1
|
Liu F, Qin Y, Luo W, Ruan X, Lu L, Feng B, Yu J. Construction of a risk model associated with tryptophan metabolism and identification of related molecular subtypes in laryngeal squamous cell carcinoma. Front Genet 2025; 16:1530334. [PMID: 40196225 PMCID: PMC11973366 DOI: 10.3389/fgene.2025.1530334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Catabolic metabolites of tryptophan (Trp) are considered to be important microenvironmental factors by suppressing anti-tumor immune responses in cancers. Nevertheless, the effect of Trp metabolism (Trp metabolism)-related genes Trp metabolism-related genes on laryngeal squamous cell carcinoma (LSCC) progression is not yet clear. So, in this study, the TCGA-LSCC, GSE27020, and 40 TMRGs were extracted via public databases to explore the effects of TMRGs on laryngeal squamous cell carcinoma. Firstly, Weighted Gene Co-expression Network Analysis (WGCNA) was adopted with LSCC samples in TCGA-LSCC to acquire key module, and differentially expressed genes between LSCC and normal samples from TCGA-LSCC were yielded via differential expression analysis. Next, differentially expressed TMRGs (DE-TMRGs) was obtained in key model and DEGs, and prognostic genes were identifde through multiple algorithms. Five prognostic genes, namely SERPINA1, TMC8, RENBP, SDS and FAM107A were finally identified. A risk model was established based on the expressions of prognostic genes and survival information of LSCC samples while that were divided into high and low risk groups. Obviously, the LSCC immune dysfunction and exclusion score of high-risk patients was dramatically higher than that in low-risk patients, indicating that patients in the high-risk subgroup exhibited reduced responsiveness to immunotherapy. Besides, the drug sensitivity analysis showed that the low -risk subgroup was notably sensitive to Salubrinal, Lenalidomide, Metformin, while high -risk subgroup was more responsive to Docetaxel, AUY922, Embelin. Eventually, two clusters of LSCC samples had notable correlations with LSCC prognosis. The above results indicated that the risk model consisted of TMRGs (SERPINA1, TMC8, RENBP, SDS and FAM107A) was constructed in LSCC, contributing to studies related to the prognosis and treatment of LSCC.
Collapse
Affiliation(s)
- Feng Liu
- Department of Head and Neck Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Yanchao Qin
- Department of Head and Neck Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Wei Luo
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - XianHui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lifang Lu
- Department of Head and Neck Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Bowei Feng
- School of Stomatology,Shanxi Medical University, Taiyuan, China
| | - Jianfei Yu
- Department of Head and neck radiotherapy, Shanxi Cancer Hospital, Taiyuan, China
| |
Collapse
|
2
|
Chen H, Zheng Q, Jiang Y, Lin L, Yang Y. IDO1 Expression and CD8+ T-Cell Levels Are Useful Prognostic Biomarkers in Preoperative Gastric Cancer Specimens Before Neoadjuvant Chemotherapy. Appl Immunohistochem Mol Morphol 2025; 33:1-9. [PMID: 39636312 DOI: 10.1097/pai.0000000000001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/05/2024] [Indexed: 12/07/2024]
Abstract
The tumor immune microenvironment occupies an important position in gastric cancer. In this study, we investigated the relationship between indoleamine 2,3-dioxygenase 1 (IDO1), programmed cell death 1 ligand (PD-L1) expressioon, and CD8+ T-cell levels and their efficacy and prognostic value in preoperative gastric cancer specimens before neoadjuvant chemotherapy (NAC). A total of 162 patients with locally advanced gastric cancer were collected in this study. IDO1, PD-L1 expression, and CD8+ T-cell levels in the biopsy samples was detected by immunohistochemical staining, and the relationship between these indexes and the patients' clinicopathological parameters, chemotherapeutic efficacy, and prognosis were investigated. The IDO1 positivity rate was 43.2%. High expression of IDO1 was significantly associated with poor chemotherapeutic efficacy, lymph node metastasis (P<0.05). The PD-L1 positivity rate (using the combined positive score) was 38.2%, and was not related to any clinicopathological variable. Higher CD8+ T-cell levels were associated with a lower rate of lymph node metastasis and lower ypTNM stage (P<0.05). Higher CD8+ T-cell levels were negatively correlated with IDO1 expression (r=-0.224, P<0.05) and positively correlated with PD-L1 expression (r=0.254, P<0.05). Cox regression analysis demonstrated that higher CD8+ T-cell levels was an independent risk factor for overall survival (OS) and the expression of IDO1 had a significantly poorer disease-free survival (DFS). Overexpression of IDO1 and lower CD8+ T-cell levels were associated with poor survival in patients with gastric cancer who received neoadjuvant chemotherapy, and overexpression of IDO1 were associated with the poor tumor response. Our data suggest that IDO1 and CD8 testing of biopsy specimens might be a simple and effective prognostic biomarker for gastric cancer, and IDO1 could predict efficacy of neoadjuvant chemotherapy in gastric cancer.
