1
|
Pipponzi S, Primisser S, Antonielli L, Stefani E, Compant S, Sessitsch A, Kostic T. Lettuce fortification through vitamin B 12-producing bacteria - proof of concept study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3343-3354. [PMID: 39831556 PMCID: PMC11949862 DOI: 10.1002/jsfa.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/02/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Vitamin B12 (cobalamin) can be produced de novo only by certain bacteria and archaea. It plays a crucial role in the health of animals and humans, which obtain it only through diet, mainly from animal products. This study aimed to identify endophytic bacterial strains capable of synthesizing vitamin B12 and enriching edible plants with it as a potential solution for vitamin B12 deficiency in vegetarians, vegans, and people with poor diets. RESULTS An in silico genome analysis was performed on 66 bacterial genomes, including the reference strain Pseudomonas denitrificans ATCC 13867, a known vitamin B12 producer. The genomes were analyzed using the Rapid Annotations using Subsystems Technology (RAST) server and the MetaCyc database to verify the presence and completeness of the vitamin B12 metabolic pathway. The ability of the strains to produce vitamin B12 was confirmed with a high-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis of pure culture extracts. Eleven strains produced detectable amounts of vitamin B12 under tested conditions. The best performing candidates were further tested for their efficacy in producing vitamin B12 in lettuce grown under sterile conditions on Murashige and Skoog (MS) medium with or without CoCl2 supplementation. Methylobacterium sp. strain P1-11 produced detectable amounts of vitamin B12 in planta: 1.654 and 2.559 μg per g of dry weight without and with CoCl2 supplementation, respectively. CONCLUSION This is the first time a bacterial endophyte was used to produce vitamin B12 in planta, suggesting that bacterial endophytes could be utilized to enhance the nutraceutical values of plant-based foods. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Pipponzi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| | - Stefanie Primisser
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
- Present address:
Institute for Plant HealthLaimburg Research CentreLaimburg 6Auer (Ora)39040South TyrolItaly
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| | - Emilio Stefani
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| | - Stephane Compant
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| | - Angela Sessitsch
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| | - Tanja Kostic
- Center for Health & Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyTullnAustria
| |
Collapse
|
2
|
Chakraborty N, Halder S, Keswani C, Vaca J, Ortiz A, Sansinenea E. New Aspects of the Effects of Climate Change on Interactions Between Plants and Microbiomes: A Review. J Basic Microbiol 2024; 64:e2400345. [PMID: 39205430 DOI: 10.1002/jobm.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
One of the most talked about issues of the 21st century is climate change, as it affects not just our health but also forestry, agriculture, biodiversity, the ecosystem, and the energy supply. Greenhouse gases are the primary cause of climate change, having dramatic effects on the environment. Climate change has an impact on the function and composition of the terrestrial microbial community both directly and indirectly. Changes in the prevailing climatic conditions brought about by climate change will lead to modifications in plant physiology, root exudation, signal alteration, and the quantity, makeup, and diversity of soil microbial communities. Microbiological activity is very crucial in organic production systems due to the organic origin of microorganisms. Microbes that benefit crop plants are known as plant growth-promoting microorganisms. Thus, the effects of climate change on the environment also have an impact on the abilities of beneficial bacteria to support plant growth, health, and root colonization. In this review, we have covered the effects of temperature, precipitation, drought, and CO2 on plant-microbe interactions, as well as some physiological implications of these changes. Additionally, this paper highlights the ways in which bacteria in plants' rhizosphere react to the dominant climatic conditions in the soil environment. The goal of this study is to analyze the effects of climate change on plant-microbe interactions.
Collapse
Affiliation(s)
- Nilanjan Chakraborty
- Department of Botany, Scottish Church College, University of Calcutta, Kolkata, India
| | - Sunanda Halder
- Department of Botany, Scottish Church College, University of Calcutta, Kolkata, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jessica Vaca
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
3
|
Haque MM, Rupok MRB, Molla MAH, Rahman MM, Shozib HB, Mosharaf MK. Rhizoengineering with biofilm producing rhizobacteria ameliorates oxidative stress and enhances bioactive compounds in tomato under nitrogen-deficient field conditions. Heliyon 2024; 10:e34276. [PMID: 39108901 PMCID: PMC11301190 DOI: 10.1016/j.heliyon.2024.e34276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 02/18/2025] Open
Abstract
Nitrogen (N) deficiency limits crop productivity. In this study, rhizoengineering with biofilm producing rhizobacteria (BPR) contributing to productivity, physiology, and bioactive contents in tomato was examined under N-deficient field conditions. Here, different BPR including Leclercia adecarboxylata ESK12, Enterobacter ludwigii ESK17, Glutamicibacter arilaitensis ESM4, E. cloacae ESM12, Bacillus subtilis ESM14, Pseudomonas putida ESM17 and Exiguobacterium acetylicum ESM24 were used for the rhizoengineering of tomato plants. Rhizoengineered plants showed significant increase in growth attributes (15.73%-150.13 %) compared to the control plants. However, production of hydrogen peroxide (21.49-59.38 %), electrolyte leakage (19.5-38.07 %) and malondialdehyde accumulation (36.27-46.31 %) were increased remarkably more in the control plants than the rhizoengineered plants, thus N deficiency induced the oxidative stress. Compared to the control, photosynthetic rate, leaf temperature, stomatal conductance, intrinsic and instantaneous water use efficiency, relative water content, proline and catalase activity were incredibly enhanced in the rhizoengineered plants, suggesting both non-enzymatic and enzymatic antioxidant systems might protect tomato plants from oxidative stress under N-deficient field conditions. Yield (10.24-66.21 %), lycopene (4.8-7.94 times), flavonoids (52.32-110.46 %), phenolics (9.79-23.5 %), antioxidant activity (34.09-86.36 %) and certain minerals were significantly increased in the tomatoes from rhizoengineered plants. The principal component analysis (PCA) revealed that tomato plants treated with BPR induced distinct profiles compared to the control. Among all the applied BPR strains, ESM4 and ESM14 performed better in terms of biomass production, while ESK12 and ESK17 showed better results for reducing oxidative stress and increasing bioactive compounds in tomato, respectively. Thus, rhizoengineering with BPR can be utilized to mitigate the oxidative damage and increase the productivity and bioactive compounds in tomato under N-deficient field conditions.
Collapse
Affiliation(s)
- Md. Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md. Rahat Bari Rupok
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md. Abul Hossain Molla
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md. Mizanur Rahman
- Department of Soil Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Habibul Bari Shozib
- Grain Quality and Nutrition Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
- Division of Agriculture and Environmental Science, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| |
Collapse
|
4
|
Dove R, Wolfe ER, Stewart NU, Coleman A, Chavez SH, Ballhorn DJ. Root nodules of red alder (Alnus rubra) and sitka alder (Alnus viridis ssp. sinuata) are inhabited by taxonomically diverse cultivable microbial endophytes. Microbiologyopen 2024; 13:e1422. [PMID: 38847331 PMCID: PMC11157421 DOI: 10.1002/mbo3.1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
The root nodules of actinorhizal plants are home to nitrogen-fixing bacterial symbionts, known as Frankia, along with a small percentage of other microorganisms. These include fungal endophytes and non-Frankia bacteria. The taxonomic and functional diversity of the microbial consortia within these root nodules is not well understood. In this study, we surveyed and analyzed the cultivable, non-Frankia fungal and bacterial endophytes of root nodules from red and Sitka alder trees that grow together. We examined their taxonomic diversity, co-occurrence, differences between hosts, and potential functional roles. For the first time, we are reporting numerous fungal endophytes of alder root nodules. These include Sporothrix guttuliformis, Fontanospora sp., Cadophora melinii, an unclassified Cadophora, Ilyonectria destructans, an unclassified Gibberella, Nectria ramulariae, an unclassified Trichoderma, Mycosphaerella tassiana, an unclassified Talaromyces, Coniochaeta sp., and Sistotrema brinkmanii. We are also reporting several bacterial genera for the first time: Collimonas, Psychrobacillus, and Phyllobacterium. Additionally, we are reporting the genus Serratia for the second time, with the first report having been recently published in 2023. Pseudomonas was the most frequently isolated bacterial genus and was found to co-inhabit individual nodules with both fungi and bacteria. We found that the communities of fungal endophytes differed by host species, while the communities of bacterial endophytes did not.
