1
|
Fongmanee J, Wanitsuwan W, Wanna W, Surachat K, Saechan C, Srinoun K, Buncherd H, Thanapongpichat S, Kanjanapradit K, Tansila N. Characterization of Mucosa-Associated Microbiota in Formalin-Fixed, Paraffin-Embedded Tissues From Southern Thai Patients With Familial Adenomatous Polyposis. Genes Cells 2025; 30:e70008. [PMID: 40007099 DOI: 10.1111/gtc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Familial adenomatous polyposis (FAP) is an autosomal dominant syndrome associated with germline mutations in the adenomatous polyposis coli (APC) gene. Patients eventually may develop colorectal cancer (CRC) if they are not diagnosed in the early stages. Dysbiosis is an important contributing factor to the complex events in carcinogenesis, which are poorly understood. First, 25 tissue samples from 13 patients with FAP at Songklanagarind Hospital were classified as nontumor (n = 18) or tumor tissues (n = 7). Following isolation, 5 DNA samples of insufficient quantity and quality were excluded. The 16S rRNA gene targeting the V3-V4 region was sequenced, and the sequencing data were analyzed using bioinformatics tools. The abundance of Romboutsia and Clostridium genera and Lachnospiraceae NK4A136 was significantly higher in tumor tissues than that in nonneoplastic samples. Furthermore, several bacterial genera, including Acinetobacter, Paracoccus, Brevundimonas, and Brevibacillus, were predominant or key taxa in nontumor mucosae. We found an alteration in the mucosa-associated microbiota composition of southern Thai patients that may have contributed to the tumorigenesis of FAP. These findings may improve the knowledge of the potential roles of microbes in FAP and aid the development of preventive measures for cancer development and progression through modulation of the gut microbiota.
Collapse
Grants
- Faculty of Medical Technology Research Fund, Prince of Songkla University
- MED6505193b National Science, Research, and Innovation Fund (NSRF), Thailand
- MED6505193c National Science, Research, and Innovation Fund (NSRF), Thailand
- MET6601065S National Science, Research, and Innovation Fund (NSRF), Thailand
- MET6701197S National Science, Research, and Innovation Fund (NSRF), Thailand
- MET6402032S Prince of Songkla University
Collapse
Affiliation(s)
- Jukrayupat Fongmanee
- Program in Molecular Biotechnology and Bioinformatics, Division of Biological Sciences, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Worrawit Wanitsuwan
- Medical Science Research and Innovation Institute, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Warapond Wanna
- Program in Molecular Biotechnology and Bioinformatics, Division of Biological Sciences, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Charinrat Saechan
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | | | - Kanet Kanjanapradit
- Division of Pathology, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| |
Collapse
|
2
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2831-x. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Endale HT, Tesfaye W, Hassen FS, Asrat WB, Temesgen EY, Shibabaw YY, Asefa T. Harmony unveiled: Intricate the interplay of dietary factor, gut microbiota, and colorectal cancer-A narrative review. SAGE Open Med 2024; 12:20503121241274724. [PMID: 39224896 PMCID: PMC11367611 DOI: 10.1177/20503121241274724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Diet plays a critical role in shaping the gut microbiome, which in turn regulates molecular activities in the colonic mucosa. The state and composition of the gut microbiome are key factors in the development of colorectal cancer. An altered gut microbiome, linked to weakened immune responses and the production of carcinogenic substances, is a significant contributor to colorectal cancer pathogenesis. Dietary changes that involve low-fiber and phytomolecule intake, coupled with higher consumption of red meat, can raise the risk of colorectal cancer. Salutary filaments, which reach the colon undigested, are metabolized by the gut microbiome, producing short-chain fatty acids. Short-chain fatty acids possess beneficial anti-inflammatory and antiproliferative properties that promote colon health. A well-balanced microbiome, supported by beneficial fibers and phytochemicals, can regulate the activation of proto-oncogenes and oncogenic pathways, thereby reducing cell proliferation. Recent research suggests that an overabundance of specific microbes, such as Fusobacterium nucleatum, may contribute to adverse changes in the colonic mucosa. Positive lifestyle adjustments have been demonstrated to effectively inhibit the growth of harmful opportunistic organisms. Synbiotics, which combine probiotics and prebiotics, can protect the intestinal mucosa by enhancing immune responses and decreasing the production of harmful metabolites, oxidative stress, and cell proliferation. This narrative review provides a concise understanding of evolving evidence regarding how diet influences the gut microbiome, leading to the restoration of the colonic epithelium. It underscores the importance of a healthy, plant-based diet and associated supplements in preventing colorectal cancer by enhancing gut microbiome health.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Yadelew Yimer Shibabaw
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tseganesh Asefa
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Khan M, Shah S, Shah W, Khan I, Ali H, Ali I, Ullah R, Wang X, Mehmood A, Wang Y. Gut microbiome as a treatment in colorectal cancer. Int Rev Immunol 2024; 43:229-247. [PMID: 38343353 DOI: 10.1080/08830185.2024.2312294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The gut microbiome plays a role in the development and progression of colorectal cancer (CRC). AIM AND OBJECTIVE This review focuses on whether the gut microbiome is involved in the development and regulation of the host immune system. METHODS The gut microbiome can influence the production and activity of immune cells and molecules that help to maintain the integrity of the intestinal barrier and prevent inflammation. Gut microbiota modulates the anti-cancer immune response. The gut microbiota can influence the function of immune cells, like T cells, that recognize and eliminate cancer cells. Gut microbiota can affect various aspects of cancer progression and the efficacy of various anti-cancer treatments. RESULTS Gut microbiota provide promise as a potential biomarker to identify the effect of immunotherapy and as a target for modulation to improve the efficacy of immunotherapy in CRC treatment. CONCLUSION The potential synergistic effect between the gut microbiome and anti-cancer treatment modalities provides an interest in developing strategies to modulate the gut microbiome to improve the efficacy of anti-cancer treatment.
Collapse
Affiliation(s)
- Murad Khan
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wahid Shah
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Ikram Khan
- School of Basic Medical Sciences, Department of Genetics, Lanzhou University, Lanzhou, Gansu, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, P.R. China
| | - Yanli Wang
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
5
|
Hill EB, Tang M, Long JM, Kemp JF, Westcott JL, Hendricks AE, Reisdorph NA, Campbell WW, Krebs NF. mini-MED: study protocol for a randomized, multi-intervention, semi-controlled feeding trial of a Mediterranean-amplified vs. habitual Western dietary pattern for the evaluation of food-specific compounds and cardiometabolic health. Trials 2024; 25:101. [PMID: 38302990 PMCID: PMC10835998 DOI: 10.1186/s13063-024-07939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Diet is among the most influential lifestyle factors impacting chronic disease risk. Nutrimetabolomics, the application of metabolomics to nutrition research, allows for the detection of food-specific compounds (FSCs) that can be used to connect dietary patterns, such as a Mediterranean-style (MED) diet, to health. This validation study is based upon analyses from a controlled feeding MED intervention, where our team identified FSCs from eight foods that can be detected in biospecimens after consumption and may therefore serve as food intake biomarkers. METHODS Individuals with overweight/obesity who do not habitually consume a MED dietary pattern will complete a 16-week randomized, multi-intervention, semi-controlled feeding study of isocaloric dietary interventions: (1) MED-amplified dietary pattern, containing 500 kcal/day from eight MED target foods: avocado, basil, cherry, chickpea, oat, red bell pepper, walnut, and a protein source (alternating between salmon or unprocessed, lean beef), and (2) habitual/Western dietary pattern, containing 500 kcal/day from six non-MED target foods: cheesecake, chocolate frozen yogurt, refined grain bread, sour cream, white potato, and unprocessed, lean beef. After a 2-week washout, participants complete four, 4-week intervention periods, with biospecimen sampling and outcome assessments at baseline and at intervention weeks 4, 8, 12, and 16. The primary outcome is change in the relative abundance of FSCs from the eight MED target foods in participant biospecimens from baseline to the end of each intervention period. Secondary outcomes include mean change in cardiometabolic health indicators, inflammatory markers, and adipokines. Exploratory outcomes include change in diversity and community composition of the gut microbiota. DISCUSSION Our stepwise strategy, beginning with identification of FSCs in whole diets and biospecimens, followed by relating these to health indicators will lead to improved methodology for assessment of dietary patterns and a better understanding of the relationship between food and health. This study will serve as a first step toward validating candidate food intake biomarkers and allow for assessment of relationships with cardiometabolic health. The identification of food intake biomarkers is critical to future research and has implications spanning health promotion and disease prevention for many chronic conditions. TRIAL REGISTRATION Registered at ClinicalTrials.gov: NCT05500976 ; Date of registration: August 15, 2022.
