1
|
Idlin N, Krishnamoorthy S, Wolczyk M, Fakhri M, Lechowski M, Stec N, Milek J, Mandal PK, Cendrowski J, Spanos C, Dziembowska M, Mleczko-Sanecka K, Rappsilber J, Michlewski G. Effects of genetic ablation and pharmacological inhibition of HuR on gene expression, iron metabolism, and hormone levels. BMC Biol 2025; 23:24. [PMID: 39849491 PMCID: PMC11756078 DOI: 10.1186/s12915-025-02131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND HuR/ELAV1, a ubiquitous RNA-binding protein, belongs to the RNA-binding protein family and is crucial for stabilizing and regulating the translation of various mRNA targets, influencing gene expression. Elevated HuR levels are associated with multiple disorders, including cancer and neurodegenerative diseases. Despite the identification of small molecule inhibitors targeting HuR, their detailed characterization remains limited. Recently, Eltrombopag, an FDA-approved drug for immune thrombocytopenic purpura and chemotherapy-induced thrombocytopenia, emerged as a potential HuR inhibitor. However, the specific molecular pathways influenced by both HuR and Eltrombopag are not fully understood. RESULTS Our study demonstrates that Eltrombopag operates via HuR inhibition, affecting gene expression regulation at the posttranscriptional level. We show that both HuR knockout and Eltrombopag treatment modulate iron metabolism by decreasing ferritin heavy chain (FTH1) and light chain (FTL) synthesis while increasing the expression of iron-regulatory protein 2 (IRP2), a key regulator of ferritin translation. Additionally, HuR inhibition reduces the levels of glycoprotein hormones, alpha polypeptide (CGA), a marker associated with hormone-induced tumors, suggesting a potential use of Eltrombopag in treatment of cancers overexpressing CGA. We observed that the main of control is manifested at the level of translation inhibition, with proteasome-mediated regulation also playing an important role. CONCLUSIONS These findings uncover novel posttranscriptional mechanisms governed by HuR and its inhibitor, elucidating pathways relevant to HuR-mediated regulation and molecular therapies aimed at targeting this protein.
Collapse
Affiliation(s)
- Nathalie Idlin
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Magdalena Wolczyk
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Mouad Fakhri
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michal Lechowski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Natalia Stec
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jacek Milek
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pratik Kumar Mandal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jaroslaw Cendrowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Christos Spanos
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Magdalena Dziembowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Juri Rappsilber
- Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Gracjan Michlewski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Singh V, Singh A, Liu AJ, Fuchs SY, Sharma AK, Spiegelman VS. RNA Binding Proteins as Potential Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2024; 16:3502. [PMID: 39456596 PMCID: PMC11506615 DOI: 10.3390/cancers16203502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in regulating post-transcriptional gene expression, managing processes such as mRNA splicing, stability, and translation. In normal intestine, RBPs maintain the tissue homeostasis, but when dysregulated, they can drive colorectal cancer (CRC) development and progression. Understanding the molecular mechanisms behind CRC is vital for developing novel therapeutic strategies, and RBPs are emerging as key players in this area. This review highlights the roles of several RBPs, including LIN28, IGF2BP1-3, Musashi, HuR, and CELF1, in CRC. These RBPs regulate key oncogenes and tumor suppressor genes by influencing mRNA stability and translation. While targeting RBPs poses challenges due to their complex interactions with mRNAs, recent advances in drug discovery have identified small molecule inhibitors that disrupt these interactions. These inhibitors, which target LIN28, IGF2BPs, Musashi, CELF1, and HuR, have shown promising results in preclinical studies. Their ability to modulate RBP activity presents a new therapeutic avenue for treating CRC. In conclusion, RBPs offer significant potential as therapeutic targets in CRC. Although technical challenges remain, ongoing research into the molecular mechanisms of RBPs and the development of selective, potent, and bioavailable inhibitors should lead to more effective treatments and improved outcomes in CRC.
Collapse
Affiliation(s)
- Vikash Singh
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Alvin John Liu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| |
Collapse
|
3
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
4
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
5
|
Joseph BP, Weber V, Knüpfer L, Giorgetti A, Alfonso-Prieto M, Krauß S, Carloni P, Rossetti G. Low Molecular Weight Inhibitors Targeting the RNA-Binding Protein HuR. Int J Mol Sci 2023; 24:13127. [PMID: 37685931 PMCID: PMC10488267 DOI: 10.3390/ijms241713127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The RNA-binding protein human antigen R (HuR) regulates stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. This protein has been progressively recognized as a relevant therapeutic target for several pathologies, like cancer, neurodegeneration, as well as inflammation. Inhibitors of mRNA binding to HuR might thus be beneficial against a variety of diseases. Here, we present the rational identification of structurally novel HuR inhibitors. In particular, by combining chemoinformatic approaches, high-throughput virtual screening, and RNA-protein pulldown assays, we demonstrate that the 4-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)benzoate ligand exhibits a dose-dependent HuR inhibition effect in binding experiments. Importantly, the chemical scaffold is new with respect to the currently known HuR inhibitors, opening up a new avenue for the design of pharmaceutical agents targeting this important protein.
Collapse
Affiliation(s)
- Benjamin Philipp Joseph
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Verena Weber
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Lisa Knüpfer
- Institute of Biology, University of Siegen, 57076 Siegen, Germany;
| | - Alejandro Giorgetti
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mercedes Alfonso-Prieto
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
| | - Sybille Krauß
- Institute of Biology, University of Siegen, 57076 Siegen, Germany;
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (INM-9/IAS-5), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; (B.P.J.); (V.W.); (A.G.); (M.A.-P.); (G.R.)
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, RWTH Aachen University, 44517 Aachen, Germany
| |
Collapse
|
6
|
Schmeing S, Amrahova G, Bigler K, Chang JY, Openy J, Pal S, Posada L, Gasper R, 't Hart P. Rationally designed stapled peptides allosterically inhibit PTBP1-RNA-binding. Chem Sci 2023; 14:8269-8278. [PMID: 37564416 PMCID: PMC10411625 DOI: 10.1039/d3sc00985h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
The diverse role of the splicing factor PTBP1 in human cells has been widely studied and was found to be a driver for several diseases. PTBP1 binds RNA through its RNA-recognition motifs which lack obvious pockets for inhibition. A unique transient helix has been described to be part of its first RNA-recognition motif and to be important for RNA binding. In this study, we further confirmed the role of this helix and envisioned its dynamic nature as a unique opportunity to develop stapled peptide inhibitors of PTBP1. The peptides were found to be able to inhibit RNA binding via fluorescence polarization assays and directly occupy the helix binding site as observed by protein crystallography. These cell-permeable inhibitors were validated in cellulo to alter the regulation of alternative splicing events regulated by PTBP1. Our study demonstrates transient secondary structures of a protein can be mimicked by stapled peptides to inhibit allosteric mechanisms.
Collapse
Affiliation(s)
- Stefan Schmeing
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Gulshan Amrahova
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Katrin Bigler
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Jen-Yao Chang
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Joseph Openy
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Sunit Pal
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Laura Posada
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
7
|
Li Q, Kang C. Targeting RNA-binding proteins with small molecules: Perspectives, pitfalls and bifunctional molecules. FEBS Lett 2023; 597:2031-2047. [PMID: 37519019 DOI: 10.1002/1873-3468.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
RNA-binding proteins (RBPs) play vital roles in organisms through binding with RNAs to regulate their functions. Small molecules affecting the function of RBPs have been developed, providing new avenues for drug discovery. Herein, we describe the perspectives on developing small molecule regulators of RBPs. The following types of small molecule modulators are of great interest in drug discovery: small molecules binding to RBPs to affect interactions with RNA molecules, bifunctional molecules binding to RNA or RBP to influence their interactions, and other types of molecules that affect the stability of RNA or RBPs. Moreover, we emphasize that the bifunctional molecules may play important roles in small molecule development to overcome the challenges encountered in the process of drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
8
|
Bertoldo JB, Müller S, Hüttelmaier S. RNA-binding proteins in cancer drug discovery. Drug Discov Today 2023; 28:103580. [PMID: 37031812 DOI: 10.1016/j.drudis.2023.103580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Müller
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Stefan Hüttelmaier
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
9
|
Ma Q, Lu Q, Lei X, Zhao J, Sun W, Huang D, Zhu Q, Xu Q. Relationship between HuR and tumor drug resistance. Clin Transl Oncol 2023:10.1007/s12094-023-03109-5. [PMID: 36947360 DOI: 10.1007/s12094-023-03109-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Human resistance protein R (HuR), also known as embryonic lethal abnormal visual-like protein (ELAVL1), is an RNA-binding protein widely expressed in vivo that affects the mRNA stability of targeted and is involved in post-transcriptional regulation. Recent studies have shown that HuR is aberrantly expressed in different human cancers and is an essential factor in poor clinical prognosis. The role of HuR in numerous tumors suggests that it could be a new target for tumor therapy and as a marker for efficacy and prognostic assessment. This review focuses on the relationship between HuR and drug resistance in different tumors and briefly describes the structure, function, and inhibitors of HuR. We summarize the mechanisms by which HuR causes tumor resistance and the molecular targets affected.