Collapse
Affiliation(s)
- Robyn Dove
- Portland State University Biology DepartmentPortlandOregonUSA
| | - Emily R. Wolfe
- Portland State University Biology DepartmentPortlandOregonUSA
- Portland State UniversityPortlandOregonUSA
| | - Nathan U. Stewart
- Portland State University Biology DepartmentPortlandOregonUSA
- Portland State UniversityPortlandOregonUSA
| | - Abigail Coleman
- Portland State University Biology DepartmentPortlandOregonUSA
- Oregon Health and Science UniversityPortlandOregonUSA
| | - Sara Herrejon Chavez
- Portland State University Biology DepartmentPortlandOregonUSA
- University of California BerkeleyBerkeleyCaliforniaUSA
| | - Daniel J. Ballhorn
- Portland State University Biology DepartmentPortlandOregonUSA
- Portland State UniversityPortlandOregonUSA
| |
Collapse
|
5
|
Saati-Santamaría Z, Flores-Félix JD, Igual JM, Velázquez E, García-Fraile P, Martínez-Molina E. Speciation Features of Ferdinandcohnia quinoae sp. nov to Adapt to the Plant Host. J Mol Evol 2024; 92:169-180. [PMID: 38502221 PMCID: PMC10978704 DOI: 10.1007/s00239-024-10164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
The bacterial strain SECRCQ15T was isolated from seeds of Chenopodium quinoa in Spain. Phylogenetic, chemotaxonomic, and phenotypic analyses, as well as genome similarity indices, support the classification of the strain into a novel species of the genus Ferdinandcohnia, for which we propose the name Ferdinandcohnia quinoae sp. nov. To dig deep into the speciation features of the strain SECRCQ15T, we performed a comparative genomic analysis of the genome of this strain and those of the type strains of species from the genus Ferdinandcohnia. We found several genes related with plant growth-promoting mechanisms within the SECRCQ15T genome. We also found that singletons of F. quinoae SECRCQ15T are mainly related to the use of carbohydrates, which is a common trait of plant-associated bacteria. To further reveal speciation events in this strain, we revealed genes undergoing diversifying selection (e.g., genes encoding ribosomal proteins) and functions likely lost due to pseudogenization. Also, we found that this novel species contains 138 plant-associated gene-cluster functions that are unique within the genus Ferdinandcohnia. These features may explain both the ecological and taxonomical differentiation of this new taxon.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | | | - José M Igual
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain.
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain.
| | - Eustoquio Martínez-Molina
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|
6
|
Melini F, Melini V, Luziatelli F, Abou Jaoudé R, Ficca AG, Ruzzi M. Effect of microbial plant biostimulants on fruit and vegetable quality: current research lines and future perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1251544. [PMID: 37900743 PMCID: PMC10602749 DOI: 10.3389/fpls.2023.1251544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Fruit and vegetables hold a prominent place in dietary guidance worldwide and, following the increasing awareness of the importance of their consumption for health, their demand has been on the rise. Fruit and vegetable production needs to be reconsidered so that it can be productive and, meantime, sustainable, resilient, and can deliver healthy and nutritious diets. Microbial plant biostimulants (PBs) are a possible approach to pursuing global food security and agricultural sustainability, and their application emerged as a promising alternative or substitute to the use of agrochemicals (e.g., more efficient use of mineral and organic fertilizers or less demand and more efficient use of pesticides in integrated production systems) and as a new frontier of investigation. To the best of our knowledge, no comprehensive reviews are currently available on the effects that microbial plant biostimulants' application can have specifically on each horticultural crop. This study thus aimed to provide a state-of-the-art overview of the effects that PBs can have on the morpho-anatomical, biochemical, physiological, and functional traits of the most studied crops. It emerged that most experiments occurred under greenhouse conditions; only a few field trials were carried out. Tomato, lettuce, and basil crops have been primarily treated with Arbuscular Mycorrhizal Fungi (AMF), while plant grow-promoting rhizobacteria (PGPR) metabolites were used for crops, such as strawberries and cucumbers. The literature review also pointed out that crop response to PBs is never univocal. Complex mechanisms related to the PB type, the strain, and the crop botanical family, occur.
Collapse
Affiliation(s)
- Francesca Melini
- CREA Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Valentina Melini
- CREA Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Renée Abou Jaoudé
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Anna Grazia Ficca
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
7
|
Gen-Jiménez A, Flores-Félix JD, Rincón-Molina CI, Manzano-Gomez LA, Rogel MA, Ruíz-Valdiviezo VM, Rincón-Molina FA, Rincón-Rosales R. Enhance of tomato production and induction of changes on the organic profile mediated by Rhizobium biofortification. Front Microbiol 2023; 14:1235930. [PMID: 37601341 PMCID: PMC10433389 DOI: 10.3389/fmicb.2023.1235930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The extensive use of chemical fertilizers has served as a response to the increasing need for crop production in recent decades. While it addresses the demand for food, it has resulted in a decline in crop productivity and a heightened negative environmental impact. In contrast, plant probiotic bacteria (PPB) offer a promising alternative to mitigate the negative consequences of chemical fertilizers. PPB can enhance nutrient availability, promote plant growth, and improve nutrient uptake efficiency, thereby reducing the reliance on chemical fertilizers. Methods This study aimed to evaluate the impact of native Rhizobium strains, specifically Rhizobium calliandrae LBP2-1, Rhizobium mayense NSJP1-1, and Rhizobium jaguaris SJP1- 2, on the growth, quality, and rhizobacterial community of tomato crops. Various mechanisms promoting plant growth were investigated, including phosphate solubilization, siderophore production, indole acetic acid synthesis, and cellulose and cellulase production. Additionally, the study involved the assessment of biofilm formation and root colonization by GFP-tagged strains, conducted a microcosm experiment, and analyzed the microbial community using metagenomics of rhizospheric soil. Results The results showed that the rhizobial strains LBP2-1, NSJP1-1 and SJP1-2 had the ability to solubilize dicalcium phosphate, produce siderophores, synthesize indole acetic acid, cellulose production, biofilm production, and root colonization. Inoculation of tomato plants with native Rhizobium strains influenced growth, fruit quality, and plant microbiome composition. Metagenomic analysis showed increased Proteobacteria abundance and altered alpha diversity indices, indicating changes in rhizospheric bacterial community. Discussion Our findings demonstrate the potential that native Rhizobium strains have to be used as a plant probiotic in agricultural crops for the generation of safe food and high nutritional value.
Collapse
Affiliation(s)
- Adriana Gen-Jiménez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Luis Alberto Manzano-Gomez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Marco Antonio Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| |
Collapse
|
8
|
Bhat MA, Mishra AK, Jan S, Bhat MA, Kamal MA, Rahman S, Shah AA, Jan AT. Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:629. [PMID: 36771713 PMCID: PMC9919780 DOI: 10.3390/plants12030629] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Saima Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mujtaba Aamir Bhat
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Arif Tasleem Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| |
Collapse
|
9
|
Epiphitic Microbiome of Alvarinho Wine Grapes from Different Geographic Regions in Portugal. BIOLOGY 2023; 12:biology12020146. [PMID: 36829425 PMCID: PMC9952175 DOI: 10.3390/biology12020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Geographic location and, particularly, soil and climate exert influence on the typicality of a wine from a specific region, which is often justified by the terroir, and these factors also influence the epiphytic flora associated with the surface of the grape berries. In the present study, the microbiome associated with the surface of berries obtained from ten vineyards of the Alvarinho variety located in different geographical locations in mainland Portugal was determined and analyzed. The removal of microbial flora from the surface of the berries was carried out by washing and sonication, after which the extraction and purification of the respective DNA was carried out. High-throughput short amplicon sequencing of the fungal ITS region and the bacterial 16S region was performed, allowing for the determination of the microbial consortium associated with Alvarinho wine grapes. Analysis of α-diversity demonstrated that parcels from the Monção and Melgaço sub-region present a significantly (p < 0.05) lower fungal diversity and species richness when compared to the plots analyzed from other regions/sub-regions. The ubiquitous presence of Metschnikowia spp., a yeast with enologic potential interest in all parcels from Monção and Melgaço, was also observed.
