive immunity. The liver produces the majority of the complement proteins and is the home of important immune cells such as Kupffer cells. Liver immune responses are delicately tuned between tolerance to many antigens flowing in from the alimentary tract, a tolerance that likely makes the liver less prone to rejection than other solid organ transplants, and reaction to local injury, systemic inflammation, and regeneration. Notably, complement is a double-edged sword as activation is detrimental by inducing inflammatory tissue damage in, for example, ischemia-reperfusion injury and transplant rejection yet is beneficial for liver tissue regeneration. Therapeutic complement inhibition is rapidly developing for routine clinical treatment of several diseases. In the liver, targeted inhibition of damaged tissue may be a rational and promising approach to avoid further tissue destruction and simultaneously preserve beneficial effects of complement in areas of proliferation. Here, we argue that complement is a key system to manipulate in the liver in several clinical settings, including liver injury and regeneration after major surgery and preservation of the organ during transplantation.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Department of Gastroenterological SurgeryThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Andreas Barratt‐Due
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway
| | - Håkon Haugaa
- Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway,Lovisenberg Diaconal University CollegeOsloNorway
| | - Morten Harboe
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Søren Erik Pischke
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway
| | - Per H. Nilsson
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Linnaeus Centre for Biomaterials ChemistryLinnaeus UniversityKalmarSweden
| | - Tom Eirik Mollnes
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Reserach Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TRECUniversity of TromsøTromsøNorway,Centre of Molecular Inflammation ResearchNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
27
|
|
28
|
McCullough RL, McMullen MR, Sheehan MM, Poulsen KL, Roychowdhury S, Chiang DJ, Pritchard MT, Caballeria J, Nagy LE. Complement Factor D protects mice from ethanol-induced inflammation and liver injury. Am J Physiol Gastrointest Liver Physiol 2018; 315:G66-G79. [PMID: 29597356 PMCID: PMC6109707 DOI: 10.1152/ajpgi.00334.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 03/04/2018] [Indexed: 01/31/2023]
Abstract
Complement plays a crucial role in microbial defense and clearance of apoptotic cells. Emerging evidence suggests complement is an important contributor to alcoholic liver disease. While complement component 1, Q subcomponent (C1q)-dependent complement activation contributes to ethanol-induced liver injury, the role of the alternative pathway in ethanol-induced injury is unknown. Activation of complement via the classical and alternative pathways was detected in alcoholic hepatitis patients. Female C57BL/6J [wild type (WT)], C1q-deficient ( C1qa-/-, lacking classical pathway activation), complement protein 4-deficient ( C4-/-, lacking classical and lectin pathway activation), complement factor D-deficient ( FD-/-, lacking alternative pathway activation), and C1qa/FD-/- (lacking classical and alternative pathway activation) mice were fed an ethanol-containing liquid diet or pair-fed control diet for 4 or 25 days. Following chronic ethanol exposure, liver injury, steatosis, and proinflammatory cytokine expression were increased in WT but not C1qa-/-, C4-/-, or C1qa/FD-/- mice. In contrast, liver injury, steatosis, and proinflammatory mediators were robustly increased in ethanol-fed FD-/- mice compared with WT mice. Complement activation, assessed by hepatic accumulation of C1q and complement protein 3 (C3) cleavage products (C3b/iC3b/C3c), was evident in livers of WT mice in response to both short-term and chronic ethanol. While C1q accumulated in ethanol-fed FD-/- mice (short term and chronic), C3 cleavage products were detected after short-term but not chronic ethanol. Consistent with impaired complement activation, chronic ethanol induced the accumulation of apoptotic cells and fibrogenic responses in the liver of FD-/- mice. These data highlight the protective role of complement factor D (FD) and suggest that FD-dependent amplification of complement is an adaptive response that promotes hepatic healing and recovery in response to chronic ethanol. NEW & NOTEWORTHY Complement, a component of the innate immune system, is an important pathophysiological contributor to ethanol-induced liver injury. We have identified a novel role for factor D, a component of the alternative pathway, in protecting the liver from ethanol-induced inflammation, accumulation of apoptotic hepatocytes, and profibrotic responses. These data indicate a dual role of complement with regard to inflammatory and protective responses and suggest that accumulation of apoptotic cells impairs hepatic healing/recovery during alcoholic liver disease.
