1
|
Ji W, Dang D, Zhou G, Tao L, Sun T, Li D, Cheng C, Feng H, Long J, Chen S, Yang H, Duan G, Jin Y. Metabolomic analysis reveals an important role of sphingosine 1-phosphate in the development of HFMD due to EV-A71 infection. Antimicrob Agents Chemother 2025; 69:e0127224. [PMID: 39692504 PMCID: PMC11823611 DOI: 10.1128/aac.01272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a serious pediatric infectious disease that causes immeasurable physical and mental health burdens. Currently, there is a lack of information on the mechanisms of HFMD severity and early diagnosis. We performed metabolomic profiling of sera from 84 Enterovirus A71 (EV-A71) infections and 45 control individuals. Targeted metabolomics assays were employed to further validate some of the differential metabolic molecules. We identified significant molecular changes in the sera of HFMD patients compared to healthy controls (HCs). A total of 54, 60, 35, and 62 differential metabolites were screened between mild cases and HCs, severe cases and HCs, severe cases and mild cases, and among the three groups, respectively. These differential metabolites implicated dysregulation of the tricarboxylic acid cycle, alanine, aspartate, and glutamate metabolism, and valine, leucine, and isoleucine biosynthesis. The diagnostic panel based on some overlapped differential metabolites could effectively discriminate severe cases from mild cases with an AUC of 0.912 (95% CI: 0.85-0.97) using the logistic regression model. Next, we found the elevation of serum sphingosine 1-phosphate (S1P) level in EV-A71 infection mice, which was similar to clinical observation. Importantly, after blocking the release of S1P by MK571, the clinical symptoms and survival of mice were significantly improved, involving the reduction of leukocyte infiltration in infected brain tissues. Collectively, our data provided a landscape view of metabolic alterations in EV-A71 infected children and revealed regulating S1P metabolism was an exploitable therapeutic target against EV-A71 infection.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dejian Dang
- Department of Infection Control, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng Cheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- Department of Infection Control, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Pingyuan Laboratory, Xinxiang, China
| |
Collapse
|
2
|
Chen Y, Ji W, Duan G, Feng H, Zhang Y, Chen S, Li Z, Shen Y, Wang C, Zheng J, Tao L, Feng D, Liu W, Sui M, Zhang C, Yang H, Chen S, Long J, Liu F, Wang Z, Wang Q, Han S, Dai B, Dang D, Li X, Zhu P, Li Z, Li K, Li D, Li S, Li G, Wang F, Jin Y. Childhood hand, foot and mouth disease sequelae cohort study in Henan, China: cohort profile. BMJ Open 2025; 15:e083958. [PMID: 39788784 PMCID: PMC11751884 DOI: 10.1136/bmjopen-2024-083958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
PURPOSE The childhood hand, foot and mouth disease (HFMD) sequelae cohort study (HNHFMDCS) is an ambispective cohort study of patients with HFMD based in Henan Province, China, consisting of patients treated in a key hospital for the diagnosis and treatment of HFMD in Henan Province. The study aims to investigate the long-term sequelae of HFMD survivors and to provide a comprehensive understanding of the potential harm caused by this infectious disease. PARTICIPANTS In the retrospective phase of the cohort study, children diagnosed with HFMD from January 2014 to January 2023 were included, and clinical and demographic information about the patients was collected through a self-developed questionnaire. Patients hospitalised with HFMD since January 2023 were enrolled in the prospective cohort phase of the study, and long-term follow-up will be performed after completion of the baseline investigation (interview and comprehensive physical examination), clinical laboratory examination and biospecimen collection. FINDINGS TO DATE For the retrospective analysis of the cohort, a total of 18 705 HFMD cases (11 834 males and 6871 females) were observed between 2014 and 2022, of which 17 202 were mild cases (10 839 males and 6363 females) and 1503 were severe cases (995 males and 508 females). Statistical analysis was performed on the collected clinical examination data, and descriptive statistical methods, including mean value, SD and t-test, were used to compare the intergroup data. All tests were bilateral, and p<0.05 was considered statistically significant. There were significant differences in the hospitalisation duration and clinical examination indicators, such as platelets (PLT), C reactive protein (CRP), aspartate amino transferase (AST), alanine amino transferase (ALT), T lymphocyte subsets (CD3+ and CD3+CD4+) and B lymphocytes (CD19+) between mild and severe patients. The differences in these clinical examination indicators also help to detect changes in the disease in time so as to deeply understand the potential harm and social burden of the disease, and provide strong support for the rehabilitation of patients. FUTURE PLANS Prospective cohort studies are currently underway, primarily enrolling hospitalised patients with HFMD to participate in our study. After the baseline investigation is completed, we will conduct long-term follow-up of the enrolled cases. In the coming year, we expect to obtain preliminary data on the incidence of sequelae in patients with HFMD 1-10 years after discharge, as well as information on the occurrence of sequelae. This dataset will be updated and expanded on an annual basis to support the continuous monitoring of patient health and disease progression. From HNHFMDCS, the study will provide a comprehensive overview of the potential harm caused by this common infectious disease, assess the social burden caused by this disease and make recommendations for the rehabilitation of survivors and prevention of further disability.
Collapse
Affiliation(s)
- Yu Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Wangquan Ji
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaodong Zhang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Shouhang Chen
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Li
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanfang Shen
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Chenyu Wang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaying Zheng
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Tao
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Demin Feng
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenyi Liu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meili Sui
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuangzhuang Wang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Qingmei Wang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Shujuan Han
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Bowen Dai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dejian Dang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolong Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyu Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zijie Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kang Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guowei Li
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Li X, Zhou Q. Correlation analysis of serum inflammatory cytokine levels and immune markers in children with severe hand, foot and mouth disease. J Int Med Res 2024; 52:3000605241304636. [PMID: 39676416 DOI: 10.1177/03000605241304636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVE To identify the correlation between serum inflammatory cytokines and immune markers in children with severe hand, foot and mouth disease (HFMD). METHODS Paediatric patients with severe or mild HFMD from Linping Campus, the Second Affiliated Hospital of Zhejiang University, were included in this retrospective study. Data comprising demographic characteristics, clinical symptoms and signs, laboratory findings and other factors were collected. Serum interleukin (IL)-1, IL-6, IL-10, tumour necrosis factor (TNF)-α, and interferon (IFN)-γ levels were measured by enzyme-linked immunosorbent assay at 1, 3, and 5 days after admission. Risk factors were screened using multivariate logistic regression analysis. RESULTS A total of 200 patients with HFMD (120 severe and 80 mild cases) were included. Younger age and longer fever duration were associated with severe HFMD, as were increased white blood cell, neutrophil and platelet counts, blood glucose, immunoglobulin (Ig)M and IgG. IL-6 and IL-10 levels were higher in patients with severe versus mild HFMD on days 1, 3 and 5. TNF-α was higher in the severe group on day 3. Increased white blood cell and neutrophil counts, IL-6, IL-10, and IgG levels, age, fever duration, and blood glucose level were found to be risk factors associated with the occurrence of severe HFMD. CONCLUSIONS Inflammatory cytokines and immune indexes may be related to the occurrence of severe HFMD.