Collapse
Affiliation(s)
- Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, 266000, China
| | | | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen Sun
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis, and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qing Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis, and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Wu X, Ramesh R, Wang J, Zheng Y, Armaly AM, Wei L, Xing M, Roy S, Lan L, Gao FP, Miao Y, Xu L, Aubé J. Small Molecules Targeting the RNA-Binding Protein HuR Inhibit Tumor Growth in Xenografts. J Med Chem 2023; 66:2032-2053. [PMID: 36690437 PMCID: PMC10101218 DOI: 10.1021/acs.jmedchem.2c01723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The RNA-binding protein Hu antigen R (HuR) is a post-transcriptional regulator critical in several types of diseases, including cancer, making it a promising therapeutic target. We have identified small-molecule inhibitors of HuR through a screening approach used in combination with fragment analysis. A total of 36 new compounds originating from fragment linking or structural optimization were studied to establish structure-activity relationships in the set. Two top inhibitors, 1c and 7c, were further validated by binding assays and cellular functional assays. Both block HuR function by directly binding to the RNA-binding pocket, inhibit cancer cell growth dependence of HuR, and suppress cancer cell invasion. Intraperitoneal administration of inhibitor 1c inhibits tumor growth as a single agent and shows a synergistic effect in combination with chemotherapy docetaxel in breast cancer xenograft models. Mechanistically, 1c interferes with the HuR-TGFB/THBS1 axis.
Collapse
Affiliation(s)
| | - Remya Ramesh
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | - Youguang Zheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ahlam M Armaly
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | | | | - Liang Xu
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Assoni G, La Pietra V, Digilio R, Ciani C, Licata NV, Micaelli M, Facen E, Tomaszewska W, Cerofolini L, Pérez-Ràfols A, Varela Rey M, Fragai M, Woodhoo A, Marinelli L, Arosio D, Bonomo I, Provenzani A, Seneci P. HuR-targeted agents: An insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models. Adv Drug Deliv Rev 2022; 181:114088. [PMID: 34942276 DOI: 10.1016/j.addr.2021.114088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).
Collapse
Affiliation(s)
- Giulia Assoni
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rosangela Digilio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Caterina Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Nausicaa Valentina Licata
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Mariachiara Micaelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elisa Facen
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Weronika Tomaszewska
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Pérez-Ràfols
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marta Varela Rey
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Functional Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain; Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Luciana Marinelli
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), National Research Council (CNR), Via C. Golgi 19, I-20133 Milan, Italy
| | - Isabelle Bonomo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| | - Pierfausto Seneci
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
12
|
Goutas D, Pergaris A, Giaginis C, Theocharis S. HuR as Therapeutic Target in Cancer: What the Future Holds. Curr Med Chem 2021; 29:56-65. [PMID: 34182901 DOI: 10.2174/0929867328666210628143430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
ELAV-like protein 1, or HuR (human antigen R), is an RNA-binding protein encoded by the ELAVL1 gene in humans. One of its best functions is to stabilize mRNAs in order to regulate gene expression. HuR protein overexpression has undoubtedly been linked to an increased risk of tumor growth, progression, and metastasis, rendering it a potential therapeutic target candidate in cancer. Novel agents interfering with HuR expression have been tested, both in vitro and in vivo, with promising results. The aim of this paper is to review the existing literature regarding the potential agents that could actively act on and inhibit HuR expression. HuR molecule controls the expression of various proto-oncogenes, cytokines and growth factors, representing a major player in tumor progression, invasion, and metastasis and constituting an emerging target for cancer therapy. PubMed database was thoroughly searched, and all published articles providing scientific data on molecules that can exhibit antitumorigenic effects via HuR inhibition were included. According to these data, HuR inhibition should be a promising target in cancer therapeutics.
Collapse
Affiliation(s)
- Dimitrios Goutas
- First Department of Pathology, The National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Alexandros Pergaris
- First Department of Pathology, The National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, The National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
13
|
Liu Y, Li X, Zhang H, Zhang M, Wei Y. HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer. Oncogene 2021; 40:2230-2242. [PMID: 33649535 PMCID: PMC7994200 DOI: 10.1038/s41388-021-01689-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Despite the well-established role of CMTM6 in the stabilization of cell surface PD-L1 in cancer cells, the mechanisms underlying CMTM6 expression and regulation are still largely unknown. Here we unexpectedly find a strikingly positive correlation between CMTM6 and Hu-Antigen R (HuR) expression in most types of cancer. Mechanistically, we elucidate HuR stabilizes CMTM6 mRNA via direct association with AU-rich elements (AREs) in its 3′UTR and predominantly up-regulates CMTM6, which is readily abolished by HuR-specific inhibitor, MS-444. Phenotypically, we notice abundant cell surface PD-L1 in HuR-high cancer cells, which significantly inhibits immune activation of co-cultured T cells as indicated by IL-2 production. Treatment with MS-444 completely relieves immune suppression imposed by HuR-overexpression and further stimulates immune responses. Ectopic HuR accelerates allograft tumor progression in vivo, which is greatly compromised by simultaneous administration with MS-444. Our study uncovers a novel mechanism in control of CMTM6 and therefore PD-L1 expression, and suggests the potential of combining HuR inhibitor with PD-1/PD-L1 antibodies for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanbin Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China. .,BioBox Sciences, Inc, Guangzhou, China.
| | - Xingzhi Li
- Department of urological surgery, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Mingming Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Papatheofani V, Levidou G, Sarantis P, Koustas E, Karamouzis MV, Pergaris A, Kouraklis G, Theocharis S. HuR Protein in Hepatocellular Carcinoma: Implications in Development, Prognosis and Treatment. Biomedicines 2021; 9:119. [PMID: 33513829 PMCID: PMC7912068 DOI: 10.3390/biomedicines9020119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hu-antigen R (HuR) is a post-transcriptional regulator that belongs to the embryonic lethal abnormal vision Drosophila-like family (ELAV). HuR regulates the stability, translation, subcellular localization, and degradation of several target mRNAs, which are implicated in carcinogenesis and could affect therapeutic options. HuR protein is consistently highly expressed in hepatocellular carcinoma (HCC) compared to the adjacent normal liver tissue and is involved in the post-transcriptional regulation of various genes implicated in liver malignant transformation. Additionally, HuR protein seems to be a putative prognosticator in HCC, predicting worse survival. This review summarizes the recent evidence regarding the role of HuR in primary liver tumors, as presented in clinical studies, in vitro experiments and in vivo animal models. In conclusion, our review supports the consistent role of HuR protein in the development, prognosis, and treatment of HCC. Additional studies are expected to expand current information and exploit its putative employment as a future candidate for more personalized treatment in these tumors.
Collapse
Affiliation(s)
- Vasiliki Papatheofani
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
- Second Department of Propedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia Levidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (M.V.K.)
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (M.V.K.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (M.V.K.)
