1
|
Moser C, Guschtschin-Schmidt N, Silber M, Flum J, Muhle-Goll C. Substrate Selection Criteria in Regulated Intramembrane Proteolysis. ACS Chem Neurosci 2024; 15:1321-1334. [PMID: 38525994 DOI: 10.1021/acschemneuro.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Alzheimer's disease is the most common form of dementia encountered in an aging population. Characteristic amyloid deposits of Aβ peptides in the brain are generated through cleavage of amyloid precursor protein (APP) by γ-secretase, an intramembrane protease. Cryo-EM structures of substrate γ-secretase complexes revealed details of the process, but how substrates are recognized and enter the catalytic site is still largely ignored. γ-Secretase cleaves a diverse range of substrate sequences without a common consensus sequence, but strikingly, single point mutations within the transmembrane domain (TMD) of specific substrates may greatly affect cleavage efficiencies. Previously, conformational flexibility was hypothesized to be the main criterion for substrate selection. Here we review the 3D structure and dynamics of several γ-secretase substrate TMDs and compare them with mutants shown to affect the cleavage efficiency. In addition, we present structural and dynamic data on ITGB1, a known nonsubstrate of γ-secretase. A comparison of biophysical details between these TMDs and changes generated by introducing crucial mutations allowed us to unravel common principles that differ between substrates and nonsubstrates. We identified three motifs in the investigated substrates: a highly flexible transmembrane domain, a destabilization of the cleavage region, and a basic signature at the end of the transmembrane helix. None of these appears to be exclusive. While conformational flexibility on its own may increase cleavage efficiency in well-known substrates like APP or Notch1, our data suggest that the three motifs seem to be rather variably combined to determine whether a transmembrane helix is efficiently recognized as a γ-secretase substrate.
Collapse
Affiliation(s)
- Celine Moser
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nadja Guschtschin-Schmidt
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Mara Silber
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Julia Flum
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Schilling S, August A, Meleux M, Conradt C, Tremmel LM, Teigler S, Adam V, Müller UC, Koo EH, Kins S, Eggert S. APP family member dimeric complexes are formed predominantly in synaptic compartments. Cell Biosci 2023; 13:141. [PMID: 37533067 PMCID: PMC10398996 DOI: 10.1186/s13578-023-01092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The amyloid precursor protein (APP), a key player in Alzheimer's disease (AD), is part of a larger gene family, including the APP like proteins APLP1 and APLP2. They share similar structures, form homo- and heterotypic dimers and exhibit overlapping functions. RESULTS We investigated complex formation of the APP family members via two inducible dimerization systems, the FKBP-rapamycin based dimerization as well as cysteine induced dimerization, combined with co-immunoprecipitations and Blue Native (BN) gel analyses. Within the APP family, APLP1 shows the highest degree of dimerization and high molecular weight (HMW) complex formation. Interestingly, only about 20% of APP is dimerized in cultured cells whereas up to 50% of APP is dimerized in mouse brains, independent of age and splice forms. Furthermore, we could show that dimerized APP originates mostly from neurons and is enriched in synaptosomes. Finally, BN gel analysis of human cortex samples shows a significant decrease of APP dimers in AD patients compared to controls. CONCLUSIONS Together, we suggest that loss of full-length APP dimers might correlate with loss of synapses in the process of AD.
Collapse
Affiliation(s)
- Sandra Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Alexander August
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Mathieu Meleux
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Carolin Conradt
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Luisa M Tremmel
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Medical, Biochemistry & Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Sandra Teigler
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Virginie Adam
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ulrike C Müller
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Edward H Koo
- Department of Neuroscience, University of California, San Diego (UCSD), La Jolla, CA, 92093-0662, USA
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, City-Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Abstract
Probabilistic and parsimony-based arguments regarding available genetics data are used to propose that Hardy and Higgin's amyloid cascade hypothesis is valid but is commonly interpreted too narrowly to support, incorrectly, the primacy of the amyloid-β peptide (Aβ) in driving Alzheimer's disease pathogenesis. Instead, increased activity of the βCTF (C99) fragment of AβPP is the critical pathogenic determinant altered by mutations in the APP gene. This model is consistent with the regulation of APP mRNA translation via its 5' iron responsive element. Similar arguments support that the pathological effects of familial Alzheimer's disease mutations in the genes PSEN1 and PSEN2 are not exerted directly via changes in AβPP cleavage to produce different ratios of Aβ length. Rather, these mutations likely act through effects on presenilin holoprotein conformation and function, and possibly the formation and stability of multimers of presenilin holoprotein and/or of the γ-secretase complex. All fAD mutations in APP, PSEN1, and PSEN2 likely find unity of pathological mechanism in their actions on endolysosomal acidification and mitochondrial function, with detrimental effects on iron homeostasis and promotion of "pseudo-hypoxia" being of central importance. Aβ production is enhanced and distorted by oxidative stress and accumulates due to decreased lysosomal function. It may act as a disease-associated molecular pattern enhancing oxidative stress-driven neuroinflammation during the cognitive phase of the disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Siebert V, Silber M, Heuten E, Muhle-Goll C, Lemberg MK. Cleavage of mitochondrial homeostasis regulator PGAM5 by the intramembrane protease PARL is governed by transmembrane helix dynamics and oligomeric state. J Biol Chem 2022; 298:102321. [PMID: 35921890 PMCID: PMC9436811 DOI: 10.1016/j.jbc.2022.102321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022] Open
Abstract
The intramembrane protease PARL acts as a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. Depending on the stress level, PGAM5 can either stimulate cell survival or cell death. In contrast to PINK1, which is constantly cleaved in healthy mitochondria and only active when the inner mitochondrial membrane is depolarized, PGAM5 processing is inversely regulated. However, determinants of PGAM5 that indicate it as a conditional substrate for PARL have not been rigorously investigated, and it is unclear how uncoupling the mitochondrial membrane potential affects its processing compared to that of PINK1. Here, we show that several polar transmembrane residues in PGAM5 distant from the cleavage site serve as determinants for its PARL-catalyzed cleavage. Our NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal transmembrane helix harboring the scissile peptide bond are key for a productive interaction with PARL. Furthermore, we also show that PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers, which are then cleaved by PARL. In conclusion, we propose a model in which PGAM5 is slowly processed by PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features, including a membrane potential–dependent oligomeric switch.