Collapse
Affiliation(s)
- Emily B Hill
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Minghua Tang
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Julie M Long
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer F Kemp
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jamie L Westcott
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Audrey E Hendricks
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, 80204, USA
| | - Nichole A Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, 47906, USA
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
7
|
Ditonno I, Novielli D, Celiberto F, Rizzi S, Rendina M, Ierardi E, Di Leo A, Losurdo G. Molecular Pathways of Carcinogenesis in Familial Adenomatous Polyposis. Int J Mol Sci 2023; 24:5687. [PMID: 36982759 PMCID: PMC10056005 DOI: 10.3390/ijms24065687] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Familial adenomatous polyposis (FAP) is a genetic syndrome characterized by the presence of multiple polyps in the gastrointestinal tract and a wide range of systemic extra-intestinal manifestations. Patients affected will inevitably undergo abdominal surgery due to the malignant transformation of one or more adenomas. The pathogenesis of the disease is based on a loss of function mutation in adenomatous polyposis coli (APC), a tumor-suppressor gene, inherited following a Mendelian pattern. This gene is a key component of multiple cell functions that cooperate for homeostasis; when mutated, it contributes to the progression of colorectal adenoma into cancer. Recent studies have demonstrated that several additional mechanisms may influence this process, such as alterations in gut microbiota composition and mucosal barrier immunity, interaction with the immune microenvironment and inflammation, the hormone estrogen, and other signaling pathways. These factors represent promising targets of future therapies and chemoprevention, aiming to alter the progressive nature of the disease and improve the quality of life of families affected. Therefore, we performed a narrative review about the current knowledge of the aforementioned pathways involved in colorectal cancer pathogenesis in FAP, exploring the genetic and environmental factors that may contribute to the development of CRC in FAP.
Collapse
Affiliation(s)
- Ilaria Ditonno
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Domenico Novielli
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Francesca Celiberto
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
- Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Precision Medicine Jonic Area, University “Aldo Moro” of Bari, 70124 Bari, Italy
| | - Salvatore Rizzi
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Maria Rendina
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Enzo Ierardi
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Giuseppe Losurdo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| |
Collapse
|
8
|
Kim JH, Kim YJ, Oh GM, Jung W, Park SJ. How is gut microbiome of patients with familial adenomatous polyposis different from healthy people? Medicine (Baltimore) 2022; 101:e32194. [PMID: 36626451 PMCID: PMC9750518 DOI: 10.1097/md.0000000000032194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/15/2022] [Indexed: 01/11/2023] Open
Abstract
The gut microbiome has been increasingly suggested as an underlying cause of various human diseases. In this study, we hypothesized that the gut microbiomes of patients with familial adenomatous polyposis (FAP) are different from those of healthy people and attempted to identify the associations between gut microbiome characteristics and FAP. We collected fecal samples from patients with FAP and healthy volunteers and evaluated the diversity, composition, and distribution of the gut microbiome between the 2 groups via 16S rRNA-based taxonomic profiling of the fecal samples. Fecal samples were collected from 10 patients with FAP (4 men and 6 women, mean age 39.2 ± 13.8 years) and 10 healthy volunteers (4 men and 6 women, mean age 40.9 ± 9.8 years). The microbial richness in patients with FAP was significantly lower than that in healthy people. Regarding microbial composition, the Firmicutes/Bacteroidetes ratio in patients with FAP was higher than that in healthy people, especially in those with a lower proportion of Bacteroidetes and a higher proportion of Proteobacteria. We also found 7 specific abundant strains in fecal samples of patients with FAP. Patients with FAP had different Firmicutes/Bacteroidetes ratios and Proteobacteria abundance compared to healthy people and showed the presence of specific bacteria. These findings suggest a promising role of the gut microbiome in patients with FAP, although further studies are needed.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Yeon Ji Kim
- Institution of Gastroenterology, Kosin University College of Medicine, Busan, Korea
| | - Gyu Man Oh
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Woohyuk Jung
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
9
|
Chriswell ME, Lefferts AR, Clay MR, Hsu AR, Seifert J, Feser ML, Rims C, Bloom MS, Bemis EA, Liu S, Maerz MD, Frank DN, Demoruelle MK, Deane KD, James EA, Buckner JH, Robinson WH, Holers VM, Kuhn KA. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci Transl Med 2022; 14. [PMID: 36288282 PMCID: PMC9804515 DOI: 10.1126/scitranslmed.abn5166 10.1126/scitranslmed.abn5166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mucosal origins hypothesis of rheumatoid arthritis (RA) proposes a central role for mucosal immune responses in the initiation or perpetuation of the systemic autoimmunity that occurs with disease. However, the connection between the mucosa and systemic autoimmunity in RA remains unclear. Using dual immunoglobulin A (IgA) and IgG family plasmablast-derived monoclonal autoantibodies obtained from peripheral blood of individuals at risk for RA, we identified cross-reactivity between RA-relevant autoantigens and bacterial taxa in the closely related families Lachnospiraceae and Ruminococcaceae. After generating bacterial isolates within the Lachnospiraceae/Ruminococcaceae genus Subdoligranulum from the feces of an individual, we confirmed monoclonal antibody binding and CD4+ T cell activation in individuals with RA compared to control individuals. In addition, when Subdoligranulum isolate 7 but not isolate 1 colonized germ-free mice, it stimulated TH17 cell expansion, serum RA-relevant IgG autoantibodies, and joint swelling reminiscent of early RA, with histopathology characterized by antibody deposition and complement activation. Systemic immune responses were likely due to mucosal invasion along with the generation of colon-isolated lymphoid follicles driving increased fecal and serum IgA by isolate 7, because B and CD4+ T cell depletion not only halted intestinal immune responses but also eliminated detectable clinical disease. In aggregate, these findings demonstrate a mechanism of RA pathogenesis through which a specific intestinal strain of bacteria can drive systemic autoantibody generation and joint-centered antibody deposition and immune activation.
Collapse
Affiliation(s)
- Meagan E. Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alex Ren Hsu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jennifer Seifert
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marie L. Feser
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cliff Rims
- Benaroya Research Institute, Seattle, WA 98101
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Elizabeth A. Bemis
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sucai Liu
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | - Daniel N. Frank
- Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - M. Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin D. Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | | | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - V. Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,Corresponding Author:
| |
Collapse
|
10
|
Chriswell ME, Lefferts AR, Clay MR, Hsu AR, Seifert J, Feser ML, Rims C, Bloom MS, Bemis EA, Liu S, Maerz MD, Frank DN, Demoruelle MK, Deane KD, James EA, Buckner JH, Robinson WH, Holers VM, Kuhn KA. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci Transl Med 2022; 14:eabn5166. [PMID: 36288282 PMCID: PMC9804515 DOI: 10.1126/scitranslmed.abn5166] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mucosal origins hypothesis of rheumatoid arthritis (RA) proposes a central role for mucosal immune responses in the initiation or perpetuation of the systemic autoimmunity that occurs with disease. However, the connection between the mucosa and systemic autoimmunity in RA remains unclear. Using dual immunoglobulin A (IgA) and IgG family plasmablast-derived monoclonal autoantibodies obtained from peripheral blood of individuals at risk for RA, we identified cross-reactivity between RA-relevant autoantigens and bacterial taxa in the closely related families Lachnospiraceae and Ruminococcaceae. After generating bacterial isolates within the Lachnospiraceae/Ruminococcaceae genus Subdoligranulum from the feces of an individual, we confirmed monoclonal antibody binding and CD4+ T cell activation in individuals with RA compared to control individuals. In addition, when Subdoligranulum isolate 7 but not isolate 1 colonized germ-free mice, it stimulated TH17 cell expansion, serum RA-relevant IgG autoantibodies, and joint swelling reminiscent of early RA, with histopathology characterized by antibody deposition and complement activation. Systemic immune responses were likely due to mucosal invasion along with the generation of colon-isolated lymphoid follicles driving increased fecal and serum IgA by isolate 7, because B and CD4+ T cell depletion not only halted intestinal immune responses but also eliminated detectable clinical disease. In aggregate, these findings demonstrate a mechanism of RA pathogenesis through which a specific intestinal strain of bacteria can drive systemic autoantibody generation and joint-centered antibody deposition and immune activation.