Collapse
|
10
|
Ryabova OV, Gagarina AA. Actinomycetes as the Basis of Probiotics for Plants. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Gonçalves AC, Sánchez-Juanes F, Meirinho S, Silva LR, Alves G, Flores-Félix JD. Insight into the Taxonomic and Functional Diversity of Bacterial Communities Inhabiting Blueberries in Portugal. Microorganisms 2022; 10:2193. [PMID: 36363783 PMCID: PMC9695653 DOI: 10.3390/microorganisms10112193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 10/15/2023] Open
Abstract
Vaccinium myrtillus is a dwarf shrub of the Ericaceae family with a Palearctic distribution, associated with temperate and cold humid climates. It is widespread on the European continent; on the Iberian Peninsula it is located on Atlantic climate mountains and glacial relicts. In Portugal, we find scattered and interesting populations; however, the majority of them are threatened by climate change and wildfires. Given that, the objective of this study is to determine the rhizospheric and root bacterial communities of this plant in the southernmost regions, and, consequently, its potential range and ability to be used as a biofertilizer. In this work, metabarcoding of 16S rRNA gene showed that the endophytic bacterial diversity is dependent on the plant and selected by it according to the observed alpha and beta diversity. Moreover, a culturomic approach allowed 142 different strains to be isolated, some of them being putative new species. Additionally, some strains belonging to the genera Bacillus, Paenibacillus, Pseudomonas, Paraburkholderia, and Caballeronia showed significant potential to be applied as multifunctional biofertilizers since they present good plant growth-promoting (PGP) mechanisms, high colonization capacities, and an increase in vegetative parameters in blueberry and tomato plants.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-540 Coimbra, Portugal
| | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sara Meirinho
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - José David Flores-Félix
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
12
|
Wang L, Gong L, Gan D, Li X, Yao J, Wang L, Qu J, Cong J, Zhang Y. Diversity, function and assembly of the Trifolium repens L. root-associated microbiome under lead stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129510. [PMID: 35816797 DOI: 10.1016/j.jhazmat.2022.129510] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Root-associated microbial layers provide unique niches that drive specific microbe assemblies. While the rhizosphere microbiome has long received much attention, endophytic microbes remain largely elusive. Characterizing metal-tolerant plants' strategies for assembling different root-associated microbial layers is important for optimizing phytoremediation. Here, a pre-stratified rhizo-box assay was conducted with Trifolium repens L. under greenhouse conditions with artificial Pb-contaminated soil. Cultivation compensated for the pollution-driven loss of soil microbial biomass carbon, enzyme activities and abundance. The acid-soluble Pb proportion increased in the rhizosphere (from 6.5-13.7% to 7.1-18.0%) compared with bulk soil. Under stress, root-layer variants were a considerable source of variation in the microbiome, with the endosphere representing a unique and independent niche. A core set of root microbes were selected by T. repens, with Proteobacteria and Actinobacteria composed of diverse plant-growth-promoting bacteria (PGPBs) and metal-tolerant members. Cluster analysis revealed endosphere-enriched genera, with Rhizobium, Nocardioides, Novosphingobium, Phyllobacterium, and Sphingomonas being the most dominant. Finally, inferred microbial metabolic pathways suggested that these potential metal-tolerant PGPB species provide critical services to hosts, enabling them to tolerate and even flourish in contaminated soil. Our results provide novel insights for understanding how root-associated microbes help metal-tolerant plants cope with abiotic stress.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Li Gong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Deping Gan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinying Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiaxuan Yao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingmin Cong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Vassileva M, Mendes GDO, Deriu MA, Benedetto GD, Flor-Peregrin E, Mocali S, Martos V, Vassilev N. Fungi, P-Solubilization, and Plant Nutrition. Microorganisms 2022; 10:1716. [PMID: 36144318 PMCID: PMC9503713 DOI: 10.3390/microorganisms10091716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The application of plant beneficial microorganisms is widely accepted as an efficient alternative to chemical fertilizers and pesticides. It was shown that annually, mycorrhizal fungi and nitrogen-fixing bacteria are responsible for 5 to 80% of all nitrogen, and up to 75% of P plant acquisition. However, while bacteria are the most studied soil microorganisms and most frequently reported in the scientific literature, the role of fungi is relatively understudied, although they are the primary organic matter decomposers and govern soil carbon and other elements, including P-cycling. Many fungi can solubilize insoluble phosphates or facilitate P-acquisition by plants and, therefore, form an important part of the commercial microbial products, with Aspergillus, Penicillium and Trichoderma being the most efficient. In this paper, the role of fungi in P-solubilization and plant nutrition will be presented with a special emphasis on their production and application. Although this topic has been repeatedly reviewed, some recent views questioned the efficacy of the microbial P-solubilizers in soil. Here, we will try to summarize the proven facts but also discuss further lines of research that may clarify our doubts in this field or open new perspectives on using the microbial and particularly fungal P-solubilizing potential in accordance with the principles of the sustainability and circular economy.
Collapse
Affiliation(s)
- Maria Vassileva
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Gilberto de Oliveira Mendes
- Laboratório de Microbiologia e Fitopatologia, Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo 38500-000, Brazil
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | | | - Elena Flor-Peregrin
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Stefano Mocali
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Agriculture and Environment, 50125 Firenze, Italy
| | - Vanessa Martos
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - Nikolay Vassilev
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
14
|
Campos Espinosa GY, Dörr de Quadros P, Fulthorpe RR, Tsopmo A. Vitamin contents and antioxidant capacity of hydroponic grown sweet basil inoculated with endophytic bacteria. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.954956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to assess the effect of inoculated endophytic bacteria on the concentrations of vitamins E (tocopherols), K (phylloquinone), B1 (thiamine), B2 (riboflavin), C (ascorbic acid) and the peroxyl radical scavenging capacity of hydroponically grown sweet basil. Endophytic strains were all isolated from hydrocarbon-stressed herbaceous plants or from basil showing superior growth. Plants inoculated with the endophytes displayed up to 40% increase (p < 0.05) in the concentration of the reduced form of vitamin C relative to control [0.56 mg/g fresh weight (FW)] which indicated less oxidative stress in the presence of endophytes. In the case of γ-tocopherol, the highest content [25.8 μg/g of fresh weight (FW)] in inoculated basils was significantly higher compared to control plants (18.5 ± 1.2 μg/g FW) (p < 0.05). Antioxidant activity (ROO∙ radicals scavenging) was as high as 94 ± 4 μM Trolox equivalents (TE)/g FW vs. 53 ± 5 μM TE/g FW for the control basil. Concentrations of vitamins C, B1, and B2 were not affected by most strains. The results showed that endophytic bacteria have the capacity to alter free radical quenching capacity and vitamin concentrations in basil plants and, that their effect is strain and nutrient dependent.
Collapse
|
15
|
Gamboa-Becerra R, Desgarennes D, Molina-Torres J, Ramírez-Chávez E, Kiel-Martínez AL, Carrión G, Ortiz-Castro R. Plant growth-promoting and non-promoting rhizobacteria from avocado trees differentially emit volatiles that influence growth of Arabidopsis thaliana. PROTOPLASMA 2022; 259:835-854. [PMID: 34529144 DOI: 10.1007/s00709-021-01705-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial volatile organic compounds (mVOCs) play important roles in inter- and intra-kingdom interactions, and they are also important as signal molecules in physiological processes acting either as plant growth-promoting or negatively modulating plant development. We investigated the effects of mVOCs emitted by PGPR vs non-PGPR from avocado trees (Persea americana) on growth of Arabidopsis thaliana seedlings. Chemical diversity of mVOCs was determined by SPME-GC-MS; selected compounds were screened in dose-response experiments in A. thaliana transgenic lines. We found that plant growth parameters were affected depending on inoculum concentration. Twenty-six compounds were identified in PGPR and non-PGPR with eight of them not previously reported. The VOCs signatures were differential between those groups. 4-methyl-2-pentanone, 1-nonanol, 2-phenyl-2-propanol and ethyl isovalerate modified primary root architecture influencing the expression of auxin- and JA-responsive genes, and cell division. Lateral root formation was regulated by 4-methyl-2-pentanone, 3-methyl-1-butanol, 1-nonanol and ethyl isovalerate suggesting a participation via JA signalling. Our study revealed the differential emission of volatiles by PGPR vs non-PGPR from avocado trees and provides a general view about the mechanisms by which those volatiles influence plant growth and development. Rhizobacteria strains and mVOCs here reported are promising for improvement the growth and productivity of avocado crop.
Collapse
Affiliation(s)
- Roberto Gamboa-Becerra
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Ana L Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico.
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico.
| |
Collapse
|
16
|
Mockevičiūtė R, Jurkonienė S, Gavelienė V, Jankovska-Bortkevič E, Šocik B, Armalytė G, Budrys R. Effects Induced by the Agricultural Application of Probiotics on Antioxidant Potential of Strawberries. PLANTS 2022; 11:plants11060831. [PMID: 35336715 PMCID: PMC8955509 DOI: 10.3390/plants11060831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
With the recent rapid development of the functional food sector, agriculture is looking for alternatives to improve the quality of food grown by limiting chemical fertilizers. This study evaluated the effects of two commercial plant probiotics, ProbioHumus and NaturGel, on the growth and quality of strawberry fruits. Strawberry plants were sprayed with microbial probiotics twice a year: after harvesting at the beginning of dormancy and at the stage of leaf development. Spray applications of ProbioHumus, NaturGel, and NaturGel + ProbioHumus in the organic farm fields significantly increased the fresh fruit weight up to 42%, 35%, and 37%, respectively, compared to the non-treated control. An increase in the weight of fresh strawberry fruits may be associated with an increase in dry matter accumulation. The probiotics had a positive effect on the total content of phenols, anthocyanins, and especially ascorbic acid in strawberry fruits. The increase in ascorbic acid in strawberry fruits was up to 97% compared to the non-treated control. The fruits from plants inoculated with probiotics showed significantly higher antioxidant activity. In summary, ProbioHumus and NaturGel are effective tools for improving the quality of strawberries and can be exploited in sustainable agriculture as a tool for adding value to functional food.
Collapse
Affiliation(s)
- Rima Mockevičiūtė
- Nature Research Centre, Institute of Botany, Laboratory of Plant Physiology, Akademijos Street 2, LT-08412 Vilnius, Lithuania; (S.J.); (V.G.); (E.J.-B.); (B.Š.); (G.A.)