Collapse
Affiliation(s)
- Hu Chen
- Department of Pathology, Fujian Medical University Union Hospital
- Gastrointestinal Cancer Institute, Fujian Medical University, Fuzhou, China
| | - QiaoLin Zheng
- Department of Pathology, Fujian Medical University Union Hospital
- Gastrointestinal Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Yiting Jiang
- Department of Pathology, Fujian Medical University Union Hospital
- Gastrointestinal Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Lin Lin
- Department of Pathology, Fujian Medical University Union Hospital
- Gastrointestinal Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital
- Gastrointestinal Cancer Institute, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
4
|
Kwiatkowska I, Hermanowicz JM, Czarnomysy R, Surażyński A, Kowalczuk K, Kałafut J, Przybyszewska-Podstawka A, Bielawski K, Rivero-Müller A, Mojzych M, Pawlak D. Assessment of an Anticancer Effect of the Simultaneous Administration of MM-129 and Indoximod in the Colorectal Cancer Model. Cancers (Basel) 2023; 16:122. [PMID: 38201550 PMCID: PMC10778160 DOI: 10.3390/cancers16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: The purpose of the given study was to examine the antitumor activity of the simultaneous administration of MM-129, a 1,2,4-triazine derivative, and indoximod (IND), the kynurenine pathway inhibitor, toward colon cancer. (2) Methods: The efficiency of the co-administration of the studied compounds was assessed in xenografted zebrafish embryos. Then, the effects of the combined administration of compounds on cellular processes such as cell viability, apoptosis, and intracellular signaling pathways were evaluated. In vitro studies were performed using two colorectal cancer cell lines, namely, DLD-1 and HT-29. (3) Results: The results indicated that the simultaneous application of MM-129 and indoximod induced a stronger inhibition of tumor growth in zebrafish xenografts. The combination of these compounds intensified the process of apoptosis by lowering the mitochondrial potential, enhancing the externalization of phosphatidylserine (PS) and activation of caspases. Additionally, the expression of protein kinase B (AKT) and indoleamine 2,3-dioxygenase-(1IDO1) was disrupted under the applied compound combination. (4) Conclusions: Simultaneous targeting of ongoing cell signaling that promotes tumor progression, along with inhibition of the kynurenine pathway enzyme IDO1, results in the enhancement of the antitumor effect of the tested compounds against the colon cancer cells.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Mariusz Mojzych
- Faculty of Health Science, Collegium Medicum, The Mazovian Academy in Plock, Plac Dabrowskiego 2, 09-402 Plock, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
5
|
Siozopoulou V, Smits E, Zwaenepoel K, Liu J, Pouliakis A, Pauwels PA, Marcq E. PD-1, PD-L1, IDO, CD70 and microsatellite instability as potential targets to prevent immune evasion in sarcomas. Immunotherapy 2023; 15:1257-1273. [PMID: 37661910 DOI: 10.2217/imt-2022-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Background: Soft tissue and bone sarcomas are rare entities, hence, standardized therapeutic strategies are difficult to assess. Materials & methods: Immunohistochemistry was performed on 68 sarcoma samples to assess the expression of PD-1, PD-L1, IDO and CD70 in different tumor compartments and molecular analysis was performed to assess microsatellite instability status. Results: PD-1/PD-L1, IDO and CD70 pathways are at play in the immune evasion of sarcomas in general. Soft tissue sarcomas more often show an inflamed phenotype compared with bone sarcomas. Specific histologic sarcoma types show high expression levels of different markers. Finally, this is the first presentation of a microsatellite instability-high Kaposi sarcoma. Discussion/conclusion: Immune evasion occurs in sarcomas. Specific histologic types might benefit from immunotherapy, for which further investigation is needed.
Collapse
Affiliation(s)
- Vasiliki Siozopoulou
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Evelien Smits
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jimmy Liu
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Abraham Pouliakis
- Second Department of Pathology, National & Kapodistrian University of Athens, "Attikon" University Hospital, Athens, 12464, Greece
| | - Patrick A Pauwels
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Elly Marcq
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
6
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Wang K, Ye K, Zhang X, Wang T, Qi Z, Wang Y, Jiang S, Zhang K. Dual Nicotinamide Phosphoribosyltransferase (NAMPT) and Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors for the Treatment of Drug-Resistant Nonsmall-Cell Lung Cancer. J Med Chem 2023; 66:1027-1047. [PMID: 36595482 DOI: 10.1021/acs.jmedchem.2c01954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Depleting NAD+ by blocking its biosynthesis has emerged as an attractive anticancer strategy. Simultaneous blockade of NAD+ production from the salvage and de novo synthesis pathways by targeting NAMPT and IDO1 could achieve more effective NAD+ reduction and, subsequently, more robust antitumor efficacy. Herein, we report the discovery of the first series of dual NAMPT and IDO1 inhibitors according to multitarget drug rationales. Compound 10e has good and balanced inhibitory potencies against NAMPT and IDO1, and significantly inhibits both proliferation and migration of a NSCLC cell line resistant to taxol and FK866 (A549/R cells). Compound 10e also displays potent antitumor efficacy in A549/R xenograft mouse models with no significant toxicity. Moreover, this compound enhances the susceptibility of A549/R cells to taxol in vitro and in vivo. This work provides an efficient approach to targeting NAD+ metabolism in the area of cancer therapy, especially in the context of drug resistance.
Collapse
Affiliation(s)
- Kaizhen Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ye
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youjun Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Zhang S, Cai H, Huang J, Wang G. Impact of the combination of sintilimab and chemotherapy on the tumor and paratumor PD-L1, IDO, TIM-3, FOXP3+ and CD8 expressions in patients with advanced esophageal squamous cell carcinoma. Thorac Cancer 2022; 13:3284-3294. [PMID: 36288460 PMCID: PMC9715848 DOI: 10.1111/1759-7714.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Anti-PD-1/PD-L1 therapeutics have been widely used in the clinic in various tumors, including advanced esophageal cancer, showing remarkable treatment efficacy. Factors determining the response to anti-PD-1/PD-L1 therapeutics are numerous, including the tumor microenvironment, such as CD8+ T cells and expression of PD-1/PD-L1. Our study aimed to explore the effect of chemoimmunotherapy on the expression of CD8+ T cells, TIM-3, and FOXP3+ in tumor, paratumor tissues, and the expression of PD-L1, IDO, in tumor, paratumor tissues, and lymph nodes, and analyze the correlation among these markers. METHODS A total of 18 patients were allocated into two treatment groups: a treatment group and a concurrent control group. A total of 38 tissue samples, 114 slides (tumor, paratumor, and lymph node) were collected in the treatment group, and 37 tissue samples, 111 slides (tumor, paratumor, and lymph node) were collected in the concurrent control group. RESULTS The expression of PD-L1, CD8+, FOXP3+, TIM-3, and IDO in tumors, paratumor tissues, but not lymph nodes, was significantly affected by chemoimmunotherapy. Compared with patients without chemoimmunotherapy, the expression of CD8+ T cells, IDO, and PD-L1 was significantly decreased in tumor and paratumor tissues after chemoimmunotherapy, while FOXP3+ expression was significantly decreased only in tumor tissues, and TIM-3 expression was significantly decreased only in paratumor tissues. Moreover, the correlation between these markers was also completely altered after chemoimmunotherapy. In addition, N staging was associated with high expression of CD8 in advanced esophageal squamous cell carcinoma in the concurrent control group. CONCLUSION This study provides new insight into the effects of CI treatment on isolated CD8+ T cell infiltration, PD-L1, IDO, FOXP3+ and TIM-3 expression as well as their cross-talk in different tissues enabling a better understanding of the impact of CI treatment on the immune microenvironment.