Collapse
Affiliation(s)
- Rebecca L McCullough
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Megan R McMullen
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Megan M Sheehan
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Kyle L Poulsen
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Sanjoy Roychowdhury
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Dian J Chiang
- Division of Gastroenterology, Swedish Medical Group , Seattle, Washington
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center , Kansas City, Kansas
| | - Juan Caballeria
- Institut d'Investigacions Biomediques August Pi iSunyer, Hospital Clinic of Barcelona , Barcelona , Spain
| | - Laura E Nagy
- Department of Pathobiology, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
- Department of Gastroenterology and Hepatology, Cleveland Clinic , Cleveland, Ohio
| |
Collapse
|
29
|
Chen JY, Cortes C, Ferreira VP. Properdin: A multifaceted molecule involved in inflammation and diseases. Mol Immunol 2018; 102:58-72. [PMID: 29954621 DOI: 10.1016/j.molimm.2018.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023]
Abstract
Properdin, the widely known positive regulator of the alternative pathway (AP), has undergone significant investigation over the last decade to define its function in inflammation and disease, including its role in arthritis, asthma, and kidney and cardiovascular diseases. Properdin is a glycoprotein found in plasma that is mainly produced by leukocytes and can positively regulate AP activity by stabilizing C3 and C5 convertases and initiating the AP. Promotion of complement activity by properdin results in changes in the cellular microenvironment that contribute to innate and adaptive immune responses, including pro-inflammatory cytokine production, immune cell infiltration, antigen presenting cell maturation, and tissue damage. The use of properdin-deficient mouse models and neutralizing antibodies has contributed to the understanding of the mechanisms by which properdin contributes to promoting or preventing disease pathology. This review mainly focusses on the multifaceted roles of properdin in inflammation and diseases, and how understanding these roles is contributing to the development of new disease therapies.
Collapse
Affiliation(s)
- Jin Y Chen
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| | - Claudio Cortes
- Department of Biomedical Sciences, University of Oakland University School of Medicine, Rochester, MI, United States.
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
30
|
Núñez K, Thevenot P, Alfadhli A, Cohen A. Complement Activation in Liver Transplantation: Role of Donor Macrosteatosis and Implications in Delayed Graft Function. Int J Mol Sci 2018; 19:1750. [PMID: 29899265 PMCID: PMC6032339 DOI: 10.3390/ijms19061750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
The complement system anchors the innate inflammatory response by triggering both cell-mediated and antibody-mediated immune responses against pathogens. The complement system also plays a critical role in sterile tissue injury by responding to damage-associated molecular patterns. The degree and duration of complement activation may be a critical variable controlling the balance between regenerative and destructive inflammation following sterile injury. Recent studies in kidney transplantation suggest that aberrant complement activation may play a significant role in delayed graft function following transplantation, confirming results obtained from rodent models of renal ischemia/reperfusion (I/R) injury. Deactivating the complement cascade through targeting anaphylatoxins (C3a/C5a) might be an effective clinical strategy to dampen reperfusion injury and reduce delayed graft function in liver transplantation. Targeting the complement cascade may be critical in donor livers with mild to moderate steatosis, where elevated lipid burden amplifies stress responses and increases hepatocyte turnover. Steatosis-driven complement activation in the donor liver may also have implications in rejection and thrombolytic complications following transplantation. This review focuses on the roles of complement activation in liver I/R injury, strategies to target complement activation in liver I/R, and potential opportunities to translate these strategies to transplanting donor livers with mild to moderate steatosis.
Collapse
Affiliation(s)
- Kelley Núñez
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Abeer Alfadhli
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Ari Cohen
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| |
Collapse
|
31
|
Ursini F, Russo E, Mauro D, Abenavoli L, Ammerata G, Serrao A, Grembiale RD, De Sarro G, Olivieri I, D'angelo S. Complement C3 and fatty liver disease in Rheumatoid arthritis patients: a cross-sectional study. Eur J Clin Invest 2017; 47:728-735. [PMID: 28796299 DOI: 10.1111/eci.12798] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/06/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent evidence suggested a potential role of complement fraction C3 as a biomarker of nonalcoholic fatty liver disease (NAFLD) in the general population. Aim of this study was to evaluate the performance of C3 for prediction of NAFLD in RA patients. MATERIALS AND METHODS For the present study, consecutive RA patients were recruited. NAFLD was diagnosed according to predefined ultrasonographic (US) criteria. For comparison, the hepatic steatosis index (HSI) was calculated. RESULTS Of 164 consecutive RA patients, 41 (25%) were diagnosed with NAFLD. The NAFLD group had a significant lower proportion of females (P = 0·04), higher BMI (P < 0·0001), C-reactive protein (P = 0·04), complement C3 (P = 0·001) and HSI (P = 0·003). In a logistic regression model, only male sex (OR 2·65, 95% CI: 1·08-6·50, P = 0·03), increasing BMI (OR 1·22, 95% CI: 1·02-1·46, P = 0·03) and complement C3 (OR 5·05, 95% CI: 1·06-23·93, P = 0·04) were associated with higher likelihood of being diagnosed with NAFLD. Finally, we built ROC curves for BMI, complement C3 and their combination for prediction of having NAFLD. The best cut-off for BMI was 28·5 kg/m2 and yielded a sensitivity of 66% and a specificity of 71%; the best cut-off for complement C3 was 1·23 g/L and yielded a sensitivity of 76% and a specificity of 64% for classification of NAFLD cases. CONCLUSIONS Our results provide preliminary evidence for a potential role of complement C3 as a surrogate biomarker of NAFLD in RA patients.
