1
|
Shen X, Korber B, Spreng RL, Sawant SS, deCamp A, McMillan AS, Mathura R, Zolla-Pazner S, Pinter A, Parks R, Bowman C, Sutherland L, Scearce R, Yates NL, Montefiori DC, Haynes BF, Tomaras GD. A Pentavalent HIV-1 Subtype C Vaccine Containing Computationally Selected gp120 Strains Improves the Breadth of V1V2 Region Responses. Vaccines (Basel) 2025; 13:133. [PMID: 40006680 PMCID: PMC11860947 DOI: 10.3390/vaccines13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND HIV-1 envelope (Env) variable loops 1 and 2 (V1V2) directed non-neutralizing antibodies were a correlate of decreased transmission risk in the RV144 vaccine trial. Thus, the elicitation and breadth of antibody responses against the V1V2 of HIV-1 Env are important considerations for HIV-1 vaccine candidates. The V1V2 region's highly variable nature and the extensive diversity of subtype C HIV-1 Envelopes (Envs) make the V1V2 response breadth a high priority for HIV-1 vaccine regimens aiming for V1V2-mediated protection in Southern Africa. Here, we determined whether the breadth of the anti-V1V2 vaccine response can be broadened by including HIV-1 Env strains computationally designed to enhance the coverage of subtype C V1V2 sequence diversity. METHODS Three subtype C Env strains were selected to maximize antibody binding coverage while complementing subtype C vaccine gp120s that were given in human clinical trials in South Africa, as well as to improve epitope accessibility. Humoral immunogenicity of a novel trivalent gp120 vaccine immunogen, a bivalent gp120 boost already in clinical trials (1086C and TV1), and a pentavalent (all five gp120s combined) were evaluated in a preclinical immunization study in guinea pigs. The pentavalent combination was further evaluated with alum versus glucopyranosyl lipid adjuvants formulated in squalene-in-water emulsion (GLA-SE) adjuvants in non-human primates. The breadth of the anti-V1V2 response was assessed using an array of cross-subtype variable loops 1&2 (V1V2) scaffold proteins and linear V2 peptides. RESULTS The breadth of the IgG response against V1V2 antigens of the trivalent and pentavalent groups was comparable, and both were greater than the breadth of the bivalent group. Linear epitope mapping showed that two linear epitopes in V2 were targeted by the vaccinated animals: the V2 hotspot focused at 169K that potentially correlated with decreased HIV-1 risk in RV144 and the V2.2 site (179LDV/I181) that is part of the integrin α4β7 binding site. The bivalent vaccine elicited a significantly higher magnitude of binding to the V2 hotspot compared to the trivalent vaccine whereas the trivalent vaccine elicited significantly higher binding to the V2.2 epitope compared to the bivalent vaccine, while the pentavalent recognized both regions. CONCLUSIONS These results demonstrate that the three new computationally selected subtype C Envs successfully complemented 1086C and TV1 for broader V1V2 antibody responses, and, in concert with adjuvants that stimulate V1V2 responses, can be considered as part of a rationale immunogen design to improve V1V2 IgG coverage in future vaccine trials in South Africa.
Collapse
Affiliation(s)
- Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Bette Korber
- Los Alamos National Laboratory, The New Mexico Consortium, Los Alamos, NM 87544, USA;
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
| | - Sheetal S. Sawant
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arthur S. McMillan
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
| | - Ryan Mathura
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
| | | | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
| | - Nicole L. Yates
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (R.L.S.); (S.S.S.); (A.S.M.); (R.M.); (R.P.); (C.B.); (L.S.); (R.S.); (N.L.Y.); (D.C.M.); (B.F.H.)
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Kim J, Villar Z, Jobe O, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, O'Connell RJ, Ake JA, Vasan S, Rao VB, Rao M. Broadly neutralizing antibodies and monoclonal V2 antibodies derived from RV305 inhibit capture and replication of HIV-1. Virology 2024; 597:110158. [PMID: 38941746 DOI: 10.1016/j.virol.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
An important approach to stopping the AIDS epidemic is the development of a vaccine that elicits antibodies that block virus capture, the initial interactions of HIV-1 with the target cells, and replication. We utilized a previously developed qRT-PCR-based assay to examine the effects of broadly neutralizing antibodies (bNAbs), plasma from vaccine trials, and monoclonal antibodies (mAbs) on virus capture and replication. A panel of bNAbs inhibited primary HIV-1 replication in PBMCs but not virus capture. Plasma from RV144 and RV305 trial vaccinees demonstrated inhibition of virus capture with the HIV-1 subtype prevalent in Thailand. Several RV305 derived V2-specific mAbs inhibited virus replication. One of these RV305 derived V2-specific mAbs inhibited both virus capture and replication, demonstrating that it is possible to elicit antibodies by vaccination that inhibit virus capture and replication. Induction of a combination of such antibodies may be the key to protection from HIV-1 acquisition.