- Correspondence: ; Tel.: +37-05-272-9047
| | - Sigita Jurkonienė
- Nature Research Centre, Institute of Botany, Laboratory of Plant Physiology, Akademijos Street 2, LT-08412 Vilnius, Lithuania; (S.J.); (V.G.); (E.J.-B.); (B.Š.); (G.A.)
| | - Virgilija Gavelienė
- Nature Research Centre, Institute of Botany, Laboratory of Plant Physiology, Akademijos Street 2, LT-08412 Vilnius, Lithuania; (S.J.); (V.G.); (E.J.-B.); (B.Š.); (G.A.)
| | - Elžbieta Jankovska-Bortkevič
- Nature Research Centre, Institute of Botany, Laboratory of Plant Physiology, Akademijos Street 2, LT-08412 Vilnius, Lithuania; (S.J.); (V.G.); (E.J.-B.); (B.Š.); (G.A.)
| | - Božena Šocik
- Nature Research Centre, Institute of Botany, Laboratory of Plant Physiology, Akademijos Street 2, LT-08412 Vilnius, Lithuania; (S.J.); (V.G.); (E.J.-B.); (B.Š.); (G.A.)
| | - Gabija Armalytė
- Nature Research Centre, Institute of Botany, Laboratory of Plant Physiology, Akademijos Street 2, LT-08412 Vilnius, Lithuania; (S.J.); (V.G.); (E.J.-B.); (B.Š.); (G.A.)
| | - Rimas Budrys
- Baltic Probiotics, Bakery, Rucavas Parish, LV-3477 South Kurzeme Region, Latvia;
| |
Collapse
|
17
|
Liang YR, Liao FC, Huang TP. Deciphering the influence of Bacillus subtilis strain Ydj3 colonization on the vitamin C contents and rhizosphere microbiomes of sweet peppers. PLoS One 2022; 17:e0264276. [PMID: 35226695 PMCID: PMC8884494 DOI: 10.1371/journal.pone.0264276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Bacillus subtilis strain Ydj3 was applied to sweet peppers to understand the influence of this bacterium on the growth, fruit quality, and rhizosphere microbial composition of sweet pepper. The promotion of seed germination was observed for sweet pepper seeds treated with the Ydj3 strain, indicating that Ydj3 promoted seed germination and daily germination speed (131.5 ± 10.8 seeds/day) compared with the control (73.8 ± 2.5 seeds/day). Strain Ydj3 displayed chemotaxis toward root exudates from sweet pepper and could colonize the roots, which enhanced root hair growth. Following the one-per-month application of strain Ydj3 to sweet pepper grown in a commercial greenhouse, the yield, fruit weight, and vitamin C content significantly increased compared with those of the control. Additionally, the composition of the rhizosphere bacterial community of sweet pepper changed considerably, with the Bacillus genus becoming the most dominant bacterial genus in the treated group. These results suggested that B. subtilis Ydj3 promotes seed germination and enhances fruit quality, particularly the vitamin C content, of sweet pepper. These effects may be partly attributed to the B. subtilis Ydj3 colonization of sweet pepper roots due to Ydj3 chemotaxis toward root exudates, resulting in the modulation of the rhizosphere bacterial community.
Collapse
Affiliation(s)
- Ying-Ru Liang
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
- Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan
| | - Fang-Chin Liao
- Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan
| | - Tzu-Pi Huang
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Ram RA, Anal AKD, Tiwari GS, Nath V, Pathak RK. Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Food Security. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Plant Microbial Biostimulants as a Promising Tool to Enhance the Productivity and Quality of Carrot Root Crops. Microorganisms 2021; 9:microorganisms9091850. [PMID: 34576744 PMCID: PMC8471447 DOI: 10.3390/microorganisms9091850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
The interest in studies focused on applying probiotic microorganisms is increasing due to sustainable agriculture development. In this research, we aimed to evaluate the impact of two commercial plant probiotics—ProbioHumus and NaturGel on carrot growth, yield, and quality in organic and nonorganic production systems. The research was carried out under laboratory and field conditions. Plants were treated with probiotics (2 L/ha) at the nine leaves stage. Biometrical measurements and chemical analyses were performed at a maturation stage. The average weight of carrot roots increased by 17 and 20 g in the test variant with ProbioHumus as compared to the control in the organic and nonorganic farms, respectively. Plant microbial biostimulants ProbioHumus and NaturGel had a positive effect on the quality of carrots from organic and nonorganic farms: applied in couple they promoted the accumulation of monosaccharides, ascorbic acid, carotenoids, phenols, and increased antioxidant activity. Quantitative nitrate analysis regardless of the biostimulant used revealed about twofold lower nitrate content of carrots from organic than nonorganic farms, and probiotics did not show a significant effect on nitrate accumulation. Finally, ProbioHumus and NaturGel were effective at low doses. The use of microbial biostimulants can be recommended as an element of cultivation for creating ecologically friendly technologies.
Collapse
|
20
|
Li Y, Liu Y, Zhang H, Yang Y, Wei G, Li Z. The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Front Microbiol 2021; 12:642730. [PMID: 34046020 PMCID: PMC8147693 DOI: 10.3389/fmicb.2021.642730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Astragalus membranaceus (Fisch.) Bge. var. mongholicus, which is used in traditional Chinese medicine, contains several bioactive ingredients. The root-associated microbial communities play a crucial role in the production of secondary metabolites in plants. However, the correlation of root-associated bacteria and fungi with the bioactive ingredients production in A. mongholicus has not been elucidated. This study aimed to examine the changes in soil properties, root bioactive ingredients, and microbial communities in different cultivation years. The root-associated bacterial and fungal composition was analyzed using high-throughput sequencing. The correlation between root-associated bacteria and fungi, soil properties, and six major bioactive ingredients were examined using multivariate correlation analysis. Results showed that soil properties and bioactive ingredients were distinct across different cultivation years. The composition of the rhizosphere microbiome was different from that of the root endosphere microbiome. The bacterial community structure was affected by the cultivation year and exhibited a time-decay pattern. Soil properties affected the fungal community composition. It was found that 18 root-associated bacterial operational taxonomic units (OTUs) and four fungal OTUs were positively and negatively correlated with bioactive ingredient content, respectively. The abundance of Stenotrophomonas in the rhizosphere was positively correlated with astragaloside content. Phyllobacterium and Inquilinus in the endosphere were positively correlated with the calycosin content. In summary, this study provided a new opportunity and theoretical reference for improving the production and quality of in A. mongholicus, which thus increase the pharmacological value of A. mongholicus.
Collapse
Affiliation(s)
- Yanmei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Yang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Yan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| |
Collapse
|
21
|
Xu T, Jiang W, Qin D, Liu T, Zhang J, Chen W, Gao L. Characterization of the microbial communities in wheat tissues and rhizosphere soil caused by dwarf bunt of wheat. Sci Rep 2021; 11:5773. [PMID: 33707584 PMCID: PMC7952392 DOI: 10.1038/s41598-021-85281-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/26/2021] [Indexed: 11/11/2022] Open
Abstract
Dwarf bunt of wheat, which is caused by Tilletia controversa J.G. Kühn, is a soil-borne disease which may lead up to an 80% loss of yield together with degradation of the quality of the wheat flour by production of a fishy smell. In this study, high-throughput sequencing technology was employed to characterize the microbial composition of wheat tissues (roots, spikes, first stem under the ear, and stem base) and rhizosphere soil of wheat varieties that are resistant and susceptible to T. controversa. We observed that the soil fungal community abundance and diversity were higher in resistant varieties than in susceptible varieties in both inoculated and uninoculated wheat, and the abundances of Sordariomycetes and Mortierellomycetes increased in the resistant varieties infected with T. controversa, while the abundances of Dothideomycetes and Bacteroidia increased in the susceptible varieties. Regarding the bacteria present in wheat tissues, the abundances of Chloroflexi, Bacteroidetes, Gemmatimonadetes, Verrucomicrobia and Acidobacteria in the ear and the first stem under the ear were higher than those in other tissues. Our results indicated that the abundances of Sordariomycetes, Mortierellomycetes, Leotiomycetes, Chryseobacterium and Massilia were higher in T. controversa-infected resistant varieties than in their controls, that Dothideomycetes, Bacteroidia, Nocardioides and Pseudomonas showed higher abundances in T. controversa-infected susceptible varieties, and that Curtobacterium, Exiguobacterium, Planococcus, and Pantoea may have higher abundances in both T. controversa-infected susceptible and resistant varieties than in their own controls.
Collapse
Affiliation(s)
- Tongshuo Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenli Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Agriculture, Yangtze University, Jingzhou, China
| | - Dandan Qin
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianmin Zhang
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
22
|
Albright MBN, Sevanto S, Gallegos-Graves LV, Dunbar J. Biotic Interactions Are More Important than Propagule Pressure in Microbial Community Invasions. mBio 2020; 11:e02089-20. [PMID: 33109758 PMCID: PMC7593967 DOI: 10.1128/mbio.02089-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Microbial probiotics are intended to improve functions in diverse ecosystems, yet probiotics often fail to establish in a preexisting microbiome. This is a species invasion problem. The relative importance of the two major factors controlling establishment in this context-propagule pressure (inoculation dose and frequency) and biotic interactions (composition of introduced and resident communities)-is unknown. We tested the effect of these factors in driving microbial composition and functioning following 12 microbial community invasions (e.g., introductions of many microbial invaders) in microcosms. Ecosystem functioning over a 30-day postinvasion period was assessed by measuring activity (respiration) and environment modification (dissolved organic carbon abundance). To test the dependence on environmental context, experiments were performed in two resource environments. In both environments, biotic interactions were more important than propagule pressure in driving microbial composition and community function, but the magnitude of effect varied by environment. Successful invaders comprised approximately 8% of the total number of operational taxonomic units (OTUs). Bacteria were better invaders than fungi, with average relative abundances of 7.4% ± 6.8% and 1.5% ± 1.4% of OTUs, respectively. Common bacterial invaders were associated with stress response traits. The most resilient bacterial and fungal families, in other words, those least impacted by invasions, were linked to antimicrobial resistance or production traits. Illuminating the principles that determine community composition and functioning following microbial invasions is key to efficient community engineering.IMPORTANCE With increasing frequency, humans are introducing new microbes into preexisting microbiomes to alter functioning. Example applications include modification of microflora in human guts for better health and those of soil for food security and/or climate management. Probiotic applications are often approached as trial-and-error endeavors and have mixed outcomes. We propose that increased success in microbiome engineering may be achieved with a better understanding of microbial invasions. We conducted a microbial community invasion experiment to test the relative importance of propagule pressure and biotic interactions in driving microbial community composition and ecosystem functioning in microcosms. We found that biotic interactions were more important than propagule pressure in determining the impact of microbial invasions. Furthermore, the principles for community engineering vary among organismal groups (bacteria versus fungi).