Collapse
Affiliation(s)
- Xiao Li
- Department of Dentistry, The First People's Hospital of Hangzhou, Linping District, Hangzhou, China
| | - Qian Zhou
- Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Ji W, Zhu P, Wang Y, Zhang Y, Li Z, Yang H, Chen S, Jin Y, Duan G. The key mechanisms of multi-system responses triggered by central nervous system damage in hand, foot, and mouth disease severity. INFECTIOUS MEDICINE 2024; 3:100124. [PMID: 39314804 PMCID: PMC11417554 DOI: 10.1016/j.imj.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is a prevalent infectious affliction primarily affecting children, with a small portion of cases progressing to neurological complications. Notably, in a subset of severe HFMD cases, neurological manifestations may result in significant sequelae and pose a risk of mortality. We systematically conducted literature retrieval from the databases PubMed (1957-2023), Embase (1957-2023), and Web of Science (1957-2023), in addition to consulting authoritative guidelines. Subsequently, we rigorously selected the most relevant articles within the scope of this review for comprehensive analysis. It is widely recognized that the severity of HFMD is attributed to a multifaceted array of pathophysiological mechanisms. The implication of multi-system dysfunction appears to be perturbances of the human defense system; therefore, it contributes to the severity of HFMD. In this review, we provide an overview and analysis of recent insights into the molecular mechanisms contributing to the severity of HFMD, with a particular focus on cytokine release syndrome, the involvement of the renin-angiotensin system, regional immunity, endothelial dysfunction, catecholamine storm, viral invasion, and the molecular mechanisms of neurological damage. We speculate that the domino effect of diverse physiological systems, initiated by damage to the central nervous system, serve as the primary mechanisms governing the severity of HFMD. Simultaneously, we emphasize the knowledge gaps and research urgently required to delineate a quick roadmap for ongoing and essential studies on HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| |
Collapse
|
5
|
Wang H, Chen F, Wang S, Li Y, Liu T, Li Y, Deng H, Dong J, Pang J, Song D, Zhang D, Yu J, Wang Y. Evaluation and mechanism study of Pien Tze Huang against EV-A71 infection. Front Pharmacol 2023; 14:1251731. [PMID: 37954857 PMCID: PMC10637388 DOI: 10.3389/fphar.2023.1251731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) infection, currently lacks specific preventive and therapeutic interventions. Here, we demonstrated that Pien Tze Huang (PZH) could dose-dependently inhibit EV-A71 replication at the cellular level, resulting in significant reductions in EV-A71 virus protein 1 (VP1) expression and viral yields in Vero and human rhabdomyosarcoma cells. More importantly, we confirmed that PZH could protect mice from EV-A71 infection for the first time, with Ribavirin serving as a positive control. PZH treatment reduced EV-A71 VP1 protein expression, viral yields in infected muscles, and improved muscle pathology. Additionally, we conducted a preliminary mechanism study using quantitative proteomics. The results suggested that the suppression of the PI3K/AKT/mTOR and NF-κB signaling pathways may contribute to the anti-EV-A71 activity of PZH. These findings provide strong evidence supporting the potential therapeutic application of PZH for EV-A71 infection management.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fenbei Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shicong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Liu
- Institute for Drug Control, National Institute for Food and Drug Control, Beijing, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbin Deng
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwen Dong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dousheng Zhang
- Institute for Drug Control, National Institute for Food and Drug Control, Beijing, China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, China
| | - Yanxiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Liu T, Li Y, Wang L, Zhang X, Zhang Y, Gai X, Chen L, Liu L, Yang L, Wang B. Network pharmacology-based exploration identified the antiviral efficacy of Quercetin isolated from mulberry leaves against enterovirus 71 via the NF-κB signaling pathway. Front Pharmacol 2023; 14:1260288. [PMID: 37795035 PMCID: PMC10546324 DOI: 10.3389/fphar.2023.1260288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Mulberry leaf (ML) is known for its antibacterial and anti-inflammatory properties, historically documented in "Shen Nong's Materia Medica". This study aimed to investigate the effects of ML on enterovirus 71 (EV71) using network pharmacology, molecular docking, and in vitro experiments. Methods: We successfully pinpointed shared targets between mulberry leaves (ML) and the EV71 virus by leveraging online databases. Our investigation delved into the interaction among these identified targets, leading to the identification of pivotal components within ML that possess potent anti-EV71 properties. The ability of these components to bind to the targets was verified by molecular docking. Moreover, bioinformatics predictions were used to identify the signaling pathways involved. Finally, the mechanism behind its anti-EV71 action was confirmed through in vitro experiments. Results: Our investigation uncovered 25 active components in ML that targeted 231 specific genes. Of these genes, 29 correlated with the targets of EV71. Quercetin, a major ingredient in ML, was associated with 25 of these genes. According to the molecular docking results, Quercetin has a high binding affinity to the targets of ML and EV71. According to the KEGG pathway analysis, the antiviral effect of Quercetin against EV71 was found to be closely related to the NF-κB signaling pathway. The results of immunofluorescence and Western blotting showed that Quercetin significantly reduced the expression levels of VP1, TNF-α, and IL-1β in EV71-infected human rhabdomyosarcoma cells. The phosphorylation level of NF-κB p65 was reduced, and the activation of NF-κB signaling pathway was suppressed by Quercetin. Furthermore, our results showed that Quercetin downregulated the expression of JNK, ERK, and p38 and their phosphorylation levels due to EV71 infection. Conclusion: With these findings in mind, we can conclude that inhibiting the NF-κB signaling pathway is a critical mechanism through which Quercetin exerts its anti-EV71 effectiveness.
Collapse
Affiliation(s)
- Tianrun Liu
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Yingyu Li
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Lumeng Wang
- School of Medicine, Jiamusi University, Jiamusi, China
| | | | - Yuxuan Zhang
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Xuejie Gai
- The Affiliated First Hospital, Jiamusi University, Jiamusi, China
| | - Li Chen
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian, China
| | - Baixin Wang
- School of Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
7
|
Tang C, Chen Y, Jin H, Lei L, Xiang Y, Cheng Y, Huang B. miR-342-5p targets CTNNBIP1 to promote enterovirus 71 replication. Microb Pathog 2023; 182:106259. [PMID: 37479047 DOI: 10.1016/j.micpath.2023.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE The aim of this research was to explore the role of miR-342-5p in EV71 replication. METHODS Peritoneal injection of EV71 (107 TCID50/mL) at 50, 100, and 150 μL was conducted to infect 12-day-old suckling mice (n = 10 per group), and clinical scores and survival rates were recorded during a 6-day trial duration and followed by transcriptome sequencing of collected spinal cord tissues. The differential miRNAs and target genes of the infected and uninfected EV71 mice were analyzed. The miR-342 and CTNNBIP1 binding sites were detected using a dual luciferase reporter assay. Cell viability was detected by CCK-8. RT-qPCR, Western blot, immunofluorescence, and immunohistochemistry assays were conducted to detect VP1 protein levels. RESULTS Transcriptome sequencing analyses know that the Wnt pathway played a role in EV71 infection, and the CTNNBIP1 gene in this pathway was the target gene of miR-342-5p. Whether in HMC3 cells or in the spinal cord tissue from the suckling mice, high levels of miR-342-5p markedly promoted EV71 VP1 mRNA and protein expression, elevated TNF-α, IL-6, and IL-10 levels, and inhibited IFN-β levels. In addition, highly expressed miR-342-5p destroyed neuronal structure in spinal cord tissues and reduced the number of glial cells. Highly expressed CTNNBIP1 blocked the promotion of miR-342-5p in EV71 replication, and inhibited TNF-α, IL-6, and IL-10 levels, whereas elevated IFN-β levels. This mechanism is that miR-342-5p can target the CTNNBIP1 3' UTR region, inhibit its expression and reduce its binding to CTNNB1, thus enhancing the interaction between CTNNB1 and TCF4 and activating the Wnt pathway-mediated type I interferon response. CONCLUSION In nerve cells and tissues, the overexpression of miR-342-5p promoted the replication of EV71 and attenuated the innate immune response to antiviral disease via Wnt/CTNNB1 signaling pathway.
Collapse
Affiliation(s)
- Chengyan Tang
- Suzhou Medical College of Soochow University, Suzhou, 215123, People's Republic of China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China; Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, 563000, People's Republic of China
| | - Yu Chen
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563099, People's Republic of China
| | - Hongjiao Jin
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563099, People's Republic of China
| | - Li Lei
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563099, People's Republic of China
| | - Yunfeng Xiang
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563099, People's Republic of China
| | - Yu Cheng
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563099, People's Republic of China
| | - Bo Huang
- Suzhou Medical College of Soochow University, Suzhou, 215123, People's Republic of China; Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563099, People's Republic of China.
| |
Collapse
|
8
|
Li C, Zhang W, Chang X, Di X, Xie Q, Lin B, Zhang H, Ye Z, Lan M, Lian J, Zhang H, Qiu X, Zeng J, Huang M. The upregulation of peripheral blood polyamine metabolites spermidine and spermine in children with hand, foot, mouth disease is related to enterovirus 71 capsid protein VP1, but not VP4. Transl Pediatr 2023; 12:194-207. [PMID: 36891375 PMCID: PMC9986783 DOI: 10.21037/tp-23-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common viral childhood illness caused most commonly by enterovirus 71 (EV71) and coxsackievirus A16. The pathogenesis of EV71 has been extensively studied, and the regulation of the host immune response is suspected to aggravate the serious complications induced by EV71. Our previous research showed that EV71 infection significantly increased the release of circulating interleukin (IL)-6, IL-10, IL-13, and IL-27. Notably, these cytokines are related to the EV71 infection risk and clinical stage. Polyamines are compounds that are ubiquitous in mammalian cells and play a key role in various cellular processes. Several studies have shown that targeting polyamine metabolic pathways can reduce infections caused by viruses. However, the significance of polyamine metabolism in EV71 infection remains largely unknown. METHODS Serum samples from 82 children with HFMD and 70 healthy volunteers (HVs) were collected to determine the polyamine metabolites spermidine (SPD) and spermine (SPM), and IL-6 levels. In addition, peripheral blood mononuclear cells (PBMCs) were treated with EV71 viral protein 1 (VP1) and EV71 VP4, and the cells and supernatant were then collected to analyze the expression of polyamine metabolism-related enzymes by western blot. The data were analyzed using GraphPad Prism 7.0 software (USA). RESULTS The serum polyamine metabolites SPD and SPM were elevated in the HFMD patients, especially in the EV71-infected children. Further, a positive correlation was found between serum SPD and IL-6 levels in the EV71-infected children. We also found that the upregulation of peripheral blood polyamine metabolites in the EV71-infected HFMD children was related to EV71 capsid protein VP1, but not VP4. VP1 may promote the expression of polyamine metabolism-related enzymes and promote the production of polyamine metabolites, thereby upregulating the SPD/nuclear factor kappa B/IL-6 signaling pathway. However, VP4 has the opposite effect in this process. CONCLUSIONS Our results suggest that EV71 capsid protein may regulate the polyamine metabolic pathways of infected cells in a variety of ways. This study provides insights into the mechanism of EV71 infection and polyamine metabolism and has good reference value for the development of EV71 vaccine.