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
| | - Gregorios Kouraklis
- Second Department of Propedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
| |
Collapse
|
15
|
Filippova N, Nabors LB. ELAVL1 Role in Cell Fusion and Tunneling Membrane Nanotube Formations with Implication to Treat Glioma Heterogeneity. Cancers (Basel) 2020; 12:E3069. [PMID: 33096700 PMCID: PMC7590168 DOI: 10.3390/cancers12103069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Homotypic and heterotypic cell fusions via permanent membrane fusions and temporal tunneling nanotube formations in the glioma microenvironment were recently documented in vitro and in vivo and mediate glioma survival, plasticity, and recurrence. Chronic inflammation, a hypoxic environment, aberrant mitochondrial function, and ER stress due to unfolded protein accumulation upregulate cell fusion events, which leads to tumor heterogeneity and represents an adaptive mechanism to promote tumor cell survival and plasticity in cytotoxic, nutrient-deprived, mechanically stressed, and inflammatory microenvironments. Cell fusion is a multistep process, which consists of the activation of the cellular stress response, autophagy formation, rearrangement of cytoskeletal architecture in the areas of cell-to-cell contacts, and the expression of proinflammatory cytokines and fusogenic proteins. The mRNA-binding protein of ELAV-family HuR is a critical node, which orchestrates the stress response, autophagy formation, cytoskeletal architecture, and the expression of proinflammatory cytokines and fusogenic proteins. HuR is overexpressed in gliomas and is associated with poor prognosis and treatment resistance. Our review provides a link between the HuR role in the regulation of cell fusion and tunneling nanotube formations in the glioma microenvironment and the potential suppression of these processes by different classes of HuR inhibitors.
Collapse
Affiliation(s)
- Natalia Filippova
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Louis B. Nabors
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Ricciardi L, Giurato G, Memoli D, Pietrafesa M, Dal Col J, Salvato I, Nigro A, Vatrella A, Caramori G, Casolaro V, Stellato C. Posttranscriptional Gene Regulatory Networks in Chronic Airway Inflammatory Diseases: In silico Mapping of RNA-Binding Protein Expression in Airway Epithelium. Front Immunol 2020; 11:579889. [PMID: 33178205 PMCID: PMC7596416 DOI: 10.3389/fimmu.2020.579889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Posttranscriptional gene regulation (PTGR) contributes to inflammation through alterations in messenger RNA (mRNA) turnover and translation rates. RNA-binding proteins (RBPs) coordinate these processes but their role in lung inflammatory diseases is ill-defined. We evaluated the expression of a curated list of mRNA-binding RBPs (mRBPs) in selected Gene Expression Omnibus (GEO) transcriptomic databases of airway epithelium isolated from chronic obstructive pulmonary disease (COPD), severe asthma (SA) and matched control subjects, hypothesizing that global changes in mRBPs expression could be used to infer their pathogenetic roles and identify novel disease-related regulatory networks. Methods: A published list of 692 mRBPs [Nat Rev Genet 2014] was searched in GEO datasets originated from bronchial brushings of stable COPD patients (C), smokers (S), non-smokers (NS) controls with normal lung function (n = 6/12/12) (GEO ID: GSE5058) and of (SA) and healthy control (HC) (n = 6/12) (GSE63142). Fluorescence intensity data were extracted and normalized on the medians for fold change (FC) comparisons. FCs were set at ≥ |1.5| with a false discovery rate (FDR) of ≤ 0.05. Pearson correlation maps and heatmaps were generated using tMEV tools v4_9_0.45. DNA sequence motifs were searched using PScan-ChIP. Gene Ontology (GO) was performed with Ingenuity Pathway Analysis (IPA) tool. Results: Significant mRBP expression changes were detected for S/NS, COPD/NS and COPD/S (n = 41, 391, 382, respectively). Of those, 32% of genes changed by FC ≥ |1.5| in S/NS but more than 60% in COPD/NS and COPD/S (n = 13, 267, 257, respectively). Genes were predominantly downregulated in COPD/NS (n = 194, 73%) and COPD/S (n = 202, 79%), less so in S/NS (n = 4, 31%). Unsupervised cluster analysis identified in 4 out of 12 S the same mRBP pattern seen in C, postulating subclinical COPD. Significant DNA motifs enrichment for transcriptional regulation was found for downregulated RBPs. Correlation analysis identified five clusters of co-expressed mRBPs. GO analysis revealed significant enrichments in canonical pathways both specific and shared among comparisons. Unexpectedly, no significant mRBPs modulation was found in SA compared to controls. Conclusions: Airway epithelial mRBPs profiling reveals a COPD-specific global downregulation of RBPs shared by a subset of control smokers, the potential of functional cooperation by coexpressed RBPs and significant impact on relevant pathogenetic pathways in COPD. Elucidation of PTGR in COPD could identify disease biomarkers or pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Luca Ricciardi
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Mariagrazia Pietrafesa
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Ilaria Salvato
- Pulmonology, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Gaetano Caramori
- Pulmonology, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020; 63:14184-14196. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolution of rapidly proliferating infectious and tumorigenic diseases has resulted in an urgent need to develop new and improved intervention strategies. Among the many therapeutic strategies at our disposal, our immune system remains the gold-standard in disease prevention, diagnosis, and treatment. Vaccines have played an important role in eradicating or mitigating the spread of infectious diseases by bolstering our immunity. Despite their utility, the design and development of new, more effective vaccines remains a public health necessity. Peptide-based vaccines have been developed for a wide range of established and emerging infectious and tumorigenic diseases. New innovations in epitope design and selection, synthesis, and formulation as well as screening techniques against immunological targets have led to more effective peptide vaccines. Current and future work is geared toward the translation of peptide vaccines from preclinical to clinical utility.
Collapse
Affiliation(s)
- David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| |
Collapse
|
18
|
Weiße J, Rosemann J, Krauspe V, Kappler M, Eckert AW, Haemmerle M, Gutschner T. RNA-Binding Proteins as Regulators of Migration, Invasion and Metastasis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:E6835. [PMID: 32957697 PMCID: PMC7555251 DOI: 10.3390/ijms21186835] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.
Collapse
Affiliation(s)
- Jonas Weiße
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Julia Rosemann
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Vanessa Krauspe
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Alexander W. Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| |
Collapse
|
19
|
Wu M, Tong CWS, Yan W, To KKW, Cho WCS. The RNA Binding Protein HuR: A Promising Drug Target for Anticancer Therapy. Curr Cancer Drug Targets 2020; 19:382-399. [PMID: 30381077 DOI: 10.2174/1568009618666181031145953] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The stability of mRNA is one of the key factors governing the regulation of eukaryotic gene expression and function. Human antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. While HuR is normally localized within the nucleus, it has been shown that HuR binds mRNAs in the nucleus and then escorts the mRNAs to the cytoplasm where HuR protects them from degradation. It contains several RNA recognition motifs, which specifically bind to adenylate and uridylate-rich regions within the 3'-untranslated region of the target mRNA to mediate its effect. Many of the HuR target mRNAs encode proteins important for cell growth, tumorigenesis, angiogenesis, tumor inflammation, invasion and metastasis. HuR overexpression is known to correlate well with high-grade malignancy and poor prognosis in many tumor types. Thus, HuR has emerged as an attractive drug target for cancer therapy. Novel small molecule HuR inhibitors have been identified by high throughput screening and new formulations for targeted delivery of HuR siRNA to tumor cells have been developed with promising anticancer activity. This review summarizes the significant role of HuR in cancer development, progression, and poor treatment response. We will discuss the potential and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
20
|
Zhu Y, Yang L, Xu J, Yang X, Luan P, Cui Q, Zhang P, Wang F, Li R, Ding X, Jiang L, Lin G, Zhang J. Discovery of the anti-angiogenesis effect of eltrombopag in breast cancer through targeting of HuR protein. Acta Pharm Sin B 2020; 10:1414-1425. [PMID: 32963940 PMCID: PMC7488360 DOI: 10.1016/j.apsb.2020.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
HuR (human antigen R), an mRNA-binding protein responsible for poor prognosis in nearly all kinds of malignancies, is a potential anti-tumor target for drug development. While screening HuR inhibitors with a fluorescence polarization (FP) based high-throughput screening (HTS) system, the clinically used drug eltrombopag was identified. Activity of eltrombopag on molecular level was verified with FP, electrophoretic mobility shift assay (EMSA), simulation docking and surface plasmon resonance (SPR). Further, we showed that eltrombopag inhibited in vitro cell proliferation of multiple cancer cell lines and macrophages, and the in vivo anti-tumor activity was also demonstrated in a 4T1 tumor-bearing mouse model. The in vivo data showed that eltrombopag was efficient in reducing microvessels in tumor tissues. We then confirmed the HuR-dependent anti-angiogenesis effect of eltrombopag in 4T1 cells and RAW264.7 macrophages with qRT-PCR, HuR-overexpression and HuR-silencing assays, RNA stability assays, RNA immunoprecipitation and luciferase assays. Finally, we analyzed the in vitro anti-angiogenesis effect of eltrombopag on human umbilical vein endothelial cells (HUVECs) mediated by macrophages with cell scratch assay and in vitro Matrigel angiogenesis assay. With these data, we revealed the HuR-dependent anti-angiogenesis effect of eltrombopag in breast tumor, suggesting that the existing drug eltrombopag may be used as an anti-cancer drug.