Collapse
Affiliation(s)
- Meagan E. Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alex Ren Hsu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jennifer Seifert
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marie L. Feser
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cliff Rims
- Benaroya Research Institute, Seattle, WA 98101
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Elizabeth A. Bemis
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sucai Liu
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | - Daniel N. Frank
- Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - M. Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin D. Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | | | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - V. Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,Corresponding Author:
| |
Collapse
|
11
|
Mouse Models for Application in Colorectal Cancer: Understanding the Pathogenesis and Relevance to the Human Condition. Biomedicines 2022; 10:biomedicines10071710. [PMID: 35885015 PMCID: PMC9313309 DOI: 10.3390/biomedicines10071710] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant disease that is the second most common cancer worldwide. CRC arises from the complex interactions among a variety of genetic and environmental factors. To understand the mechanism of colon tumorigenesis, preclinical studies have developed various mouse models including carcinogen-induced and transgenic mice to recapitulate CRC in humans. Using these mouse models, scientific breakthroughs have been made on the understanding of the pathogenesis of this complex disease. Moreover, the availability of transgenic knock-in or knock-out mice further increases the potential of CRC mouse models. In this review, the overall features of carcinogen-induced (focusing on azoxymethane and azoxymethane/dextran sulfate sodium) and transgenic (focusing on ApcMin/+) mouse models, as well as their mechanisms to induce colon tumorigenesis, are explored. We also discuss limitations of these mouse models and their applications in the evaluation and study of drugs and treatment regimens against CRC. Through these mouse models, a better understanding of colon tumorigenesis can be achieved, thereby facilitating the discovery of novel therapeutic strategies against CRC.
Collapse
|
12
|
Giovannucci E. Molecular Biologic and Epidemiologic Insights for Preventability of Colorectal Cancer. J Natl Cancer Inst 2022; 114:645-650. [PMID: 34978574 PMCID: PMC9086743 DOI: 10.1093/jnci/djab229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
The etiology of colorectal cancer (CRC) has been informed from both a molecular biology perspective, which concerns the study of the nature, timing, and consequences of mutations in driver genes, and epidemiology, which focuses on identifying risk factors for cancer. For the most part, these fields have developed independently, and it is thus important to consider them in a more integrated manner. The molecular mutational perspective has stressed the importance of mutations due to replication of adult stem cells, and the molecular fingerprint of most CRCs does not suggest the importance of direct carcinogens. Epidemiology has identified numerous modifiable risk factors that account for most CRCs, most of which are not direct mutagens. The distribution of CRCs across the large bowel is not uniform, which is possibly caused by regional differences in the microbiota. Some risk factors are likely to act through or interact with the microbiota. The mutational perspective informs when risk factors may begin to operate in life and when they may cease to operate. Evidence from the mutational model and epidemiology supports that CRC risk factors begin early in life and may contribute to the risk of early-onset CRC. Later in carcinogenesis, there may be a "point of no return" when sufficient mutations have accumulated, and some risk factors do not affect cancer risk. This period may be at least 5-15 years for some risk factors. A more precise knowledge of timing of risk factor to cancer is required to inform preventive efforts.
Collapse
Affiliation(s)
- Edward Giovannucci
- Correspondence to: Edward Giovannucci, ScD, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA (e-mail: )
| |
Collapse
|
13
|
Intestinal microbiota profiles in a genetic model of colon tumorigenesis correlates with colon cancer biomarkers. Sci Rep 2022; 12:1432. [PMID: 35082322 PMCID: PMC8792020 DOI: 10.1038/s41598-022-05249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractFaecal (FM) and colon mucosal associated microbiota (MAM) were studied in a model of colorectal cancer (CRC), the Apc-mutated Pirc rats, and in age-paired wt F344 rats. Principal Coordinates Analysis indicated that samples’ distribution was driven by age, with samples of young rats (1 month old; without tumours) separated from older ones (11-month-old; bearing tumours). Diversity analysis showed significant differences between FM and MAM in older Pirc rats, and between MAM of both Pirc and wt rats and the tumour microbiota, enriched in Enterococcus, Escherichia/Shigella, Proteus and Bifidobacteriaceae. In young animals, Pirc FM was enriched in the genus Delftia, while wt FM was enriched in Lactobacillus and Streptococcus. Some CRC biomarkers and faecal short chain fatty acids (SCFAs) were also measured. Colon proliferation and DClK1 expression, a pro-survival mucosal marker, were higher in Pirc than in wt rats, while the mucin MUC2, was lower in Pirc rats. Branched SCFAs were higher in Pirc than in wt animals. By Spearman analysis CRC biomarkers correlated with FM (in both young and old rats) and with MAM (in young rats), suggesting a specific relationship between the gut microbiota profile and these functional mucosal parameters deserving further investigation.
Collapse
|
14
|
Kim J, Lee HK. Potential Role of the Gut Microbiome In Colorectal Cancer Progression. Front Immunol 2022; 12:807648. [PMID: 35069592 PMCID: PMC8777015 DOI: 10.3389/fimmu.2021.807648] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have revealed that the progression of colorectal cancer (CRC) is related to gut microbiome composition. Under normal conditions, the gut microbiome acts as a barrier to other pathogens or infections in the intestine and modulates inflammation by affecting the host immune system. These gut microbiota are not only related to the intestinal inflammation associated with tumorigenesis but also modulation of the anti-cancer immune response. Thus, they are associated with tumor progression and anti-cancer treatment efficacy. Studies have shown that the gut microbiota can be used as biomarkers to predict the effect of immunotherapy and improve the efficacy of immunotherapy in treating CRC through modulation. In this review, we discuss the role of the gut microbiome as revealed by recent studies of the growth and progression of CRC along with its synergistic effect with anti-cancer treatment modalities.
Collapse
Affiliation(s)
- Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
15
|
Chen YS, Li J, Menon R, Jayaraman A, Lee K, Huang Y, Dashwood WM, Zhang K, Sun D, Dashwood RH. Dietary spinach reshapes the gut microbiome in an Apc-mutant genetic background: mechanistic insights from integrated multi-omics. Gut Microbes 2022; 13:1972756. [PMID: 34494932 PMCID: PMC8437542 DOI: 10.1080/19490976.2021.1972756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Complex interrelationships govern the dynamic interactions between gut microbes, the host, and exogenous drivers of disease outcome. A multi-omics approach to cancer prevention by spinach (SPI) was pursued for the first time in the polyposis in rat colon (Pirc) model. SPI fed for 26 weeks (10% w/w, freeze-dried in the diet) exhibited significant antitumor efficacy and, in the Apc-mutant genetic background, β-catenin remained highly overexpressed in adenomatous polyps. However, in both wild type and Apc-mutant rats, increased gut microbiome diversity after SPI consumption coincided with reversal of taxonomic composition. Metagenomic prediction implicated linoleate and butanoate metabolism, tricarboxylic acid cycle, and pathways in cancer, which was supported by transcriptomic and metabolomic analyses. Thus, tumor suppression by SPI involved marked reshaping of the gut microbiome along with changes in host RNA-miRNA networks. When colon polyps were compared with matched normal-looking tissues via metabolomics, anticancer outcomes were linked to SPI-derived linoleate bioactives with known anti-inflammatory/ proapoptotic mechanisms, as well as N-aceto-2-hydroxybutanoate, consistent with altered butanoate metabolism stemming from increased α-diversity of the gut microbiome. In colon tumors from SPI-fed rats, L-glutamate and N-acetylneuraminate also were reduced, implicating altered mitochondrial energetics and cell surface glycans involved in oncogenic signaling networks and immune evasion. In conclusion, a multi-omics approach to cancer prevention by SPI provided mechanistic support for linoleate and butanoate metabolism, as well as tumor-associated changes in L-glutamate and N-acetylneuraminate. Additional factors, such as the fiber content, also warrant further investigation with a view to delaying colectomy and drug intervention in at-risk patients.