Collapse
Affiliation(s)
- Shifa Zhang
- Department of thoracic surgery, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of thoracic surgery, Jining NO.1 People's HospitalAffiliated Jining NO.1 people's Hospital of Jining Medical UniversityShandongChina
| | - Haibo Cai
- Department of thoracic surgery, Jining NO.1 People's HospitalAffiliated Jining NO.1 people's Hospital of Jining Medical UniversityShandongChina
| | - Junjun Huang
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Gongchao Wang
- Department of thoracic surgery, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| |
Collapse
|
9
|
Yang Z, Huang J, Lin Y, Luo X, Lin H, Lin H, Gao J. A dual-responsive doxorubicin-indoximod conjugate for programmed chemoimmunotherapy. RSC Chem Biol 2022; 3:853-858. [PMID: 35866166 PMCID: PMC9257650 DOI: 10.1039/d1cb00257k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we report a dual-responsive doxorubicin–indoximod conjugate (DOXIND) for programmed chemoimmunotherapy. This conjugate is able to release doxorubicin and indoximod upon exposure to appropriate stimuli for synergistic chemotherapy and immunotherapy, respectively. We demonstrate its promoting effects on immune response and inhibiting effects on tumor growth through a series of in vitro and in vivo experiments. A dual-responsive doxorubicin–indoximod conjugate was developed, which allows for sequential on-demand release of doxorubicin and indoximod for programmed chemoimmunotherapy.![]()
Collapse
Affiliation(s)
- Zhaoxuan Yang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Jiaqi Huang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Yaying Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Xiangjie Luo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Haojin Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| |
Collapse
|
10
|
Hashemzadeh N, Dolatkhah M, Aghanejad A, Barzegar-Jalali M, Omidi Y, Adibkia K, Barar J. Folate receptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine (Lond) 2021; 16:2137-2154. [PMID: 34530630 DOI: 10.2217/nnm-2021-0176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: The efficiency of mesoporous silica magnetic nanoparticles (MSMNP) as a targeted drug-delivery system was investigated. Methods: The superparamagnetic iron oxide nanoparticles (NP) were synthesized, coated with mesoporous silica and conjugated with polyethylene glycol and methotrexate. Next, 1-methyl-D-tryptophan was loaded into the prepared nanosystems (NS). They were characterized using transmission electron microscopy, scanning electron microscopy, dynamic light scattering, vibrating sample magnetometer, x-ray powder diffraction, Fourier transform-infrared spectroscopy and the Brunauer-Emmett-Teller method and their biological impacts on breast cancer cells were evaluated. Results: The prepared NSs displayed suitable properties and showed enhanced internalization by folate-receptor-expressing cells, exerting efficient cytotoxicity, which was further enhanced by the near-infrared radiation irradiation. Conclusion: On the basis of our findings, the engineered NS is a promising multifunctional nanomedicine/theranostic for solid tumors.
Collapse
Affiliation(s)
- Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Mitra Dolatkhah
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| |
Collapse
|
11
|
Ala M. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. Int Rev Immunol 2021; 41:326-345. [PMID: 34289794 DOI: 10.1080/08830185.2021.1954638] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tryptophan is an essential amino acid, going through three different metabolic pathways in the intestines. Indole pathway in the gut microbiota, serotonin system in the enterochromaffin cells and kynurenine pathway in the immune cells and intestinal lining are the three arms of tryptophan metabolism in the intestines. Clinical, in vivo and in vitro studies showed that each one of these arms has a significant impact on IBD. This review explains how different metabolites of tryptophan are involved in the pathophysiology of IBD and colorectal cancer, as a major complication of IBD. Indole metabolites alleviate colitis and protect against colorectal cancer while serotonin arm follows a more complicated and receptor-specific pattern. Indole metabolites and kynurenine interact with aryl hydrocarbon receptor (AHR) to induce T regulatory cells differentiation, confine Th17 and Th1 response and produce anti-inflammatory mediators. Kynurenine decreases tumor-infiltrating CD8+ cells and mediates tumor cells immune evasion. Serotonin system also increases colorectal cancer cells proliferation and metastasis while, indole metabolites can profoundly decrease colorectal cancer growth. Targeted therapy for tryptophan metabolites may improve the management of IBD and colorectal cancer, e.g. supplementation of indole metabolites such as indole-3-carbinol (I3C), inhibition of kynurenine monooxygenase (KMO) and selective stimulation or inhibition of specific serotonergic receptors can mitigate colitis. Furthermore, it will be explained how indole metabolites supplementation, inhibition of indoleamine 2,3-dioxygenase 1 (IDO1), KMO and serotonin receptors can protect against colorectal cancer. Additionally, extensive molecular interactions between tryptophan metabolites and intracellular signaling pathways will be thoroughly discussed.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
12
|
Ala M. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 2021; 896:173921. [PMID: 33529725 DOI: 10.1016/j.ejphar.2021.173921] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Treatment of cancers has always been a challenge for physicians. Typically, several groups of anti-cancer medications are needed for effective management of an invasive and metastatic cancer. Recently, therapeutic potentiation of immune system markedly improved treatment of cancers. Kynurenine pathway has an interwoven correlation with immune system. Kynurenine promotes T Reg (regulatory) differentiation, which leads to increased production of anti-inflammatory cytokines and suppression of cytotoxic activity of T cells. Overactivation of kynurenine pathway in cancers provides an immunologically susceptible microenvironment for mutant cells to survive and invade surrounding tissues. Interestingly, kynurenine pathway vigorously interacts with other molecular pathways involved in tumorigenesis. For instance, kynurenine pathway interacts with phospoinosisitide-3 kinase (PI3K), extracellular signal-regulated kinase (ERK), Wnt/β-catenin, P53, bridging integrator 1 (BIN-1), cyclooxygenase 2 (COX-2), cyclin-dependent kinase (CDK) and collagen type XII α1 chain (COL12A1). Overactivation of kynurenine pathway, particularly overactivation of indoleamine 2,3-dioxygenase (IDO) predicts poor prognosis of several cancers such as gastrointestinal cancers, gynecological cancers, hematologic malignancies, breast cancer, lung cancer, glioma, melanoma, prostate cancer and pancreatic cancer. Furthermore, kynurenine increases the invasion, metastasis and chemoresistance of cancer cells. Recently, IDO inhibitors entered clinical trials and successfully passed their safety tests and showed promising therapeutic efficacy for cancers such as melanoma, brain cancer, renal cell carcinoma, prostate cancer and pancreatic cancer. However, a phase III trial of epacadostat, an IDO inhibitor, could not increase the efficacy of treatment with pembrolizumab for melanoma. In this review the expanding knowledge towards kynurenine pathway and its application in each cancer is discussed separately.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
13
|
Wang Z, Wu X. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med 2020; 9:8086-8121. [PMID: 32875727 PMCID: PMC7643687 DOI: 10.1002/cam4.3410] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Immunocheckpoint proteins of tumor infiltrating lymphocytes play an important role in tumor prognosis in the course of tumor clinicopathology. PD‐1 (Programmed cell death protein 1) is an important immunosuppressive molecule. By binding to PD‐L1 (programmed cell death‐ligand 1), it blocks TCR and its costimulus signal transduction, inhibits the activation and proliferation of T cells, depletes the function of effector T cells, and enables tumor cells to achieve immune escape. In recent years, immunocheckpoint blocking therapy targeting the PD‐1/PD‐L1 axis has achieved good results in a variety of malignant tumors, pushing tumor immunotherapy to a new milestone, such as anti‐PD‐1 monoclonal antibody Nivolumab, Pembrolizumab, and anti‐PD‐L1 monoclonal antibody Atezolizumab, which are considered as potential antitumor drugs. It was found in clinical use that some patients obtained long‐term efficacy, but most of them developed drug resistance recurrence in the later stage. The high incidence of drug resistance (including primary and acquired drug resistance) still cannot be ignored, which limited its clinical application and became a new problem in this field. Due to tumor heterogeneity, current limited research shows that PD‐1 or PD‐L1 monoclonal antibody drug resistance may be related to the following factors: mutation of tumor antigen and antigen presentation process, multiple immune checkpoint interactions, immune microenvironment changes dynamically, activation of oncogenic pathways, gene mutation and epigenetic changes of key proteins in tumors, tumor competitive metabolism, and accumulation of metabolites, etc, mechanisms of resistance are complex. Therefore, it is the most urgent task to further elucidate the mechanism of immune checkpoint inhibitor resistance, discover multitumor universal biomarkers, and develop new target agents to improve the response rate of immunotherapy in patients. In this study, the mechanism of anti‐PD‐1/PD‐L1 drug resistance in tumors, the potential biomarkers for predicting PD‐1 acquired resistance, and the recent development of combination therapy were reviewed one by one. It is believed that, based on the complex mechanism of drug resistance, it is of no clinical significance to simply search for and regulate drug resistance targets, and it may even produce drug resistance again soon. It is speculated that according to the possible tumor characteristics, three types of treatment methods should be combined to change the tumor microenvironment ecology and eliminate various heterogeneous tumor subsets, so as to reduce tumor drug resistance and improve long‐term clinical efficacy.
Collapse
Affiliation(s)
- Zhengyi Wang
- GCP Center of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital Medical Sciences, Chengdu City, Sichuan Province, China.,Institute of Laboratory Animals of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu City, Sichuan Province, China
| | - Xiaoying Wu
- Ministry of Education and Training, Second People's Hospital, Chengdu City, Sichuan Province, China
| |
Collapse
|
14
|
Alobaid M, Richards SJ, Alexander M, Gibson M, Ghaemmaghami A. Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties. Mater Today Bio 2020; 8:100080. [PMID: 33205040 PMCID: PMC7649522 DOI: 10.1016/j.mtbio.2020.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022] Open
Abstract
New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies, and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their ability in shaping the adaptive immune responses makes DCs ideal targets for immune modulation. Carbohydrates are abundant in different biological systems and are known to modulate DC phenotype and function. However, how simple monosaccharides instruct DC function is less well understood. In this study, we used a combinatorial array of immobilized monosaccharides to investigate how they modulate DC phenotype and function and crucially the impact of such changes on downstream adaptive immune responses. Our data show that a selection of monosaccharides significantly suppress lipopolysaccharide-induced DC activation as evidenced by a reduction in CD40 expression, IL-12 production, and indoleamine 2,3-dioxygenase activity, while inducing a significant increase in IL-10 production. These changes are indicative of the induction of an anti-inflammatory or regulatory phenotype in DCs, which was further confirmed in DC-T cell co-cultures where DCs cultured on the 'regulatory' monosaccharide-coated surfaces were shown to induce naïve T cell polarization toward regulatory phenotype. Our data also highlighted a selection of monosaccharides that are able to promote mixed Treg and Th17 cell differentiation, a T cell phenotype expected to be highly immune suppressive. These data show the potential immunomodulatory effects of immobilized monosaccharides in priming DCs and skewing T cell differentiation toward an immune-regulatory phenotype. The ability to fine-tune immune responses using these simple carbohydrate combinations (e.g. as coatings for existing materials) can be utilized as novel tools for immune modulation with potential applications in regenerative medicine, implantable medical devices, and wound healing where reduction of inflammatory responses and maintaining immune homeostasis are desirable.