Collapse
Affiliation(s)
- Jiae Kim
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| | - Zuzana Villar
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Ousman Jobe
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | - Robert J O'Connell
- United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Julie A Ake
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, DC, 20064, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| |
Collapse
|
3
|
Jain S, Uritskiy G, Mahalingam M, Batra H, Chand S, Trinh HV, Beck C, Shin WH, Alsalmi W, Kijak G, Eller LA, Kim J, Kihara D, Tovanabutra S, Ferrari G, Robb ML, Rao M, Rao VB. A remarkable genetic shift in a transmitted/founder virus broadens antibody responses against HIV-1. eLife 2024; 13:RP92379. [PMID: 38619110 PMCID: PMC11018346 DOI: 10.7554/elife.92379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.
Collapse
Affiliation(s)
- Swati Jain
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of AmericaWashingtonUnited States
| | - Gherman Uritskiy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of AmericaWashingtonUnited States
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of AmericaWashingtonUnited States
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of AmericaWashingtonUnited States
| | - Subhash Chand
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of AmericaWashingtonUnited States
| | - Hung V Trinh
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUnited States
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of ResearchSilver SpringUnited States
| | - Charles Beck
- Department of Molecular Genetics and Microbiology, Duke UniversityDurhamUnited States
| | - Woong-Hee Shin
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
- Department of Chemistry Education, Sunchon National UniversitySuncheonRepublic of Korea
- Department of Advanced Components and Materials Engineering, Sunchon National UniversitySuncheonRepublic of Korea
| | - Wadad Alsalmi
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of AmericaWashingtonUnited States
| | - Gustavo Kijak
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUnited States
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of ResearchSilver SpringUnited States
| | - Leigh A Eller
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUnited States
| | - Jerome Kim
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of ResearchSilver SpringUnited States
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
- Department of Computer Science, Purdue UniversityWest LafayetteUnited States
| | - Sodsai Tovanabutra
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUnited States
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of ResearchSilver SpringUnited States
| | - Guido Ferrari
- Department of Molecular Genetics and Microbiology, Duke UniversityDurhamUnited States
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUnited States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of ResearchSilver SpringUnited States
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of AmericaWashingtonUnited States
| |
Collapse
|
4
|
Burke Schinkel SC, Barros PO, Berthoud T, Byrareddy SN, McGuinty M, Cameron DW, Angel JB. Comparative analysis of human gut- and blood-derived mononuclear cells: contrasts in function and phenotype. Front Immunol 2024; 15:1336480. [PMID: 38444848 PMCID: PMC10912472 DOI: 10.3389/fimmu.2024.1336480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Alterations in the gut immune system have been implicated in various diseases.The challenge of obtaining gut tissues from healthy individuals, commonly performed via surgical explants, has limited the number of studies describing the phenotype and function of gut-derived immune cells in health. Methods Here, by means of recto-sigmoid colon biopsies obtained during routine care (colon cancer screening in healthy adults), the phenotype and function of immune cells present in the gut were described and compared to those found in blood. Results The proportion of CD4+, CD8+, MAIT, γδ+ T, and NK cells phenotype, expression of integrins, and ability to produce cytokine in response to stimulation with PMA and ionomycin. T cells in the gut were found to predominantly have a memory phenotype as compared to T cells in blood where a naïve phenotype predominates. Recto-sigmoid mononuclear cells also had higher PD-1 and Ki67 expression. Furthermore, integrin expression and cytokine production varied by cell type and location in blood vs. gut. Discussion These findings demonstrate the differences in functionality of these cells when compared to their blood counterparts and validate previous studies on phenotype within gut-derived immune cells in humans (where cells have been obtained through surgical means). This study suggests that recto-sigmoid biopsies collected during colonoscopy can be a reliable yet more accessible sampling method for follow up of alterations of gut derived immune cells in clinical settings.