Collapse
Affiliation(s)
| | - Jia Li
- Texas A&M Health, Houston, USA
| | - Rani Menon
- Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, USA
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, USA
| | | | | | | | | | - Roderick H. Dashwood
- Texas A&M Health, Houston, USA,Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, USA,CONTACT Roderick H. Dashwood Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, 2121 W. Holcombe Blvd., Houston, Texass 77030, USA
| |
Collapse
|
16
|
Leystra AA, Harvey KN, Kaunga E, Hensley H, Vanderveer LA, Devarajan K, Clapper ML. High Variability in Cellular Proliferation, Gene Expression, and Cytokine Production in the Nonneoplastic Colonic Epithelium of Young Apc+/Min-FCCC Mice. Front Oncol 2021; 11:705562. [PMID: 34513688 PMCID: PMC8429936 DOI: 10.3389/fonc.2021.705562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
An urgent need exists to identify efficacious therapeutic preventive interventions for individuals who are at high risk of developing colorectal cancer. To maximize the benefits of preventive intervention, it is vital to identify the time interval during which the initiation of a preventive intervention will lead to an optimal outcome. The goal of the present study was to determine if oncogenic events can be detected in the nonneoplastic colonic mucosa of Apc+/Min-FCCC mice prior to formation of the first adenoma, thus defining an earlier point of intervention along the cancer continuum. Tissues taken at three potential points of intervention were characterized: prior to Apc mutation (wild type Apc+/+-FCCC mice); after initiation but prior to colon adenoma formation (tumor-free Apc+/Min-FCCC mice); and after formation of the first colon adenoma (tumor-bearing Apc+/Min-FCCC mice). Experimentation focused on molecular processes that are dysregulated in early colon lesions: 1) cellular proliferation (proliferative index and size of the proliferative zone); 2) cellular stemness (expression of Ascl2, Grem1, Lgr5 and Muc2); 3) EGFR signaling (expression of Ereg); and 4) inflammation (expression of Mmp9, Ptsg2, and Reg4, as well as secretion of 18 cytokines involved in immune activation and response). Interestingly, the nonneoplastic colonic mucosa of wild type, tumor-free Apc+/Min-FCCC , and tumor-bearing Apc+/Min-FCCC mice did not display significant differences in average epithelial cell proliferation (fold change 0.8-1.3, p≥0.11), mucosal gene expression (fold change 0.8-1.4, p≥0.22), or secretion of specific cytokines from colonic mucosa (fold change 0.2-1.5, p≥0.06). However, the level of cytokine secretion was highly variable, with many (22% of wild type, 31% of tumor-free Apc+/Min-FCCC , and 31% of tumor-bearing Apc+/Min-FCCC ) mice categorized as outliers (> 1.5 x interquartile ranges below the first quartile or above the third quartile) due to elevated expression of at least one cytokine. In summary, no differences were observed in proliferation, stemness, and EGFR signaling in the colonic mucosa of wild type vs Apc+/Min-FCCC mice, with low baseline cytokine expression, prior to the formation of the first colon adenoma. The results of this study provide valuable baseline data to inform the design of future cancer prevention studies.
Collapse
Affiliation(s)
- Alyssa A. Leystra
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Kristen N. Harvey
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Esther Kaunga
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Harvey Hensley
- Biological Imaging Facility, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Lisa A. Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
17
|
Ocvirk S, O'Keefe SJD. Dietary fat, bile acid metabolism and colorectal cancer. Semin Cancer Biol 2021; 73:347-355. [PMID: 33069873 DOI: 10.1016/j.semcancer.2020.10.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) risk is predominantly driven by environmental factors, in particular diet. A high intake of dietary fat has been implicated as a risk factor inducing the formation of pre-neoplastic lesions (e.g., adenomatous polyps) and/or exacerbating colonic tumorigenesis. Recent data attributed the tumor-promoting activity of high-fat diets to their effects on gut microbiota composition and metabolism, in particular with regard to bile acids. Bile acids are synthesized in the liver in response to dietary fat and facilitate lipid absorption in the small intestine. The majority of bile acids is re-absorbed during small intestinal transit and subjected to enterohepatic circulation. Bile acids entering the colon undergo complex biotransformation performed by gut bacteria, resulting in secondary bile acids that show tumor-promoting activity. Excessive dietary fat leads to high levels of secondary bile acids in feces and primes the gut microbiota to bile acid metabolism. This promotes an altered overall bile acid pool, which activates or restricts intestinal and hepatic cross-signaling of the bile acid receptor, farnesoid X receptor (FXR). Recent studies provided evidence that FXR is a main regulator of bile acid-mediated effects on intestinal tumorigenesis integrating dietary, microbial and genetic risk factors for CRC. Selective FXR agonist or antagonist activity by specific bile acids depends on additional factors (e.g., bile acid concentration, composition of bile acid pool, genetic instability of cells) and, thus, may differ in healthy and tumorigenic conditions in the intestine. In conclusion, fat-mediated alterations of the gut microbiota link bile acid metabolism to CRC risk and colonic tumorigenesis, exemplifying how gut microbial co-metabolism affects colon health.
Collapse
Affiliation(s)
- Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Intestinal Microbiology Research Group, Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stephen J D O'Keefe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Biondi A, Basile F, Vacante M. Familial adenomatous polyposis and changes in the gut microbiota: New insights into colorectal cancer carcinogenesis. World J Gastrointest Oncol 2021; 13:495-508. [PMID: 34163569 PMCID: PMC8204352 DOI: 10.4251/wjgo.v13.i6.495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/15/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with familial adenomatous polyposis (FAP), an autosomal dominant hereditary colorectal cancer syndrome, have a lifetime risk of developing cancer of nearly 100%. Recent studies have pointed out that the gut microbiota could play a crucial role in the development of colorectal adenomas and the consequent progression to colorectal cancer. Some gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, Clostridium difficile, Peptostreptococcus, and enterotoxigenic Bacteroides fragilis, could be implicated in colorectal carcinogenesis through different mechanisms, including the maintenance of a chronic inflammatory state, production of bioactive tumorigenic metabolites, and DNA damage. Studies using the adenomatous polyposis coliMin/+ mouse model, which resembles FAP in most respects, have shown that specific changes in the intestinal microbial community could influence a multistep progression, the intestinal "adenoma-carcinoma sequence", which involves mucosal barrier injury, low-grade inflammation, activation of the Wnt pathway. Therefore, modulation of gut microbiota might represent a novel therapeutic target for patients with FAP. Administration of probiotics, prebiotics, antibiotics, and nonsteroidal anti-inflammatory drugs could potentially prevent the progression of the adenoma-carcinoma sequence in FAP. The aim of this review was to summarize the best available knowledge on the role of gut microbiota in colorectal carcinogenesis in patients with FAP.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| | - Francesco Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| | - Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| |
Collapse
|
19
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
20
|
Shang Q, Liu S, Liu H, Mahfuz S, Piao X. Impact of sugar beet pulp and wheat bran on serum biochemical profile, inflammatory responses and gut microbiota in sows during late gestation and lactation. J Anim Sci Biotechnol 2021; 12:54. [PMID: 33879267 PMCID: PMC8059298 DOI: 10.1186/s40104-021-00573-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background Sows are frequently subjected to various stresses during late gestation and lactation, which trigger inflammatory response and metabolic disorders. Dietary fiber can influence animal health by modulating gut microbiota and their by-products, with the effects depending upon the source of the dietary fiber. This study aimed to evaluate the impacts of different fiber sources on body condition, serum biochemical parameters, inflammatory responses and fecal microbiota in sows from late gestation to lactation. Methods Forty-five multiparous sows (Yorkshire × Landrace; 3–6 parity) were assigned to 1 of 3 dietary treatments from d 85 of gestation to the end of lactation (d 21 post-farrowing): a control diet (CON, a corn-soybean meal diet), a sugar beet pulp diet (SBP, 20% SBP during gestation and 10% SBP during lactation), and a wheat bran diet (WB, 30% WB during gestation and 15% WB during lactation). Results Compared with CON, supplementation of SBP decreased (P < 0.05) lactation BW loss, reduced (P < 0.05) serum concentration of total cholesterol, non-esterified fatty acids, interleukin-6 and tumor necrosis factor-α, and increased (P < 0.05) fecal water content on d 110 of gestation and d 21 of lactation, while supplementation of WB reduced (P < 0.05) serum concentration of total cholesterol on d 110 of gestation, increased (P < 0.05) fecal water content and decreased (P < 0.05) serum interleukin-6 concentration on d 110 of gestation and d 21 of lactation. In addition, sows fed SBP had lower (P < 0.01) abundance of Clostridium_sensu_stricto_1 and Terrisporobacter than those fed CON, but had greater (P < 0.05) abundance of Christensenellaceae_R-7_group and Ruminococcaceae_UCG-002 than those fed the other two diets on d 110 of gestation. On d 21 of lactation, supplementation of SBP decreased (P < 0.05) the abundance of Firmicutes and Lactobacillus, but enriched (P < 0.05) the abundance of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, Ruminococcaceae_UCG-002, Prevotellaceae_UCG_001 and unclassified_f__Lachnospiraceae compared with WB. Compared with CON, sows fed SBP had greater (P < 0.05) fecal concentrations of acetate, butyrate and total SCFAs during gestation and lactation, while sows fed WB only had greater (P < 0.05) fecal concentration of butyrate during lactation. Conclusions Supplementation of dietary fiber during late gestation and lactation could improve sow metabolism and gut health, and SBP was more effective than WB.