Collapse
Affiliation(s)
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | | | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| |
Collapse
|
23
|
Fabian BK, Tetu SG, Paulsen IT. Application of Transposon Insertion Sequencing to Agricultural Science. FRONTIERS IN PLANT SCIENCE 2020; 11:291. [PMID: 32256512 PMCID: PMC7093568 DOI: 10.3389/fpls.2020.00291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Many plant-associated bacteria have the ability to positively affect plant growth and there is growing interest in utilizing such bacteria in agricultural settings to reduce reliance on pesticides and fertilizers. However, our capacity to utilize microbes in this way is currently limited due to patchy understanding of bacterial-plant interactions at a molecular level. Traditional methods of studying molecular interactions have sought to characterize the function of one gene at a time, but the slow pace of this work means the functions of the vast majority of bacterial genes remain unknown or poorly understood. New approaches to improve and speed up investigations into the functions of bacterial genes in agricultural systems will facilitate efforts to optimize microbial communities and develop microbe-based products. Techniques enabling high-throughput gene functional analysis, such as transposon insertion sequencing analyses, have great potential to be widely applied to determine key aspects of plant-bacterial interactions. Transposon insertion sequencing combines saturation transposon mutagenesis and high-throughput sequencing to simultaneously investigate the function of all the non-essential genes in a bacterial genome. This technique can be used for both in vitro and in vivo studies to identify genes involved in microbe-plant interactions, stress tolerance and pathogen virulence. The information provided by such investigations will rapidly accelerate the rate of bacterial gene functional determination and provide insights into the genes and pathways that underlie biotic interactions, metabolism, and survival of agriculturally relevant bacteria. This knowledge could be used to select the most appropriate plant growth promoting bacteria for a specific set of conditions, formulating crop inoculants, or developing crop protection products. This review provides an overview of transposon insertion sequencing, outlines how this approach has been applied to study plant-associated bacteria, and proposes new applications of these techniques for the benefit of agriculture.
Collapse
Affiliation(s)
- Belinda K. Fabian
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha G. Tetu
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
24
|
Menéndez E, Pérez-Yépez J, Hernández M, Rodríguez-Pérez A, Velázquez E, León-Barrios M. Plant Growth Promotion Abilities of Phylogenetically Diverse Mesorhizobium Strains: Effect in the Root Colonization and Development of Tomato Seedlings. Microorganisms 2020; 8:microorganisms8030412. [PMID: 32183288 PMCID: PMC7144016 DOI: 10.3390/microorganisms8030412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
Mesorhizobium contains species widely known as nitrogen-fixing bacteria with legumes, but their ability to promote the growth of non-legumes has been poorly studied. Here, we analyzed the production of indole acetic acid (IAA), siderophores and the solubilization of phosphate and potassium in a collection of 24 strains belonging to different Mesorhizobium species. All these strains produce IAA, 46% solubilized potassium, 33% solubilize phosphate and 17% produce siderophores. The highest production of IAA was found in the strains Mesorhizobiumciceri CCANP14 and Mesorhizobiumtamadayense CCANP122, which were also able to solubilize potassium. Moreover, the strain CCANP14 showed the maximum phosphate solubilization index, and the strain CCANP122 was able to produce siderophores. These two strains were able to produce cellulases and cellulose and to originate biofilms in abiotic surfaces and tomato root surface. Tomato seedlings responded positively to the inoculation with these two strains, showing significantly higher plant growth traits than uninoculated seedlings. This is the first report about the potential of different Mesorhizobium species to promote the growth of a vegetable. Considering their use as safe for humans, animals and plants, they are an environmentally friendly alternative to chemical fertilizers for non-legume crops in the framework of sustainable agriculture.
Collapse
Affiliation(s)
- Esther Menéndez
- Mediterranean Institute for Agriculture, Environment and Development (MED), Instituto de Investigação e Formação Avançada, Universidade de Évora, 7006-554 Évora, Portugal;
| | - Juan Pérez-Yépez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 Tenerife, Canary Islands, Spain; (J.P.-Y.); (A.R.-P.); (M.L.-B.)
| | - Mercedes Hernández
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, 38206 Tenerife, Canary Islands, Spain;
| | - Ana Rodríguez-Pérez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 Tenerife, Canary Islands, Spain; (J.P.-Y.); (A.R.-P.); (M.L.-B.)
| | - Encarna Velázquez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37007 Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-532
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 Tenerife, Canary Islands, Spain; (J.P.-Y.); (A.R.-P.); (M.L.-B.)
| |
Collapse
|
25
|
Fiore CL, Jarett JK, Steinert G, Lesser MP. Trait-Based Comparison of Coral and Sponge Microbiomes. Sci Rep 2020; 10:2340. [PMID: 32047192 PMCID: PMC7012828 DOI: 10.1038/s41598-020-59320-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Corals and sponges harbor diverse microbial communities that are integral to the functioning of the host. While the taxonomic diversity of their microbiomes has been well-established for corals and sponges, their functional roles are less well-understood. It is unclear if the similarities of symbiosis in an invertebrate host would result in functionally similar microbiomes, or if differences in host phylogeny and environmentally driven microhabitats within each host would shape functionally distinct communities. Here we addressed this question, using metatranscriptomic and 16S rRNA gene profiling techniques to compare the microbiomes of two host organisms from different phyla. Our results indicate functional similarity in carbon, nitrogen, and sulfur assimilation, and aerobic nitrogen cycling. Additionally, there were few statistical differences in pathway coverage or abundance between the two hosts. For example, we observed higher coverage of phosphonate and siderophore metabolic pathways in the star coral, Montastraea cavernosa, while there was higher coverage of chloroalkane metabolism in the giant barrel sponge, Xestospongia muta. Higher abundance of genes associated with carbon fixation pathways was also observed in M. cavernosa, while in X. muta there was higher abundance of fatty acid metabolic pathways. Metagenomic predictions based on 16S rRNA gene profiling analysis were similar, and there was high correlation between the metatranscriptome and metagenome predictions for both hosts. Our results highlight several metabolic pathways that exhibit functional similarity in these coral and sponge microbiomes despite the taxonomic differences between the two microbiomes, as well as potential specialization of some microbially based metabolism within each host.
Collapse
Affiliation(s)
- Cara L Fiore
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA.
- Appalachian State University, Biology Department, Boone, NC, USA.
| | - Jessica K Jarett
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA
- AnimalBiome, Oakland, CA, USA
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Symbioses, Kiel, Germany
| | - Michael P Lesser
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA
| |
Collapse
|
26
|
Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endophytic microbiota plays a role not only in supplying plants with the basic nutrients indispensable for their growth, but also helps them in the mechanisms of adaptation to various environmental stresses (i.e., salinity, drought), which is important in the aspect of crop yields. From the agricultural and biotechnological points of view, the knowledge of endophytes and their roles in increasing crop yields, plant resistance to diseases, and helping to survive environmental stress is extremely desirable. This paper reviews some of the beneficial plant–microbe interactions that might be potentially used in both agriculture (plant growth stimulation effect, adaptation of host organisms in salinity and drought conditions, and support of defense mechanisms in plants), and in biotechnology (bioactive metabolites, application of endophytes for bioremediation and biotransformation processes, and production of biofertilizers and biopreparations). Importantly, relatively recent reports on endophytes from the last 10 years are summarized in this paper.
Collapse
|
27
|
Yuan L, Li L, Zheng F, Shi Y, Xie X, Chai A, Li B. The complete genome sequence of Rahnella aquatilis ZF7 reveals potential beneficial properties and stress tolerance capabilities. Arch Microbiol 2019; 202:483-499. [PMID: 31707426 DOI: 10.1007/s00203-019-01758-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 01/28/2023]
Abstract
Rahnella aquatilis ZF7 is a plant beneficial strain isolated from Sakura tree soil with potential for biocontrol. Here, we present the complete genome sequence of R. aquatilis ZF7, which consists of one 4.49 Mb circular chromosome and a 54-kb plasmid named pRAZF7. Phylogenetic analyses revealed that R. aquatilis ZF7 is much similar to the strains Rahnella sp. Y9602 and R. aquatilis HX2 than others evaluated. In this study, multiple genes encoding functions that likely contribute to plant growth promotion, biocontrol and stress tolerance were identified by comparative genome analyses, including IAA production, phosphate solubilization, antibiotic resistance and formation of Se nanoparticles (SeNPs). In addition, these functions were also confirmed by in vitro experiments. Considering its ability to form SeNPs, strain R. aquatilis ZF7 will contribute to nano-agriculture. Overall, the features of R. aquatilis ZF7 make it a high potential and competitive strain in biocontrol, and the genome data will help further studies on the mechanisms of plant growth promotion and biocontrol.