Collapse
Affiliation(s)
- Francesco Ursini
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy.,Rheumatology Department of Lucania, "San Carlo" Hospital of Potenza and "Madonna delle Grazie" Hospital of Matera, Potenza, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Daniele Mauro
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute - Queen Mary University of London, London, UK
| | - Ludovico Abenavoli
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Giorgio Ammerata
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | | | - Rosa Daniela Grembiale
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | | | - Ignazio Olivieri
- Rheumatology Department of Lucania, "San Carlo" Hospital of Potenza and "Madonna delle Grazie" Hospital of Matera, Potenza, Italy
| | - Salvatore D'angelo
- Rheumatology Department of Lucania, "San Carlo" Hospital of Potenza and "Madonna delle Grazie" Hospital of Matera, Potenza, Italy
| |
Collapse
|
32
|
Bavia L, Cogliati B, Dettoni JB, Ferreira Alves VA, Isaac L. The complement component C5 promotes liver steatosis and inflammation in murine non-alcoholic liver disease model. Immunol Lett 2016; 177:53-61. [PMID: 27477770 DOI: 10.1016/j.imlet.2016.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NALD) is considering a hepatic manifestation of metabolic syndrome. Although the pathogenesis of NALD is not completely understood, insulin resistance and inflammatory cytokines are implicated. Considering that component C5 is a central mediator of inflammation, we investigated the role of C5 in the establishment of NALD. Eight to ten-week old B6 C5(+) and A/J C5(-) male mice were fed a high fat diet containing glucose (HFDG) for 6 and 10 weeks. We observed that B6 C5(+) mice HFDG-fed for 10 weeks developed hepatomegaly, triglycerides (TG) accumulation, steatosis and enhanced liver TNF-α, IL-6, IL-12p70 and IL-17 levels when compared to A/J C5(-) mice. Next, B6 C5(+) mice were compared with congenic B6 C5(-) mice. Again, B6 C5(+) HFDG-fed mice developed more steatosis, liver centro-lobular inflammation and presented higher levels of liver IL-1β, IL-12p70, IL-17 and TFG-β than B6 C5(-) mice under the same conditions. B6 C5(+) mice HFDG-fed also presented lower concentrations of serum albumin, serum cholesterol, blood leukocytes and liver NO production when compared with B6 C5(-) mice. We concluded that murine C5 contributes effectively to liver steatosis and inflammation in NALD pathogenesis. In addition, C5 is also important to control serum cholesterol and albumin levels in the C57BL/6 genetic background.
Collapse
Affiliation(s)
- Lorena Bavia
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Bruno Cogliati
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Lourdes Isaac
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Winkler S, Hempel M, Brückner S, Tautenhahn HM, Kaufmann R, Christ B. Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells. Int J Mol Sci 2016; 17:E1099. [PMID: 27409608 PMCID: PMC4964475 DOI: 10.3390/ijms17071099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The beneficial impact of mesenchymal stem cells (MSC) on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. METHODS Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. RESULTS MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1) increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM) decreased. MSC secreted different factors before and after differentiation. These comprised cytokines involved in innate immunity and growth factors regulating liver regeneration. Pathway analysis revealed cytokine-cytokine receptor interactions, chemokine signalling pathways, the complement and coagulation cascades as well as the Januskinase-signal transducers and activators of transcription (JAK-STAT) and nucleotide-binding oligomerization domain-like receptor (NOD-like receptor) signalling pathways as relevant networks. Relationships to transforming growth factor β (TGF-β) and hypoxia-inducible factor 1-α (HIF1-α) signalling seemed also relevant. CONCLUSION MSC secreted proteins, which differed depending on cell source and degree of differentiation. The factors might address inflammatory and growth factor pathways as well as chemo-attraction and innate immunity. Since these are prone to dysregulation in most liver diseases, MSC release hepatotropic factors, potentially supporting liver regeneration.
Collapse
Affiliation(s)
- Sandra Winkler
- Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany.
| | - Madlen Hempel
- Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany.
| | - Sandra Brückner
- Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany.
| | - Hans-Michael Tautenhahn
- Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany.
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany.
| | - Bruno Christ
- Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany.
| |
Collapse
|
34
|
Abstract
The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
Collapse
Affiliation(s)
- Felix Heymann
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|