Collapse
Affiliation(s)
- Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hansuo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
21
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
22
|
Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021; 170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicine implication in cancer treatment and diagnosis studies witness huge attention, especially with the promising results obtained in preclinical studies. Despite this, only few nanomedicines succeeded to pass clinical phase. The human microbiota plays obvious roles in cancer development. Nanoparticles have been successfully used to modulate human microbiota and notably tumor associated microbiota. Taking the microbiota involvement under consideration when testing nanomedicines for cancer treatment might be a way to improve the poor translation from preclinical to clinical trials. Co-culture models of bacteria and cancer cells, as well as animal cancer-microbiota models offer a better representation for the tumor microenvironment and so potentially better platforms to test nanomedicine efficacy in cancer treatment. These models would allow closer representation of human cancer and might smoothen the passage from preclinical to clinical cancer studies for nanomedicine efficacy.
Collapse
|
23
|
Bergstrom K, Shan X, Casero D, Batushansky A, Lagishetty V, Jacobs JP, Hoover C, Kondo Y, Shao B, Gao L, Zandberg W, Noyovitz B, McDaniel JM, Gibson DL, Pakpour S, Kazemian N, McGee S, Houchen CW, Rao CV, Griffin TM, Sonnenburg JL, McEver RP, Braun J, Xia L. Proximal colon-derived O-glycosylated mucus encapsulates and modulates the microbiota. Science 2020; 370:467-472. [PMID: 33093110 DOI: 10.1126/science.aay7367] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/10/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Colon mucus segregates the intestinal microbiota from host tissues, but how it organizes to function throughout the colon is unclear. In mice, we found that colon mucus consists of two distinct O-glycosylated entities of Muc2: a major form produced by the proximal colon, which encapsulates the fecal material including the microbiota, and a minor form derived from the distal colon, which adheres to the major form. The microbiota directs its own encapsulation by inducing Muc2 production from proximal colon goblet cells. In turn, O-glycans on proximal colon-derived Muc2 modulate the structure and function of the microbiota as well as transcription in the colon mucosa. Our work shows how proximal colon control of mucin production is an important element in the regulation of host-microbiota symbiosis.
Collapse
Affiliation(s)
- Kirk Bergstrom
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA. .,Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David Casero
- Inflammatory Bowel and Immunobiology Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan P Jacobs
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90025, USA
| | - Christopher Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Wesley Zandberg
- Department of Chemistry, University of British Columbia, Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Benjamin Noyovitz
- Department of Chemistry, University of British Columbia, Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - J Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Negin Kazemian
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Courtney W Houchen
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally V Rao
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA. .,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
24
|
Cheng Y, Ling Z, Li L. The Intestinal Microbiota and Colorectal Cancer. Front Immunol 2020; 11:615056. [PMID: 33329610 PMCID: PMC7734048 DOI: 10.3389/fimmu.2020.615056] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiota, composed of a large population of microorganisms, is often considered a "forgotten organ" in human health and diseases. Increasing evidence indicates that dysbiosis of the intestinal microbiota is closely related to colorectal cancer (CRC). The roles for intestinal microorganisms that initiated and facilitated the CRC process are becoming increasingly clear. Hypothesis models have been proposed to illustrate the complex relationship between the intestinal microbiota and CRC. Recent studies have identified Streptococcus bovis, enterotoxigenic Bacteroides fragilis, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, and Peptostreptococcus anaerobius as CRC candidate pathogens. In this review, we summarized the mechanisms involved in microbiota-related colorectal carcinogenesis, including inflammation, pathogenic bacteria, and their virulence factors, genotoxins, oxidative stress, bacterial metabolites, and biofilm. We also described the clinical values of intestinal microbiota and novel strategies for preventing and treating CRC.
Collapse
Affiliation(s)
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Targeting Gut Microbial Biofilms-A Key to Hinder Colon Carcinogenesis? Cancers (Basel) 2020; 12:cancers12082272. [PMID: 32823729 PMCID: PMC7465663 DOI: 10.3390/cancers12082272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is a global public health issue which poses a substantial humanistic and economic burden on patients, healthcare systems and society. In recent years, intestinal dysbiosis has been suggested to be involved in the pathogenesis of CRC, with specific pathogens exhibiting oncogenic potentials such as Fusobacterium nucleatum, Escherichia coli and enterotoxigenic Bacteroides fragilis having been found to contribute to CRC development. More recently, it has been shown that initiation of CRC development by these microorganisms requires the formation of biofilms. Gut microbial biofilm forms in the inner colonic mucus layer and is composed of polymicrobial communities. Biofilm results in the redistribution of colonic epithelial cell E-cadherin, increases permeability of the gut and causes a loss of function of the intestinal barrier, all of which enhance intestinal dysbiosis. This literature review aims to compile the various strategies that target these pathogenic biofilms and could potentially play a role in the prevention of CRC. We explore the potential use of natural products, silver nanoparticles, upconverting nanoparticles, thiosalicylate complexes, anti-rheumatic agent (Auranofin), probiotics and quorum-sensing inhibitors as strategies to hinder colon carcinogenesis via targeting colon-associated biofilms.
Collapse
|
26
|
Nasef NA, Mehta S. Role of Inflammation in Pathophysiology of Colonic Disease: An Update. Int J Mol Sci 2020; 21:E4748. [PMID: 32635383 PMCID: PMC7370289 DOI: 10.3390/ijms21134748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Diseases of the colon are a big health burden in both men and women worldwide ranging from acute infection to cancer. Environmental and genetic factors influence disease onset and outcome in multiple colonic pathologies. The importance of inflammation in the onset, progression and outcome of multiple colonic pathologies is gaining more traction as the evidence from recent research is considered. In this review, we provide an update on the literature to understand how genetics, diet, and the gut microbiota influence the crosstalk between immune and non‑immune cells resulting in inflammation observed in multiple colonic pathologies. Specifically, we focus on four colonic diseases two of which have a more established association with inflammation (inflammatory bowel disease and colorectal cancer) while the other two have a less understood relationship with inflammation (diverticular disease and irritable bowel syndrome).
Collapse
Affiliation(s)
- Noha Ahmed Nasef
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
27
|
Yue Y, Ye K, Lu J, Wang X, Zhang S, Liu L, Yang B, Nassar K, Xu X, Pang X, Lv J. Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment. Biomed Pharmacother 2020; 127:110159. [PMID: 32353824 DOI: 10.1016/j.biopha.2020.110159] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays important roles in chronic inflammation and colon cancer. Lactobacillus is a gut-resident probiotic with benefits to host health. We recently identified Lactobacillus plantarum strain YYC-3 with strong inhibition against two colon cancer cell lines (HT-29 and Caco2). However, the inhibitory effect of YYC-3 against colon cancer in vivo has not been verified. Thus, in the present study, we explored the probiotic function of strain YYC-3 and its cell-free supernatant (YYCS) respectively in the APCMin/+ mouse model of colon cancer during tumour development and growth, and the underlying anti-cancer mechanism. Treatment of both strain YYC-3 and the YYCS prevented the occurrence of colon tumours and mucosal damage in APCMin/+ mice fed a high-fat diet, although YYC-3 had a stronger anti-cancer effect. The mechanism involved modulation of the immune system and downregulated expression of the inflammatory cytokines interleukin (IL)-6, IL-17 F, and IL-22, along with reduced infiltration of inflammatory cells. Moreover, YYC-3 suppressed activation of the NF-κB and Wnt signalling pathways, and restored the altered gut microbiota composition to closely match that of wild-type mice. These results lay a theoretical foundation for application of YYC-3 in colon cancer prevention.
Collapse
Affiliation(s)
- Yuanchun Yue
- College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Kai Ye
- Department of Radiology, Peking University Third Hospital, Beijing, PR China.
| | - Jing Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Xinyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Liu Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Baoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Khaled Nassar
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Xiaoxi Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
28
|
Leystra AA, Clapper ML. Gut Microbiota Influences Experimental Outcomes in Mouse Models of Colorectal Cancer. Genes (Basel) 2019; 10:genes10110900. [PMID: 31703321 PMCID: PMC6895921 DOI: 10.3390/genes10110900] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Mouse models are a valuable resource for use throughout the development and testing of new therapeutic strategies for CRC. Tumorigenesis and response to therapy in humans and mouse models alike are influenced by the microbial communities that colonize the gut. Differences in the composition of the gut microbiota can confound experimental findings and reduce the replicability and translatability of the resulting data. Despite this, the contribution of resident microbiota to preclinical tumor models is often underappreciated. This review does the following: (1) summarizes evidence that the gut microbiota influence CRC disease phenotypes; (2) outlines factors that can influence the composition of the gut microbiota; and (3) provides strategies that can be incorporated into the experimental design, to account for the influence of the microbiota on intestinal phenotypes in mouse models of CRC. Through careful experimental design and documentation, mouse models can continue to rapidly advance efforts to prevent and treat colon cancer.