Collapse
|
6
|
Chen SY, Zacharias M. An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations. Biophys J 2022; 121:2330-2344. [PMID: 35598043 PMCID: PMC9279352 DOI: 10.1016/j.bpj.2022.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022] Open
Abstract
Amyloid precursor protein (APP) is cleaved and processed sequentially by γ-secretase yielding amyloid β (Aβ) peptides of different lengths. Longer Aβ peptides are associated with the formation of neurotoxic plaques related to Alzheimer's disease. Based on the APP substrate-bound structure of γ-secretase, we investigated the enzyme-substrate interaction using molecular dynamics simulations and generated model structures that represent the sequentially cleaved intermediates during the processing reaction. The simulations indicated an internal docking site providing strong enzyme-substrate packing interaction. In the enzyme-substrate complex, it is located close to the region where the helical conformation of the substrate is interrupted and continues toward the active site in an extended conformation. The internal docking site consists of two non-polar pockets that are preferentially filled by large hydrophobic or aromatic substrate side chains to stabilize binding. Placement of smaller residues such as glycine can trigger a shift in the cleavage pattern during the simulations or results in destabilization of substrate binding. The reduced packing by smaller residues also influences the hydration of the active site and the formation of a catalytically active state. The simulations on processed substrate intermediates and a substrate G33I mutation offer an explanation of the experimentally observed relative increase of short Aβ fragment production for this mutation. In addition, studies on a substrate K28A mutation indicate that the internal docking site opposes the tendency of substrate dissociation due to a hydrophobic mismatch at the membrane boundary caused by K28 during processing and substrate movement toward the enzyme active site. The proposed internal docking site could also be useful for the specific design of new γ-secretase modulators.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
7
|
Silber M, Hitzenberger M, Zacharias M, Muhle-Goll C. Altered Hinge Conformations in APP Transmembrane Helix Mutants May Affect Enzyme-Substrate Interactions of γ-Secretase. ACS Chem Neurosci 2020; 11:4426-4433. [PMID: 33232115 DOI: 10.1021/acschemneuro.0c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cleavage of substrates by γ-secretase is an inherently slow process where substrate-enzyme affinities cannot be broken down into specific sequence requirements in contrast to soluble proteases. Nevertheless, despite its apparent sequence tolerance single point mutations in amyloid precursor protein can severely affect cleavage efficiencies and change product line preferences. We have determined by NMR spectroscopy the structures of the transmembrane domain of amyloid precursor protein in TFE/water and compared it to that of four mutants: two FAD mutants, V44M and I45T, and the two diglycine hinge mutants, G38L and G38P. In accordance with previous publications, the transmembrane domain is composed of two helical segments connected by the diglycine hinge. Mutations alter kink angles and structural flexibility. Furthermore, to our surprise, we observe different, but specific mutual orientations of N- and C-terminal helical segments in the four mutants compared to the wildtype. We speculate that the observed orientations for G38L, G38P, V44M, and I45T lead to unfavorable interactions with γ-secretase exosites during substrate movement to the enzyme's active site in presenilin and/or for the accommodation into the substrate-binding cavity of presenilin.