Collapse
Affiliation(s)
- Cong Li
- Department of Stomatology, Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Xiaodan Chang
- Department of Neonatology, The Second Central Hospital of Baoding City, Baoding, China
| | - Xiaohua Di
- Department of Pediatrics, Dongguan People's Hospital, Dongguan, China
| | - Qi Xie
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Hui Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
| | - Minsheng Lan
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiachun Lian
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Xianxiu Qiu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jincheng Zeng
- Department of Stomatology, Dongguan Maternal and Child Health Care Hospital, Dongguan, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
9
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bowen Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
10
|
Sun T, Li D, Dai X, Meng C, Li Y, Cheng C, Ji W, Zhu P, Chen S, Yang H, Jin Y, Zhang W, Duan G. Local immune dysregulation and subsequent inflammatory response contribute to pulmonary edema caused by Enterovirus infection in mice. J Med Virol 2023; 95:e28454. [PMID: 36597906 DOI: 10.1002/jmv.28454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Pulmonary edema that comes on suddenly is the leading cause of mortality in hand-foot-and-mouth disease (HFMD) patients; however, its pathogenesis is still largely unclear. A range of research suggest immunopathogenesis during the occurrence of pulmonary edema in severe HFMD patients. Herein, to investigate the potential mechanism of immune dysregulation in the development of pulmonary edema upon Enterovirus (EV) infection, we established mouse infection models for Enteroviruses (EVs) including Coxsackievirus (CV) A6, Enterovirus A71 (EVA71), and CVA2 exhibiting a high incidence of pulmonary edema. We found that EVs infection induced an immune system disorder by reducing the numbers of pulmonary and circulatory T cells, B cells, macrophages, and monocytes and increasing the numbers of lung neutrophils, myeloid-derived suppressor cells (MDSCs), and activated T cells. In addition, the concentrations of C-X-C motif chemokine ligand 1 (CXCL-1), tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and interleukin 6 were increased in EV-infected lungs. Moreover, we found that EVs replication in mice lungs lead to apoptosis of lung cells and degradation of tight junction proteins. In conclusion, EVs infection likely triggered a complexed immune defense mechanism and caused dysregulation of innate immune cells (MDSCs, neutrophils, monocytes, and macrophages) and adaptive cellular immunity (B cells, T cells). This dysregulation increased the release of cytokines and other inflammatory factors from activated immune-related cells and caused lung barrier damage and pulmonary edema.
Collapse
Affiliation(s)
- Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinchen Dai
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Caiyun Meng
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Yi Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Cheng Cheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Ji W, Sun T, Li D, Chen S, Yang H, Jin Y, Duan G. TBK1 and IRF3 are potential therapeutic targets in Enterovirus A71-associated diseases. PLoS Negl Trop Dis 2023; 17:e0011001. [PMID: 36626364 PMCID: PMC9831319 DOI: 10.1371/journal.pntd.0011001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is an important causative agent of hand-foot-and-mouth disease (HFMD) associated with enormous healthcare and socioeconomic burden. Although a range of studies about EV-A71 pathogenesis have been well described, the underlying molecular mechanism in terms of innate immune response is still not fully understood, especially the roles of TANK-binding kinase 1 (TBK1) and interferon-regulatory factor 3 (IRF3). METHODOLOGY/PRINCIPAL FINDINGS Here, we applied TBK1 inhibitor and IRF3 agonist, for the first time, to evaluate the antiviral activities of TBK1 and IRF3 in vivo. We found that, through regulating EV-A71-induced type I interferon (IFN) response, IRF3 agonist effectively alleviated EV-A71-induced illness, while TBK1 inhibitor aggravated disease progression. In addition, EV-A71 replication was suppressed in EVA-71-infected mice administrated with IRF3 agonist. On the other hand, more severe pathological alterations of neuronal degeneration, muscle fiber breaks, fractured or fused alveolar walls, and diffuse congestion occurred in EVA-71-infected mice treated with TBK1 inhibitor administration. Furthermore, we determined the concentrations of interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), IL-1β, monocyte chemotactic protein-1 (MCP-1), and IL-10 in both lungs and brains of mice and found that TBK1 inhibitor promoted EV-A71-induced inflammatory response, while IRF3 agonist alleviated it, which was consistent with clinical manifestations and pathological alterations. CONCLUSIONS Collectively, our findings suggest that TBK1 and IRF3 are potential therapeutic targets in EV-A71-induced illness.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses 2022; 14:v14102190. [PMID: 36298746 PMCID: PMC9609926 DOI: 10.3390/v14102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroviruses are members of the Picornaviridae family consisting of human enterovirus groups A, B, C, and D as well as nonhuman enteroviruses. Human enterovirus type 71 (EV71) has emerged as a major cause of viral encephalitis, known as hand, foot, and mouth disease (HFMD), in children worldwide, especially in the Asia-Pacific region. EV71 and coxsackievirus A16 are the two viruses responsible for HFMD which are members of group A enteroviruses. The identified EV71 receptors provide useful information for understanding viral replication and tissue tropism. Host factors interact with the internal ribosome entry site (IRES) of EV71 to regulate viral translation. However, the specific molecular features of the respective viral genome that determine virulence remain unclear. Although a vaccine is currently approved, there is no effective therapy for treating EV71-infected patients. Therefore, understanding the host-pathogen interaction could provide knowledge in viral pathogenesis and further benefits to anti-viral therapy development. The aim of this study was to investigate the latest findings about the interaction of viral ligands with the host receptors as well as the activation of immunerelated signaling pathways for innate immunity and the involvement of different cytokines and chemokines during host-pathogen interaction. The study also examined the roles of viral proteins, mainly 2A and 3C protease, interferons production and their inhibitory effects.
Collapse
|
13
|
Liang R, Chen S, Jin Y, Tao L, Ji W, Zhu P, Li D, Zhang Y, Zhang W, Duan G. The CXCL10/CXCR3 Axis Promotes Disease Pathogenesis in Mice upon CVA2 Infection. Microbiol Spectr 2022; 10:e0230721. [PMID: 35604176 PMCID: PMC9241849 DOI: 10.1128/spectrum.02307-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/16/2022] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus A2 (CVA2) is an emerging pathogen that results in hand-foot-and-mouth disease (HFMD) outbreaks. Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD. However, the immunopathogenesis of CVA2 infection is poorly understood. We first detected the transcriptional levels of 81 inflammation-related genes in neonatal mice with CVA2 infection. Remarkably, CVA2 induced higher expression of chemokine (C-X-C motif) ligand 10 (CXCL10) in multiple organs and tissues. CXCL10 acts through its cognate receptor chemokine (C-X-C motif) receptor 3 (CXCR3) and regulates immune responses. CXCL10/CXCR3 activation contributes to the pathogenesis of many inflammatory diseases. Next, we found CXCL10 and CXCR3 expression to be significantly elevated in the organs and tissues from CVA2-infected mice at 5 days postinfection (dpi) using immunohistochemistry (IHC). To further explore the role of CXCL10/CXCR3 in CVA2 pathogenesis, an anti-CXCR3 neutralizing antibody (αCXCR3) or IgG isotype control antibody was used to treat CVA2-infected mice on the same day as infection and every 24 h until 5 dpi. Our results showed that αCXCR3 therapy relieved the clinical manifestations and pathological damage and improved the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α], and IL-1β) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis by inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD. IMPORTANCE Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD cases. We detected the expression of 81 inflammation-related genes and found higher expression of CXCL10 in CVA2-infected mice. Next, we confirmed CXCL10/CXCR3 activation using immunohistochemistry and found that anti-CXCR3 neutralizing antibody (αCXCR3) therapy could relieve the clinical manifestations and pathological damage and improve the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (IL-6, TNF-α, and IL-1β) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents the first evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis via inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD.
Collapse
Affiliation(s)
- Ruonan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ling Tao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Anemoside B4 inhibits enterovirus 71 propagation in mice through upregulating 14-3-3 expression and type I interferon responses. Acta Pharmacol Sin 2022; 43:977-991. [PMID: 34321612 DOI: 10.1038/s41401-021-00733-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/29/2021] [Indexed: 01/03/2023]
Abstract
Enterovirus 71 (EV71) is the major pathogens of human hand, foot, and mouth disease (HFMD). EV71 efficiently escapes innate immunity responses of the host to cause infection. At present, no effective antiviral drugs for EV71 are available. Anemoside B4 (B4) is a natural saponin isolated from the roots of Pulsatilla chinensis (Bunge) Regel. P. chinensis extracts that shows a wide variety of biological activities. In this study, we investigated the antiviral activities of B4 against EV71 both in cell culture and in suckling mice. We showed that B4 (12.5-200 μM) dose dependently increased the viability of EV71-infected RD cells with an IC50 value of 24.95 ± 0.05 μM against EV71. The antiviral activity of B4 was associated with enhanced interferon (IFN)-β response, since knockdown of IFN-β abolished its antiviral activity. We also confirmed that the enhanced IFN response was mediated via activation of retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) pathway, and it was executed by upregulation of 14-3-3 protein, which disrupted the interaction between yes-associated protein (YAP) and interferon regulatory factor 3 (IRF3). By using amino acids in cell culture (SILAC)-based proteomics profiling, we identified the Hippo pathway as the top-ranking functional cluster in B4-treated EV71-infected cells. In vivo experiments were conducted in suckling mice (2-day-old) infected with EV71 and subsequently B4 (200 mg · kg-1 · d-1, i.p.) was administered for 16 days. We showed that B4 administration effectively suppressed EV71 replication and improved muscle inflammation and limb activity. Meanwhile, B4 administration regulated the expressions of HFMD biomarkers IL-10 and IFN-γ, attenuating complications of EV71 infection. Collectively, our results suggest that B4 could enhance the antiviral effect of IFN-β by orchestrating Hippo and RLRs pathway, and B4 would be a potential lead compound for developing an anti-EV71 drug.
Collapse
|
15
|
Wu Z, Zhu S, Qian J, Hu Y, Ji W, Li D, Zhu P, Liang R, Jin Y. Analysis of miRNAs Involved in Mouse Heart Injury Upon Coxsackievirus A2 Infection. Front Cell Infect Microbiol 2022; 12:765445. [PMID: 35155276 PMCID: PMC8831793 DOI: 10.3389/fcimb.2022.765445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
Coxsackievirus A2 (CVA2) has recently been constantly detected, and is associated with viral myocarditis in children. Our previous study demonstrated that CVA2 led to heart damage in a neonatal murine model. However, the molecular mechanism of heart injury caused by CVA2 remains largely unknown. Emerging evidence suggests the significant functions of miRNAs in Coxsackievirus infection. To investigate potential miRNAs involved in heart injury caused by CVA2, our study, for the first time, conducted a RNA-seq in vivo employing infected mice hearts. In total, 87, 101 and 76 differentially expressed miRNAs were identified at 3 days post infection (dpi), 7 dpi and 7 dpi vs 3 dpi. Importantly, above 3 comparison strategies shared 34 differentially expressed miRNAs. These results were confirmed by quantitative PCR (qPCR). Next, we did GO, KEGG, and miRNA-mRNA integrated analysis of differential miRNAs. The dual-luciferase reporter assay confirmed the miRNA-mRNA pairs. To further confirm the above enriched pathways and processes, we did Western blotting and immunofluorescence staining. Our results suggest that inflammatory responses, T cell activation, apoptosis, autophagy, antiviral immunity, NK cell infiltration, and the disruption of tight junctions are involved in the pathogenesis of heart injury caused by CVA2. The dysregulated miRNAs and pathways recognized in the current study can improve the understanding of the intricate interactions between CVA2 and the heart injury, opening a novel avenue for the future study of CVA2 pathogenesis.