Collapse
Affiliation(s)
| | - Priscila O Barros
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Tamara Berthoud
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michaeline McGuinty
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - D William Cameron
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan B Angel
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Van Ryk D, Vimonpatranon S, Hiatt J, Ganesan S, Chen N, McMurry J, Garba S, Min S, Goes LR, Girard A, Yolitz J, Licavoli I, Wei D, Huang D, Soares MA, Martinelli E, Cicala C, Arthos J. The V2 domain of HIV gp120 mimics an interaction between CD4 and integrin ⍺4β7. PLoS Pathog 2023; 19:e1011860. [PMID: 38064524 PMCID: PMC10732398 DOI: 10.1371/journal.ppat.1011860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
The CD4 receptor, by stabilizing TCR-MHC II interactions, plays a central role in adaptive immunity. It also serves as the HIV docking receptor. The HIV gp120 envelope protein binds directly to CD4. This interaction is a prerequisite for viral entry. gp120 also binds to ⍺4β7, an integrin that is expressed on a subset of memory CD4+ T cells. HIV tropisms for CD4+ T cells and gut tissues are central features of HIV pathogenesis. We report that CD4 binds directly to ⍺4β7 in a dynamic way, consistent with a cis regulatory interaction. The molecular details of this interaction are related to the way in which gp120 interacts with both receptors. Like MAdCAM-1 and VCAM-1, two recognized ligands of ⍺4β7, the binding interface on CD4 includes 2 sites (1° and accessory), distributed across its two N-terminal IgSF domains (D1 and D2). The 1° site includes a sequence in the G β-strand of CD4 D2, KIDIV, that binds directly to ⍺4β7. This pentapeptide sequence occurs infrequently in eukaryotic proteins. However, a closely related and conserved sequence, KLDIV, appears in the V2 domain of gp120. KLDIV mediates gp120-⍺4β7 binding. The accessory ⍺4β7 binding site on CD4 includes Phe43. The Phe43 aromatic ring protrudes outward from one edge of a loop connecting the C'C" strands of CD4 D1. Phe43 is a principal contact for HIV gp120. It interacts with conserved residues in the recessed CD4 binding pocket. Substitution of Phe43 abrogates CD4 binding to both gp120 and ⍺4β7. As such, the interactions of gp120 with both CD4 and ⍺4β7 reflect elements of their interactions with each other. These findings indicate that gp120 specificities for CD4 and ⍺4β7 are interrelated and suggest that selective pressures which produced a CD4 tropic virus that replicates in gut tissues are linked to a dynamic interaction between these two receptors.
Collapse
Affiliation(s)
- Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Sinmanus Vimonpatranon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | - Joe Hiatt
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nathalie Chen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jordan McMurry
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Saadiq Garba
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Susie Min
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Livia R. Goes
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Girard
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Isabella Licavoli
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dawei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcelo A. Soares
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elena Martinelli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Stamos JD, Rahman MA, Gorini G, Silva de Castro I, Becerra-Flores M, Van Wazer DJ, N’Guessan KF, Clark NM, Bissa M, Gutowska A, Mason RD, Kim J, Rao M, Roederer M, Paquin-Proulx D, Evans DT, Cicala C, Arthos J, Kwong PD, Zhou T, Cardozo T, Franchini G. Effect of Passive Administration of Monoclonal Antibodies Recognizing Simian Immunodeficiency Virus (SIV) V2 in CH59-Like Coil/Helical or β-Sheet Conformations on Time of SIV mac251 Acquisition. J Virol 2023; 97:e0186422. [PMID: 36976017 PMCID: PMC10134845 DOI: 10.1128/jvi.01864-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
The monoclonal antibodies (MAbs) NCI05 and NCI09, isolated from a vaccinated macaque that was protected from multiple simian immunodeficiency virus (SIV) challenges, both target an overlapping, conformationally dynamic epitope in SIV envelope variable region 2 (V2). Here, we show that NCI05 recognizes a CH59-like coil/helical epitope, whereas NCI09 recognizes a β-hairpin linear epitope. In vitro, NCI05 and, to a lesser extent, NCI09 mediate the killing of SIV-infected cells in a CD4-dependent manner. Compared to NCI05, NCI09 mediates higher titers of antibody-dependent cellular cytotoxicity (ADCC) to gp120-coated cells, as well as higher levels of trogocytosis, a monocyte function that contributes to immune evasion. We also found that passive administration of NCI05 or NCI09 to macaques did not affect the risk of SIVmac251 acquisition compared to controls, demonstrating that these anti-V2 antibodies alone are not protective. However, NCI05 but not NCI09 mucosal levels strongly correlated with delayed SIVmac251 acquisition, and functional and structural data suggest that NCI05 targets a transient state of the viral spike apex that is partially opened, compared to its prefusion-closed conformation. IMPORTANCE Studies suggest that the protection against SIV/simian-human immunodeficiency virus (SHIV) acquisition afforded by the SIV/HIV V1 deletion-containing envelope immunogens, delivered by the DNA/ALVAC vaccine platform, requires multiple innate and adaptive host responses. Anti-inflammatory macrophages and tolerogenic dendritic cells (DC-10), together with CD14+ efferocytes, are consistently found to correlate with a vaccine-induced decrease in the risk of SIV/SHIV acquisition. Similarly, V2-specific antibody responses mediating ADCC, Th1 and Th2 cells expressing no or low levels of CCR5, and envelope-specific NKp44+ cells producing interleukin 17 (IL-17) also are reproducible correlates of decreased risk of virus acquisition. We focused on the function and the antiviral potential of two monoclonal antibodies (NCI05 and NCI09) isolated from vaccinated animals that differ in antiviral function in vitro and recognize V2 in a linear (NCI09) or coil/helical (NCI05) conformation. We demonstrate that NCI05, but not NCI09, delays SIVmac251 acquisition, highlighting the complexity of antibody responses to V2.