Collapse
Affiliation(s)
- Mara Silber
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Manuel Hitzenberger
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
De Mena L, Smith MA, Martin J, Dunton KL, Ceballos-Diaz C, Jansen-West KR, Cruz PE, Dillon KD, Rincon-Limas DE, Golde TE, Moore BD, Levites Y. Aß40 displays amyloidogenic properties in the non-transgenic mouse brain but does not exacerbate Aß42 toxicity in Drosophila. Alzheimers Res Ther 2020; 12:132. [PMID: 33069251 PMCID: PMC7568834 DOI: 10.1186/s13195-020-00698-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Self-assembly of the amyloid-β (Aβ) peptide into aggregates, from small oligomers to amyloid fibrils, is fundamentally linked with Alzheimer's disease (AD). However, it is clear that not all forms of Aβ are equally harmful and that linking a specific aggregate to toxicity also depends on the assays and model systems used (Haass et al., J Biol. Chem 269:17741-17748, 1994; Borchelt et al., Neuron 17:1005-1013, 1996). Though a central postulate of the amyloid cascade hypothesis, there remain many gaps in our understanding regarding the links between Aβ deposition and neurodegeneration. METHODS In this study, we examined familial mutations of Aβ that increase aggregation and oligomerization, E22G and ΔE22, and induce cerebral amyloid angiopathy, E22Q and D23N. We also investigated synthetic mutations that stabilize dimerization, S26C, and a phospho-mimetic, S8E, and non-phospho-mimetic, S8A. To that end, we utilized BRI2-Aβ fusion technology and rAAV2/1-based somatic brain transgenesis in mice to selectively express individual mutant Aβ species in vivo. In parallel, we generated PhiC31-based transgenic Drosophila melanogaster expressing wild-type (WT) and Aβ40 and Aβ42 mutants, fused to the Argos signal peptide to assess the extent of Aβ42-induced toxicity as well as to interrogate the combined effect of different Aβ40 and Aβ42 species. RESULTS When expressed in the mouse brain for 6 months, Aβ42 E22G, Aβ42 E22Q/D23N, and Aβ42WT formed amyloid aggregates consisting of some diffuse material as well as cored plaques, whereas other mutants formed predominantly diffuse amyloid deposits. Moreover, while Aβ40WT showed no distinctive phenotype, Aβ40 E22G and E22Q/D23N formed unique aggregates that accumulated in mouse brains. This is the first evidence that mutant Aβ40 overexpression leads to deposition under certain conditions. Interestingly, we found that mutant Aβ42 E22G, E22Q, and S26C, but not Aβ40, were toxic to the eye of Drosophila. In contrast, flies expressing a copy of Aβ40 (WT or mutants), in addition to Aβ42WT, showed improved phenotypes, suggesting possible protective qualities for Aβ40. CONCLUSIONS These studies suggest that while some Aβ40 mutants form unique amyloid aggregates in mouse brains, they do not exacerbate Aβ42 toxicity in Drosophila, which highlights the significance of using different systems for a better understanding of AD pathogenicity and more accurate screening for new potential therapies.
Collapse
Affiliation(s)
- Lorena De Mena
- Department of Neurology, McKnight Brain Institute, University of Florida and Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael A Smith
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jason Martin
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Katie L Dunton
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Pedro E Cruz
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kristy D Dillon
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida and Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Yona Levites
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Hitzenberger M, Götz A, Menig S, Brunschweiger B, Zacharias M, Scharnagl C. The dynamics of γ-secretase and its substrates. Semin Cell Dev Biol 2020; 105:86-101. [DOI: 10.1016/j.semcdb.2020.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
|
10
|
Hutchison JM, Shih KC, Scheidt HA, Fantin SM, Parson KF, Pantelopulos GA, Harrington HR, Mittendorf KF, Qian S, Stein RA, Collier SE, Chambers MG, Katsaras J, Voehler MW, Ruotolo BT, Huster D, McFeeters RL, Straub JE, Nieh MP, Sanders CR. Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. J Am Chem Soc 2020; 142:12715-12729. [PMID: 32575981 DOI: 10.1021/jacs.0c04669] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-β-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.