Collapse
Key Words
- (Gal1), 100% 1-amino-1-deoxy-β-d-galactose
- (Gal1–Gal2), 50% 1-amino-1-deoxy-β-d-galactose + 50% 2-amino-2-deoxy-β-d-galactose
- (Gal2), 100% 2-amino-2-deoxy-β-d-galactose
- (Gal2–Man1), 90% 2-amino-2-deoxy-β-d-galactose + 10% 1-amino-1-deoxy-β-d-mannose
- (Gal2–Man2), 2-amino-2-deoxy-β-d-galactose + 10% 2-amino-2-deoxy-β-d-mannose
- (Man1–Man2), 40% 1-amino-1-deoxy-β-d-mannose + 60% 2-amino-2-deoxy-β-d-mannose
- CLR, C-type lectin receptor
- Carbohydrates
- DC-SIGN, Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin
- DCs, Dendritic cells
- Dendritic cells
- FBS, Fetal bovine serum
- Fucose
- Galactose
- IDO, Indoleamine 2,3-dioxygenase
- Immune modulation
- Immune-instructive materials
- LPS, Lipopolysaccharide
- MFI, Median fluorescence intensity
- MR, Mannose receptor
- MT, 1-methyl-DL-tryptophan
- Mannose
- PRR, Pattern recognition receptor
- Polymers
- T cells
Collapse
Affiliation(s)
- M.A. Alobaid
- Immunology & Immuno-Bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - S.-J. Richards
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - M.R. Alexander
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - M.I. Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - A.M. Ghaemmaghami
- Immunology & Immuno-Bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| |
Collapse
|
15
|
Stutvoet TS, van der Veen EL, Kol A, Antunes IF, de Vries EFJ, Hospers GAP, de Vries EGE, de Jong S, Lub-de Hooge MN. Molecular Imaging of PD-L1 Expression and Dynamics with the Adnectin-Based PET Tracer 18F-BMS-986192. J Nucl Med 2020; 61:1839-1844. [PMID: 32358092 DOI: 10.2967/jnumed.119.241364] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2023] Open
Abstract
18F-BMS-986192, an adnectin-based human programmed cell death ligand 1 (PD-L1) tracer, was developed to noninvasively determine whole-body PD-L1 expression by PET. We evaluated the usability of 18F-BMS-986192 PET to detect different PD-L1 expression levels and therapy-induced changes in PD-L1 expression in tumors. Methods: In vitro binding assays with 18F-BMS-986192 were performed on human tumor cell lines with different total cellular and membrane PD-L1 protein expression levels. Subsequently, PET imaging was performed on immunodeficient mice xenografted with these cell lines. The mice were treated with interferon γ (IFNγ) intraperitoneally for 3 d or with the mitogen-activated protein kinase kinase inhibitor selumetinib by oral gavage for 24 h. Afterward, 18F-BMS-986192 was administered intravenously, followed by a 60-min dynamic PET scan. Tracer uptake was expressed as percentage injected dose per gram of tissue. Tissues were collected to evaluate ex vivo tracer biodistribution and to perform flow cytometric, Western blot, and immunohistochemical tumor analyses. Results: 18F-BMS-986192 uptake reflected PD-L1 membrane levels in tumor cell lines, and tumor tracer uptake in mice was associated with PD-L1 expression measured immunohistochemically. In vitro IFNγ treatment increased PD-L1 expression in the tumor cell lines and caused up to a 12-fold increase in tracer binding. In vivo, IFNγ affected neither PD-L1 tumor expression measured immunohistochemically nor 18F-BMS-986192 tumor uptake. In vitro, selumetinib downregulated cellular and membrane levels of PD-L1 in tumor cells by 50% as measured by Western blotting and flow cytometry. In mice, selumetinib lowered cellular, but not membrane, PD-L1 levels of tumors, and consequently, no treatment-induced change in 18F-BMS-986192 tumor uptake was observed. Conclusion: 18F-BMS-986192 PET imaging allows detection of membrane-expressed PD-L1 as soon as 60 min after tracer injection. The tracer can discriminate a range of tumor cell PD-L1 membrane expression levels.
Collapse
Affiliation(s)
- Thijs S Stutvoet
- Departments of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly L van der Veen
- Departments of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjan Kol
- Departments of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Inês F Antunes
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Erik F J de Vries
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Geke A P Hospers
- Departments of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Departments of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven de Jong
- Departments of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and .,Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Boros FA, Vécsei L. Immunomodulatory Effects of Genetic Alterations Affecting the Kynurenine Pathway. Front Immunol 2019; 10:2570. [PMID: 31781097 PMCID: PMC6851023 DOI: 10.3389/fimmu.2019.02570] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Several enzymes and metabolites of the kynurenine pathway (KP) have immunomodulatory effects. Modulation of the activities and levels of these molecules might be of particular importance under disease conditions when the amelioration of overreacting immune responses is desired. Results obtained by the use of animal and tissue culture models indicate that by eliminating or decreasing activities of key enzymes of the KP, a beneficial shift in disease outcome can be attained. This review summarizes experimental data of models in which IDO, TDO, or KMO activity modulation was achieved by interventions affecting enzyme production at a genomic level. Elimination of IDO activity was found to improve the outcome of sepsis, certain viral infections, chronic inflammation linked to diabetes, obesity, aorta aneurysm formation, and in anti-tumoral processes. Similarly, lack of TDO activity was advantageous in the case of anti-tumoral immunity, while KMO inhibition was found to be beneficial against microorganisms and in the combat against tumors, as well. On the other hand, the complex interplay among KP metabolites and immune function in some cases requires an increase in a particular enzyme activity for the desired immune response modulation, as was shown by the exacerbation of liver fibrosis due to the elimination of IDO activity and the detrimental effects of TDO inhibition in a mouse model of autoimmune gastritis. The relevance of these studies concerning possible human applications are discussed and highlighted. Finally, a brief overview is presented on naturally occurring genetic variants affecting immune functions via modulation of KP enzyme activity.