Collapse
Affiliation(s)
- James D. Stamos
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Manuel Becerra-Flores
- New York University Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - David J. Van Wazer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kombo F. N’Guessan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Innate Immunology Laboratory, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Natasha M. Clark
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Rosemarie D. Mason
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiae Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Innate Immunology Laboratory, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy Cardozo
- New York University Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Prévost J, Richard J, Gasser R, Medjahed H, Kirchhoff F, Hahn BH, Kappes JC, Ochsenbauer C, Duerr R, Finzi A. Detection of the HIV-1 Accessory Proteins Nef and Vpu by Flow Cytometry Represents a New Tool to Study Their Functional Interplay within a Single Infected CD4 + T Cell. J Virol 2022; 96:e0192921. [PMID: 35080425 PMCID: PMC8941894 DOI: 10.1128/jvi.01929-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/16/2022] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 Nef and Vpu accessory proteins are known to protect infected cells from antibody-dependent cellular cytotoxicity (ADCC) responses by limiting exposure of CD4-induced (CD4i) envelope (Env) epitopes at the cell surface. Although both proteins target the host receptor CD4 for degradation, the extent of their functional redundancy is unknown. Here, we developed an intracellular staining technique that permits the intracellular detection of both Nef and Vpu in primary CD4+ T cells by flow cytometry. Using this method, we show that the combined expression of Nef and Vpu predicts the susceptibility of HIV-1-infected primary CD4+ T cells to ADCC by HIV+ plasma. We also show that Vpu cannot compensate for the absence of Nef, thus providing an explanation for why some infectious molecular clones that carry a LucR reporter gene upstream of Nef render infected cells more susceptible to ADCC responses. Our method thus represents a new tool to dissect the biological activity of Nef and Vpu in the context of other host and viral proteins within single infected CD4+ T cells. IMPORTANCE HIV-1 Nef and Vpu exert several biological functions that are important for viral immune evasion, release, and replication. Here, we developed a new method allowing simultaneous detection of these accessory proteins in their native form together with some of their cellular substrates. This allowed us to show that Vpu cannot compensate for the lack of a functional Nef, which has implications for studies that use Nef-defective viruses to study ADCC responses.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Tolbert WD, Nguyen DN, Tuyishime M, Crowley AR, Chen Y, Jha S, Goodman D, Bekker V, Mudrak SV, DeVico AL, Lewis GK, Theis JF, Pinter A, Moody MA, Easterhoff D, Wiehe K, Pollara J, Saunders KO, Tomaras GD, Ackerman M, Ferrari G, Pazgier M. Structure and Fc-Effector Function of Rhesusized Variants of Human Anti-HIV-1 IgG1s. Front Immunol 2022; 12:787603. [PMID: 35069563 PMCID: PMC8770954 DOI: 10.3389/fimmu.2021.787603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Passive transfer of monoclonal antibodies (mAbs) of human origin into Non-Human Primates (NHPs), especially those which function predominantly by a Fc-effector mechanism, requires an a priori preparation step, in which the human mAb is reengineered to an equivalent NHP IgG subclass. This can be achieved by changing both the Fc and Fab sequence while simultaneously maintaining the epitope specificity of the parent antibody. This Ab reengineering process, referred to as rhesusization, can be challenging because the simple grafting of the complementarity determining regions (CDRs) into an NHP IgG subclass may impact the functionality of the mAb. Here we describe the successful rhesusization of a set of human mAbs targeting HIV-1 envelope (Env) epitopes involved in potent Fc-effector function against the virus. This set includes a mAb targeting a linear gp120 V1V2 epitope isolated from a RV144 vaccinee, a gp120 conformational epitope within the Cluster A region isolated from a RV305 vaccinated individual, and a linear gp41 epitope within the immunodominant Cys-loop region commonly targeted by most HIV-1 infected individuals. Structural analyses confirm that the rhesusized variants bind their respective Env antigens with almost identical specificity preserving epitope footprints and most antigen-Fab atomic contacts with constant regions folded as in control RM IgG1s. In addition, functional analyses confirm preservation of the Fc effector function of the rhesusized mAbs including the ability to mediate Antibody Dependent Cell-mediated Cytotoxicity (ADCC) and antibody dependent cellular phagocytosis by monocytes (ADCP) and neutrophils (ADNP) with potencies comparable to native macaque antibodies of similar specificity. While the antibodies chosen here are relevant for the examination of the correlates of protection in HIV-1 vaccine trials, the methods used are generally applicable to antibodies for other purposes.