Collapse
Affiliation(s)
- James M Hutchison
- Chemical and Physical Biology Graduate Program and Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Kuo-Chih Shih
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Sarah M Fantin
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - George A Pantelopulos
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Haley R Harrington
- Center for Structural Biology and Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville 37240, Tennessee, United States
| | - Kathleen F Mittendorf
- Center for Health Research, Kaiser Permanente, Portland 97227, Oregon, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville37240, Tennessee, United States
| | - Scott E Collier
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland 97227, Oregon, United States
| | - Melissa G Chambers
- Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Markus W Voehler
- Center for Structural Biology and Department of Chemistry, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama, Huntsville 35899, Alabama, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Mu-Ping Nieh
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Charles R Sanders
- Center for Structural Biology, Department of Biochemistry, and Department of Medicine, Vanderbilt University School of Medicine, Nashville 37240, Tennessee, United States
| |
Collapse
|
11
|
Lessard CB, Rodriguez E, Ladd TB, Minter LM, Osborne BA, Miele L, Golde TE, Ran Y. γ-Secretase modulators exhibit selectivity for modulation of APP cleavage but inverse γ-secretase modulators do not. ALZHEIMERS RESEARCH & THERAPY 2020; 12:61. [PMID: 32430033 PMCID: PMC7236921 DOI: 10.1186/s13195-020-00622-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Background γ-Secretase is a multiprotein protease that cleaves amyloid protein precursor (APP) and other type I transmembrane proteins. It has two catalytic subunits, presenilins 1 and 2 (PS1 and 2). In our previous report, we observed subtle differences in PS1- and PS2-mediated cleavages of select substrates and slightly different potencies of PS1 versus PS2 inhibition for select γ-secretase inhibitors (GSIs) on various substrates. In this study, we investigated whether γ-secretase modulators (GSMs) and inverse γ-secretase modulators (iGSMs) modulate γ-secretase processivity using multiple different substrates. We next used HEK 293T cell lines in which PSEN1 or PSEN2 was selectively knocked out to investigate processivity and response to GSMs and iGSMs. Methods For cell-free γ-secretase cleavage assay, recombinant substrates were incubated with CHAPSO-solubilized CHO or HEK 293T cell membrane with GSMs or iGSMs in suitable buffer. For cell-based assay, cDNA encoding substrates were transfected into HEK 293T cells. Cells were then treated with GSMs or iGSMs, and conditioned media were collected. Aβ and Aβ-like peptide production from cell-free and cell-based assay were measured by ELISA and mass spectrometry. Result These studies demonstrated that GSMs are highly selective for effects on APP, whereas iGSMs have a more promiscuous effect on many substrates. Surprisingly, iGSMs actually appear to act as like GSIs on select substrates. The data with PSEN1 or PSEN2 knocked out HEK 293T reveal that PS1 has higher processivity and response to GSMs than PS2, but PS2 has higher response to iGSM. Conclusion Collectively, these data indicate that GSMs are likely to have limited target-based toxicity. In addition, they show that iGSMs may act as substrate-selective GSIs providing a potential new route to identify leads for substrate-selective inhibitors of certain γ-secretase-mediated signaling events. With growing concerns that long-term β-secretase inhibitor is limited by target-based toxicities, such data supports continued development of GSMs as AD prophylactics.
Collapse
Affiliation(s)
- Christian B Lessard
- Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA
| | - Edgardo Rodriguez
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Thomas B Ladd
- Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, Center for Bioactive Delivery, Institute for Applied Life Sciences, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, Center for Bioactive Delivery, Institute for Applied Life Sciences, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Todd E Golde
- Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Yong Ran
- Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Ran Y, Hossain F, Pannuti A, Lessard CB, Ladd GZ, Jung JI, Minter LM, Osborne BA, Miele L, Golde TE. γ-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol Med 2018; 9:950-966. [PMID: 28539479 PMCID: PMC5494507 DOI: 10.15252/emmm.201607265] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
γ-Secretase inhibitors (GSIs) are being actively repurposed as cancer therapeutics based on the premise that inhibition of NOTCH1 signaling in select cancers is therapeutic. Using novel assays to probe effects of GSIs against a broader panel of substrates, we demonstrate that clinical GSIs are pharmacologically distinct. GSIs show differential profiles of inhibition of the various NOTCH substrates, with some enhancing cleavage of other NOTCH substrates at concentrations where NOTCH1 cleavage is inhibited. Several GSIs are also potent inhibitors of select signal peptide peptidase (SPP/SPPL) family members. Extending these findings to mammosphere inhibition assays in triple-negative breast cancer lines, we establish that these GSIs have different functional effects. We also demonstrate that the processive γ-secretase cleavage pattern established for amyloid precursor protein (APP) occurs in multiple substrates and that potentiation of γ-secretase cleavage is attributable to a direct action of low concentrations of GSIs on γ-secretase. Such data definitively demonstrate that the clinical GSIs are not biological equivalents, and provide an important framework to evaluate results from ongoing and completed human trials with these compounds.
Collapse
Affiliation(s)
- Yong Ran
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fokhrul Hossain
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Antonio Pannuti
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christian B Lessard
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gabriela Z Ladd
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Joo In Jung
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Eggert S, Gonzalez AC, Thomas C, Schilling S, Schwarz SM, Tischer C, Adam V, Strecker P, Schmidt V, Willnow TE, Hermey G, Pietrzik CU, Koo EH, Kins S. Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRP1 and SorLA. Cell Mol Life Sci 2018; 75:301-322. [PMID: 28799085 PMCID: PMC11105302 DOI: 10.1007/s00018-017-2625-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/17/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Proteolytic cleavage of the amyloid precursor protein (APP) by α-, β- and γ-secretases is a determining factor in Alzheimer's disease (AD). Imbalances in the activity of all three enzymes can result in alterations towards pathogenic Aβ production. Proteolysis of APP is strongly linked to its subcellular localization as the secretases involved are distributed in different cellular compartments. APP has been shown to dimerize in cis-orientation, affecting Aβ production. This might be explained by different substrate properties defined by the APP oligomerization state or alternatively by altered APP monomer/dimer localization. We investigated the latter hypothesis using two different APP dimerization systems in HeLa cells. Dimerization caused a decreased localization of APP to the Golgi and at the plasma membrane, whereas the levels in the ER and in endosomes were increased. Furthermore, we observed via live cell imaging and biochemical analyses that APP dimerization affects its interaction with LRP1 and SorLA, suggesting that APP dimerization modulates its interplay with sorting molecules and in turn its localization and processing. Thus, pharmacological approaches targeting APP oligomerization properties might open novel strategies for treatment of AD.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany.