Collapse
|
29
|
Martin OCB, Bergonzini A, D'Amico F, Chen P, Shay JW, Dupuy J, Svensson M, Masucci MG, Frisan T. Infection with genotoxin-producing Salmonella enterica synergises with loss of the tumour suppressor APC in promoting genomic instability via the PI3K pathway in colonic epithelial cells. Cell Microbiol 2019; 21:e13099. [PMID: 31414579 PMCID: PMC6899655 DOI: 10.1111/cmi.13099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Several commensal and pathogenic Gram‐negative bacteria produce DNA‐damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin‐producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin‐producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC‐deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3‐kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin‐producing bacteria in promoting a microenvironment conducive to malignant transformation.
Collapse
Affiliation(s)
- Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergonzini
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Federica D'Amico
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jacques Dupuy
- INRA, ToxAlim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Mattias Svensson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Song Y, Gyarmati P. Bacterial translocation in acute lymphocytic leukemia. PLoS One 2019; 14:e0214526. [PMID: 30934014 PMCID: PMC6443231 DOI: 10.1371/journal.pone.0214526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Bloodstream infection (BSI) is the major cause of mortality in acute lymphocytic leukemia (ALL). Causative pathogens in BSI originate from the gut microbiota due to an increase in intestinal permeability, a process known as bacterial translocation (BT). The gut microbiota in physiological conditions is controlled by a large number of immune cells as part of the gut-associated lymphoid tissue (GALT).The aim of the current study was to investigate the mechanism of bacterial translocation in leukemia by identifying and characterizing alterations in the GALT in leukemic mouse model. Our studies revealed a severe impairment of the GALT characterized by a loss of lymphatic cells in ALL, which eventually led to BSI. We identified differentially expressed genes in the intraepithelium and the lamina propria, which may contribute to BT and to the impairment of lymphocyte migration.
Collapse
Affiliation(s)
- Yajing Song
- University of Illinois College of Medicine Peoria, Peoria, Illinois, United States of America
| | - Peter Gyarmati
- University of Illinois College of Medicine Peoria, Peoria, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Deciphering the Colorectal Cancer Gut Microbiota: Association vs. Causality. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Duek P, Gateau A, Bairoch A, Lane L. Exploring the Uncharacterized Human Proteome Using neXtProt. J Proteome Res 2018; 17:4211-4226. [DOI: 10.1021/acs.jproteome.8b00537] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Wang H, Ji Y, Yin C, Deng M, Tang T, Deng B, Ren W, Deng J, Yin Y, Tan C. Differential Analysis of Gut Microbiota Correlated With Oxidative Stress in Sows With High or Low Litter Performance During Lactation. Front Microbiol 2018; 9:1665. [PMID: 30154758 PMCID: PMC6103269 DOI: 10.3389/fmicb.2018.01665] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023] Open
Abstract
It has been suggested that gut microbiota play a critical role in maternal metabolic oxidative stress responses and offspring growth. However, whether the gut microbiota and oxidative stress status of the sows affect the litter performance during lactation is unclear. A total of 66 Yorkshire sows were identified as high (H) or low (L) litter performance sows based on litter weight at day 21 of lactation. Ten sows per group with similar parity, backfat thickness, and litter weight after cross-foster from the H or L group were collected randomly to analyze the oxidative stress and gut microbiota during lactation. The result showed that the serum total antioxidant capacity was higher in the H group, while 8-hydroxy-deoxyguanosine and thiobarbituric acid reactive substances were lower in the H group at farrowing. Four distinct clusters of bacteria were related to litter performance and reproductive periods of sows. Twelve differentially abundant taxa during gestation and 13 taxa during lactation were identified as potential biomarkers between the H group and the L group. Moreover, the litter performance and the antioxidant capacity of sows were positively correlated with Bacteroides_f__Bacteroidaceae but negatively with Phascolarctobacterium and Streptococcus. In conclusion, this study found that gut microbiota and oxidative stress were significantly correlated with the litter performance of sows during lactation.
Collapse
Affiliation(s)
- Hao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongcheng Ji
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- The Herbivore Research Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tianyue Tang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Jubair WK, Hendrickson JD, Severs EL, Schulz HM, Adhikari S, Ir D, Pagan J, Anthony R, Robertson CE, Frank DN, Banda NK, Kuhn KA. Modulation of Inflammatory Arthritis in Mice by Gut Microbiota Through Mucosal Inflammation and Autoantibody Generation. Arthritis Rheumatol 2018; 70:1220-1233. [PMID: 29534332 PMCID: PMC6105374 DOI: 10.1002/art.40490] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Observations of microbial dysbiosis in patients with rheumatoid arthritis (RA) have raised interest in studying microbial-mucosal interactions as a potential trigger of RA. Using the murine collagen-induced arthritis (CIA) model, we undertook this study to test our hypothesis that microbiota modulate immune responses leading to autoimmune arthritis. METHODS CIA was induced by immunization of mice with type II collagen (CII) in adjuvant on days 0 and 21, with arthritis appearing on days 23 and 24. Intestinal microbiota were profiled by 16S ribosomal RNA sequencing every 7 days during the course of CIA, and intestinal mucosal changes were evaluated on days 14 and 35. Then, microbiota were depleted either early (7 days before immunization) or late (day 21 after immunization) by administration of broad-spectrum antibiotics. Disease severity, autoantibody and systemic cytokine production, and intestinal mucosal responses were monitored in the setting of microbial reduction. RESULTS Significant dysbiosis and mucosal inflammation occurred early in CIA, prior to visible arthritis, and continued to evolve during the course of disease. Depletion of the microbiota prior to the induction of CIA resulted in an ~40% reduction in disease severity and in significantly reduced levels of serum inflammatory cytokines and anti-CII antibodies. In intestinal tissue, production of interleukin-17A (IL-17A) and IL-22 was delayed. Unexpectedly, microbial depletion during the late phase of CIA resulted in a >50% decrease in disease severity. Anti-CII antibodies were mildly reduced but were significantly impaired in their ability to activate complement, likely due to altered glycosylation profiles. CONCLUSION These data support a model in which intestinal dysbiosis triggers mucosal immune responses that stimulate T and B cells that are key for the development of inflammatory arthritis.
Collapse
Affiliation(s)
- Widian K. Jubair
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Jason D. Hendrickson
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Erin L. Severs
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Hanna M. Schulz
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Sumitra Adhikari
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Jose Pagan
- Harvard University, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA
| | - Robert Anthony
- Harvard University, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA
| | - Charles E. Robertson
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Daniel N. Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Nirmal K. Banda
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
| | - Kristine A. Kuhn
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| |
Collapse
|
35
|
Abstract
You are what you eat. This adage has been confirmed by many studies demonstrating the high impact of nutrition on risk of cardiovascular diseases, many malignancies and other diseases. Dietary factors are of major relevance in the evolution of colorectal carcinoma. Various aspects are involved in colorectal carcinoma pathogenesis including genetics, lifestyle, age, chronic inflammation and others. It has only recently been recognized that the gut microbiota might reflect an important missing link in the interaction between diet and subsequent colorectal carcinoma development. Dietary factors are a major confounding factor affecting the composition of the intestinal microbiota. Several preclinical and clinical studies have recently suggested a role for the intestinal microbiota in potentially initiating and driving colorectal carcinoma. Therefore it is increasingly acknowledged that dietary factors might favor carcinogenesis via manipulation of the gut microbiota via potential outgrowth of certain bacterial populations, such as Fusobacterium nucleatum, Escherichia coli or Bacteroides fragilis. Excitingly, recent large clinical studies also highlighted a role for the gut microbiota and in particular Akkermansia muciniphila in tumor response toward chemotherapeutic agents and immune checkpoint inhibitors. This review will concentrate on the role of dietary factors in affecting the microbiota and implications in colorectal carcinoma.