Collapse
Affiliation(s)
- Fanni A. Boros
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Hu Y, Chen X, Xu Y, Han X, Wang M, Gong T, Zhang ZR, John Kao W, Fu Y. Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. NANOSCALE 2019; 11:16476-16487. [PMID: 31453622 DOI: 10.1039/c9nr03684a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pancreatic cancer is a highly malignant carcinoma with limited effective treatment options, resulting in a poor patient survival rate of less than 5%. In this study, cationic albumin nanoparticles were assembled with negatively charged hyaluronic acid (HA) to achieve a hierarchical nanostructure and efficient delivery of small molecule drugs to the tumor site in the pancreas. A combination of chemotherapy with indoleamine-2,3-dioxygenase (IDO) inhibition was explored to enhance the chemotherapeutic efficacy in vivo. Hydrophobic celastrol (CLT) and hydrophilic 1-methyltryptophan (MT) were concurrently loaded in HA coated cationic albumin nanoparticles (HNPs) with an average size of ∼300 nm. The size of HNPs was reduced in the presence of hyaluronidase to facilitate penetration into deep tumor tissues. Also, the biodistribution study in the C57BL/6 mice xenograft model showed enhanced tumor accumulation and prolonged circulation of HNPs. Compared with CLT solution, the combination of CLT with MT showed significantly enhanced tumor inhibition in both xenograft and orthotopic pancreatic cancer mice models via downregulating the immunosuppressive tumor microenvironment. Taken together, the combination of CLT with MT administered via HNPs represents a highly promising strategy for targeted pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Xue Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yingying Xu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Xianru Han
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Mou Wang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - W John Kao
- Department of Industrial and Manufacturing Systems Engineering, Biomedical Engineering, and Chemical Biology Centre, The University of Hong Kong, Pokfulam, HKSAR, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Xiang Z, Li J, Song S, Wang J, Cai W, Hu W, Ji J, Zhu Z, Zang L, Yan R, Yu Y. A positive feedback between IDO1 metabolite and COL12A1 via MAPK pathway to promote gastric cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:314. [PMID: 31315643 PMCID: PMC6637527 DOI: 10.1186/s13046-019-1318-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Background IDO1 (Indoleamine 2,3-dioxygenase 1) inhibits host anti-tumor immune response by exhausting tryptophan in tumor microenvironment, but the pathogenic mechanisms of IDO1 in gastric cancer (GC) cells need to be further explored. Methods The aim of this study was to use CCLE (Cancer Cell Line Encyclopedia) transcriptomic data of GC cell lines for WGCNA (Weighted Gene Co-expression Network Analysis) analysis, and explore the potential functions and mechanisms of IDO1 in GC progression in vitro and in vivo. Results The higher expression level of IDO1 was identified in 4 out of 7 GC cell lines. Increased IDO1 expression strongly promoted cell migration via its metabolite kynurenine and was associated with pathways of immune activation according to GSEA (Gene Set Enrichment Analysis). The functions of IDO1 were closely associated with extracellular matrix, collagen metabolic and catabolic process by WGCNA analysis. Among five hub genes (AXL, SGCE, COL12A1, ANTXR1, LOXL2), COL12A1 and LOXL2 were upregulated in GC tissues. IDO1 disclosed positive correlation with six collagen genes by coefficient matrix diagram. Knockdown of IDO1 decreased the expression of LOXL2, COL6A1, COL6A2 and COL12A1 in GC cells in both mRNA and protein levels. Of them, knockdown of COL12A1 inhibited cell migration more apparently than knockdown of others. IDO1 and COL12A1 revealed synergistic efficacy on promoting cell migration via a positive feedback sustained by MAPK pathway. This bioprocess was mediated by IDO1 metabolite kynurenine and integrin β1. A popliteal lymph nodemetastasis model was established for verifying metastatic promotion of IDO1 and COL12A1 in GC. Conclusions IDO1 and COL12A1 synergistically promoted GC metastasis. The novel findings suggested that both IDO1 and COL12A1 may be promising targets on anti-cancer treatment in GC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1318-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen Xiang
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzheng Song
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiexuan Wang
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Hu
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ji
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zang
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranlin Yan
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyan Yu
- Department of Surgery of Ruijin Hospital, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Park JH, Kwon BS, Park SJ, Ji W, Yoon S, Choi CM, Lee JC. Exceptional pemetrexed sensitivity can predict therapeutic benefit from subsequent chemotherapy in metastatic non-squamous non-small cell lung cancer. J Cancer Res Clin Oncol 2019; 145:1897-1905. [PMID: 31144157 DOI: 10.1007/s00432-019-02941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Based on an exceptionally durable response to pemetrexed observed in some patients with metastatic NSCLC, the predictive value of pemetrexed sensitivity to outcomes of subsequent systemic treatment was investigated. METHODS We retrospectively reviewed the patients with metastatic non-squamous NSCLC treated with pemetrexed monotherapy as their first- or second-line chemotherapy between November 2006 and February 2015. Good (top 5% longest) and poor responders (bottom 12% shortest) were defined according to the duration of pemetrexed maintenance. The first and second post-pemetrexed (PP) systemic treatments were defined as PP1 and PP2 therapies, respectively, to define their progression-free survivals (PFS) as PFS1 and PFS2. RESULTS In a total of 100 patients, 86% of patients received pemetrexed as their second-line chemotherapy, and 34% were classified as good responders. Good and poor responder groups showed 20.5 months and 0.7 months of the median duration of responses, respectively. PP1 and PP2 therapies were done in 74% and 41.9% of patients after failure to pemetrexed. To our surprise, disease control rate (DCR) was significantly higher in the good responder group than poor responder group (69.6% vs 37.3%, p = 0.010) in patients treated with PP1 therapy, and median PFS1 was also significantly longer (5.2 vs 2.2 months, p < 0.01) regardless of the type of subsequent systemic treatment. Meanwhile, pemetrexed sensitivity did not affect DCR or PFS of patients who received PP2 therapies. CONCLUSIONS Patients who achieved durable response to pemetrexed might obtain greater therapeutic benefits from subsequent systemic treatment in metastatic non-squamous NSCLC without targets, which could potentiate more effective post-pemetrexed treatment strategy.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Hemato-Oncology, College of Medicine, Konkuk University Medical Center, University of Konkuk, Seoul, Korea
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Byoung Soo Kwon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - So Jung Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Wonjun Ji
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.
| |
Collapse
|
20
|
Targeting Immune-Related Molecules in Cancer Therapy: A Comprehensive In Vitro Analysis on Patient-Derived Tumor Models. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4938285. [PMID: 30891459 PMCID: PMC6390245 DOI: 10.1155/2019/4938285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
This study investigated the impact of immune-related pathway inhibition, among them indolamine 2,3-dioxygenase (IDO), alone and together with immune cells on growth and viability of colorectal cancer (CRC) cells. A panel of patient-derived CRC cell lines with different molecular characteristics (CpG island methylator phenotype, chromosomal, and microsatellite instability) was included. Initial phenotyping of CRC cell lines (n=17) revealed high abundance of immunosuppressive checkpoint-molecules in general, but an individual profile for IDO. Presence of immune-related molecules was independent of the molecular subtype. Selective treatment of CRC cell lines showing high or low IDO expression (n=2 cell lines each) was performed with single agents and combinations of Indoximod, Curcumin, and Gemcitabine with and without the addition of peripheral blood lymphocytes (PBL) in an allogeneic setting. All substances affected CRC cell growth in a cell line specific manner. The combination of Curcumin and Gemcitabine proved to be most effective in tumor cell elimination. Functional read-out analyses identified cellular senescence, after both single and combined treatment. Curcumin alone exerted strong cytotoxic effects by inducing early and late apoptosis. Necrosis was not detectable at all. Addition of lymphocytes generally boosted antitumoral effects of all IDO-inhibitors, with up to 80 % cytotoxicity for the Curcumin treatment. Here, no obvious differences became apparent between individual cell lines. Combined application of Curcumin and low-dose chemotherapy is a promising strategy to kill tumor target cells and to stimulate antitumoral immune responses.