| | - A C Gonzalez
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Institute for Biochemistry, Christian Albrechts University Kiel, 24118, Kiel, Germany
| | - C Thomas
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - S Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - S M Schwarz
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Institute for Medical Virology, University of Frankfurt, 60596, Frankfurt, Germany
| | | | - V Adam
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - P Strecker
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - V Schmidt
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - T E Willnow
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - G Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - C U Pietrzik
- Institute for Pathobiochemistry, Molecular Neurodegeneration, University Medical Center of the Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - E H Koo
- Department of Neuroscience, University of California San Diego (UCSD), La Jolla, CA, 92093-0662, USA
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
14
|
Li X, Song Y, Sanders CR, Buxbaum JN. Transthyretin Suppresses Amyloid-β Secretion by Interfering with Processing of the Amyloid-β Protein Precursor. J Alzheimers Dis 2017; 52:1263-75. [PMID: 27079720 DOI: 10.3233/jad-160033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Alzheimer's disease (AD), most hippocampal and cortical neurons show increased staining with anti-transthyretin (TTR) antibodies. Genetically programmed overexpression of wild type human TTR suppressed the neuropathologic and behavioral abnormalities in APP23 AD model mice and TTR-Aβ complexes have been isolated from some human AD brains and those of APP23 transgenic mice. In the present study, in vitro NMR analysis showed interaction between the hydrophobic thyroxine binding pocket of TTR and the cytoplasmic loop of the C99 fragment released by β-secretase cleavage of AβPP, with Kd = 86±9 μM. In cultured cells expressing both proteins, the interaction reduced phosphorylation of C99 (at T668) and suppressed its cleavage by γ-secretase, significantly decreasing Aβ secretion. Coupled with its previously demonstrated capacity to inhibit Aβ aggregation (with the resultant cytotoxicity in tissue culture) and its regulation by HSF1, these findings indicate that TTR can behave as a stress responsive multimodal suppressor of AD pathogenesis.
Collapse
Affiliation(s)
- Xinyi Li
- Janssen Research & Development, LLC, Johnson & Johnson, San Diego, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuanli Song
- Bristol-Myers Squibb, Biologics Process Development, Devens, MA, USA.,Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
15
|
Langosch D, Steiner H. Substrate processing in intramembrane proteolysis by γ-secretase - the role of protein dynamics. Biol Chem 2017; 398:441-453. [PMID: 27845877 DOI: 10.1515/hsz-2016-0269] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Intramembrane proteases comprise a number of different membrane proteins with different types of catalytic sites. Their common denominator is cleavage within the plane of the membrane, which usually results in peptide bond scission within the transmembrane helices of their substrates. Despite recent progress in the determination of high-resolution structures, as illustrated here for the γ-secretase complex and its substrate C99, it is still unknown how these enzymes function and how they distinguish between substrates and non-substrates. In principle, substrate/non-substrate discrimination could occur at the level of substrate binding and/or cleavage. Focusing on the γ-secretase/C99 pair, we will discuss recent observations suggesting that global motions within a substrate transmembrane helix may be much more important for defining a substrate than local unraveling at cleavage sites.
Collapse
|
16
|
Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 2017; 156:189-213. [DOI: 10.1016/j.pneurobio.2017.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
|
17
|
Cao Z, Hutchison JM, Sanders CR, Bowie JU. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices. J Am Chem Soc 2017; 139:10742-10749. [PMID: 28692798 PMCID: PMC5560243 DOI: 10.1021/jacs.7b04819] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Although
backbone hydrogen bonds in transmembrane (TM) helices
have the potential to be very strong due to the low dielectric and
low water environment of the membrane, their strength has never been
assessed experimentally. Moreover, variations in hydrogen bond strength
might be necessary to facilitate the TM helix breaking and bending
that is often needed to satisfy functional imperatives. Here we employed
equilibrium hydrogen/deuterium fractionation factors to measure backbone
hydrogen bond strengths in the TM helix of the amyloid precursor protein
(APP). We find an enormous range of hydrogen bond free energies, with
some weaker than water–water hydrogen bonds and some over 6
kcal/mol stronger than water–water hydrogen bonds. We find
that weak hydrogen bonds are at or near preferred γ-secretase
cleavage sites, suggesting that the sequence of APP and possibly other
cleaved TM helices may be designed, in part, to make their backbones
accessible for cleavage. The finding that hydrogen bond strengths
in a TM helix can vary widely has implications for membrane protein
function, dynamics, evolution, and design.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - James M Hutchison
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
18
|
Sun F, Chen L, Wei P, Chai M, Ding X, Xu L, Luo SZ. Dimerization and Structural Stability of Amyloid Precursor Proteins Affected by the Membrane Microenvironments. J Chem Inf Model 2017; 57:1375-1387. [DOI: 10.1021/acs.jcim.7b00196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Chen
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengya Chai
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiufang Ding
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Herr UM, Strecker P, Storck SE, Thomas C, Rabiej V, Junker A, Schilling S, Schmidt N, Dowds CM, Eggert S, Pietrzik CU, Kins S. LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State. Front Mol Neurosci 2017; 10:118. [PMID: 28496400 PMCID: PMC5406469 DOI: 10.3389/fnmol.2017.00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third) but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin β and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin β, with the latter exhibiting a preference for APP in its dimeric state.