Collapse
Affiliation(s)
- Zhaoke Wu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shenshen Zhu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanfeng Qian
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanmin Hu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruonan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuefei Jin,
| |
Collapse
|
16
|
Zhang X, Hao J, Sun C, Du J, Han Q, Li Q. Total astragalosides decrease apoptosis and pyroptosis by inhibiting enterovirus 71 replication in gastric epithelial cells. Exp Ther Med 2022; 23:237. [PMID: 35222714 PMCID: PMC8815049 DOI: 10.3892/etm.2022.11162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the primary pathogens involved in severe hand, foot and mouth disease in children. EV71 infection causes various types of programmed cell death. However, there are currently no clinically approved specific antiviral drugs for control of EV71 infection. Astragalus membranaceus (AM), a Traditional Chinese medicine, has been used in antiviral therapy in China. The aim of the present study was to determine whether total astragalosides (ASTs), bioactive components of AM, protect against EV. DAPI nuclear staining was used to observe morphological changes of the nucleus and the protective effect of ASTs, which revealed that the nucleus shrank following EV71 infection, while ASTs reversed it. Cell Counting Kit-8 assay found that human normal gastric epithelial cell (GES-1 cell) viability decreased following EV71 infection, while lactate dehydrogenase (LDH) assay showed that EV71 infection induced GES-1 cell damage. Western blotting was used to measure the expression levels of apoptosis and pyroptosis marker protein to determine whether EV71 infection induced apoptosis and pyroptosis in GES-1 cells. Reverse transcription-quantitative PCR was used to determine the anti-EV71 effect of ASTs. The results showed that ASTs protected GES-1 cells from EV71-induced cell apoptosis and pyroptosis. Furthermore, the present data demonstrated that the protective effect of ASTs was exerted by suppressing EV71 replication and release. These findings suggested that ASTs may represent a potential antiviral agent for the treatment of EV71 infection.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jinfang Hao
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chenxi Sun
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jianping Du
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qian Han
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qingshan Li
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
17
|
Li P, Huang Y, Zhu D, Yang S, Hu D. Risk Factors for Severe Hand-Foot-Mouth Disease in China: A Systematic Review and Meta-Analysis. Front Pediatr 2021; 9:716039. [PMID: 34858899 PMCID: PMC8631475 DOI: 10.3389/fped.2021.716039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background: This study aimed to identify potential risk factors for severe hand-foot-mouth disease (HFMD). Methods: The PubMed, Embase, the Cochrane Library, Sinomed, WanFang, CNKI, and VIP databases were searched (up to August 2021). Results: Twenty-nine studies (9,241 and 927,355 patients with severe HFMD and controls, respectively; all from China) were included. EV71 was associated with higher odds of severe HFMD compared with other agents (OR = 4.44, 95%CI: 3.12-6.33, p < 0.001). Being home-raised (OR = 1.99, 95%CI: 1.59-2.50, p < 0.001), higher number of children in the family (OR = 2.09, 95%CI: 1.93-2.27, p < 0.001), poor hand hygiene (OR = 2.74, 95%CI: 1.78-4.23, p < 0.001), and no breastfeeding (OR = 2.01, 95%CI: 1.45-2.79, p < 0.001) were risk factors for severe HFMD. First consulting to a district-level or above hospital (OR = 0.34, 95%CI: 0.25-0.45, p < 0.001) and diagnosis of HFMD at baseline (OR = 0.17, 95%CI: 0.13-0.24, p < 0.001) were protective factors against severe HFMD. Fever, long fever duration, vomiting, lethargy, leukocytosis, tic, and convulsions were each associated with severe HFMD (all p < 0.05), while rash was not. Conclusions: EV71, lifestyle habits, frequent hospital visits, and symptoms are risk factors for severe HFMD in children in China, while early diagnosis and admission to higher-level hospitals are protective factors.
Collapse
Affiliation(s)
- Peiqing Li
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuge Huang
- Pediatric Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Danping Zhu
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sida Yang
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dandan Hu
- Children's Health Section, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Ji W, Hu Q, Zhang M, Zhang C, Chen C, Yan Y, Zhang X, Chen S, Tao L, Zhang W, Jin Y, Duan G. The Disruption of the Endothelial Barrier Contributes to Acute Lung Injury Induced by Coxsackievirus A2 Infection in Mice. Int J Mol Sci 2021; 22:9895. [PMID: 34576058 PMCID: PMC8467819 DOI: 10.3390/ijms22189895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Sporadic occurrences and outbreaks of hand, foot, and mouth disease (HFMD) caused by Coxsackievirus A2 (CVA2) have frequently reported worldwide recently, which pose a great challenge to public health. Epidemiological studies have suggested that the main cause of death in critical patients is pulmonary edema. However, the pathogenesis of this underlying comorbidity remains unclear. In this study, we utilized the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage. We found that the permeability of lung microvascular was significantly increased after CVA2 infection. We also observed the direct infection and apoptosis of lung endothelial cells as well as the destruction of tight junctions between endothelial cells. CVA2 infection led to the degradation of tight junction proteins (e.g., ZO-1, claudin-5, and occludin). The gene transcription levels of von Willebrand factor (vWF), endothelin (ET), thrombomodulin (THBD), granular membrane protein 140 (GMP140), and intercellular cell adhesion molecule-1 (ICAM-1) related to endothelial dysfunction were all significantly increased. Additionally, CVA2 infection induced the increased expression of inflammatory cytokines (IL-6, IL-1β, and MCP-1) and the activation of p38 mitogen-activated protein kinase (MAPK). In conclusion, the disruption of the endothelial barrier contributes to acute lung injury induced by CVA2 infection; targeting p38-MAPK signaling may provide a therapeutic approach for pulmonary edema in critical infections of HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Qiang Hu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Mengdi Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Chuwen Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Chen Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Yujie Yan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Xue Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China;
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
19
|
Mohanty MC, Varose SY, Saxena VK. Susceptibility and cytokine responses of human neuronal cells to multiple circulating EV-A71 genotypes in India. Sci Rep 2021; 11:17751. [PMID: 34493781 PMCID: PMC8423732 DOI: 10.1038/s41598-021-97166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022] Open
Abstract
Enterovirus-A71 (EV-A71) associated Hand, foot and mouth disease (HFMD) is a highly contagious viral infection affecting children in Asia–Pacific region and has become a major threat to public health. Although several EV-A71 genotypes (C, D, and G) were isolated in India in recent years, no recognizable outbreak of EV-A71 caused HFMD, Acute Flaccid paralysis (AFP) or encephalitis have been reported so far. It is essential to study the pathogenicity or cell tropism of these Indian isolates in order to understand their tendency to cause disease. We investigated the susceptibility and cytokine responses of indigenous EV-A71 genotypes (D and G) isolated from cases of AFP and genotype C viruses isolated from cases of HFMD and encephalitis, in human cells in-vitro. Although all three EV-A71 genotypes could infect and replicate in human muscle and neuronal cells, the genotype D virus showed a delayed response in human neuronal cells. Quantification of cytokine secretion in response to these isolates followed by confirmation with gene expression assays in human neuronal cells revealed significantly higher secretion of pro-inflammatory cytokines TNF-α IL-8, IL-6, IP-10 (p < 0.001) in G genotype infected cells as compared to pathogenic C genotypes whereas the genotype D virus could not induce any of the inflammatory cytokines. These findings will help to better understand the host response to indigenous EV-A71 genotypes for management of future EV-A71 outbreaks in India, if any.
Collapse
Affiliation(s)
- Madhu Chhanda Mohanty
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai, 400012, India.