Collapse
Affiliation(s)
- William D. Tolbert
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Marina Tuyishime
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew R. Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Valerie Bekker
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Sarah V. Mudrak
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Anthony L. DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James F. Theis
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - M. Anthony Moody
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - David Easterhoff
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O. Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Margaret Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States,*Correspondence: Marzena Pazgier,
| |
Collapse
|
9
|
The V2 loop of HIV gp120 delivers costimulatory signals to CD4 + T cells through Integrin α 4β 7 and promotes cellular activation and infection. Proc Natl Acad Sci U S A 2020; 117:32566-32573. [PMID: 33288704 DOI: 10.1073/pnas.2011501117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute HIV infection is characterized by rapid viral seeding of immunologic inductive sites in the gut followed by the severe depletion of gut CD4+ T cells. Trafficking of α4β7-expressing lymphocytes to the gut is mediated by MAdCAM, the natural ligand of α4β7 that is expressed on gut endothelial cells. MAdCAM signaling through α4β7 costimulates CD4+ T cells and promotes HIV replication. Similar to MAdCAM, the V2 domain of the gp120 HIV envelope protein binds to α4β7 In this study, we report that gp120 V2 shares with MAdCAM the capacity to signal through α4β7 resulting in CD4+ T cell activation and proliferation. As with MAdCAM-mediated costimulation, cellular activation induced by gp120 V2 is inhibited by anti-α4β7 monoclonal antibodies (mAbs). It is also inhibited by anti-V2 domain antibodies including nonneutralizing mAbs that recognize an epitope in V2 that has been linked to reduced risk of acquisition in the RV144 vaccine trial. The capacity of the V2 domain of gp120 to mediate signaling through α4β7 likely impacts early events in HIV infection. The capacity of nonneutralizing V2 antibodies to block this activity reveals a previously unrecognized mechanism whereby such antibodies might impact HIV transmission and pathogenesis.
Collapse
|
10
|
Balena F, Bavaro DF, Volpe A, Lagioia A, Angarano G, Monno L, Saracino A. Influence of HIV-1 V2 sequence variability on bacterial translocation in antiretroviral naïve HIV-1 infected patients. J Med Virol 2020; 92:3271-3278. [PMID: 32609386 DOI: 10.1002/jmv.26246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022]
Abstract
HIV-1 V2 domain binds α4β7, which assists lymphocyte homing to gut-associated lymphoid tissue. This triggers bacterial translocation, thus contributing to immune activation. We investigated whether variability of V2 179-181 binding site could influence plasma levels of lipopolysaccharide (LPS) and soluble cluster of differentiation 14 (sCD14), markers of microbial translocation/immune activation. HIV gp120 sequences from antiretroviral naïve patients were analyzed for V2 tripeptide composition, length, net charge, and potential N-linked-glycosylation sites. LPS and sCD14 plasma levels were quantified. Clinical/immuno-virologic data were retrieved. Overall, 174 subjects were enrolled, 8% with acute infection, 71% harboring a subtype B. LDV179-181 was detected in 41% and LDI in 27%. No difference was observed between levels of LPS or sCD14 according to different mimotopes or according to other sequence characteristics. By multivariable analysis, only acute infection was significantly associated with higher sCD14 levels. In conclusion, no association was observed between V2 tripeptide composition and extent of bacterial translocation/immune activation.