Collapse
Affiliation(s)
- Uta-Mareike Herr
- Institute of Pathobiochemistry, Molecular Neurodegeneration, University Medical Center of the Johannes Gutenberg-University MainzMainz, Germany
| | - Paul Strecker
- Division of Human Biology and Human Genetics, Technical University of KaiserslauternKaiserslautern, Germany
| | - Steffen E Storck
- Institute of Pathobiochemistry, Molecular Neurodegeneration, University Medical Center of the Johannes Gutenberg-University MainzMainz, Germany
| | - Carolin Thomas
- Division of Human Biology and Human Genetics, Technical University of KaiserslauternKaiserslautern, Germany
| | - Verena Rabiej
- Institute of Pathobiochemistry, Molecular Neurodegeneration, University Medical Center of the Johannes Gutenberg-University MainzMainz, Germany
| | - Anne Junker
- Institute of Pathobiochemistry, Molecular Neurodegeneration, University Medical Center of the Johannes Gutenberg-University MainzMainz, Germany
| | - Sandra Schilling
- Division of Human Biology and Human Genetics, Technical University of KaiserslauternKaiserslautern, Germany
| | - Nadine Schmidt
- Division of Human Biology and Human Genetics, Technical University of KaiserslauternKaiserslautern, Germany
| | - C Marie Dowds
- Division of Human Biology and Human Genetics, Technical University of KaiserslauternKaiserslautern, Germany
| | - Simone Eggert
- Division of Human Biology and Human Genetics, Technical University of KaiserslauternKaiserslautern, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, Molecular Neurodegeneration, University Medical Center of the Johannes Gutenberg-University MainzMainz, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, Technical University of KaiserslauternKaiserslautern, Germany
| |
Collapse
|
20
|
Higashide H, Ishihara S, Nobuhara M, Ihara Y, Funamoto S. Alanine substitutions in the GXXXG motif alter C99 cleavage by γ-secretase but not its dimerization. J Neurochem 2017; 140:955-962. [DOI: 10.1111/jnc.13942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Hidekazu Higashide
- Laboratory of Cognition and Aging; Graduate School of Brain Science; Doshisha University; Kyoto Japan
| | - Seiko Ishihara
- Department of Neuropathology; Graduate School of Life and Medical Sciences; Doshisha University; Kyoto Japan
| | - Mika Nobuhara
- Department of Neuropathology; Graduate School of Life and Medical Sciences; Doshisha University; Kyoto Japan
| | - Yasuo Ihara
- Laboratory of Cognition and Aging; Graduate School of Brain Science; Doshisha University; Kyoto Japan
| | - Satoru Funamoto
- Department of Neuropathology; Graduate School of Life and Medical Sciences; Doshisha University; Kyoto Japan
| |
Collapse
|
21
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|
22
|
Fernandez MA, Biette KM, Dolios G, Seth D, Wang R, Wolfe MS. Transmembrane Substrate Determinants for γ-Secretase Processing of APP CTFβ. Biochemistry 2016; 55:5675-5688. [PMID: 27649271 DOI: 10.1021/acs.biochem.6b00718] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The amyloid β-peptide (Aβ) of Alzheimer's disease (AD) is generated by proteolysis within the transmembrane domain (TMD) of a C-terminal fragment of the amyloid β protein-precursor (APP CTFβ) by the γ-secretase complex. This processing produces Aβ ranging from 38 to 49 residues in length. Evidence suggests that this spectrum of Aβ peptides is the result of successive γ-secretase cleavages, with endoproteolysis first occurring at the ε sites to generate Aβ48 or Aβ49, followed by C-terminal trimming mostly every three residues along two product lines to generate shorter, secreted forms of Aβ: the primary Aβ49-46-43-40 line and a minor Aβ48-45-42-38 line. The major secreted Aβ species are Aβ40 and Aβ42, and an increased proportion of the longer, aggregation-prone Aβ42 compared to Aβ40 is widely thought to be important in AD pathogenesis. We examined TMD substrate determinants of the specificity and efficiency of ε site endoproteolysis and carboxypeptidase trimming of CTFβ by γ-secretase. We determined that the C-terminal negative charge of the intermediate Aβ49 does not play a role in its trimming by γ-secretase. Peptidomimetic probes suggest that γ-secretase has S1', S2', and S3' pockets, through which trimming by tripeptides may be determined. However, deletion of residues around the ε sites demonstrates that a depth of three residues within the TMD is not a determinant of the location of endoproteolytic ε cleavage of CTFβ. We also show that instability of the CTFβ TMD helix near the ε site significantly increases endoproteolysis, and that helical instability near the carboxypeptidase cleavage sites facilitates C-terminal trimming by γ-secretase. In addition, we found that CTFβ dimers are not endoproteolyzed by γ-secretase. These results support a model in which initial interaction of the array of residues along the undimerized single helical TMD of substrates dictates the site of initial ε cleavage and that helix unwinding is essential for both endoproteolysis and carboxypeptidase trimming.