| | - Swapnil Yashavant Varose
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai, 400012, India
| | - Vinay Kumar Saxena
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai, 400012, India
| |
Collapse
|
20
|
Jin Y, Li D, Sun T, Du Y, Gao Y, Ding R, Ji W, Zhang W, Yang H, Chen S, Duan G. Pathological Features of Enterovirus 71-Associated Brain and Lung Damage in Mice Based on Quantitative Proteomic Analysis. Front Microbiol 2021; 12:663019. [PMID: 34220748 PMCID: PMC8249819 DOI: 10.3389/fmicb.2021.663019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
The outbreaks of enterovirus 71 (EV71)-associated hand, foot, and mouth disease (HFMD) have emerged as an emergency of global health due to its association with fatal encephalitis and subsequent neurogenic pulmonary edema; however, the molecular characteristics and pathological features underlying EV71-associated encephalitis and pulmonary edema remain largely unknown. In this study, we performed a proteomic analysis of fresh brain and lung tissues from EV71-infected mice at 7 days post infection. We detected a perturbed expression of 148 proteins in the brain and 78 proteins in the lung after EV71 expression. Further analysis showed that the dysregulated proteins in the brain are involved in a variety of fundamental biological pathways, including complement and coagulation cascades, innate and adaptive immune responses, platelet activation, and nitrogen metabolism, and those proteins in the lung participate in innate and adaptive immune responses, phagosome, arginine biosynthesis, and hypoxia-inducible factor 1 signaling pathway. Our results suggested that immune activation, complement and coagulation dysfunction, platelet activation, imbalance of nitrogen metabolism, and hypoxia could be involved in the pathogenesis of EV71, which explains the major clinical manifestation of hyperinflammatory status of severe HFMD cases. Our study provides further understanding of the molecular basis of EV71 pathogenesis.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yue Du
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanlei Gao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ronghua Ding
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Qian SS, Wei ZN, Jin WP, Wu J, Zhou YP, Meng SL, Guo J, Wang ZJ, Shen S. Efficacy of a coxsackievirus A6 vaccine candidate in an actively immunized mouse model. Emerg Microbes Infect 2021; 10:763-773. [PMID: 33739899 PMCID: PMC8079124 DOI: 10.1080/22221751.2021.1906755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coxsackievirus A6 (CV-A6) has been emerging as a major pathogen of hand, foot and mouth disease (HFMD). Study on the pathogenesis of CV-A6 infection and development of vaccines is hindered by a lack of appropriate animal models. Here, we report an actively immunized-challenged mouse model to evaluate the efficacy of a Vero-cell-based, inactivated CV-A6 vaccine candidate. The neonatal Kunming mice were inoculated with a purified, formaldehyde-inactivated CV-A6 vaccine on days 3 and 9, followed by challenging on day 14 with a naturally selected virulent strain at a lethal dose. Within 14 days postchallenge, all mice in the immunized groups survived, while 100% of the Alum-only inoculated mice died. Neutralizing antibodies (NtAbs) were detected in the serum of immunized suckling mice, and the NtAb levels correlated with the survival rate of the challenged mice. The virus loads in organs were reduced, and pathological changes and viral protein expression were weak in the immunized mice compared with those in Alum-only inoculated control mice. Elevated levels of interleukin-4, 6, interferon γ and tumour necrosis factor α were also observed in Alum-only control mice compared with immunized mice. Importantly, the virulent CV-A6 challenge strain was selected quickly and conveniently from a RD cell virus stock characterized with the natural multi-genotypes. The virulent determinants were mapped to V124M and I242 V at VP1. Together, our results indicated that this actively immunized mouse model is invaluable for future studies to develop multivalent vaccines containing the major component of CV-A6 against HFMD.
Collapse
Affiliation(s)
- Sha-Sha Qian
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Zhen-Ni Wei
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Wei-Ping Jin
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Jie Wu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Yan-Ping Zhou
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Jing Guo
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Ze-Jun Wang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| |
Collapse
|
22
|
Peters CE, Carette JE. Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 2021; 13:v13020166. [PMID: 33499355 PMCID: PMC7911124 DOI: 10.3390/v13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses are among the most common human infectious agents. While infections are often mild, the severe neuropathogenesis associated with recent outbreaks of emerging non-polio enteroviruses, such as EV-A71 and EV-D68, highlights their continuing threat to public health. In recent years, our understanding of how non-polio enteroviruses co-opt cellular pathways has greatly increased, revealing intricate host-virus relationships. In this review, we focus on newly identified mechanisms by which enteroviruses hijack the cellular machinery to promote their replication and spread, and address their potential for the development of host-directed therapeutics. Specifically, we discuss newly identified cellular receptors and their contribution to neurotropism and spread, host factors required for viral entry and replication, and recent insights into lipid acquisition and replication organelle biogenesis. The comprehensive knowledge of common cellular pathways required by enteroviruses could expose vulnerabilities amenable for host-directed therapeutics against a broad spectrum of enteroviruses. Since this will likely include newly arising strains, it will better prepare us for future epidemics. Moreover, identifying host proteins specific to neurovirulent strains may allow us to better understand factors contributing to the neurotropism of these viruses.
Collapse
|
23
|
Gao YL, Du Y, Zhang C, Cheng C, Yang HY, Jin YF, Duan GC, Chen SY. Role of Renin-Angiotensin System in Acute Lung Injury Caused by Viral Infection. Infect Drug Resist 2020; 13:3715-3725. [PMID: 33116692 PMCID: PMC7585866 DOI: 10.2147/idr.s265718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is the most important regulatory system of electrolyte homeostasis and blood pressure and acts through angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II type 1 (AT1) receptor axis and angiotensin-converting enzyme 2 (ACE2)/angiotensin (1-7)/MAS receptor axis. RAS dysfunction is related to the occurrence and development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) and causes a serious prognosis and even death. ALI/ARDS can be induced by various ways, one of which is viral infections, such as SARS-CoV, SARS-CoV-2, H5N1, H7N9, and EV71. This article reviews the specific mechanism on how RAS dysfunction affects ALI/ARDs caused by viral infections. SARS-CoV and SARS-CoV-2 enter the host cells by binding with ACE2. H5N1 and H7N9 avian influenza viruses reduce the ACE2 level in the body, and EV71 increases Ang II concentration. Treatment with angiotensin-converting enzyme inhibitor and angiotensin AT1 receptor blocker can alleviate ALI/ARDS symptoms. This review provides suggestions for the treatment of lung injury caused by viral infections.
Collapse
Affiliation(s)
- Yan-Lei Gao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yue Du
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Cheng Cheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Hai-Yan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yue-Fei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Guang-Cai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Shuai-Yin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
24
|
BNIP3 deletion ameliorated enterovirus 71 infection-induced hand, foot and mouth disease via inhibiting apoptosis, autophagy, and inflammation in mice. Int Immunopharmacol 2020; 87:106799. [PMID: 32717566 DOI: 10.1016/j.intimp.2020.106799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
Abstract
Bcl2/adenovirus E1B protein-interacting protein 3 (BNIP3) plays a key role in cellular response to stress by regulating apoptosis and selective autophagy. The present study aimed to determine the effects of BNIP3 on enterovirus (EV) 71 infection-induced hand, foot and mouth disease (HFMD), and the apoptosis, autophagy and inflammatory in mice and SH-SY5Y human neuroblastoma cell line. Neonatal BALB/c mice were injected with EV 71 strain to induce the HFMD. Western blotting and ELISA were used to measure the protein expression and cytokine levels. The BNIP3 mRNA and protein levels in the brain were increased in EV 71-infected mice. By contrast, the BNIP3-knockout (KO) mice with EV 71 infection had higher health score and survival rate. BNIP3 deletion reversed the increase of cleaved-caspase 3, cleaved-caspase 8, Bax, LC3 II and LC3 II/LC3 I levels, and the decrease of Bcl2 and Bcl2/Bax and LC3 I levels in the brain of mice with EV 71 infection. The EV 71 infection-induced increase of tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, interleukin (IL)-1β, IL-6, interferon (IFN)-α and IFN-γ levels were inhibited in BNIP3-KO mice. BNIP3 knockdown with small interfering RNA (siRNA) inhibited the EV 71 infection-induced the increases of apoptosis, autophagy and inflammatory factors in SH-SY5Y cells. BNIP3 overexpression further facilitated the EV 71 infection-induced increase of these inflammatory factors in SH-SY5Y cells. These results demonstrated that BNIP3 deletion ameliorated EV 71 infection-induced HFMD via inhibiting apoptosis, autophagy and inflammation in mice. BNIP3 may be a therapeutic target for HFMD.
Collapse
|
25
|
Predicting Severe Enterovirus 71-Infected Hand, Foot, and Mouth Disease: Cytokines and Chemokines. Mediators Inflamm 2020; 2020:9273241. [PMID: 32089650 PMCID: PMC7013319 DOI: 10.1155/2020/9273241] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the most common intestinal virus that causes hand, foot, and mouth disease (HFMD) in infants and young children (mostly ≤5 years of age). Generally, children with EV71-infected HFMD have mild symptoms that resolve spontaneously within 7-14 days without complications. However, some EV71-infected HFMD cases lead to severe complications such as aseptic meningitis, encephalitis, acute flaccid paralysis, pulmonary edema, cardiorespiratory complication, circulatory disorders, poliomyelitis-like paralysis, myocarditis, meningoencephalitis, neonatal sepsis, and even death. The mechanism of EV71 pathogenesis has been studied extensively, and the regulation of host immune responses is suspected to aggravate EV71-induced severe complications. Recently, several cytokines or chemokines such as TNF-α, IFN-γ, IL-1β, IL-18, IL-33, IL-37, IL-4, IL-13, IL-6, IL-12, IL-23, IL-27, IL-35, IL-10, IL-22, IL-17F, IL-8, IP-10, MCP-1, G-CSF, and HMGB1 have been reported to be associated with severe EV71 infection by numerous research teams, including our own. This review is aimed at summarizing the pathophysiology of the cytokines and chemokines with severe EV71 infection.
Collapse
|
26
|
Praharaj I, Parker EPK, Giri S, Allen DJ, Silas S, Revathi R, Kaliappan SP, John J, Prasad JH, Kampmann B, Iturriza-Gómara M, Grassly NC, Kang G. Influence of Nonpolio Enteroviruses and the Bacterial Gut Microbiota on Oral Poliovirus Vaccine Response: A Study from South India. J Infect Dis 2020; 219:1178-1186. [PMID: 30247561 PMCID: PMC6601701 DOI: 10.1093/infdis/jiy568] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022] Open
Abstract
Background Oral poliovirus vaccine (OPV) is less immunogenic in low- or middle-income than in high-income countries. We tested whether bacterial and viral components of the intestinal microbiota are associated with this phenomenon. Methods We assessed the prevalence of enteropathogens using TaqMan array cards 14 days before and at vaccination in 704 Indian infants (aged 6–11 months) receiving monovalent type 3 OPV (CTRI/2014/05/004588). Nonpolio enterovirus (NPEV) serotypes were identified by means of VP1 sequencing. In 120 infants, the prevaccination bacterial microbiota was characterized using 16S ribosomal RNA sequencing. Results We detected 56 NPEV serotypes on the day of vaccination. Concurrent NPEVs were associated with a reduction in OPV seroconversion, consistent across species (odds ratio [95% confidence interval], 0.57 [.36–.90], 0.61 [.43–.86], and 0.69 [.41–1.16] for species A, B, and C, respectively). Recently acquired enterovirus infections, detected at vaccination but not 14 days earlier, had a greater interfering effect on monovalent type 3 OPV seroresponse than did persistent infections, with enterovirus detected at both time points (seroconversion in 44 of 127 infants [35%] vs 63 of 129 [49%]; P = .02). The abundance of specific bacterial taxa did not differ significantly according to OPV response, although the microbiota was more diverse in nonresponders at the time of vaccination. Conclusion Enteric viruses have a greater impact on OPV response than the bacterial microbiota, with recent enterovirus infections having a greater inhibitory effect than persistent infections.