Collapse
Affiliation(s)
- Flavia Balena
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Davide F Bavaro
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Anna Volpe
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Antonella Lagioia
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Gioacchino Angarano
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Laura Monno
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| |
Collapse
|
11
|
Joachim A, Msafiri F, Onkar S, Munseri P, Aboud S, Lyamuya EF, Bakari M, Billings E, Robb ML, Wahren B, Mhalu FS, Sandström E, Rao M, Nilsson C, Biberfeld G. Frequent and Durable Anti-HIV Envelope VIV2 IgG Responses Induced by HIV-1 DNA Priming and HIV-MVA Boosting in Healthy Tanzanian Volunteers. Vaccines (Basel) 2020; 8:E681. [PMID: 33202967 PMCID: PMC7711440 DOI: 10.3390/vaccines8040681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
We evaluated antibody responses to the human immunodeficiency virus (HIV) envelope variable regions 1 and 2 (V1V2) in 29 vaccinees who had received three HIV-1 DNA immunizations and two HIV-modified vaccinia virus Ankara (MVA) boosts in the phase I/II HIVIS03 vaccine trial. Twenty vaccinees received a third HIV-MVA boost after three years in the HIVIS06 trial. IgG and IgG antibody subclasses to gp70V1V2 proteins of HIV-1 A244, CN54, Consensus C, and Case A2 were analysed using an enzyme-linked immunosorbent assay (ELISA). Cyclic V2 peptides of A244, Consensus C, and MN were used in a surface plasmon resonance (SPR) assay. Four weeks after the second HIV-MVA, anti-V1V2 IgG antibodies to A244 were detected in 97% of HIVIS03 vaccinees, in 75% three years later, and in 95% after the third HIV-MVA. Anti-CN54 V1V2 IgG was detectable in 48% four weeks after the second HIV-MVA. The SPR data supported the findings. The IgG response was predominantly IgG1. Four weeks after the second HIV-MVA, 85% of vaccinees had IgG1 antibodies to V1V2 A244, which persisted in 25% for three-years. IgG3 and IgG4 antibodies to V1V2 A244 were rare. In conclusion, the HIV-DNA/MVA vaccine regimen induced durable V1V2 IgG antibody responses in a high proportion of vaccinees.
Collapse
Affiliation(s)
- Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001 Dar es Salaam, Tanzania; (F.M.); (S.A.); (E.F.L.); (F.S.M.)
| | - Frank Msafiri
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001 Dar es Salaam, Tanzania; (F.M.); (S.A.); (E.F.L.); (F.S.M.)
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Sayali Onkar
- The US Military HIV Research Program, The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.O.); (E.B.)
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.L.R.); (M.R.)
| | - Patricia Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001 Dar es Salaam, Tanzania; (P.M.); (M.B.)
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001 Dar es Salaam, Tanzania; (F.M.); (S.A.); (E.F.L.); (F.S.M.)
| | - Eligius F. Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001 Dar es Salaam, Tanzania; (F.M.); (S.A.); (E.F.L.); (F.S.M.)
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001 Dar es Salaam, Tanzania; (P.M.); (M.B.)
| | - Erik Billings
- The US Military HIV Research Program, The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.O.); (E.B.)
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.L.R.); (M.R.)
| | - Merlin L. Robb
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.L.R.); (M.R.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Fred S. Mhalu
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001 Dar es Salaam, Tanzania; (F.M.); (S.A.); (E.F.L.); (F.S.M.)
| | - Eric Sandström
- Venhälsan, Karolinska Institutet at Södersjukhuset, 11883 Stockholm, Sweden;
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.L.R.); (M.R.)