Collapse
Affiliation(s)
- Marty A Fernandez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Kelly M Biette
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Georgia Dolios
- Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Divya Seth
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Rong Wang
- Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael S Wolfe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Audagnotto M, Lemmin T, Barducci A, Dal Peraro M. Effect of the Synaptic Plasma Membrane on the Stability of the Amyloid Precursor Protein Homodimer. J Phys Chem Lett 2016; 7:3572-3578. [PMID: 27518597 DOI: 10.1021/acs.jpclett.6b01721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The proteolytic cleavage of the transmembrane (TM) domain of the amyloid precursor protein (APP) releases amyloid-β (Aβ) peptides, which accumulation in the brain tissue is an early indicator of Alzheimer's disease. We used multiscale molecular dynamics simulations to investigate the stability of APP-TM dimer in realistic models of the synaptic plasma membrane (SPM). Between the two possible dimerization motifs proposed by NMR and EPR, namely G709XXXA713 and G700XXXG704XXXG708, our study revealed that the dimer promoted by the G709XXXA713 motif is not stable in the SPM due to the competition with highly unsaturated lipids that constitute the SPM. Under the same conditions, the dimer promoted by the G700XXXG704XXXG708 motif is instead the most stable species and likely the most biologically relevant. Independently of the dimerization state, both these motifs can be involved in the recruitment of cholesterol molecules.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB) , Lausanne 1015, Switzerland
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California-San Francisco , San Francisco, California 94143, United States
| | - Alessandro Barducci
- Inserm, U1054 Montpellier, France
- Université de Montpellier, CNRS, UMR 5048 , Centre de Biochimie Structurale, U1054 Montpellier, France
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB) , Lausanne 1015, Switzerland
| |
Collapse
|
24
|
Wang X, Perumalsamy H, Kwon HW, Na YE, Ahn YJ. Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer's disease. Sci Rep 2015; 5:16127. [PMID: 26530776 PMCID: PMC4632086 DOI: 10.1038/srep16127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/06/2015] [Indexed: 12/03/2022] Open
Abstract
The human β-amyloid (Aβ) cleaving enzyme (BACE-1) is a target for Alzheimer's disease (AD) treatments. This study was conducted to determine if acacetin extracted from the whole Agastache rugosa plant had anti-BACE-1 and behavioral activities in Drosophila melanogaster AD models and to determine acacetin's mechanism of action. Acacetin (100, 300, and 500 μM) rescued amyloid precursor protein (APP)/BACE1-expressing flies and kept them from developing both eye morphology (dark deposits, ommatidial collapse and fusion, and the absence of ommatidial bristles) and behavioral (motor abnormalities) defects. The reverse transcription polymerase chain reaction analysis revealed that acacetin reduced both the human APP and BACE-1 mRNA levels in the transgenic flies, suggesting that it plays an important role in the transcriptional regulation of human BACE-1 and APP. Western blot analysis revealed that acacetin reduced Aβ production by interfering with BACE-1 activity and APP synthesis, resulting in a decrease in the levels of the APP carboxy-terminal fragments and the APP intracellular domain. Therefore, the protective effect of acacetin on Aβ production is mediated by transcriptional regulation of BACE-1 and APP, resulting in decreased APP protein expression and BACE-1 activity. Acacetin also inhibited APP synthesis, resulting in a decrease in the number of amyloid plaques.
Collapse
Affiliation(s)
- Xue Wang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hyung Wook Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Young-Eun Na
- R&D Coordination Division, Rural Development Administration, Jeonju560-500, Republic of Korea
| | - Young-Joon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| |
Collapse
|
25
|
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:29-88. [PMID: 26811286 DOI: 10.1016/bs.ircmb.2015.10.001] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic cells. The existence of four only partially redundant biochemical pathways that produce PE, highlights the importance of this essential phospholipid. The CDP-ethanolamine and phosphatidylserine decarboxylase pathways occur in different subcellular compartments and are the main sources of PE in cells. Mammalian development fails upon ablation of either pathway. Once made, PE has diverse cellular functions that include serving as a precursor for phosphatidylcholine and a substrate for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis, and autophagy. The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer's disease, Parkinson's disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms.