Collapse
Affiliation(s)
- Lifang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fei Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
28
|
Dogra N, Yadav R, Kaur M, Adhikary A, Kumar S, Ramakrishna W. Nutrient enhancement of chickpea grown with plant growth promoting bacteria in local soil of Bathinda, Northwestern India. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1251-1259. [PMID: 31564786 PMCID: PMC6745584 DOI: 10.1007/s12298-019-00661-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/30/2018] [Accepted: 03/26/2019] [Indexed: 05/27/2023]
Abstract
Plant growth promoting bacteria (PGPB) enhance crop productivity as part of green technology to reduce the use of chemical fertilizers. They also have the capability to enhance macro- and micronutrient content of plants. In the present study, PGPB isolates belonging to Pseudomonas citronellis (PC), Pseudomonas sp. RA6, Serratia sp. S2, Serratia marcescens CDP13, and Frateuria aurantia (Symbion-K) were tested on two chickpea varieties, PBG1 and PBG5 grown for 30 days in local soil from Bathinda region in Northwestern India. PC and CDP13 were found to be better chickpea growth stimulators compared to the commercial Symbion-K based on shoot length and biomass. Most PGPB enhanced macro- and micronutrients in shoots to varying degrees compared to the control. PBG5 gave better response compared to PBG1 with reference to plant growth attributes and enhancement of the macronutrients, calcium, nitrogen and phosphorus and micronutrients, boron, copper, iron, and zinc. PBG5 is a high yielding variety with better resistance compared to PBG1. Overall, PGPB isolated from the local soil and PGPB from other parts of India were shown to be useful for enhancement of nutrient content and plant growth.
Collapse
Affiliation(s)
- Nitin Dogra
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Radheshyam Yadav
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Manpreet Kaur
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Arindam Adhikary
- Department of Plant Sciences, Central University of Punjab, Bathinda, India
| | - Sanjeev Kumar
- Department of Plant Sciences, Central University of Punjab, Bathinda, India
| | - Wusirika Ramakrishna
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
29
|
Morais MC, Mucha Â, Ferreira H, Gonçalves B, Bacelar E, Marques G. Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5341-5349. [PMID: 31058322 DOI: 10.1002/jsfa.9773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The strawberry (Fragaria × ananassa Duch.) is, among small fruits, the most cultivated and commercialized in Portugal. Recent studies have evidenced the positive effect of plant growth-promoting bacteria (PGPB) inoculation on strawberry production and, at the same time, provided an alternative strategy to reduce the use of fertilizers. In this study the effects of root inoculation with three PGPB strains (Pedobacter sp. CC1, Bacillus safensis B106 and Bacillus subtilis B167A) on the physiology, growth, fruit production and quality of strawberry cv. Camarosa are presented. RESULTS PGPB inoculation significantly accelerated crop maturation, with inoculated plants fruiting about 2 weeks earlier than non-inoculated plants. Inoculated plants with Pedobacter sp. CC1 and Bacillus safensis B106 influenced the gas exchange parameters of strawberry plants. The contents of total phenolics and flavonoids in strawberry leaves were found to be greater with Pedobacter sp. CC1, when compared with non-inoculated plants. Furthermore, plants inoculated with the same bacterial strain showed enhancement in the dimensions of fruits, especially fruit length, and shape as well as in the total soluble solids content (°Brix). CONCLUSIONS The results showed that the PGPB Pedobacter sp. CC1 improved performance of strawberry plants, suggesting that it could be a potential biofertilizer for strawberry plant nutrition. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria C Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Ângela Mucha
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Eunice Bacelar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Guilhermina Marques
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
30
|
Cisternas-Jamet J, Salvatierra-Martínez R, Vega-Gálvez A, Uribe E, Goñi MG, Stoll A. Root inoculation of green bell pepper (Capsicum annum) with Bacillus amyloliquefaciens BBC047: effect on biochemical composition and antioxidant capacity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5131-5139. [PMID: 31001829 DOI: 10.1002/jsfa.9758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/19/2018] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Consumption of bell peppers is recommended because of their bioactive compound content and their positive effects on health. Growth-promoting rhizobacteria are popular because of their ability to promote plant growth by improving the fixation of nutrients or by inducing a systemic response. Green bell pepper (Capsicum annum) roots were inoculated with an autochthonous strain of Bacillus amyloliquefaciens, at different stages of development: T1, inoculation in the seedbed before transplant; T2, inoculation at and after transplant; T3, inoculation in the seedbed, at and after transplant. Bell pepper plants without inoculation were considered as control. Physicochemical composition and antioxidant activity of the fruits were measured to select the best treatment. RESULTS T1 increased crude proteins, fat, Ca, Fe, vitamin C, total phenolic content, antioxidant capacity by DPPH and by ORAC. On the other hand, T1 decreased reducing sugars, K and Cu content. No significant differences for total carbohydrates, ash and photosynthetic pigments were found. CONCLUSION Inoculated green bell peppers have enhanced its functional value and could be considered as an important source of bioactive compounds with elevated antioxidant activity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Antonio Vega-Gálvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| | - Elsa Uribe
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - María G Goñi
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de Investigación en Ingeniería en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| |
Collapse
|
31
|
Honeker LK, Gullo CF, Neilson JW, Chorover J, Maier RM. Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings. Front Microbiol 2019; 10:1209. [PMID: 31214146 PMCID: PMC6554433 DOI: 10.3389/fmicb.2019.01209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/13/2019] [Indexed: 02/01/2023] Open
Abstract
Phytostabilized highly acidic, pyritic mine tailings are susceptible to re-acidification over time despite initial addition of neutralizing amendments. Studies examining plant-associated microbial dynamics during re-acidification of phytostabilized regions are sparse. To address this, we characterized the rhizosphere and bulk bacterial communities of buffalo grass used in the phytostabilization of metalliferous, pyritic mine tailings undergoing re-acidification at the Iron King Mine and Humboldt Smelter Superfund Site in Dewey-Humboldt, AZ. Plant-associated substrates representing a broad pH range (2.35-7.76) were sampled to (1) compare the microbial diversity and community composition of rhizosphere and bulk compartments across a pH gradient, and (2) characterize how re-acidification affects the abundance and activity of the most abundant plant growth-promoting bacteria (PGPB; including N2-fixing) versus acid-generating bacteria (AGB; including Fe-cycling/S-oxidizing). Results indicated that a shift in microbial diversity and community composition occurred at around pH 4. At higher pH (>4) the species richness and community composition of the rhizosphere and bulk compartments were similar, and PGPB, such as Pseudomonas, Arthrobacter, Devosia, Phyllobacterium, Sinorhizobium, and Hyphomicrobium, were present and active in both compartments with minimal presence of AGB. In comparison, at lower pH (<4) the rhizosphere had a significantly higher number of species than the bulk (p < 0.05) and the compartments had significantly different community composition (unweighted UniFrac; PERMANOVA, p < 0.05). Whereas some PGPB persisted in the rhizosphere at lower pH, including Arthrobacter and Devosia, they were absent from the bulk. Meanwhile, AGB dominated in both compartments; the most abundant were the Fe-oxidizer Leptospirillum and Fe-reducers Acidibacter and Acidiphilium, and the most active was the Fe-reducer Aciditerrimonas. This predominance of AGB at lower pH, and even their minimal presence at higher pH, contributes to acidifying conditions and poses a significant threat to sustainable plant establishment. These findings have implications for phytostabilization field site management and suggest re-application of compost or an alternate buffering material may be required in regions susceptible to re-acidification to maintain a beneficial bacterial community conducive to long-term plant establishment.
Collapse
Affiliation(s)
| | | | - Julia W. Neilson
- Department of Soil, Water, and Environmental Science, The University of Arizona, Tucson, AZ, United States
| | | | | |
Collapse
|
32
|
Sireswar S, Ghosh I, Dey K, Behera L, Reza M, DAS SS, Dey G. Evaluation of Probiotic-Beverage Matrix Interaction for Efficient Control of Enterobacter aerogenes and Staphylococcus aureus. J Food Prot 2019; 82:669-676. [PMID: 30917038 DOI: 10.4315/0362-028x.jfp-18-492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS L. rhamnosus GG in sea buckthorn matrix inhibited E. aerogenes and S. aureus. L. rhamnosus GG was more efficient in sea buckthorn than in apple matrix. Enhanced protection in sea buckthorn matrix may be due to higher phenolic content. WPC and the probiotic increased the pseudoplasticity of the juice matrices.