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Microbiology, Public Health Agency of Sweden, 17182 Solna, Sweden
| | - Gunnel Biberfeld
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden;
| |
Collapse
|
12
|
Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, Söderholm JD, Myrelid P, Shankar EM, Nyström S, Larsson M. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. eLife 2020; 9:e57869. [PMID: 32876566 PMCID: PMC7492089 DOI: 10.7554/elife.57869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Åsa V Keita
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Johan D Söderholm
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Pär Myrelid
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah PantaiKuala LumpurMalaysia
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil NaduThiruvarurIndia
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| |
Collapse
|
13
|
Wieczorek L, Peachman K, Adams DJ, Barrows B, Molnar S, Schoen J, Dawson P, Bryant C, Chenine AL, Sanders-Buell E, Srithanaviboonchai K, Pathipvanich P, Michael NL, Robb ML, Tovanabutra S, Rao M, Polonis VR. Evaluation of HIV-1 neutralizing and binding antibodies in maternal-infant transmission in Thailand. Virology 2020; 548:152-159. [PMID: 32838936 DOI: 10.1016/j.virol.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
Despite anti-retroviral therapy (ART) interventions for HIV+ pregnant mothers, over 43,000 perinatal infections occur yearly. Understanding risk factors that lead to mother-to-child transmission (MTCT) of HIV are critical. We evaluated maternal and infant plasma binding and neutralizing antibody responses in a drug-naïve, CRF01_AE infected MTCT cohort from Thailand to determine associations with transmission risk. Env V3-specific IgG and neutralizing antibody responses were significantly higher in HIV- infants, as compared to HIV+ infants. In fact, infant plasma neutralizing antibodies significantly associated with non-transmission. Conversely, increased maternal Env V3-specific IgG and neutralizing antibody responses were significantly associated with increased transmission risk, after controlling for maternal viral load. Our results highlight the importance of evaluating both maternal and infant humoral immune responses to better understand mechanisms of protection, as selective placental antibody transport may have a role in MTCT. This study further emphasizes the complex role of Env-specific antibodies in MTCT of CRF01_AE HIV.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Kristina Peachman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Daniel J Adams
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Department of Pediatrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Brittani Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Jesse Schoen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Peter Dawson
- The Emmes Corporation, 401 North Washington Street Suite 700, Rockville, MD, 20850, USA
| | - Chris Bryant
- The Emmes Corporation, 401 North Washington Street Suite 700, Rockville, MD, 20850, USA
| | - Agnès-Laurence Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | | | - Panita Pathipvanich
- Chiang Mai University, 239 Huaykaew Road, Suthep Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
14
|
Shen X, Laher F, Moodie Z, McMillan AS, Spreng RL, Gilbert PB, Huang Y, Yates NL, Grunenberg N, Juliana McElrath M, Allen M, Pensiero M, Mehra VL, Der Meeren OV, Barnett SW, Phogat S, Gray GE, Bekker LG, Corey L, Tomaras GD. HIV-1 Vaccine Sequences Impact V1V2 Antibody Responses: A Comparison of Two Poxvirus Prime gp120 Boost Vaccine Regimens. Sci Rep 2020; 10:2093. [PMID: 32034163 PMCID: PMC7005751 DOI: 10.1038/s41598-020-57491-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
In the RV144 trial, vaccine-induced V1V2 IgG correlated with decreased HIV-1 risk. We investigated circulating antibody specificities in two phase 1 poxvirus prime-protein boost clinical trials conducted in South Africa: HVTN 097 (subtype B/E) and HVTN 100 (subtype C). With cross-subtype peptide microarrays and multiplex binding assays, we probed the magnitude and breadth of circulating antibody responses to linear variable loop 2 (V2) and conformational V1V2 specificities. Antibodies targeting the linear V2 epitope, a correlate of decreased HIV-1 risk in RV144, were elicited up to 100% and 61% in HVTN 097 and HVTN 100, respectively. Despite higher magnitude of envelope-specific responses in HVTN 100 compared to HVTN 097 (p’s < 0.001), the magnitude and positivity for V2 linear epitope and V1V2 proteins were significantly lower in HVTN 100 compared to HVTN 097. Meanwhile, responses to other major linear epitopes including the variable 3 (V3) and constant 5 (C5) epitopes were higher in HVTN 100 compared to HVTN 097. Our data reveal substantial differences in the circulating antibody specificities induced by vaccination in these two canarypox prime-protein boost trials. Our findings suggest that the choice of viral sequences in prime-boost vaccine regimens, and potentially adjuvants and immunogen dose, influence the elicitation of V2-specific antibodies.