Collapse
Affiliation(s)
- Elizabeth Calzada
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ouma Onguka
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Winkler E, Julius A, Steiner H, Langosch D. Homodimerization Protects the Amyloid Precursor Protein C99 Fragment from Cleavage by γ-Secretase. Biochemistry 2015; 54:6149-52. [DOI: 10.1021/acs.biochem.5b00986] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Edith Winkler
- BMC-Biomedical
Center, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Ayse Julius
- Lehrstuhl
Chemie der Biopolymere, Technische Universität München, Weihenstephaner
Berg 3, 85354 Freising, Germany
- Munich Center For Integrated Protein Science (CIPSM), Munich, Germany
| | - Harald Steiner
- BMC-Biomedical
Center, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
| | - Dieter Langosch
- Lehrstuhl
Chemie der Biopolymere, Technische Universität München, Weihenstephaner
Berg 3, 85354 Freising, Germany
- Munich Center For Integrated Protein Science (CIPSM), Munich, Germany
| |
Collapse
|
27
|
Decock M, El Haylani L, Stanga S, Dewachter I, Octave JN, Smith SO, Constantinescu SN, Kienlen-Campard P. Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio 2015; 5:763-73. [PMID: 26500837 PMCID: PMC4588712 DOI: 10.1016/j.fob.2015.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Amyloid precursor protein (APP) dimerizes more than its C-terminal fragments in cells. Mutations of membrane GXXXG motifs affect Aβ production but not APP dimerization. Deletion of the APP intracellular domain increases APP dimerization.
Alzheimer’s disease (AD) is a neurodegenerative disease that causes progressive loss of cognitive functions, leading to dementia. Two types of lesions are found in AD brains: neurofibrillary tangles and senile plaques. The latter are composed mainly of the β-amyloid peptide (Aβ) generated by amyloidogenic processing of the amyloid precursor protein (APP). Several studies have suggested that dimerization of APP is closely linked to Aβ production. Nevertheless, the mechanisms controlling APP dimerization and their role in APP function are not known. Here we used a new luciferase complementation assay to analyze APP dimerization and unravel the involvement of its three major domains: the ectodomain, the transmembrane domain and the intracellular domain. Our results indicate that within cells full-length APP dimerizes more than its α and β C-terminal fragments, confirming the pivotal role of the ectodomain in this process. Dimerization of the APP transmembrane (TM) domain has been reported to regulate processing at the γ-cleavage site. We show that both non-familial and familial AD mutations in the TM GXXXG motifs strongly modulate Aβ production, but do not consistently change dimerization of the C-terminal fragments. Finally, we found for the first time that removal of intracellular domain strongly increases APP dimerization. Increased APP dimerization is linked to increased non-amyloidogenic processing.
Collapse
Key Words
- AD, Alzheimer’s disease
- AICD, APP intracellular domain
- APP
- APP, amyloid precursor protein
- Alzheimer disease
- Amyloid beta peptide
- Aβ, β-amyloid peptide
- CHO, chinese hamster ovary
- CTF, C-terminal fragment
- DAPT, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester
- DTT, dithiothreitol
- Dimerization
- ECL, enzymatic chemi-luminescence
- ECLIA, electro-chemiluminescence immuno-assay
- FBS, fetal bovine serum
- FRET, fluorescence resonance energy transfer
- GXXXG motifs
- KPI, Kunitz-type protease inhibitor
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PBS, phosphate buffered saline
- PS1/PS2, presenilin1/presenilin2
- RLU, relative light unit
- SP, signal peptide
- Split luciferase
- TM, transmembrane
- YFP, yellow fluorescent protein
- sAPPα, soluble APPα
- sAPPβ, soluble APPβ
Collapse
Affiliation(s)
- Marie Decock
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Laetitia El Haylani
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Serena Stanga
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Ilse Dewachter
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Jean-Noël Octave
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Stefan N Constantinescu
- de Duve Institute and Ludwig Institute for Cancer Research, Université catholique de Louvain, Brussels 1200, Belgium
| | | |
Collapse
|
28
|
Jung JI, Price AR, Ladd TB, Ran Y, Park HJ, Ceballos-Diaz C, Smithson LA, Hochhaus G, Tang Y, Akula R, Ba S, Koo EH, Shapiro G, Felsenstein KM, Golde TE. Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator. Mol Neurodegener 2015; 10:29. [PMID: 26169917 PMCID: PMC4501119 DOI: 10.1186/s13024-015-0021-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Amyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.7 μM. RESULTS We find that the endogenous cholesterol metabolite, 3β-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC50 of 250 nM) relative to 5β-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aβ42 and increasing Aβ38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1-/-) and Cyp7b1 knockout (Cyp7b1-/-) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aβ42 levels. Our data show that Cyp27a1-/- had increased brain Aβ42, whereas Cyp7b1-/- mice had decreased brain Aβ42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aβ levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency. CONCLUSION These data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished.
Collapse
Affiliation(s)
- Joo In Jung
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Ashleigh R Price
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Thomas B Ladd
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Yong Ran
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Hyo-Jin Park
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Lisa A Smithson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Günther Hochhaus
- College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| | - Yufei Tang
- College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| | | | - Saritha Ba
- SAI Life Sciences Ltd., Turkapally, AP500078, India.
| | - Edward H Koo
- Department of Neuroscience, University of California, La Jolla, San Diego, CA, 92093, USA.
- Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.
| | | | - Kevin M Felsenstein
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|