Collapse
Key Words
- ARE, AU-rich element
- Angiogenesis
- Anti-tumor
- ELB, eltrombopag
- ELISA, enzyme linked immune sorbent assay
- EMSA, electrophoretic mobility shift assay
- Eltrombopag
- FP, fluorescence polarization
- HTS, high-throughput screening
- HUVEC, human umbilical vein endothelial cell
- HuR
- HuR, human antigen R
- IHC, immunohistochemistry
- RIP, RNA immunoprecipitation
- SPR, surface plasmon resonance
- mRNAs stability
- qRT-PCR, quantitative real-time PCR
Collapse
Affiliation(s)
- Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liuqing Yang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiazhen Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiyan Yang
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengwei Luan
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianfei Cui
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyue Ding
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lixian Jiang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guoqiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
21
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
RNA-Targeted Therapies and High-Throughput Screening Methods. Int J Mol Sci 2020; 21:ijms21082996. [PMID: 32340368 PMCID: PMC7216119 DOI: 10.3390/ijms21082996] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are involved in regulating all aspects of RNA metabolism, including processing, transport, translation, and degradation. Dysregulation of RNA metabolism is linked to a plethora of diseases, such as cancer, neurodegenerative diseases, and neuromuscular disorders. Recent years have seen a dramatic shift in the knowledge base, with RNA increasingly being recognised as an attractive target for precision medicine therapies. In this article, we are going to review current RNA-targeted therapies. Furthermore, we will scrutinise a range of drug discoveries targeting protein-RNA interactions. In particular, we will focus on the interplay between Lin28 and let-7, splicing regulatory proteins and survival motor neuron (SMN) pre-mRNA, as well as HuR, Musashi, proteins and their RNA targets. We will highlight the mechanisms RBPs utilise to modulate RNA metabolism and discuss current high-throughput screening strategies. This review provides evidence that we are entering a new era of RNA-targeted medicine.
Collapse
|
23
|
Schultz CW, Preet R, Dhir T, Dixon DA, Brody JR. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR). WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1581. [PMID: 31970930 DOI: 10.1002/wrna.1581] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
Abstract
Altered gene expression is a characteristic feature of many disease states such as tumorigenesis, and in most cancers, it facilitates cancer cell survival and adaptation. Alterations in global gene expression are strongly impacted by post-transcriptional gene regulation. The RNA binding protein (RBP) HuR (ELAVL1) is an established regulator of post-transcriptional gene regulation and is overexpressed in most human cancers. In many cancerous settings, HuR is not only overexpressed, but it is "overactive" as denoted by increased subcellular localization within the cytoplasm. This dysregulation of HuR expression and cytoplasmic localization allows HuR to stabilize and increase the translation of various prosurvival messenger RNA (mRNAs) involved in the pathogenesis of numerous cancers and various diseases. Based on almost 20 years of work, HuR is now recognized as a therapeutic target. Herein, we will review the role HuR plays in the pathophysiology of different diseases and ongoing therapeutic strategies to target HuR. We will focus on three ongoing-targeted strategies: (1) inhibiting HuR's translocation from the nucleus to the cytoplasm; (2) inhibiting the ability of HuR to bind target RNA; and (3) silencing HuR expression levels. In an oncologic setting, HuR has been demonstrated to be critical for a cancer cell's ability to survive a variety of cancer relevant stressors (including drugs and elements of the tumor microenvironment) and targeting this protein has been shown to sensitize cancer cells further to insult. We strongly believe that targeting HuR could be a powerful therapeutic target to treat different diseases, particularly cancer, in the near future. This article is categorized under: RNA in Disease and Development > RNA in Disease NRA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation.
Collapse
Affiliation(s)
- Christopher W Schultz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Teena Dhir
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Poganik JR, Long MJC, Disare MT, Liu X, Chang SH, Hla T, Aye Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1. FASEB J 2019; 33:14636-14652. [PMID: 31665914 DOI: 10.1096/fj.201901930r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling axis is a target of covalent drugs and bioactive native electrophiles. However, much of our understanding of Nrf2 regulation has been focused at the protein level. Here we report a post-transcriptional modality to directly regulate Nrf2-mRNA. Our initial studies focused on the effects of the key mRNA-binding protein (mRBP) HuR on global transcriptomic changes incurred upon oxidant or electrophile stimulation. These RNA-sequencing data and subsequent mechanistic analyses led us to discover a novel role of HuR in regulating Nrf2 activity, and in the process, we further identified the related mRBP AUF1 as an additional novel Nrf2 regulator. Both mRBPs regulate Nrf2 activity by direct interaction with the Nrf2 transcript. Our data showed that HuR enhances Nrf2-mRNA maturation and promotes its nuclear export, whereas AUF1 stabilizes Nrf2-mRNA. Both mRBPs target the 3'-UTR of Nrf2-mRNA. Using a Nrf2 activity-reporter zebrafish strain, we document that this post-transcriptional control of Nrf2 activity is conserved at the whole-vertebrate level.-Poganik, J. R., Long, M. J. C., Disare, M. T., Liu, X., Chang, S.-H., Hla, T., Aye, Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1.
Collapse
Affiliation(s)
- Jesse R Poganik
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Marcus J C Long
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Michael T Disare
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Xuyu Liu
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sung-Hee Chang
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Timothy Hla
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA; and.,Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Depletion of HuR in murine skeletal muscle enhances exercise endurance and prevents cancer-induced muscle atrophy. Nat Commun 2019; 10:4171. [PMID: 31519904 PMCID: PMC6744452 DOI: 10.1038/s41467-019-12186-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The master posttranscriptional regulator HuR promotes muscle fiber formation in cultured muscle cells. However, its impact on muscle physiology and function in vivo is still unclear. Here, we show that muscle-specific HuR knockout (muHuR-KO) mice have high exercise endurance that is associated with enhanced oxygen consumption and carbon dioxide production. muHuR-KO mice exhibit a significant increase in the proportion of oxidative type I fibers in several skeletal muscles. HuR mediates these effects by collaborating with the mRNA decay factor KSRP to destabilize the PGC-1α mRNA. The type I fiber-enriched phenotype of muHuR-KO mice protects against cancer cachexia-induced muscle loss. Therefore, our study uncovers that under normal conditions HuR modulates muscle fiber type specification by promoting the formation of glycolytic type II fibers. We also provide a proof-of-principle that HuR expression can be targeted therapeutically in skeletal muscles to combat cancer-induced muscle wasting. HuR is an RNA-binding protein that regulates myotube differentiation in vitro. Here, the authors show that the muscle-specific ablation of HuR in mice leads to enhanced endurance capacity and an increase in oxidative fibres by destabilising PGC1α-mRNA, and show that the mice are protected against cancer cachexia
Collapse
|
26
|
McGovern-Gooch KR, Baird NJ. Fluorescence-based investigations of RNA-small molecule interactions. Methods 2019; 167:54-65. [PMID: 31129289 DOI: 10.1016/j.ymeth.2019.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Interrogating non-coding RNA structures and functions with small molecules is an area of rapidly increasing interest among biochemists and chemical biologists. However, many biochemical approaches to monitoring RNA structures are time-consuming and low-throughput, and thereby are only of limited utility for RNA-small molecule studies. Fluorescence-based techniques are powerful tools for rapid investigation of RNA conformations, dynamics, and interactions with small molecules. Many fluorescence methods are amenable to high-throughput analysis, enabling library screening for small molecule binders. In this review, we summarize numerous fluorescence-based approaches for identifying and characterizing RNA-small molecule interactions. We describe in detail a high-information content dual-reporter FRET assay we developed to characterize small molecule-induced conformational and stability changes. Our assay is uniquely suited as a platform for both small molecule discovery and thorough characterization of RNA-small molecule binding mechanisms. Given the growing recognition of non-coding RNAs as attractive targets for therapeutic intervention, we anticipate our FRET assay and other fluorescence-based techniques will be indispensable for the development of potent and specific small molecule inhibitors targeting RNA.