Collapse
|
36
|
Kuhn KA, Schulz HM, Regner EH, Severs EL, Hendrickson JD, Mehta G, Whitney AK, Ir D, Ohri N, Robertson CE, Frank DN, Campbell EL, Colgan SP. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol 2018; 11:357-368. [PMID: 28812548 PMCID: PMC5815964 DOI: 10.1038/mi.2017.55] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
Interactions between the microbiota and distal gut are important for the maintenance of a healthy intestinal barrier; dysbiosis of intestinal microbial communities has emerged as a likely contributor to diseases that arise at the level of the mucosa. Intraepithelial lymphocytes (IELs) are positioned within the epithelial barrier, and in the small intestine they function to maintain epithelial homeostasis. We hypothesized that colon IELs promote epithelial barrier function through the expression of cytokines in response to interactions with commensal bacteria. Profiling of bacterial 16S ribosomal RNA revealed that candidate bacteria in the order Bacteroidales are sufficient to promote IEL presence in the colon that in turn produce interleukin-6 (IL-6) in a MyD88 (myeloid differentiation primary response 88)-dependent manner. IEL-derived IL-6 is functionally important in the maintenance of the epithelial barrier as IL-6-/- mice were noted to have increased paracellular permeability, decreased claudin-1 expression, and a thinner mucus gel layer, all of which were reversed by transfer of IL-6+/+ IELs, leading to protection of mice in response to Citrobacter rodentium infection. Therefore, we conclude that microbiota provide a homeostatic role for epithelial barrier function through regulation of IEL-derived IL-6.
Collapse
Affiliation(s)
- Kristine A. Kuhn
- Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Hanna M. Schulz
- Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Emilie H. Regner
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora CO
| | - Erin L. Severs
- Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Jason D. Hendrickson
- Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Gaurav Mehta
- Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Alyssa K. Whitney
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Diana Ir
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Neha Ohri
- Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Charles E. Robertson
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Eric L. Campbell
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Sean P. Colgan
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| |
Collapse
|
37
|
Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, Wu X, DeStefano Shields CE, Hechenbleikner EM, Huso DL, Anders RA, Giardiello FM, Wick EC, Wang H, Wu S, Pardoll DM, Housseau F, Sears CL. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 2018; 359:592-597. [PMID: 29420293 PMCID: PMC5881113 DOI: 10.1126/science.aah3648] [Citation(s) in RCA: 760] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/28/2017] [Accepted: 12/28/2017] [Indexed: 12/23/2022]
Abstract
Individuals with sporadic colorectal cancer (CRC) frequently harbor abnormalities in the composition of the gut microbiome; however, the microbiota associated with precancerous lesions in hereditary CRC remains largely unknown. We studied colonic mucosa of patients with familial adenomatous polyposis (FAP), who develop benign precursor lesions (polyps) early in life. We identified patchy bacterial biofilms composed predominately of Escherichia coli and Bacteroides fragilis Genes for colibactin (clbB) and Bacteroides fragilis toxin (bft), encoding secreted oncotoxins, were highly enriched in FAP patients' colonic mucosa compared to healthy individuals. Tumor-prone mice cocolonized with E. coli (expressing colibactin), and enterotoxigenic B. fragilis showed increased interleukin-17 in the colon and DNA damage in colonic epithelium with faster tumor onset and greater mortality, compared to mice with either bacterial strain alone. These data suggest an unexpected link between early neoplasia of the colon and tumorigenic bacteria.
Collapse
Affiliation(s)
- Christine M Dejea
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Payam Fathi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - John M Craig
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Annemarie Boleij
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, Netherlands
| | - Rahwa Taddese
- Department of Pathology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, Netherlands
| | - Abby L Geis
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Xinqun Wu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christina E DeStefano Shields
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | | | - David L Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Francis M Giardiello
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth C Wick
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Hao Wang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Shaoguang Wu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Franck Housseau
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Cynthia L Sears
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
38
|
Nycz BT, Dominguez SR, Friedman D, Hilden JM, Ir D, Robertson CE, Frank DN. Evaluation of bloodstream infections, Clostridium difficile infections, and gut microbiota in pediatric oncology patients. PLoS One 2018; 13:e0191232. [PMID: 29329346 PMCID: PMC5766145 DOI: 10.1371/journal.pone.0191232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023] Open
Abstract
Bloodstream infections (BSI) and Clostridium difficile infections (CDI) in pediatric oncology/hematology/bone marrow transplant (BMT) populations are associated with significant morbidity and mortality. The objective of this study was to explore possible associations between altered microbiome composition and the occurrence of BSI and CDI in a cohort of pediatric oncology patients. Stool samples were collected from all patients admitted to the pediatric oncology floor from Oct.-Dec. 2012. Bacterial profiles from patient stools were determined by bacterial 16S rRNA gene profiling. Differences in overall microbiome composition were assessed by a permutation-based multivariate analysis of variance test, while differences in the relative abundances of specific taxa were assessed by Kruskal-Wallis tests. At admission, 9 of 42 patients (21%) were colonized with C. difficile, while 6 of 42 (14%) subsequently developed a CDI. Furthermore, 3 patients (7%) previously had a BSI and 6 patients (14%) subsequently developed a BSI. Differences in overall microbiome composition were significantly associated with disease type (p = 0.0086), chemotherapy treatment (p = 0.018), BSI following admission from any cause (p < 0.0001) or suspected gastrointestinal organisms (p = 0.00043). No differences in baseline microbiota were observed between individuals who did or did not subsequently develop C. difficile infection. Additionally, multiple bacterial groups varied significantly between subjects with post-admission BSI compared with no BSI. Our results suggest that differences in gut microbiota not only are associated with type of cancer and chemotherapy, but may also be predictive of subsequent bloodstream infection.
Collapse
Affiliation(s)
- Bryan T. Nycz
- Division of Adult Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Samuel R. Dominguez
- Division of Pediatric Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Deborah Friedman
- Department of Epidemiology, Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Joanne M. Hilden
- Center for Blood and Cancer Disorders, Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Diana Ir
- Division of Adult Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Division of Adult Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Daniel N. Frank
- Division of Adult Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
39
|
Colorectal cancer specific conditions promote Streptococcus gallolyticus gut colonization. Proc Natl Acad Sci U S A 2017; 115:E283-E291. [PMID: 29279402 DOI: 10.1073/pnas.1715112115] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colonization by Streptococcus gallolyticus subsp. gallolyticus (SGG) is strongly associated with the occurrence of colorectal cancer (CRC). However, the factors leading to its successful colonization are unknown, and whether SGG influences the oncogenic process or benefits from the tumor-prone environment to prevail remains an open question. Here, we elucidate crucial steps that explain how CRC favors SGG colonization. By using mice genetically prone to CRC, we show that SGG colonization is 1,000-fold higher in tumor-bearing mice than in normal mice. This selective advantage occurs at the expense of resident intestinal enterococci. An SGG-specific locus encoding a bacteriocin ("gallocin") is shown to kill enterococci in vitro. Importantly, bile acids strongly enhance this bacteriocin activity in vivo, leading to greater SGG colonization. Constitutive activation of the Wnt pathway, one of the earliest signaling alterations in CRC, and the decreased expression of the bile acid apical transporter gene Slc10A2, as an effect of the Apc founding mutation, may thereby sustain intestinal colonization by SGG. We conclude that CRC-specific conditions promote SGG colonization of the gut by replacing commensal enterococci in their niche.
Collapse
|
40
|
Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol 2017; 32:43-53. [PMID: 28982615 DOI: 10.1016/j.smim.2017.09.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is linked to the development of multiple cancers, including those of the colon. Inflammation in the gut induces carcinogenic mutagenesis and promotes colorectal cancer initiation. Additionally, myeloid and lymphoid cells infiltrate established tumors and propagate so called "tumor-elicited inflammation", which in turn favors cancer development by supporting the survival and proliferation of cancer cells. In addition to the interaction between cancer cells and tumor infiltrating immune cells, the gut also hosts trillions of bacteria and other microbes, whose roles in colorectal inflammation and cancer have only been appreciated in the past decade or so. Commensal and pathobiotic bacteria promote colorectal cancer development by exploiting tumor surface barrier defects following cancer initiation, by invading normal colonic tissue and inducing local inflammation, and by generating genotoxicity against colonic epithelial cells to accelerate their oncogenic transformation. On the other hand, a balanced population of microbiota is important for the prevention of colorectal cancer due to their roles in providing certain bacterial metabolites and inhibiting intestinal inflammation. In this review we summarize our current knowledge regarding the link between microbiota, inflammation, and colorectal cancer, and aim to delineate the mechanisms by which gut microbiome and inflammatory cytokines regulate colorectal tumorigenesis.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States
| | - Elise Pitmon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States.