Collapse
Affiliation(s)
- Srijita Sireswar
- 1 School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar, Odisha 751024, India
| | - Ishita Ghosh
- 1 School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar, Odisha 751024, India
| | - Kinjoll Dey
- 1 School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Behera
- 1 School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar, Odisha 751024, India
| | - Motahar Reza
- 2 National Institute of Science and Technology, Palur Hills, Brahmapur, Odisha 761008, India
| | | | - Gargi Dey
- 1 School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
33
|
Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can J Microbiol 2019; 65:91-104. [DOI: 10.1139/cjm-2018-0315] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Green Revolution developed new crop varieties, which greatly improved food security worldwide. However, the growth of these plants relied heavily on chemical fertilizers and pesticides, which have led to an overuse of synthetic fertilizers, insecticides, and herbicides with serious environmental consequences and negative effects on human health. Environmentally friendly plant-growth-promoting methods to replace our current reliance on synthetic chemicals and to develop more sustainable agricultural practices to offset the damage caused by many agrochemicals are proposed herein. The increased use of bioinoculants, which consist of microorganisms that establish synergies with target crops and influence production and yield by enhancing plant growth, controlling disease, and providing critical mineral nutrients, is a potential solution. The microorganisms found in bioinoculants are often bacteria or fungi that reside within either external or internal plant microbiomes. However, before they can be used routinely in agriculture, these microbes must be confirmed as nonpathogenic strains that promote plant growth and survival. In this article, besides describing approaches for discovering plant-growth-promoting bacteria in various environments, including phytomicrobiomes and soils, we also discuss methods to evaluate their safety for the environment and for human health.
Collapse
Affiliation(s)
- Pilar Martínez-Hidalgo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Maskit Maymon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Flora Pule-Meulenberg
- Department of Crop Science and Production, Botswana University of Agriculture and Natural Resources, Private Bag 0027, A1 Sebele Content Farm, Gaborone, Botswana
| | - Ann M. Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
34
|
Tashyrev OB, Matvieieva NA, Hovorukha VM, Tashyreva HO, Bielikova OI, Havryliuk OA, Duplij VP. Application of Lignocellulosic Substrate Obtained After Hydrogen Dark Fermentation of Food Waste as Biofertilizer. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2018.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Oleksandr B. Tashyrev
- Zabolotny Institute of Microbiology and Virology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Nadiia A. Matvieieva
- Zabolotny Institute of Microbiology and Virology, National Academy of Science of Ukraine, Kyiv, Ukraine
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Vira M. Hovorukha
- Zabolotny Institute of Microbiology and Virology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Hanna O. Tashyreva
- Zabolotny Institute of Microbiology and Virology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Olena Iu. Bielikova
- Zabolotny Institute of Microbiology and Virology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Olesia A. Havryliuk
- Zabolotny Institute of Microbiology and Virology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Volodymyr P. Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
35
|
Morales-Quintana L, Ramos P. Chilean strawberry (Fragaria chiloensis): An integrative and comprehensive review. Food Res Int 2018; 119:769-776. [PMID: 30884715 DOI: 10.1016/j.foodres.2018.10.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/08/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023]
Abstract
Since an intake of fruits and vegetables displays important effects on the incidence of several chronic and non-infectious diseases in humans, consumers' attention worldwide is focused on identification of functional foods. In this sense, Fragaria chiloensis ssp. chiloensis f. chiloensis fruit has recently emerged as a preferred berry because of its outstanding aroma and exotic white-pink color and high phenolic content. Emerging research provides substantial evidence by which to classify Chilean strawberries as a functional food with several preventive and therapeutic health benefits. Information on the features of the fruit (e.g., quality, physiology, high resistance to pathogens, and sensory attributes) is also scarce. Only a small number of studies provide useful data on handling and storage of the Chilean strawberry; hence, there is no adequate, normalized postharvest strategy for storing and/or producing this species. The objective of this review is to provide and discuss the available literature with an emphasis on physiology aspects and to present 1) fruit physiology and quality, 2) handling and physiological disorders of Chilean strawberry, 3) nutritional content and health properties for consumers, and 4) a highlight of challenges for future research. Again, we discuss the available literature focused on last five-years old with an emphasis on the important postharvest physiology aspects and the molecular mechanisms underlying the quality traits of this exotic strawberry fruit.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Talca, Chile; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile.
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; Núcleo Científico Multidiciplinario-DI, Universidad de Talca, Talca, Chile.
| |
Collapse
|
36
|
Kim YC, Anderson AJ. Rhizosphere pseudomonads as probiotics improving plant health. MOLECULAR PLANT PATHOLOGY 2018; 19:2349-2359. [PMID: 29676842 PMCID: PMC6638116 DOI: 10.1111/mpp.12693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This article illustrates how the probiotic pseudomonads, nurtured by the carbon (C) and nitrogen (N) sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production.
Collapse
Affiliation(s)
- Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju 61186South Korea
| | - Anne J. Anderson
- Department of Biological EngineeringUtah State UniversityLoganUT 84322‐4105USA
| |
Collapse
|
37
|
Rahman M, Mukta JA, Sabir AA, Gupta DR, Mohi-Ud-Din M, Hasanuzzaman M, Miah MG, Rahman M, Islam MT. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS One 2018; 13:e0203769. [PMID: 30192877 PMCID: PMC6128642 DOI: 10.1371/journal.pone.0203769] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022] Open
Abstract
Strawberry is a well-known source of natural antioxidants with excellent free radical scavenging capacity. This study determined the effects of chitosan application in field condition on plant growth, fruit yield and antioxidant activities in strawberry fruit. Foliar applications of chitosan on strawberry significantly increased plant growth and fruit yield (up to 42% higher) compared to untreated control. Increased fruit yield was attributed to higher plant growth, individual fruit weight and total fruit weight/plant due to the chitosan application. Surprisingly, the fruit from plants sprayed with chitosan also had significantly higher contents (up to 2.6-fold) of carotenoids, anthocyanins, flavonoids and phenolics compared to untreated control. Total antioxidant activities in fruit of chitosan treated plants were also significantly higher (ca. 2-fold) (p< 0.05) than untreated control. To the best of our knowledge, this is the first report of chitosan applied on field plants providing significant improvement of both yield and health benefiting biochemical contents in strawberry fruit. Further study on the elucidation of mechanisms involved with enhancement of growth, yield and biochemical contents by chitosan is needed to promote sustainable production of strawberry.
Collapse
Affiliation(s)
- Mosaddiqur Rahman
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Julakha Akter Mukta
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abdullah As Sabir
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dipali Rani Gupta
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Sher-e-Banglanagar, Dhaka, Bangladesh
| | - Md. Giashuddin Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mahfuzur Rahman
- Extension Service, West Virginia University, Morgantown, WV, United States of America
| | - Md Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
38
|
Huang Y, Zhang M, Deng Z, Cao L. Evaluation of Probiotic Diversity from Soybean (Glycine max) Seeds and Sprouts Using Illumina-Based Sequencing Method. Probiotics Antimicrob Proteins 2018; 10:293-298. [PMID: 28741152 DOI: 10.1007/s12602-017-9305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There is increasing interest in the use of plant probiotics as environmental-friendly and healthy biofertilizers. The study aimed at selecting for novel probiotic candidates of soybean (Glycine max). The bacteriome and mycobiome of soybean sprouts and seeds were analyzed by Illumina-based sequencing. Seeds contained more diverse bacteria than those in sprouts. The seeds contained similar fungal diversity with sprouts. Total 15 bacterial OTUs and 4 fungal OTUs were detected in seeds and sprouts simultaneously, suggesting that the sprouts contained bacterial and fungal taxa transmitted from seeds. The Halothiobacillus was the most dominant bacterial genus observed and coexisted in seeds and sprouts. The OTUs belonged to Ascomycota were the most dominant fungal taxa observed in seeds and sprouts. Halothiobacillus was firstly identified as endophytic probiotics of soybean. The results suggested that sprouts might contain diverse plant probiotics of mature plants and Illumina-based sequencing can be used to screen for probiotic candidates.
Collapse
Affiliation(s)
- Yali Huang
- College of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Miaomiao Zhang
- College of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zujun Deng
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Flores-Félix JD, Velázquez E, García-Fraile P, González-Andrés F, Silva LR, Rivas R. Rhizobium and Phyllobacterium bacterial inoculants increase bioactive compounds and quality of strawberries cultivated in field conditions. Food Res Int 2018; 111:416-422. [PMID: 30007704 DOI: 10.1016/j.foodres.2018.05.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Strawberries (Fragaria × ananassa Duch.) are widely demanded by the consumers because they contain several bioactive compounds, mainly vitamin C and anthocyanins, which may be increased by biofertilization with some plant growth promoting bacteria. In this work we have analysed two bacterial strains, PEPV15 and PEPV16, from genera Phyllobacterium and Rhizobium, respectively, which under microcosms conditions were able to promote the strawberry growth, increasing the content of some bioactive compounds, such as vitamin C or organic acids. Here we have analysed the effect on bioactive compounds in strawberries from plants biofertilized with the strains PEPV15 and PEPV16 in field conditions. Under these conditions, the anthocyanin content was increased when plants were biofertilized with the strain PEPV15 and the pelargonidin-3-O-rutinoside content significantly increased. Besides, citric acid, vitamin C and epicatechin contents were significantly higher when either of the two strains was used as biofertilizer. Our results showed that the inoculation with Phyllobacterium and Rhizobium strains is a good agronomical practice, which improve the content of several bioactive compounds of strawberries increasing the beneficial effects on human health.