Collapse
Affiliation(s)
- Kayleigh R McGovern-Gooch
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104 United States
| | - Nathan J Baird
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104 United States.
| |
Collapse
|
27
|
Heber S, Gáspár I, Tants JN, Günther J, Moya SMF, Janowski R, Ephrussi A, Sattler M, Niessing D. Staufen2-mediated RNA recognition and localization requires combinatorial action of multiple domains. Nat Commun 2019; 10:1659. [PMID: 30971701 PMCID: PMC6477676 DOI: 10.1038/s41467-019-09655-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/20/2019] [Indexed: 11/08/2022] Open
Abstract
Throughout metazoans, Staufen (Stau) proteins are core factors of mRNA localization particles. They consist of three to four double-stranded RNA binding domains (dsRBDs) and a C-terminal dsRBD-like domain. Mouse Staufen2 (mStau2)-like Drosophila Stau (dmStau) contains four dsRBDs. Existing data suggest that only dsRBDs 3-4 are necessary and sufficient for mRNA binding. Here, we show that dsRBDs 1 and 2 of mStau2 bind RNA with similar affinities and kinetics as dsRBDs 3 and 4. While RNA binding by these tandem domains is transient, all four dsRBDs recognize their target RNAs with high stability. Rescue experiments in Drosophila oocytes demonstrate that mStau2 partially rescues dmStau-dependent mRNA localization. In contrast, a rescue with mStau2 bearing RNA-binding mutations in dsRBD1-2 fails, confirming the physiological relevance of our findings. In summary, our data show that the dsRBDs 1-2 play essential roles in the mRNA recognition and function of Stau-family proteins of different species.
Collapse
Affiliation(s)
- Simone Heber
- Institute of Pharmaceutical Biotechnology, 89081 Ulm University, Ulm, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Imre Gáspár
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Institute of Molecular Biotechnology, 1030, Vienna, Austria
| | - Jan-Niklas Tants
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747, Garching, Germany
| | - Johannes Günther
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747, Garching, Germany
| | - Sandra M Fernandez Moya
- Biomedical Center Munich, Department of Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747, Garching, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, 89081 Ulm University, Ulm, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
28
|
Yi C, Li G, Ivanov DN, Wang Z, Velasco MX, Hernández G, Kaundal S, Villarreal J, Gupta YK, Qiao M, Hubert CG, Hart MJ, Penalva LOF. Luteolin inhibits Musashi1 binding to RNA and disrupts cancer phenotypes in glioblastoma cells. RNA Biol 2018; 15:1420-1432. [PMID: 30362859 DOI: 10.1080/15476286.2018.1539607] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA binding proteins have emerged as critical oncogenic factors and potential targets in cancer therapy. In this study, we evaluated Musashi1 (Msi1) targeting as a strategy to treat glioblastoma (GBM); the most aggressive brain tumor type. Msi1 expression levels are often high in GBMs and other tumor types and correlate with poor clinical outcome. Moreover, Msi1 has been implicated in chemo- and radio-resistance. Msi1 modulates a range of cancer relevant processes and pathways and regulates the expression of stem cell markers and oncogenic factors via mRNA translation/stability. To identify Msi1 inhibitors capable of blocking its RNA binding function, we performed a ~ 25,000 compound fluorescence polarization screen. NMR and LSPR were used to confirm direct interaction between Msi1 and luteolin, the leading compound. Luteolin displayed strong interaction with Msi1 RNA binding domain 1 (RBD1). As a likely consequence of this interaction, we observed via western and luciferase assays that luteolin treatment diminished Msi1 positive impact on the expression of pro-oncogenic target genes. We tested the effect of luteolin treatment on GBM cells and showed that it reduced proliferation, cell viability, colony formation, migration and invasion of U251 and U343 GBM cells. Luteolin also decreased the proliferation of patient-derived glioma initiating cells (GICs) and tumor-organoids but did not affect normal astrocytes. Finally, we demonstrated the value of combined treatments with luteolin and olaparib (PARP inhibitor) or ionizing radiation (IR). Our results show that luteolin functions as an inhibitor of Msi1 and demonstrates its potential use in GBM therapy.
Collapse
Affiliation(s)
- Caihong Yi
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,b Xiangya School of Medicine , Central South University , Hunan , China
| | - Guiming Li
- c Center for Innovative Drug Discovery , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Dmitri N Ivanov
- d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Zhonghua Wang
- d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Mitzli X Velasco
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,e Division of Basic Research , National Institute of Cancer (INCan) , Mexico City , Mexico
| | - Greco Hernández
- e Division of Basic Research , National Institute of Cancer (INCan) , Mexico City , Mexico
| | - Soni Kaundal
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Johanna Villarreal
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Yogesh K Gupta
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Mei Qiao
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Christopher G Hubert
- f Department of Stem Cell Biology and Regenerative Medicine , Cleveland Clinic , Cleveland , OH , USA
| | - Matthew J Hart
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,c Center for Innovative Drug Discovery , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Luiz O F Penalva
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,g Department of Cell Systems and Anatomy , University of Texas Health Science Center , San Antonio , TX , USA
| |
Collapse
|
29
|
Ricciardi L, Col JD, Casolari P, Memoli D, Conti V, Vatrella A, Vonakis BM, Papi A, Caramori G, Stellato C. Differential expression of RNA-binding proteins in bronchial epithelium of stable COPD patients. Int J Chron Obstruct Pulmon Dis 2018; 13:3173-3190. [PMID: 30349226 PMCID: PMC6190813 DOI: 10.2147/copd.s166284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Inflammatory gene expression is modulated by posttranscriptional regulation via RNA-binding proteins (RBPs), which regulate mRNA turnover and translation by binding to conserved mRNA sequences. Their role in COPD is only partially defined. This study evaluated RBPs tristetraprolin (TTP), human antigen R (HuR), and AU-rich element-binding factor 1 (AUF-1) expression using lung tissue from COPD patients and control subjects and probed their function in epithelial responses in vitro. Patients and methods RBPs were detected by immunohistochemistry in bronchial and peripheral lung samples from mild-to-moderate stable COPD patients and age/smoking history-matched controls; RBPs and RBP-regulated genes were evaluated by Western blot, ELISA, protein array, and real-time PCR in human airway epithelial BEAS-2B cell line stimulated with hydrogen peroxide, cytokine combination (cytomix), cigarette smoke extract (CSE), and following siRNA-mediated silencing. Results were verified in a microarray database from bronchial brushings of COPD patients and controls. RBP transcripts were measured in peripheral blood mononuclear cell samples from additional stable COPD patients and controls. Results Specific, primarily nuclear immunostaining for the RBPs was detected in structural and inflammatory cells in bronchial and lung tissues. Immunostaining for AUF-1, but not TTP or HuR, was significantly decreased in bronchial epithelium of COPD samples vs controls. In BEAS-2B cells, cytomix and CSE stimulation reproduced the RBP pattern while increasing expression of AUF-1-regulated genes, interleukin-6, CCL2, CXCL1, and CXCL8. Silencing expression of AUF-1 reproduced, but not enhanced, target upregulation induced by cytomix compared to controls. Analysis of bronchial brushing-derived transcriptomic confirmed the selective decrease of AUF-1 in COPD vs controls and revealed significant changes in AUF-1-regulated genes by genome ontology. Conclusion Downregulated AUF-1 may be pathogenic in stable COPD by altering posttranscriptional control of epithelial gene expression.