| |
Collapse
|
41
|
Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. AIDS 2017; 31:511-521. [PMID: 28002063 DOI: 10.1097/qad.0000000000001366] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Gut microbial translocation is a major driving force behind chronic immune activation during HIV-1 infection. HIV-1-related intestinal dysbiosis, including increases in mucosa-associated pathobionts, may influence microbial translocation and contribute to mucosal and systemic inflammation. Thus, it is critical to understand the mechanisms by which gut microbes and their metabolic products, such as butyrate, influence immune cell function during HIV-1 infection. DESIGN A cross-sectional study was performed to compare the relative abundance of butyrate-producing bacterial (BPB) species in colonic biopsies and stool of untreated, chronic HIV-1-infected (n = 18) and HIV-1-uninfected (n = 14) study participants. The effect of exogenously added butyrate on gut T-cell activation and HIV-1 infection was evaluated using an ex-vivo human intestinal cell culture model. METHODS Species were identified in 16S ribosomal RNA sequence datasets. Ex-vivo isolated lamina propria mononuclear cells were infected with C-C chemokine receptor type 5-tropic HIV-1Bal, cultured with enteric gram-negative bacteria and a range of butyrate doses, and lamina propria T-cell activation and HIV-1 infection levels measured. RESULTS Relative abundance of total BPB and specifically of Roseburia intestinalis, were lower in colonic mucosa of HIV-1-infected versus HIV-1-uninfected individuals. In HIV-1-infected study participants, R. intestinalis relative abundance inversely correlated with systemic indicators of microbial translocation, immune activation, and vascular inflammation. Exogenous butyrate suppressed enteric gram-negative bacteria-driven lamina propria T-cell activation and HIV-1 infection levels in vitro. CONCLUSION Reductions in mucosal butyrate from diminished colonic BPB may exacerbate pathobiont-driven gut T-cell activation and HIV replication, thereby contributing to HIV-associated mucosal pathogenesis.
Collapse
|
42
|
Ni Y, Wong VHY, Tai WCS, Li J, Wong WY, Lee MML, Fong FLY, El-Nezami H, Panagiotou G. A metagenomic study of the preventive effect of Lactobacillus rhamnosus GG on intestinal polyp formation in Apc Min/+ mice. J Appl Microbiol 2017; 122:770-784. [PMID: 28004480 DOI: 10.1111/jam.13386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
AIMS To investigate the in vivo effects of Lactobacillus rhamnosus GG (LGG) on intestinal polyp development and the interaction between this single-organism probiotic and the gut microbiota therein. METHODS AND RESULTS The ApcMin/+ mouse model was used to study the potential preventive effect of LGG on intestinal polyposis, while shotgun metagenomic sequencing was employed to characterize both taxonomic and functional changes within the gut microbial community. We found that the progression of intestinal polyps in the control group altered the community functional profile remarkably despite small variation in the taxonomic diversity. In comparison, the consumption of LGG helped maintain the overall functional potential and taxonomic profile in the resident microbes, thereby leading to a 25% decrease of total polyp counts. Furthermore, we found that LGG enriched those microbes or microbial activities related to short-chain fatty acid production (e.g. Roseburia and Coprococcus), as well as suppressed the ones that can lead to inflammation (e.g. Bilophila wadsworthia). CONCLUSIONS Our study using shotgun metagenomics highlights how single probiotic LGG may exert its beneficial effects and decrease polyp formation in mice by maintaining gut microbial functionality. SIGNIFICANCE AND IMPACT OF THE STUDY This probiotic intervention targeting microbiota may be used in conjugation with other dietary supplements or drugs as part of prevention strategies for early-stage colon cancer, after further clinical validations in human.
Collapse
Affiliation(s)
- Y Ni
- Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong, China
| | - V H Y Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - W C S Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - J Li
- Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong, China
| | - W Y Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - M M L Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - F L Y Fong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - H El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - G Panagiotou
- Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong, China.,Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoll Institute, Jena, Germany
| |
Collapse
|
43
|
Pope JL, Tomkovich S, Yang Y, Jobin C. Microbiota as a mediator of cancer progression and therapy. Transl Res 2017; 179:139-154. [PMID: 27554797 PMCID: PMC5674984 DOI: 10.1016/j.trsl.2016.07.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
Abstract
Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis.
Collapse
Affiliation(s)
- Jillian L Pope
- Department of Medicine, University of Florida, Gainesville, Fla
| | - Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Fla; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Fla
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Fla; Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Fla.
| |
Collapse
|
44
|
Bråten LS, Sødring M, Paulsen JE, Snipen LG, Rudi K. Cecal microbiota association with tumor load in a colorectal cancer mouse model. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2017; 28:1352433. [PMID: 28959179 PMCID: PMC5614384 DOI: 10.1080/16512235.2017.1352433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Background: Colorectal cancer (CRC) is one of the most common cancer types worldwide. The role of the intestinal microbiota in CRC, however, is not well established. In particular, the co-variation between age, tumor progression and microbiota remains largely unknown. Objective and design: We therefore used a recently developed A/J Min/+ mouse model resembling human CRC to investigate how microbial composition in cecum correlates with tumor progression, butyrate and age. Results: We found that the association between the gut microbiota and tumor load was stronger, by far, than the association with both butyrate and age. The strongest direct tumor association was found for mucosal bacteria, with nearly 60% of the significantly correlating operational taxonomic units being correlated with CRC tumor load alone. Conclusion: We favor a systemic association between tumor load and microbiota, since the correlations are associated with tumor load in gut segments other than the cecum (both small and large intestine).
Collapse
Affiliation(s)
- Line Skute Bråten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.,Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås, Norway
| | - Marianne Sødring
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås, Norway
| | - Jan Erik Paulsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås, Norway
| | - Lars Gustav Snipen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Knut Rudi
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
45
|
Päivärinta E, Niku M, Maukonen J, Storvik M, Heiman-Lindh A, Saarela M, Pajari AM, Mutanen M. Changes in intestinal immunity, gut microbiota, and expression of energy metabolism–related genes explain adenoma growth in bilberry and cloudberry-fed Apc Min mice. Nutr Res 2016; 36:1285-1297. [DOI: 10.1016/j.nutres.2016.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/29/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022]
|
46
|
Moen B, Henjum K, Måge I, Knutsen SH, Rud I, Hetland RB, Paulsen JE. Effect of Dietary Fibers on Cecal Microbiota and Intestinal Tumorigenesis in Azoxymethane Treated A/J Min/+ Mice. PLoS One 2016; 11:e0155402. [PMID: 27196124 PMCID: PMC4873001 DOI: 10.1371/journal.pone.0155402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/28/2016] [Indexed: 12/23/2022] Open
Abstract
Foods naturally high in dietary fiber are generally considered to protect against development of colorectal cancer (CRC). However, the intrinsic effect of dietary fiber on intestinal carcinogenesis is unclear. We used azoxymethane (AOM) treated A/J Min/+ mice, which developed a significantly higher tumor load in the colon than in the small intestine, to compare the effects of dietary inulin (IN), cellulose (CE) or brewers spent grain (BSG) on intestinal tumorigenesis and cecal microbiota. Each fiber was tested at two dose levels, 5% and 15% (w/w) content of the AIN-93M diet. The microbiota was investigated by next-generation sequencing of the 16S rRNA gene (V4). We found that mice fed IN had approximately 50% lower colonic tumor load than mice fed CE or BSG (p<0.001). Surprisingly, all three types of fiber caused a dose dependent increase of colonic tumor load (p<0.001). The small intestinal tumor load was not affected by the dietary fiber interventions. Mice fed IN had a lower bacterial diversity than mice fed CE or BSG. The Bacteroidetes/Firmicutes ratio was significantly (p = 0.003) different between the three fiber diets with a higher mean value in IN fed mice compared with BSG and CE. We also found a relation between microbiota and the colonic tumor load, where many of the operational taxonomic units (OTUs) related to low tumor load were significantly enriched in mice fed IN. Among the OTUs related to low tumor load were bacteria affiliated with the Bacteroides genus. These results suggest that type of dietary fiber may play a role in the development of CRC, and that the suppressive effect of IN on colonic tumorigenesis is associated with profound changes in the cecal microbiota profile.
Collapse
Affiliation(s)
- Birgitte Moen
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Kristi Henjum
- Department of Pharmacology, Oslo University and Oslo University Hospital, Oslo, Norway
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Ingrid Måge
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Svein Halvor Knutsen
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ida Rud
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ragna Bogen Hetland
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Erik Paulsen
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Oslo Norway
| |
Collapse
|
47
|
Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T, Kwok C, Teliousis K, Ibrahim YM, Mirabal S, Erdman SE. Beneficial bacteria inhibit cachexia. Oncotarget 2016; 7:11803-16. [PMID: 26933816 PMCID: PMC4914249 DOI: 10.18632/oncotarget.7730] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.
Collapse
Affiliation(s)
- Bernard J. Varian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sravya Goureshetti
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jessica R. Lakritz
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana Levkovich
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caitlin Kwok
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Konstantinos Teliousis
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Yassin M. Ibrahim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheyla Mirabal
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|