Collapse
Affiliation(s)
- José David Flores-Félix
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Spain
| | - Encarna Velázquez
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Spain; "Interacción Planta-Microorganismo" Associated Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| | - Paula García-Fraile
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Spain
| | - Fernando González-Andrés
- Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida de Portugal, 41, 24071 León, Spain
| | - Luís R Silva
- CICS - UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
| | - Raúl Rivas
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Spain; "Interacción Planta-Microorganismo" Associated Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
40
|
Godfrey SJ. My 28-year journey with cannabis: from terminal disease to post-pharmaceutical healing. DRUGS AND ALCOHOL TODAY 2018. [DOI: 10.1108/dat-08-2017-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this paper is to convey the experience of medical cannabis users and growers in the UK.
Design/methodology/approach
Biography and personal ethnograpy.
Findings
Medical cannabis users are forced into cultivating their own medicine.
Research limitations/implications
Single case study.
Practical implications
There is an urgent need for policy change to enable medical cannabis users to access their medication easily and affordably.
Social implications
A rising number of people are denied their constitutional right to health by a misguided policy.
Originality/value
This study fills a major gap in the literature on medical cannabis growers.
Collapse
|
41
|
Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, Rahman M, Islam MT. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 2018; 8:2504. [PMID: 29410436 PMCID: PMC5802727 DOI: 10.1038/s41598-018-20235-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 11/08/2022] Open
Abstract
Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.
Collapse
Affiliation(s)
- Mosaddiqur Rahman
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Abdullah As Sabir
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Julakha Akter Mukta
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Mohibul Alam Khan
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
- Department of Biological Sciences, King Abdul Aziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Giashuddin Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahfuzur Rahman
- Extension Service, West Virginia University, Morgantown, WV, 26505, USA.
| | - M Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
42
|
Novello G, Gamalero E, Bona E, Boatti L, Mignone F, Massa N, Cesaro P, Lingua G, Berta G. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard. Front Microbiol 2017; 8:1528. [PMID: 28855895 PMCID: PMC5557794 DOI: 10.3389/fmicb.2017.01528] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.
Collapse
Affiliation(s)
- Giorgia Novello
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy
| | - Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy
| | - Elisa Bona
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy
| | - Lara Boatti
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy.,SmartSeq s.r.l.Alessandria, Italy
| | - Flavio Mignone
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy.,SmartSeq s.r.l.Alessandria, Italy
| | - Nadia Massa
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy
| | - Patrizia Cesaro
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte OrientaleAlessandria, Italy
| |
Collapse
|
43
|
Akter Mukta J, Rahman M, As Sabir A, Gupta DR, Surovy MZ, Rahman M, Islam MT. Chitosan and plant probiotics application enhance growth and yield of strawberry. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Using Illumina-Based Sequence Analysis to Guide Probiotic Candidate Selection and Isolation. Probiotics Antimicrob Proteins 2017. [PMID: 28643225 DOI: 10.1007/s12602-017-9298-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Selection for probiotic candidates by in vivo experimental trials is time and labor consuming; more informed strategy is needed to select successful probiotic candidates. The aim of the study was to elucidate the microbial taxa transmitted from maize seeds to seedlings during the germination process of maize and their probiotic effects. The bacterial and fungal taxa in kernel germs and sprouts were analyzed by Illumina-based sequencing. The sprouts contained more diverse fungi than those in germs. The bacterial species (OTUs) declined with the germination from germs to the sprouts. However, the endophytic fungal diversity increased during the germination process. Seed-borne dominant bacterial genera Bacillus, Halomonas, and Shewanella and dominant fungal genera Aspergillus were also detected in sprouts. The spore-forming bacteria BS3 isolated directly from sprouts could promote growth of maize seedling and resistance to F. verticillioides under F. verticillioides-infested soils. The results suggested that maize contained core bacterial and fungal taxa during the development from seeds to sprouts, and the core endophytes showed more intimate correlation with host plants than did other microbial taxa. Illumina-based sequence analysis is feasible to guide probiotic candidate selection and isolation.
Collapse
|
45
|
Menendez E, Garcia-Fraile P. Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol 2017; 3:502-524. [PMID: 31294173 PMCID: PMC6604988 DOI: 10.3934/microbiol.2017.3.502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/12/2017] [Indexed: 01/10/2023] Open
Abstract
The increasing human population expected in the next decades, the growing demand of livestock products-which production requires higher amounts of feed products fabrication, the collective concern about food quality in industrialized countries together with the need to protect the fertility of soils, in particular, and the environment, in general, constitute as a whole big challenge that worldwide agriculture has to face nowadays. Some soil bacteria harbor mechanisms to promote plant growth, which include phytostimulation, nutrient mobilization, biocontrol of plant pathogens and abiotic stresses protection. These bacteria have also been proved as promoters of vegetable food quality. Therefore, these microbes, also so-called Plant Probiotic Bacteria, applied as biofertilizers in crop production, constitute an environmental friendly manner to contribute to produce the food and feed needed to sustain world population. In this review, we summarize some of the best-known mechanisms of plant probiotic bacteria to improve plant growth and develop a more sustainable agriculture.
Collapse
Affiliation(s)
- Esther Menendez
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Paula Garcia-Fraile
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
46
|
Jiménez-Gómez A, Celador-Lera L, Fradejas-Bayón M, Rivas R. Plant probiotic bacteria enhance the quality of fruit and horticultural crops. AIMS Microbiol 2017; 3:483-501. [PMID: 31294172 PMCID: PMC6604990 DOI: 10.3934/microbiol.2017.3.483] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 01/11/2023] Open
Abstract
The negative effects on the environment and human health caused by the current farming systems based on the overuse of chemical fertilizers have been reported in many studies. By contrast, bacterial inoculations produce positive effects on yields without causing this type of harm. Hence, during recent years, the commercialization of biofertilizers has been on the increase, and the number of companies and products available are expanding worldwide every year. In addition to the notable enhancement of crop production, many studies have shown how the application of bacteria has positive effects on food quality such as improved vitamin, flavonoid and antioxidant content, among other benefits. This advantage is interesting with respect to food that is consumed raw, such as fruits and many vegetables, as these bioactive molecules are maintained up until the moment the food is consumed. As regards this review focuses on the collection of studies that demonstrate that microorganisms can act as plant probiotics of fruit and horticultural crops, essential types of food that form part of a healthy diet.
Collapse
Affiliation(s)
- Alejandro Jiménez-Gómez
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Spain
| | - Lorena Celador-Lera
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Spain
| | - María Fradejas-Bayón
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Spain
| | - Raúl Rivas
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain.,Spanish-Portuguese Institute for Agricultural Research (CIALE), Spain.,Associated I + D Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
47
|
Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3315-3335. [PMID: 27888482 DOI: 10.1007/s11356-016-8104-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.
Collapse
Affiliation(s)
- Trishna Mahanty
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Madhurankhi Goswami
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Purnita Bhattacharyya
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, 700054, India
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
48
|
Wu XJ, Sun S, Xing GM, Wang GL, Wang F, Xu ZS, Tian YS, Hou XL, Xiong AS. Elevated Carbon Dioxide Altered Morphological and Anatomical Characteristics, Ascorbic Acid Accumulation, and Related Gene Expression during Taproot Development in Carrots. FRONTIERS IN PLANT SCIENCE 2017; 7:2026. [PMID: 28119712 PMCID: PMC5221676 DOI: 10.3389/fpls.2016.02026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/19/2016] [Indexed: 05/29/2023]
Abstract
The CO2 concentration in the atmosphere has increased significantly in recent decades and is projected to rise in the future. The effects of elevated CO2 concentrations on morphological and anatomical characteristics, and nutrient accumulation have been determined in several plant species. Carrot is an important vegetable and the effects of elevated CO2 on carrots remain unclear. To investigate the effects of elevated CO2 on the growth of carrots, two carrot cultivars ('Kurodagosun' and 'Deep purple') were treated with ambient CO2 (a[CO2], 400 μmol⋅mol-1) and elevated CO2 (e[CO2], 3000 μmol⋅mol-1) concentrations. Under e[CO2] conditions, taproot and shoot fresh weights and the root/shoot ratio of carrot significantly decreased as compared with the control group. Elevated CO2 resulted in obvious changes in anatomy and ascorbic acid accumulation in carrot roots. Moreover, the transcript profiles of 12 genes related to AsA biosynthesis and recycling were altered in response to e[CO2]. The 'Kurodagosun' and 'Deep purple' carrots differed in sensitivity to e[CO2]. The inhibited carrot taproot and shoot growth treated with e[CO2] could partly lead to changes in xylem development. This study provided novel insights into the effects of e[CO2] on the growth and development of carrots.
Collapse
Affiliation(s)
- Xue-Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural UniversityTaigu, China
| | - Guo-Ming Xing
- College of Horticulture, Shanxi Agricultural UniversityTaigu, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yong-Sheng Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
49
|
Flores-Félix J, Menéndez E, Marcos-García M, Mateos P, Martínez-Molina E, Velázquez M, Rivas R. PGPR-based biofertilizers increase carrot production. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2015.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Celador-Lera L, Menéndez E, Flores-Félix JD, Velázquez ME, Rivas R. Increased cereal root surface using bacterial biofertilizer. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2015.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|