Collapse
|
21
|
Ko EC, Raben D, Formenti SC. The Integration of Radiotherapy with Immunotherapy for the Treatment of Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:5792-5806. [PMID: 29945993 DOI: 10.1158/1078-0432.ccr-17-3620] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022]
Abstract
Five-year survival rates for non-small cell lung cancer (NSCLC) range from 14% to 49% for stage I to stage IIIA disease, and are <5% for stage IIIB/IV disease. Improvements have been made in the outcomes of patients with NSCLC due to advancements in radiotherapy (RT) techniques, the use of concurrent chemotherapy with RT, and the emergence of immunotherapy as first- and second-line treatment in the metastatic setting. RT remains the mainstay treatment in patients with inoperable early-stage NSCLC and is given concurrently or sequentially with chemotherapy in patients with locally advanced unresectable disease. There is emerging evidence that RT not only provides local tumor control but also may influence systemic control. Multiple preclinical studies have demonstrated that RT induces immunomodulatory effects in the local tumor microenvironment, supporting a synergistic combination approach with immunotherapy to improve systemic control. Immunotherapy options that could be combined with RT include programmed cell death-1/programmed cell death ligand-1 blockers, as well as investigational agents such as OX-40 agonists, toll-like receptor agonists, indoleamine 2,3-dioxygenase-1 inhibitors, and cytokines. Here, we describe the rationale for the integration of RT and immunotherapy in patients with NSCLC, present safety and efficacy data that support this combination strategy, review planned and ongoing studies, and highlight unanswered questions and future research needs.
Collapse
Affiliation(s)
- Eric C Ko
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
22
|
Donini C, D'Ambrosio L, Grignani G, Aglietta M, Sangiolo D. Next generation immune-checkpoints for cancer therapy. J Thorac Dis 2018; 10:S1581-S1601. [PMID: 29951308 DOI: 10.21037/jtd.2018.02.79] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discovery and clinical application of immune-checkpoint inhibitors has dramatically improved the treatments, outcomes and therapeutic concepts in multiple tumor settings. This breakthrough was mainly based on monoclonal antibodies blocking the inhibitory molecule CTLA-4 and or the PD-1/PD-L1 axis, with the aim of counteracting major tumor immune evasion mechanisms. Even acknowledging these important successes, not all the patients benefit from these treatments. Translational and clinical research efforts are ongoing to explore the potentialities of a new generation of immune-modulatory molecules to extend current clinical applications and contrast the unsolved issues of resistance and disease relapse that still affects a considerable rate of patients. New immune-checkpoints, with either stimulatory or inhibitory functions are emerging with key roles in regulating T cell response but also affecting other crucial effectors belonging to the innate immune response (e.g., natural killer). Their therapeutic exploitation, either alone or in strategical combinations, is providing important preclinical results, holding promises currently explored in initial clinical trials. The first results point toward favorable safety profiles with selective hints of activity in challenging settings. Important issues regarding the dose, schedule and rational combinations remain open and data from the clinical studies are needed. Here we provide an overview of the main emerging stimulatory or inhibitory immune-checkpoints exploitable in cancer treatment, briefly reporting their biological function, preclinical activity and preliminary clinical data.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Torino, Torino, Italy
| | - Lorenzo D'Ambrosio
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Giovanni Grignani
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy.,Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
23
|
Schafer CC, Wang Y, Hough KP, Sawant A, Grant SC, Thannickal VJ, Zmijewski J, Ponnazhagan S, Deshane JS. Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget 2018; 7:75407-75424. [PMID: 27705910 PMCID: PMC5340181 DOI: 10.18632/oncotarget.12249] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) has been implicated in immune evasion by tumors. Upregulation of this tryptophan (Trp)-catabolizing enzyme, in tumor cells and myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME), leads to Trp depletion that impairs cytotoxic T cell responses and survival; however, exact mechanisms remain incompletely understood. We previously reported that a combination therapy of gemcitabine and a superoxide dismutase mimetic promotes anti-tumor immunity in a mouse model of lung cancer by inhibiting MDSCs, enhancing polyfunctional response of CD8+ memory T cells, and extending survival. Here, we show that combination therapy targets IDO signaling, specifically in MDSCs, tumor cells, and CD8+ T cells infiltrating the TME. Deficiency of IDO caused significant reduction in tumor burden, tumor-infiltrating MDSCs, GM-CSF, MDSC survival and infiltration of programmed death receptor-1 (PD-1)-expressing CD8+ T cells compared to controls. IDO−/− MDSCs downregulated nutrient-sensing AMP-activated protein kinase (AMPK) activity, but IDO−/− CD8+ T cells showed AMPK activation associated with enhanced effector function. Our studies provide proof-of-concept for the efficacy of this combination therapy in inhibiting IDO and T cell exhaustion in a syngeneic model of lung cancer and provide mechanistic insights for IDO-dependent metabolic reprogramming of MDSCs that reduces T cell exhaustion and regulates anti-tumor immunity.
Collapse
Affiliation(s)
- Cara C Schafer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth P Hough
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anandi Sawant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefan C Grant
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaroslaw Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Borrie AE, Maleki Vareki S. T Lymphocyte–Based Cancer Immunotherapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:201-276. [DOI: 10.1016/bs.ircmb.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Mouw KW, Goldberg MS, Konstantinopoulos PA, D'Andrea AD. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov 2017; 7:675-693. [PMID: 28630051 PMCID: PMC5659200 DOI: 10.1158/2159-8290.cd-17-0226] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022]
Abstract
DNA-damaging agents are widely used in clinical oncology and exploit deficiencies in tumor DNA repair. Given the expanding role of immune checkpoint blockade as a therapeutic strategy, the interaction of tumor DNA damage with the immune system has recently come into focus, and it is now clear that the tumor DNA repair landscape has an important role in driving response to immune checkpoint blockade. Here, we summarize the mechanisms by which DNA damage and genomic instability have been found to shape the antitumor immune response and describe clinical efforts to use DNA repair biomarkers to guide use of immune-directed therapies.Significance: Only a subset of patients respond to immune checkpoint blockade, and reliable predictive biomarkers of response are needed to guide therapy decisions. DNA repair deficiency is common among tumors, and emerging experimental and clinical evidence suggests that features of genomic instability are associated with response to immune-directed therapies. Cancer Discov; 7(7); 675-93. ©2017 AACR.