Collapse
Affiliation(s)
- Luca Ricciardi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Becky M Vonakis
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy, .,Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
30
|
Sueyoshi T, Kawasaki T, Kitai Y, Ori D, Akira S, Kawai T. Hu Antigen R Regulates Antiviral Innate Immune Responses through the Stabilization of mRNA for Polo-like Kinase 2. THE JOURNAL OF IMMUNOLOGY 2018; 200:3814-3824. [PMID: 29678949 DOI: 10.4049/jimmunol.1701282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/03/2018] [Indexed: 12/29/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), RIG-I, and melanoma differentiation-associated gene 5 (MDA5) play a critical role in inducing antiviral innate immune responses by activating IFN regulatory factor 3 (IRF3) and NF-κB, which regulates the transcription of type I IFN and inflammatory cytokines. Antiviral innate immune responses are also regulated by posttranscriptional and translational mechanisms. In this study, we identified an RNA-binding protein HuR as a regulator for RLR signaling. Overexpression of HuR, but not of other Hu members, increased IFN-β promoter activity. HuR-deficient macrophage cells exhibited decreased Ifnb1 expression after RLR stimulation, whereas they showed normal induction after stimulation with bacterial LPS or immunostimulatory DNA. Moreover, HuR-deficient cells displayed impaired nuclear translocation of IRF3 after RLR stimulation. In HuR-deficient cells, the mRNA expression of Polo-like kinase (PLK) 2 was markedly reduced. We found that HuR bound to the 3' untranslated region of Plk2 mRNA and increased its stabilization. PLK2-deficient cells also showed reduced IRF3 nuclear translocation and Ifnb mRNA expression during RLR signaling. Together, these findings suggest that HuR bolsters RLR-mediated IRF3 nuclear translocation by controlling the stability of Plk2 mRNA.
Collapse
Affiliation(s)
- Takuya Sueyoshi
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; and.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan;
| |
Collapse
|
31
|
Jalali S, Gandhi S, Scaria V. Distinct and Modular Organization of Protein Interacting Sites in Long Non-coding RNAs. Front Mol Biosci 2018; 5:27. [PMID: 29670884 PMCID: PMC5893854 DOI: 10.3389/fmolb.2018.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs), are being reported to be extensively involved in diverse regulatory roles and have exhibited numerous disease associations. LncRNAs modulate their function through interaction with other biomolecules in the cell including DNA, RNA, and proteins. The availability of genome-scale experimental datasets of RNA binding proteins (RBP) motivated us to understand the role of lncRNAs in terms of its interactions with these proteins. In the current report, we demonstrate a comprehensive study of interactions between RBP and lncRNAs at a transcriptome scale through extensive analysis of the crosslinking and immunoprecipitation (CLIP) experimental datasets available for 70 RNA binding proteins. Results: Our analysis suggests that density of interaction sites for these proteins was significantly higher for specific sub-classes of lncRNAs when compared to protein-coding transcripts. We also observe a positional preference of these RBPs across lncRNA and protein coding transcripts in addition to a significant co-occurrence of RBPs having similar functions, suggesting a modular organization of these elements across lncRNAs. Conclusion: The significant enrichment of RBP sites across some lncRNA classes is suggestive that these interactions might be important in understanding the functional role of lncRNA. We observed a significant enrichment of RBPs which are involved in functional roles such as silencing, splicing, mRNA processing, and transport, indicating the potential participation of lncRNAs in such processes.
Collapse
Affiliation(s)
- Saakshi Jalali
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,CSIR Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| | - Shrey Gandhi
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,CSIR Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
32
|
Identification of tumorigenesis-related mRNAs associated with RNA-binding protein HuR in thyroid cancer cells. Oncotarget 2018; 7:63388-63407. [PMID: 27542231 PMCID: PMC5325372 DOI: 10.18632/oncotarget.11255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/26/2016] [Indexed: 12/23/2022] Open
Abstract
RNA binding proteins (RBPs) play a central role in cell physiology and pathology. Among them, HuR is a nuclear RBP, which shuttles to the cytoplasm to allow its RNA targets processing. HuR over-expression and delocalization are often associated to cell transformation. Numerous cancers display increased HuR protein levels and its high cytoplasmic levels has been associated with a worse prognosis. In our study, we first evaluated HuR expression in normal and cancer thyroid tissues and then evaluated its function in thyroid cell lines. HuR is over-expressed in all thyroid tumor tissues; high cytoplasmic levels are detected in all thyroid carcinomas. HuR silencing decreased cell viability and determined apoptotic cell death, in a non-tumorigenic (Nthy-ori-3.1) and a tumorigenic (BCPAP) thyroid cell line. Global transcriptome analysis indicated that HuR silencing, though having similar biological effects, induces distinct gene expression modifications in the two cell lines. By using the RIP-seq approach, the HuR-bound RNA profiles of different thyroid cell lines were evaluated. We show that in distinct cell lines HuR-bound RNA profiles are different. A set of 114 HuR-bound RNAs distinguishing tumorigenic cell lines from the non-tumorigenic one was identified. Altogether, our data indicate that HuR plays a role in thyroid tumorigenesis. Moreover, our findings are a proof of concept that RBP targets differ between cells with the same origin but with distinct biological behavior.
Collapse
|
33
|
Manzoni L, Zucal C, Maio DD, D’Agostino VG, Thongon N, Bonomo I, Lal P, Miceli M, Baj V, Brambilla M, Cerofolini L, Elezgarai S, Biasini E, Luchinat C, Novellino E, Fragai M, Marinelli L, Provenzani A, Seneci P. Interfering with HuR–RNA Interaction: Design, Synthesis and Biological Characterization of Tanshinone Mimics as Novel, Effective HuR Inhibitors. J Med Chem 2018; 61:1483-1498. [DOI: 10.1021/acs.jmedchem.7b01176] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Leonardo Manzoni
- Institute of Molecular Science and Technology (ISTM), CNR, Via Golgi 19, 20133 Milan, Italy
| | - Chiara Zucal
- Centre
for Integrative Biology (CIBIO), University of Trento, Via Sommarive
9, 38123 Povo, Trento, Italy
| | - Danilo Di Maio
- Scuola Normale Superiore, Piazza
dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vito G. D’Agostino
- Centre
for Integrative Biology (CIBIO), University of Trento, Via Sommarive
9, 38123 Povo, Trento, Italy
| | - Natthakan Thongon
- Centre
for Integrative Biology (CIBIO), University of Trento, Via Sommarive
9, 38123 Povo, Trento, Italy
| | - Isabelle Bonomo
- Centre
for Integrative Biology (CIBIO), University of Trento, Via Sommarive
9, 38123 Povo, Trento, Italy
| | - Preet Lal
- Centre
for Integrative Biology (CIBIO), University of Trento, Via Sommarive
9, 38123 Povo, Trento, Italy
| | - Marco Miceli
- Chemistry
Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Vanessa Baj
- Chemistry
Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Marta Brambilla
- Chemistry
Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Linda Cerofolini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- CERM and
Chemistry Department, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Saioa Elezgarai
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | - Emiliano Biasini
- Centre
for Integrative Biology (CIBIO), University of Trento, Via Sommarive
9, 38123 Povo, Trento, Italy
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | - Claudio Luchinat
- CERM and
Chemistry Department, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Ettore Novellino
- Pharmacy
Department, University of Naples, Via Montesano 49, 80131 Naples, Italy
| | - Marco Fragai
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- CERM and
Chemistry Department, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Luciana Marinelli
- Pharmacy
Department, University of Naples, Via Montesano 49, 80131 Naples, Italy
| | - Alessandro Provenzani
- Centre
for Integrative Biology (CIBIO), University of Trento, Via Sommarive
9, 38123 Povo, Trento, Italy
| | - Pierfausto Seneci
- Chemistry
Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
34
|
Lal P, Cerofolini L, D'Agostino VG, Zucal C, Fuccio C, Bonomo I, Dassi E, Giuntini S, Di Maio D, Vishwakarma V, Preet R, Williams SN, Fairlamb MS, Munk R, Lehrmann E, Abdelmohsen K, Elezgarai SR, Luchinat C, Novellino E, Quattrone A, Biasini E, Manzoni L, Gorospe M, Dixon DA, Seneci P, Marinelli L, Fragai M, Provenzani A. Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Res 2017; 45:9514-9527. [PMID: 28934484 PMCID: PMC5766160 DOI: 10.1093/nar/gkx623] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3′UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity.