Collapse
Affiliation(s)
- Ira Praharaj
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Edward P K Parker
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - David J Allen
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Enteric Virus Unit, Virus Reference Department, Microbiology Services, Public Health England, London, United Kingdom
| | - Sophia Silas
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - R Revathi
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Jacob John
- Department of Community Health, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jasmine Helan Prasad
- Department of Community Health, Christian Medical College, Vellore, Tamil Nadu, India
| | - Beate Kampmann
- Department of Paediatrics, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Miren Iturriza-Gómara
- Centre for Global Vaccine Research, Institute of Infection and Global Health, and National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infection, University of Liverpool, United Kingdom
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
27
|
Wang CR. Pathogenesis of hand-foot-mouth disease caused by enterovirus 71. Shijie Huaren Xiaohua Zazhi 2019; 27:1465-1472. [DOI: 10.11569/wcjd.v27.i24.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hand-foot-mouth disease (HFMD) is a global infectious disease. The infected population is mainly infants and young children. Enterovirus 71 (EV71) is the main pathogen. In addition to HFMD, EV71 infection can also affect the nervous system and other organs, resulting in aseptic meningitis, brainstem encephalitis, and poliomyelitis-like paralysis, causing serious harm to children's health. At present, the pathogenesis of HFMD caused by EV71 is still unclear, and there is no effective treatment. In this paper, we discuss the factors influencing EV71 infection from the aspects of virus gene recombination and spontaneous mutation, host genes, and receptor sites, review the pathogenesis of HFMD caused by EV71 based on the study findings from animal infection models, and explore the main problems in the study of pathogenesis of this condition, in order to provide reference for the prevention and treatment of HFMD and for the development of new drugs or effective vaccines for EV71 infection.
Collapse
Affiliation(s)
- Chun-Rong Wang
- Institute for Viral Disease Detection, Jinan Center for Disease Control and Prevention, Jinan 250021, Shandong Province, China
| |
Collapse
|
28
|
Liu X, Zhang X, Li J, Zhou H, Carr MJ, Xing W, Zhang Z, Shi W. Effects of Acetylshikonin on the Infection and Replication of Coxsackievirus A16 in Vitro and in Vivo. JOURNAL OF NATURAL PRODUCTS 2019; 82:1089-1097. [PMID: 31063370 DOI: 10.1021/acs.jnatprod.8b00735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coxsackievirus A16 (CVA16) is one of the most prevalent enteroviral pathogens associated with hand, foot, and mouth disease. In the present study, we have investigated (1) whether the bioactive compound acetylshikonin (AS) inhibits CVA16 infection in vitro and in vivo and (2) the potential antiviral mechanism(s). The results suggest that AS is nontoxic at concentrations of up to 5 μmol/L and could directly inactivate virus particles at relatively low concentrations (0.08 μmol/L), thereby rendering CVA16 incapable of cellular entry. Correspondingly, the expression of viral RNA in vitro was also reduced 100-fold ( P < 0.05) when compared to infected, untreated controls. Results from a CVA16-infected neonatal mouse model indicate that, in comparison to the virus-infected, untreated group, body weights of the mice in the virus-infected, compound-treated group increased more steadily with less severe clinical symptoms. In addition, viral loads in internal organs significantly decreased in treated animals, concomitantly with both reduced pathology and diminished expression of the proinflammatory cytokines IFN-γ and IL-6. In conclusion, AS exerted an inhibitory effect on CVA16 infection in vitro and in vivo. Our study provides a basis for further investigations of AS-type compounds to develop therapeutics to mitigate CVA-associated disease in children.
Collapse
Affiliation(s)
- Xia Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Xingcheng Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
- School of Public Health , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) , Hokkaido University , Sapporo 001-0020 , Japan
- National Virus Reference Laboratory, School of Medicine , University College Dublin , Belfield , Dublin 4 , Ireland
| | - Weijia Xing
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
- School of Public Health , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| |
Collapse
|
29
|
Qin L, Dang D, Wang X, Zhang R, Feng H, Ren J, Chen S, Zhou G, Huang P, Wang B, Xi Y, Wu W, Jin Y, Duan G. Identification of immune and metabolic predictors of severe hand-foot-mouth disease. PLoS One 2019; 14:e0216993. [PMID: 31120941 PMCID: PMC6532886 DOI: 10.1371/journal.pone.0216993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/02/2019] [Indexed: 01/15/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is an infectious disease that affects mostly children. The children with HFMD also have other immune and metabolic disorders. However, the association of these disorders with the severity of HFMD has not yet been determined. In this study, we used a case-control study design to examine the correlation of immune and metabolic disorders with HFMD development in children. 406 mild and severe patients were recruited and divided into different subgroups based on the number of days from the initial onset time to hospitalization (1, 2, 3, 4, and ≥5 days). Logistic regression model was used to define the predictors of severe HFMD. We found that the patients from rural area (OR = 1.76, 95% CI [1.19~2.63], P = 0.005) or with body temperature of >39°C (OR = 2.14, 95% CI [1.12~4.12], P = 0.022) exhibited higher risk for severe symptoms. In addition, the risk increased with the rise of body temperature by using a Chis-quare trend test (P = 0.01). We also found that a decreased number of eosinophils was an predictor of severe HFMD at 1, 2, 3,and 4 days post infection (dpi). Decreased levels of Na+, Cl-, and creatine kinase were also predictors at 1 and ≥5 dpi. On the other hand, elevated level of globulin was a predictor for severe HFMD at 4 dpi and ≥5 dpi, and the increased number of neutrophils or increased level of alkaline phosphatase posed risk for severe HFMD at 3 and ≥5 dpi. Our results suggested that rural living, hyperpyrexia, changes in the immune system that include the numbers of eosinophils and neutrophils and the levels of IgG and globulin, and metabolic alterations, such as the levels of alkaline phosphatase, Na+, Cl-, and creatine kinase in peripheral blood are predictors of severe HFMD.
Collapse
Affiliation(s)
- Luwei Qin
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Dejian Dang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinhong Wang
- Department of Infectious Disease, The Children's Hospital of Zhengzhou City, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huifen Feng
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingchao Ren
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Ping Huang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Jin Y, Zhang C, Wang H, Zhou G, Wang X, Zhang R, Chen S, Ren J, Chen L, Dang D, Zhang P, Xi Y, Wu W, Zhang W, Duan G. Mast cells contribute to Enterovirus 71 infection-induced pulmonary edema in neonatal mice. J Transl Med 2018; 98:1039-1051. [PMID: 29765110 DOI: 10.1038/s41374-018-0075-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Enterovirus (EV) 71 infection has been widely acknowledged as the leading cause of severe hand, foot and mouth disease (HFMD), which may rapidly lead to fatal pulmonary edema. In this study, we established a mouse model for EV71 infection exhibiting high incidence of severe symptoms with pulmonary edema. Mast cells (MCs) accumulation, activation and allergic inflammation were found in the brains, lungs and skeletal muscle of mice after EV71 infection, especially in the lungs of mice. Levels of histamine, platelet-activating factor (PAF), interleukin (IL)-4, IL-5, IL-13, tumor necrosis factor-α (TNF-α), nitric oxide (NO), endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and noradrenaline (NA) were increased in EV71-infected lungs. In addition, EV71 infection reduced the number of pulmonary T cells, dendritic cells (DCs) and monocytes, and increased the number of lung eosinophils, Tregs and MCs. MCs number and tryptase expression in target organs or tissues posed a trend towards an increase from control to severe mice. There were positive correlations between MCs number in the brains (r = 0.701, P = 0.003), lungs (r = 0.802, P < 0.0001), skeletal muscles (r = 0.737, P = 0.001) and mean clinical score. Thus, our results suggested that MCs contributed to the pulmonary edema during EV71 infection.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, People's Republic of China
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Xiangpeng Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, People's Republic of China
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jingchao Ren
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, People's Republic of China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Lu Chen
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Dejian Dang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Peng Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weidong Wu
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, People's Republic of China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States of America
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
31
|
Zhang C, Chen S, Zhou G, Jin Y, Zhang R, Yang H, Xi Y, Ren J, Duan G. Involvement of the renin-angiotensin system in the progression of severe hand-foot-and-mouth disease. PLoS One 2018; 13:e0197861. [PMID: 29791486 PMCID: PMC5965884 DOI: 10.1371/journal.pone.0197861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hand-foot-and-mouth disease (HFMD) is generally considered as a mild exanthematous disease to infants and young children worldwide. HFMD cases are usually mild and self-limiting but for few cases leads to complicated severe clinical outcomes, and even death. Previous studies have indicated that serum Ang II levels in patients with H7N9 infection were related to the severity of infection. However, the mechanisms underlying the pathogenesis of severe HFMD remain unclear. This study was undertaken to clarify the role of the renin-angiotensin system (RAS) in the progression of severe HFMD. METHODS In the present study, 162 children including HFMD patients and healthy controls were recruited. The data was analyzed by time-series fashion. Concentrations of angiotensin II (Ang II) and noradrenaline (NA) in serum of patients were measured with ELISA. We established a mouse model for enterovirus 71 (EV71) infection and determined concentrations of Ang II, NA in tissue lysates at 3, 5 and 7 days post infection (dpi). RESULTS The concentrations of Ang II and NA in serum of the HFMD patients with mild or severe symptoms were significantly higher than that in healthy controls. Additionally, the concentrations of Ang II and NA in serum of severe cases were significantly higher than those mild cases and the increased concentrations of Ang II and NA showed the same time trend during the progression of HFMD in the severe cases. Furthermore, the concentrations of Ang II and NA in target organs of EV71-infected mice including brains, skeletal muscle, and lungs were increased with the progression of EV71 infection in mice. Histopathological alterations were observed in the brains, skeletal muscle and lungs of EV71-infected mice. CONCLUSION Our study suggested that activation of the RAS is implicated in the pathogenesis of severe HFMD.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guangyuan Zhou
- Department of Epidemiology, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jingchao Ren
- Department of Epidemiology, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
32
|