Collapse
Affiliation(s)
- Kent W Mouw
- Department of Radiation Oncology, Brigham & Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Michael S Goldberg
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Panagiotis A Konstantinopoulos
- Harvard Medical School, Boston, Massachusetts
- Medical Gynecology Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alan D D'Andrea
- Department of Radiation Oncology, Brigham & Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
26
|
Maleki Vareki S, Garrigós C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol 2017; 116:116-124. [PMID: 28693793 DOI: 10.1016/j.critrevonc.2017.06.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/09/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a promising treatment strategy for cancer that has recently shown unprecedented survival benefits in selected patients. A number of immunomodulatory agents that target immune system checkpoints such as the cytotoxic T-lymphocyte antigen 4 (CTLA-4), the programmed death-1 (PD-1) or its ligand (PD-L1), have received regulatory approval for the treatment of multiple cancers including malignant melanoma, non-small cell lung cancer, renal cell carcinoma, classical Hodgkin lymphoma, and recurrent or metastatic head and neck squamous cell carcinoma. Nevertheless, a substantial proportion of patients treated with checkpoint inhibitors have little or no benefit while these treatments are costly and might have associated toxicities. Hence, the establishment of valid predictors of treatment response has become a priority. This review summarizes the current evidence around biomarkers of response to PD-1/PD-L1 inhibition, considering features related to the tumor and to the host immune system.
Collapse
Affiliation(s)
- Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, Ontario, Canada.
| | - Carmen Garrigós
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Duran
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
27
|
Pschowski R, Pape UF, Fusch G, Fischer C, Jann H, Baur A, Arsenic R, Wiedenmann B, von Haehling S, Pavel M, Schefold JC. Increased Activity of the Immunoregulatory Enzyme Indoleamine-2,3-Dioxygenase with Consecutive Tryptophan Depletion Predicts Death in Patients with Neuroendocrine Neoplasia. Neuroendocrinology 2017; 104:135-144. [PMID: 26954941 DOI: 10.1159/000445191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Data from a considerable number of malignancies demonstrate that depletion of the essential amino acid tryptophan via induction of the immunoregulatory enzyme indoleamine-2,3-dioxygenase (IDO) serves as an important tumour escape strategy and is of prognostic importance. Here we investigate the predictive value of the activity of IDO as well as levels of tryptophan and respective downstream catabolites in a large cohort of patients with neuroendocrine neoplasms (NEN). METHODS 142 consecutive Caucasian patients (62 male, aged 60.3 ± 11.9 years) with histologically confirmed NEN were systematically analysed in a retrospective blinded end point analysis. Patients were followed up for a mean period of about 3.9 ± 1.9 years. Clinical outcome, levels of established biomarkers, and tryptophan degradation markers (assessed using tandem mass spectrometry) including estimated IDO activity were recorded. Cox proportional hazards regression models were performed for the assessment of prognostic power. RESULTS We found that baseline tryptophan levels were significantly lower and IDO activity was significantly increased in non-survivors. The risk for death inclined stepwise and was highest in patients in the upper tertile of IDO activity. Cox proportional regression models identified IDO activity as an independent predictor of death. CONCLUSIONS In this retrospective analysis, we observed that baseline activity of the immunoregulatory enzyme IDO was significantly increased in non-survivors. IDO activity was identified as an independent predictor of death in this cohort of NEN patients. Whether IDO activity or tryptophan depletion serves to guide future therapeutic interventions in NEN remains to be established.
Collapse
Affiliation(s)
- René Pschowski
- Department of Hepatology and Gastroenterology, Charité Campus Mitte [CCM and Campus Virchow Clinic (CVK)], Charité, University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Salim KY, Vareki SM, Danter WR, Koropatnick J. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget 2016; 7:41363-41379. [PMID: 27150056 PMCID: PMC5173065 DOI: 10.18632/oncotarget.9133] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/16/2016] [Indexed: 12/28/2022] Open
Abstract
Identification of novel anti-cancer compounds with high efficacy and low toxicity is critical in drug development. High-throughput screening and other such strategies are generally resource-intensive. Therefore, in silico computer-aided drug design has gained rapid acceptance and popularity. We employed our proprietary computational platform (CHEMSAS®), which uses a unique combination of traditional and modern pharmacology principles, statistical modeling, medicinal chemistry, and machine-learning technologies to discover and optimize novel compounds that could target various cancers. COTI-2 is a small molecule candidate anti-cancer drug identified using CHEMSAS. This study describes the in vitro and in vivo evaluation of COTI-2. Our data demonstrate that COTI-2 is effective against a diverse group of human cancer cell lines regardless of their tissue of origin or genetic makeup. Most treated cancer cell lines were sensitive to COTI-2 at nanomolar concentrations. When compared to traditional chemotherapy or targeted-therapy agents, COTI-2 showed superior activity against tumor cells, in vitro and in vivo. Despite its potent anti-tumor efficacy, COTI-2 was safe and well-tolerated in vivo. Although the mechanism of action of COTI-2 is still under investigation, preliminary results indicate that it is not a traditional kinase or an Hsp90 inhibitor.
Collapse
Affiliation(s)
| | - Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | - James Koropatnick
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Pathology, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
29
|
Zhang Y, Song N, Fu J, Liu Y, Zhan X, Peng S, Yang Z, Zhu X, Chen Y, Wang Z, Yu Y, Shi Q, Fu Y, Yuan K, Zhou N, Ichim TE, Min W. Synergic therapy of melanoma using GNRs-MUA-PEI/siIDO2-FA through targeted gene silencing and plasmonic photothermia. RSC Adv 2016. [DOI: 10.1039/c6ra13297a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IDO2 siRNA synergizes GNR-mediated anti-melanoma photothermal therapy.
Collapse
|