Collapse
Affiliation(s)
- Preet Lal
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Linda Cerofolini
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | | | - Chiara Zucal
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Carmelo Fuccio
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Isabelle Bonomo
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Erik Dassi
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Stefano Giuntini
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Danilo Di Maio
- Scuola Normale Superiore, Pisa 56126, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy
| | - Vikalp Vishwakarma
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ranjan Preet
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sha Neisha Williams
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Max S Fairlamb
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rachel Munk
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Claudio Luchinat
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Alessandro Quattrone
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Emiliano Biasini
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy.,Istituto di Ricerche Farmacologiche Mario Negri, Milan 20156, Italy
| | - Leonardo Manzoni
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Milan 20133, Italy
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dan A Dixon
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pierfausto Seneci
- Dipartimento di Chimica, Università degli Studi di Milano, Milan 20133, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Marco Fragai
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | | |
Collapse
|
35
|
Rapid LC-MS Based High-Throughput Screening Method, Affording No False Positives or False Negatives, Identifies a New Inhibitor for Carbonic Anhydrase. Sci Rep 2017; 7:10324. [PMID: 28871149 PMCID: PMC5583356 DOI: 10.1038/s41598-017-08602-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 12/03/2022] Open
Abstract
Developing effective high-throughput screening (HTS) methods is of paramount importance in the early stage of drug discovery. While rugged and robust assays may be easily developed for certain enzymes, HTS assays designed to identify ligands that block protein binding are much more challenging to develop; attenuating the number of false positives and false negatives under high-throughput screening conditions is particularly difficult. We describe an MS-based HTS workflow that addresses these challenges. The assay mitigates false positives by selectively identifying positive hits exclusively when a ligand at the binding site of interest is displaced; it mitigates false negatives by detecting a reporter compound that ionizes well, not by detecting the ligand binder, which may not ionize. The method was validated by detecting known binders of three proteins, pepsin, maltose binding protein (MBP), and carbonic anhydrase (CA) in the presence of hundreds of non-binders. We also identified a novel CA binder, pifithrin-µ, which could not have been identified by any other MS-based assay because of its poor ionization efficiency. This new method addresses many of the challenges that are currently encountered during high-throughput screening.
Collapse
|
36
|
Filippova N, Yang X, Ananthan S, Sorochinsky A, Hackney JR, Gentry Z, Bae S, King P, Nabors LB. Hu antigen R (HuR) multimerization contributes to glioma disease progression. J Biol Chem 2017; 292:16999-17010. [PMID: 28790173 DOI: 10.1074/jbc.m117.797878] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
Among primary brain cancers, gliomas are the most deadly and most refractory to current treatment modalities. Previous reports overwhelmingly support the role of the RNA-binding protein Hu antigen R (HuR) as a positive regulator of glioma disease progression. HuR expression is consistently elevated in tumor tissues, and a cytoplasmic localization appears essential for HuR-dependent oncogenic transformation. Here, we report HuR aggregation (multimerization) in glioma and the analysis of this tumor-specific HuR protein multimerization in clinical brain tumor samples. Using a split luciferase assay, a bioluminescence resonance energy transfer technique, and site-directed mutagenesis, we examined the domains involved in HuR multimerization. Results obtained with the combination of the split HuR luciferase assay with the bioluminescence resonance energy transfer technique suggested that multiple (at least three) HuR molecules come together during HuR multimerization in glioma cells. Using these data, we developed a model of HuR multimerization in glioma cells. We also demonstrate that exposing glioma cells to the HuR inhibitor tanshinone group compound 15,16-dihydrotanshinone-I or to the newly identified compound 5 disrupts HuR multimerization modules and reduces tumor cell survival and proliferation. In summary, our findings provide new insights into HuR multimerization in glioma and highlight possible pharmacological approaches for targeting HuR domains involved in cancer cell-specific multimerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sejong Bae
- Medicine, School of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Peter King
- From the Departments of Neurology.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | | |
Collapse
|
37
|
Nasti R, Rossi D, Amadio M, Pascale A, Unver MY, Hirsch AKH, Collina S. Compounds Interfering with Embryonic Lethal Abnormal Vision (ELAV) Protein–RNA Complexes: An Avenue for Discovering New Drugs. J Med Chem 2017; 60:8257-8267. [DOI: 10.1021/acs.jmedchem.6b01871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rita Nasti
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug
Sciences, Pharmacology Section, University of Pavia, Via Taramelli
14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug
Sciences, Pharmacology Section, University of Pavia, Via Taramelli
14, 27100 Pavia, Italy
| | - M. Yagiz Unver
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747
AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747
AG Groningen, The Netherlands
| | - Simona Collina
- Department of Drug
Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
38
|
Kaur K, Wu X, Fields JK, Johnson DK, Lan L, Pratt M, Somoza AD, Wang CCC, Karanicolas J, Oakley BR, Xu L, De Guzman RN. The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. PLoS One 2017; 12:e0175471. [PMID: 28414767 PMCID: PMC5393604 DOI: 10.1371/journal.pone.0175471] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
The RNA-binding protein Hu antigen R (HuR) binds to AU-rich elements (ARE) in the 3'-untranslated region (UTR) of target mRNAs. The HuR-ARE interactions stabilize many oncogenic mRNAs that play important roles in tumorigenesis. Thus, small molecules that interfere with the HuR-ARE interaction could potentially inhibit cancer cell growth and progression. Using a fluorescence polarization (FP) competition assay, we identified the compound azaphilone-9 (AZA-9) derived from the fungal natural product asperbenzaldehyde, binds to HuR and inhibits HuR-ARE interaction (IC50 ~1.2 μM). Results from surface plasmon resonance (SPR) verified the direct binding of AZA-9 to HuR. NMR methods mapped the RNA-binding interface of HuR and identified the involvement of critical RNA-binding residues in binding of AZA-9. Computational docking was then used to propose a likely binding site for AZA-9 in the RNA-binding cleft of HuR. Our results show that AZA-9 blocks key RNA-binding residues of HuR and disrupts HuR-RNA interactions in vitro. This knowledge is needed in developing more potent AZA-9 derivatives that could lead to new cancer therapy.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - James K Fields
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, United States of America
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Miranda Pratt
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Amber D Somoza
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Clay C C Wang
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California United States of America
| | - John Karanicolas
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America.,Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
39
|
Sommer G, Fedarovich A, Kota V, Rodriguez R, Smith CD, Heise T. Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells. PLoS One 2017; 12:e0173246. [PMID: 28291789 PMCID: PMC5349447 DOI: 10.1371/journal.pone.0173246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/18/2017] [Indexed: 12/14/2022] Open
Abstract
The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells.