Hao J, Li P, Tian Y, Wang Y, Li S, Wang L, Li S. Crosstalk between Toll-like receptor 3 and Notch signaling contributes to CD14 + monocytes activity in enterovirus 71 infected hand, foot, and mouth disease. Int Immunopharmacol 2018; 60:26-33. [PMID: 29702280 DOI: 10.1016/j.intimp.2018.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 01/19/2023]
Abstract
Interaction between Toll-like receptor (TLR) and Notch signaling contributes to inflammatory response in nephropathy and fungicidal infection, however, the role of this crosstalk remains not fully elucidated in enterovirus 71 (EV71)-induced hand, foot, and mouth disease (HFMD). The aim of this study was to investigate the crosstalk between TLR and Notch in inflammatory regulation in EV71 infection. Thirty-seven EV-71-indcued HFMD (16 mild and 21 severe cases) and eleven normal control (NC) were enrolled. CD14+ monocytes were purified, and were stimulated with either TLR3/4 agonists [poly(I: C) or LPS] or Notch signaling inhibitor. TLRs and Notch receptors expression, proinflammatory cytokines production, and important molecules in signaling pathways were measured by real-time PCR, ELISA, and Western blot. TLR3 and TLR4 was significantly elevated in CD14+ monocytes from HFMD patients than NC. Notch1 and Notch2 mRNA was also remarkably increased in CD14+ monocytes from severe HFMD. Poly(I: C) stimulation resulted in robust increase of IL-8, IL-6, and TNF-α by CD14+ monocytes in severe HFMD compared to NC. Activation of Notch1, Notch2, and target genes, Hes1 and Hes5 was also enhanced upon ploy(I: C) treatment. Although inhibition of Notch signaling did not affect TLR3 expression, poly(I: C)-induced inflammatory response was robustly attenuated, which was accompanied by silencing Src phosphorylation in CD14+ monocytes from severe HFMD patients. The current data indicated that crosstalk between TLR3 and Notch signaling modulated CD14+ monocytes function and inflammatory responses in the progression of EV71-induced HFMD.
Collapse
Affiliation(s)
- Jie Hao
- Department of Infectious Diseases, First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, PR China
| | - Peiling Li
- Department of Pediatrics, First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, PR China
| | - Yunjiao Tian
- Department of Pediatrics, First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, PR China
| | - Yanhua Wang
- Department of Pediatrics, First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, PR China
| | - Suqing Li
- Department of Pediatric Rehabilitation, First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, PR China
| | - Lina Wang
- Quality control office, First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, PR China
| | - Shujun Li
- Department of Pediatrics, First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, PR China.
| |
Collapse
|
33
|
Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection. Viruses 2018; 10:v10040155. [PMID: 29597291 PMCID: PMC5923449 DOI: 10.3390/v10040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 01/01/2023] Open
Abstract
Enterovirus 71 (EV71) infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD). Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.
Collapse
|
34
|
Teo FMS, Nyo M, Wong AA, Tan NWH, Koh MT, Chan YF, Chong CY, Chu JJH. Cytokine and Chemokine Profiling in Patients with Hand, Foot and Mouth Disease in Singapore and Malaysia. Sci Rep 2018; 8:4087. [PMID: 29511232 PMCID: PMC5840398 DOI: 10.1038/s41598-018-22379-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/22/2018] [Indexed: 02/08/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a prevalent contagious childhood disease typically associated with fever, oral lesions and limb exanthema. While HFMD is caused by a plethora of serotypes of viruses under the genus Enterovirus within the Picornaviridae family, Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV-A71) are considered the main etiological agents. In recent years however, other viruses have also been isolated in considerable numbers from infected individuals in many regions, joining the legion commonly associated with HFMD. The present study investigated the cytokine and chemokine profiles of HFMD patients from Singapore and Malaysia for the first time. Comparative cohort studies of EV-A71-associated HFMD cases revealed that the Malaysia cohort had a distinct profile from the Singapore cohort, and this could be partly attributed by different EV-A71 genotypes. As the isolation of CV-A6, instead of CV-A16, had become prevalent in the Singapore cohort, it was also of particular interest to study the differential cytokine and chemokine profiles. Our data revealed that overlapping as well as unique profiles exist between the two major causative clinical isolates in the Singapore cohort. Having a better understanding of the respective immunological profiles could be useful for more accurate HFMD diagnosis, which is imperative for disease transmission control until multi-valent vaccines and/or broad-spectrum anti-viral drugs become available.
Collapse
Affiliation(s)
- Fiona Mei Shan Teo
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Min Nyo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anng Anng Wong
- Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Natalie Woon Hui Tan
- Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mia Tuang Koh
- Department of Pediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chia Yin Chong
- Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Justin Jang Hann Chu
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
35
|
Yee PTI, Poh CL. T Cell Immunity To Enterovirus 71 Infection In Humans And Implications For Vaccine Development. Int J Med Sci 2018; 15:1143-1152. [PMID: 30123051 PMCID: PMC6097258 DOI: 10.7150/ijms.26450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/05/2018] [Indexed: 01/23/2023] Open
Abstract
Enterovirus 71 (EV-A71) is one of the major pathogens causing hand, foot and mouth disease (HFMD). Some strains can lead to neurological disease and fatality in children. Up to date, there is no FDA-approved vaccine to prevent severe HFMD and mortality. Although the inactivated vaccine has advanced to production in China, lack of long-term protection and the requirement of multiple boosters have necessitated the development of other types of vaccines. Recent studies indicate that cellular and not humoral immunity determines the clinical outcome of EV-A71 infections. High levels of cytokines such as IL-1β, IL-6, IL-10 and IFN-γ tend to correlate with clinical severity in patients with pulmonary edema and encephalitis. The live attenuated vaccine may serve as the preferred choice as it can induce excellent humoral and cellular immunity as well as live-long immunity. Expression of certain HLA alleles such as TNF-α promoter type II (-308 allele), HLA-A33 and HLA-DR17 responses have been linked to severe HFMD. However, the high variability of MHC genes could restrict T cell recognition and be a major obstacle in the design of peptide vaccines. Hence, the development of a T cell universal vaccine (incorporating both CD4+ and CD8+ T cell epitopes) that induces broad, multifunctional and cross-reactive CD8+ T cell responses maybe desirable.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| |
Collapse
|
36
|
Jin Y, Zhang C, Zhang R, Ren J, Chen S, Sui M, Zhou G, Dang D, Zhu J, Feng H, Xi Y, Yang H, Duan G. Pulmonary edema following central nervous system lesions induced by a non- mouse-adapted EV71 strain in neonatal BALB/c mice. Virol J 2017; 14:243. [PMID: 29282065 PMCID: PMC5745784 DOI: 10.1186/s12985-017-0911-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/14/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Enterovirus (EV) infection has been a serious health issue in Asia-Pacific region. It has been indicated that the occurrence of fatal hand foot and mouth disease (HFMD) cases following EV71 infection is mainly attributed to pulmonary edema. However, the development of pulmonary disorders after EV71 infection remains largely unknown. To establish an EV71-infected animal model and further explore the underlying association of central nervous system (CNS) invasion with pulmonary edema, we isolated a clinical source EV71 strain (ZZ1350) from a severe case in Henan Province. METHODS We evaluated the cytotoxicity of ZZ1350 strain and the susceptibility in 3-day-old BALB/c mice with intraperitoneal, intracerebral and intramuscular inoculation. Various histopathological and immunohistochemical techniques were applied to determine the target organs or tissue damage after infection. Correlation analysis was used to identify the relationship between CNS injury and pulmonary disorders. RESULTS Our experimental results suggested that ZZ1350 (C4 subtype) had high cytotoxicity against African green monkey kidney (Vero) cells and human rhabdomyosarcoma (RD) cells and neonatal BALB/c mice were highly susceptible to the infection with ZZ1350 through three different inoculation routes (2 × 106 pfu/mouse) exhibiting severe neurological and respiratory symptoms that were similar to clinical observation. Viral replication was found in brain, spinal cord, skeletal muscle, lung, spleen, liver, heart of infected mice and these sections also showed histopathological changes. We found that brain histology score was positive correlated with lung histology score in total experimental mice and mice under the three inoculation routes (P < 0.05). At the same time, there were positive correlations between spinal cord score and lung score in total experimental mice and mice with intracerebral inoculation (P < 0.05). CONCLUSIONS ZZ1350 strain is effective to establish animal model of EV71 infection with severe neurological and respiratory symptoms. The development of pulmonary disorders after EV71 infection is associated with severity of CNS damage.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People’s Republic of China
| | - Jingchao Ren
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People’s Republic of China
- Department of Epidemiology, College of Public Health, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Meili Sui
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Guangyuan Zhou
- Department of Epidemiology, College of Public Health, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Dejian Dang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Jiehui Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Huifen Feng
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People’s Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| |
Collapse
|
37
|
Dang D, Zhang C, Zhang R, Wu W, Chen S, Ren J, Zhang P, Zhou G, Feng D, Sun T, Li Y, Liu Q, Li M, Xi Y, Jin Y, Duan G. Involvement of inducible nitric oxide synthase and mitochondrial dysfunction in the pathogenesis of enterovirus 71 infection. Oncotarget 2017; 8:81014-81026. [PMID: 29113363 PMCID: PMC5655258 DOI: 10.18632/oncotarget.21250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/28/2017] [Indexed: 01/10/2023] Open
Abstract
Enterovirus71 (EV71) is recognized as the main causative agent of severe hand, foot and mouth disease (HFMD). However, the pathogenesis of EV71 infection has not been well characterized. Clinical evidence indicated that inducible nitric oxide synthase (iNOS) induction in the lung of HFMD patients contributes to the severe symptoms of pulmonary edema. In the present study, we recruited 142 subjects including HFMD patients and controls, and serum level of nitric oxide (NO) was determined. Next, cellular and animal model were used to further investigate the roles of iNOS and mitochondria damage during EV71 infection. Serum NO level in HFMD patients with mild or severe symptoms was higher than that in controls, and there was a trend towards an increase in the serum NO level of severe cases relative to mild cases. EV71 infection caused apoptosis and increased levels of NO, iNOS, superoxide dismutase (SOD) activity and malondialdehyde (MDA), and degraded mitochondrial membrane potential (ΔΨm) in vitro. Pathological alterations of mitochondrial morphology were observed in vitro and in vivo. Furthermore, the expression of iNOS levels in target organs including brain, spinal cord, skeletal muscle, lung and heart were increased with the progression of the pathogenesis of EV71 infection in mice. Taken together, iNOS and mitochondrial damage participate in the pathogenesis of EV71 infection.