Collapse
Affiliation(s)
- Gunhild Sommer
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Alena Fedarovich
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Venkatesh Kota
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Reycel Rodriguez
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Charles D. Smith
- Department of Pharmaceutical and Biomedical Sciences, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Tilman Heise
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
40
|
Wang Y, Bryant SH, Cheng T, Wang J, Gindulyte A, Shoemaker BA, Thiessen PA, He S, Zhang J. PubChem BioAssay: 2017 update. Nucleic Acids Res 2016; 45:D955-D963. [PMID: 27899599 PMCID: PMC5210581 DOI: 10.1093/nar/gkw1118] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
PubChem's BioAssay database (https://pubchem.ncbi.nlm.nih.gov) has served as a public repository for small-molecule and RNAi screening data since 2004 providing open access of its data content to the community. PubChem accepts data submission from worldwide researchers at academia, industry and government agencies. PubChem also collaborates with other chemical biology database stakeholders with data exchange. With over a decade's development effort, it becomes an important information resource supporting drug discovery and chemical biology research. To facilitate data discovery, PubChem is integrated with all other databases at NCBI. In this work, we provide an update for the PubChem BioAssay database describing several recent development including added sources of research data, redesigned BioAssay record page, new BioAssay classification browser and new features in the Upload system facilitating data sharing.
Collapse
Affiliation(s)
- Yanli Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Stephen H Bryant
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Asta Gindulyte
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Benjamin A Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Paul A Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Siqian He
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
41
|
Feigerlová E, Battaglia-Hsu SF. Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease. FASEB J 2016; 31:457-468. [PMID: 27849555 DOI: 10.1096/fj.201601087rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease (CKD) represents an important public health problem. Its progression to end-stage renal disease is associated with increased morbidity and mortality. The determinants of renal function decline are not fully understood. Recent progress in the understanding of post-transcriptional regulation of mRNA stability has helped the identification of both the trans- and cis-acting elements of mRNA as potential markers and therapeutic targets for difficult-to-diagnose and -treat diseases, including CKDs such as diabetic nephropathy. Human antigen R (HuR), a trans-acting element of mRNA, is an RNA binding factor (RBF) best known for its ability to stabilize AU-rich-element-containing mRNAs. Deregulated HuR subcellular localization or expression occurs in a wide range of renal diseases, such as metabolic acidosis, ischemia, and fibrosis. Besides RBFs, recent evidence revealed that noncoding RNA, such as microRNA and long noncoding RNA, participates in regulating mRNA stability and that aberrant noncoding RNA expression accounts for many pathologic renal conditions. The goal of this review is to provide an overview of our current understanding of the post-transcriptional regulation of mRNA stability in renal pathophysiology and to offer perspectives for this class of diseases. We use examples of diverse renal diseases to illustrate different mRNA stability pathways in specific cellular compartments and discuss the roles and impacts of both the cis- and trans-activating factors on the regulation of mRNA stability in these diseases.-Feigerlová, E., Battaglia-Hsu, S.-F. Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease.
Collapse
Affiliation(s)
- Eva Feigerlová
- Service d'Endocrinologie, Centre Hospitalier Universitaire de Poitiers, Pôle DUNE, Poitiers, France; .,Université de Poitiers, Unité de Formation et de Recherche Médecine Pharmacie, Poitiers, France.,Clinical Investigation Centre 1402, Unité 1082, INSERM, Poitiers, France; and
| | - Shyue-Fang Battaglia-Hsu
- Nutrition Génétique et Exposition aux Risques Environnementaux, INSERM Unité 954, Université de Lorraine et Centre Hospitalier Regional Universitaire de Nancy, Vandœuvre les Nancy, France
| |
Collapse
|
42
|
Kotta-Loizou I, Vasilopoulos SN, Coutts RHA, Theocharis S. Current Evidence and Future Perspectives on HuR and Breast Cancer Development, Prognosis, and Treatment. Neoplasia 2016; 18:674-688. [PMID: 27764700 PMCID: PMC5071540 DOI: 10.1016/j.neo.2016.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
Hu-antigen R (HuR) is an RNA-binding posttranscriptional regulator that belongs to the Hu/ELAV family. HuR expression levels are modulated by a variety of proteins, microRNAs, chemical compounds, or the microenvironment, and in turn, HuR affects mRNA stability and translation of various genes implicated in breast cancer formation, progression, metastasis, and treatment. The aim of the present review is to critically summarize the role of HuR in breast cancer development and its potential as a prognosticator and a therapeutic target. In this aspect, all the existing English literature concerning HuR expression and function in breast cancer cell lines, in vivo animal models, and clinical studies is critically presented and summarized. HuR modulates many genes implicated in biological processes crucial for breast cancer formation, growth, and metastasis, whereas the link between HuR and these processes has been demonstrated directly in vitro and in vivo. Additionally, clinical studies reveal that HuR is associated with more aggressive forms of breast cancer and is a putative prognosticator for patients' survival. All the above indicate HuR as a promising drug target for cancer therapy; nevertheless, additional studies are required to fully understand its potential and determine against which types of breast cancer and at which stage of the disease a therapeutic agent targeting HuR would be more effective.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom; First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Spyridon N Vasilopoulos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Robert H A Coutts
- Geography, Environment and Agriculture Division, Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
43
|
Slone S, Anthony SR, Wu X, Benoit JB, Aube J, Xu L, Tranter M. Activation of HuR downstream of p38 MAPK promotes cardiomyocyte hypertrophy. Cell Signal 2016; 28:1735-41. [PMID: 27521603 DOI: 10.1016/j.cellsig.2016.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
The RNA binding protein Human antigen R (HuR) interacts with specific AU-rich domains in target mRNAs and is highly expressed in many cell types, including cardiomyocytes. However, the role of HuR in cardiac physiology is largely unknown. Our results show that HuR undergoes cytoplasmic translocation, indicative of its activation, in hypertrophic cardiac myocytes. Specifically, HuR cytoplasmic translocation is significantly increased in NRVMs (neonatal rat ventricular myocytes) following treatment with phenylephrine or angiotensin II, agonists of two independent Gαq-coupled GPCRs known to induce hypertrophy. This Gq-mediated HuR activation is dependent on p38 MAP kinase, but not canonical Gq-PKC signaling. Furthermore, we show that HuR activation is necessary for Gq-mediated hypertrophic growth of NRVMs as siRNA-mediated knockdown of HuR inhibits hypertrophy as measured by cell size and expression of ANF (atrial natriuretic factor). Additionally, HuR overexpression is sufficient to induce hypertrophic cell growth. To decipher the downstream mechanisms by which HuR translocation promotes cardiomyocyte hypertrophy, we assessed the role of HuR in the transcriptional activity of NFAT (nuclear factor of activated T cells), the activation of which is a hallmark of cardiac hypertrophy. Using an NFAT-luciferase reporter assay, we show an acute inhibition of NFAT transcriptional activity following pharmacological inhibition of HuR. In conclusion, our results identify HuR as a novel mediator of cardiac hypertrophy downstream of the Gq-p38 MAPK pathway, and suggest modulation of NFAT activity as a potential mechanism.
Collapse
Affiliation(s)
- Samuel Slone
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sarah R Anthony
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Joshua B Benoit
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Jeffrey Aube
- Department of Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
44
|
Hall MD, Yasgar A, Peryea T, Braisted JC, Jadhav A, Simeonov A, Coussens NP. Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc 2016; 4:022001. [PMID: 28809163 DOI: 10.1088/2050-6120/4/2/022001] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The sensitivity of fluorescence polarization (FP) and fluorescence anisotropy (FA) to molecular weight changes has enabled the interrogation of diverse biological mechanisms, ranging from molecular interactions to enzymatic activity. Assays based on FP/FA technology have been widely utilized in high-throughput screening (HTS) and drug discovery due to the homogenous format, robust performance and relative insensitivity to some types of interferences, such as inner filter effects. Advancements in assay design, fluorescent probes, and technology have enabled the application of FP assays to increasingly complex biological processes. Herein we discuss different types of FP/FA assays developed for HTS, with examples to emphasize the diversity of applicable targets. Furthermore, trends in target and fluorophore selection, as well as assay type and format, are examined using annotated HTS assays within the PubChem database. Finally, practical considerations for the successful development and implementation of FP/FA assays for HTS are provided based on experience at our center and examples from the literature, including strategies for flagging interference compounds among a list of hits.
Collapse
Affiliation(s)
- Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | | |
Collapse
|