Collapse
Affiliation(s)
- Dejian Dang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People's Republic of China
| | - Weidong Wu
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People's Republic of China
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jingchao Ren
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People's Republic of China
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Peng Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Demin Feng
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ying Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiaoli Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengchen Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People's Republic of China
| |
Collapse
|
38
|
Zhang AY, Yang L, Guo P, Li S, Ao X, Xu F, Tan L. B-type brain natriuretic peptide as a measure of the severity of hand-foot-mouth disease: a case-control study. BMC Infect Dis 2017; 17:651. [PMID: 28962547 PMCID: PMC5622520 DOI: 10.1186/s12879-017-2734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/13/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Hand-foot-mouth disease (HFMD) is an acute infectious disease caused by enteroviruses, and HFMD complicated by cardiopulmonary failure has a high mortality. B type natriuretic peptide (BNP) is widely applied in monitoring cardiovascular disorders, and thus, we investigated whether this index was associated with the severity of HFMD and the outcome in severe HFMD. METHODS Serum BNP, lactate, and glucose levels as well as white blood cell (WBC) count, PaO2/FiO2, and cardiac output (CO) were analyzed in the 83 enrolled HFMD patients according to different conditions (common, severe, and critical; with and without complication; and survivors and non-survivors). The control group consisted of 29 patients with respiratory tract infections. RESULTS No significant differences in CO were observed between the groups. Serum lactate, glucose, BNP, and WBC levels in the critical group were significantly higher than those in the severe, common, and control groups (p < 0.01 or 0.05). The PaO2/FiO2 ratio was significantly lower in the critical group (214.286 ± 154.346) than in the other groups. According to logistic regression analysis, the areas under the curve for serum BNP, glucose, and PaO2/FiO2 of the patients with complications were 0.774, 0.738, and 0.75, respectively. Moreover, the BNP level was significantly higher in HFMD patients with complications and non-survivors. CONCLUSION Our findings indicate that BNP could be a biochemical indicator for severe (critical) HFMD and used for prognosis in terms of complications and death. Combined with Glu and PaO2/FiO2 and clinical symptoms of HFMD, the value of BNP as an indicator became more precise and specific. Our results may provide another valuable, objective biochemical indicator for severe HFMD. TRIAL REGISTRATION NUMBER ChiCTR-DDT-14004576 . Name of registry: Chinese Clinical Trial Registry. Date of registration: 2014-09-21.
Collapse
Affiliation(s)
- AYuan Zhang
- Department of Emergency, Children’s Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong district, Chongqing, 400014 China
- Department of Respiratory Medicine, Sichuan Provincial Hospital For Women & Children, Chongqing, China
| | - Lin Yang
- Department of Emergency, Children’s Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong district, Chongqing, 400014 China
| | - Pengfei Guo
- Department of Emergency, Children’s Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong district, Chongqing, 400014 China
| | - Shaojun Li
- Department of Emergency, Children’s Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong district, Chongqing, 400014 China
| | - Xiaoxiao Ao
- Department of Emergency, Children’s Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong district, Chongqing, 400014 China
| | - Feng Xu
- Pediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Tan
- Department of Emergency, Children’s Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong district, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
39
|
Protective Efficacies of Formaldehyde-Inactivated Whole-Virus Vaccine and Antivirals in a Murine Model of Coxsackievirus A10 Infection. J Virol 2017; 91:JVI.00333-17. [PMID: 28424287 DOI: 10.1128/jvi.00333-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 01/20/2023] Open
Abstract
Coxsackievirus A10 (CVA10) is one of the major pathogens associated with hand, foot, and mouth disease (HFMD). CVA10 infection can cause herpangina and viral pneumonia, which can be complicated by severe neurological sequelae. The morbidity and mortality of CVA10-associated HFMD have been increasing in recent years, particularly in the pan-Pacific region. There are limited studies, however, on the pathogenesis and immunology of CVA10-associated HFMD infections, and few antiviral drugs or vaccines have been reported. In the present study, a cell-adapted CVA10 strain was employed to inoculate intramuscularly 5-day-old ICR mice, which developed significant clinical signs, including reduced mobility, lower weight gain, and quadriplegia, with significant pathology in the brain, hind limb skeletal muscles, and lungs of infected mice in the moribund state. The severity of illness was associated with abnormally high expression of the proinflammatory cytokine interleukin 6 (IL-6). Antiviral assays demonstrated that ribavirin and gamma interferon administration could significantly inhibit CVA10 replication both in vitro and in vivo In addition, formaldehyde-inactivated CVA10 whole-virus vaccines induced immune responses in adult mice, and maternal neutralizing antibodies could be transmitted to neonatal mice, providing protection against CVA10 clinical strains. Furthermore, high-titer antisera were effective against CVA10 and could relieve early clinical symptoms and improve the survival rates of CVA10-challenged neonatal mice. In summary, we present a novel murine model to study CVA10 pathology that will be extremely useful in developing effective antivirals and vaccines to diminish the burden of HFMD-associated disease.IMPORTANCE Hand, foot, and mouth disease cases in infancy, arising from coxsackievirus A10 (CVA10) infections, are typically benign, resolving without any significant adverse events. Severe disease and fatalities, however, can occur in some children, necessitating the development of vaccines and antiviral therapies. The present study has established a newborn-mouse model of CVA10 that, importantly, recapitulates many aspects of human disease with respect to the neuropathology and skeletal muscle pathology. We found that high levels of the proinflammatory cytokine interleukin 6 correlated with disease severity and that ribavirin and gamma interferon could decrease viral titers in vitro and in vivo Whole-virus vaccines produced immune responses in adult mice, and immunized mothers conferred protection on neonates against challenge from CVA10 clinical strains. Passive immunization with high-titer antisera could also improve survival rates in newborn animals.
Collapse
|
40
|
Lee ZM, Huang YH, Ho SC, Kuo HC. Correlation of symptomatic enterovirus infection and later risk of allergic diseases via a population-based cohort study. Medicine (Baltimore) 2017; 96:e5827. [PMID: 28121929 PMCID: PMC5287953 DOI: 10.1097/md.0000000000005827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infants who are exposed to the rhinovirus or respiratory syncytial virus are at a higher risk of subsequently developing wheezing or asthma. This study aims to determine whether preschoolers with a history of symptomatic enterovirus infection are at an increased risk of developing allergic diseases or not.We used data from the Taiwan National Health Insurance Research Database from 1999 to 2006 for this nationwide population-based cohort study. The subsequent risks for allergic diseases, which included asthma (International Classification of Diseases [ICD]-9: 493.X), allergic rhinitis (AR; ICD-9 CM code 477.X), and atopic dermatitis (AD; ICD-9-CM code 691.X), were compared between herpangina (ICD-9: 074.0) and hand, foot, and mouth disease (HFMD; ICD-9: 074.3) throughout the follow-up period using the Cox proportional hazards model.In this database, 12,016 neonates were born between January 1999 and December 1999. Among them, we further evaluated 8337 subjects; 3267 children infected with either herpangina or HFMD served as the study cohort, and the other 5070 children made up the comparison cohort. Children in the herpangina group had a higher risk of developing AR and AD, with adjusted hazard ratios of 1.15 (1.02-1.30, 95% CI) and 1.38 (1.17-1.63. 95% CI), respectively, while children suffered from HFMD had decreased risks of asthma, with an adjusted hazard ratio of 0.76 (0.63-0.93, 95% CI).Children who previously suffered from herpangina experienced an increased risk of subsequently developing AD and AR. Meanwhile, children who had suffered from HFMD experienced a decrease in the subsequent occurrence of asthma compared to the general population.
Collapse
Affiliation(s)
- Zon-Min Lee
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Shu-Chen Ho
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| |
Collapse
|