Collapse
Affiliation(s)
- Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Soweto, South Africa
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Arthur S McMillan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rachel L Spreng
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mary Allen
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vijay L Mehra
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Susan W Barnett
- GSK Vaccines (formerly Novartis Vaccines), Cambridge, Massachusetts, USA.,Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Soweto, South Africa.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,South African Medical Research Council, Cape Town, South Africa
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA. .,Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA. .,Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
15
|
Easterhoff D, Pollara J, Luo K, Janus B, Gohain N, Williams LD, Tay MZ, Monroe A, Peachman K, Choe M, Min S, Lusso P, Zhang P, Go EP, Desaire H, Bonsignori M, Hwang KK, Beck C, Kakalis M, O’Connell RJ, Vasan S, Kim JH, Michael NL, Excler JL, Robb ML, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Nitayaphan S, Sinangil F, Tartaglia J, Phogat S, Wiehe K, Saunders KO, Montefiori DC, Tomaras GD, Moody MA, Arthos J, Rao M, Joyce MG, Ofek G, Ferrari G, Haynes BF. HIV vaccine delayed boosting increases Env variable region 2-specific antibody effector functions. JCI Insight 2020; 5:131437. [PMID: 31996483 PMCID: PMC7098725 DOI: 10.1172/jci.insight.131437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
In the RV144 HIV-1 phase III trial, vaccine efficacy directly correlated with the magnitude of the variable region 2-specific (V2-specific) IgG antibody response, and in the presence of low plasma IgA levels, with the magnitude of plasma antibody-dependent cellular cytotoxicity. Reenrollment of RV144 vaccinees in the RV305 trial offered the opportunity to define the function, maturation, and persistence of vaccine-induced V2-specific and other mAb responses after boosting. We show that the RV144 vaccine regimen induced persistent V2 and other HIV-1 envelope-specific memory B cell clonal lineages that could be identified throughout the approximately 11-year vaccination period. Subsequent boosts increased somatic hypermutation, a critical requirement for antibody affinity maturation. Characterization of 22 vaccine-induced V2-specific mAbs with epitope specificities distinct from previously characterized RV144 V2-specific mAbs CH58 and CH59 found increased in vitro antibody-mediated effector functions. Thus, when inducing non-neutralizing antibodies, one method by which to improve HIV-1 vaccine efficacy may be through late boosting to diversify the V2-specific response to increase the breadth of antibody-mediated anti-HIV-1 effector functions.
Collapse
Affiliation(s)
- David Easterhoff
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | | | - Kan Luo
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Benjamin Janus
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Neelakshi Gohain
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Matthew Zirui Tay
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Anthony Monroe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Kristina Peachman
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Misook Choe
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Susie Min
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Paolo Lusso
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Peng Zhang
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eden P. Go
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Heather Desaire
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Charles Beck
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Matina Kakalis
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | | | - Sandhya Vasan
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Jerome H. Kim
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
| | - Nelson L. Michael
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jean-Louis Excler
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Merlin L. Robb
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Supachai Rerks-Ngarm
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Punnee Pitisuttithum
- Mahidol Bangkok School of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Mahidol Bangkok School of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - James Tartaglia
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Sanjay Phogat
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | | | | | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - James Arthos
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mangala Rao
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
| | - M. Gordon Joyce
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Gilad Ofek
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| |
Collapse
|
16
|
Uzzan M, Tokuyama M, Rosenstein AK, Tomescu C, SahBandar IN, Ko HM, Leyre L, Chokola A, Kaplan-Lewis E, Rodriguez G, Seki A, Corley MJ, Aberg J, La Porte A, Park EY, Ueno H, Oikonomou I, Doron I, Iliev ID, Chen BK, Lui J, Schacker TW, Furtado GC, Lira SA, Colombel JF, Horowitz A, Lim JK, Chomont N, Rahman AH, Montaner LJ, Ndhlovu LC, Mehandru S. Anti-α4β7 therapy targets lymphoid aggregates in the gastrointestinal tract of HIV-1-infected individuals. Sci Transl Med 2019; 10:10/461/eaau4711. [PMID: 30282696 DOI: 10.1126/scitranslmed.aau4711] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
Gut homing CD4+ T cells expressing the integrin α4β7 are early viral targets and contribute to HIV-1 pathogenesis, likely by seeding the gastrointestinal (GI) tract with HIV. Although simianized anti-α4β7 monoclonal antibodies have shown promise in preventing or attenuating the disease course of simian immunodeficiency virus in nonhuman primate studies, the mechanisms of drug action remain elusive. We present a cohort of individuals with mild inflammatory bowel disease and concomitant HIV-1 infection receiving anti-α4β7 treatment. By sampling the immune inductive and effector sites of the GI tract, we have discovered that anti-α4β7 therapy led to a significant and unexpected attenuation of lymphoid aggregates, most notably in the terminal ileum. Given that lymphoid aggregates serve as important sanctuary sites for maintaining viral reservoirs, their attrition by anti-α4β7 therapy has important implications for HIV-1 therapeutics and eradication efforts and defines a rational basis for the use of anti-α4β7 therapy in HIV-1 infection.
Collapse
Affiliation(s)
- Mathieu Uzzan
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minami Tokuyama
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam K Rosenstein
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Ivo N SahBandar
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Huaibin M Ko
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Louise Leyre
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Anupa Chokola
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emma Kaplan-Lewis
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Rodriguez
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Akihiro Seki
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Corley
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Judith Aberg
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Annalena La Porte
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eun-Young Park
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ioannis Oikonomou
- Division of Gastroenterology, Rush University, Chicago, IL 60612, USA
| | - Itai Doron
- Gastroenterology and Hepatology Divison, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Divison, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin K Chen
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer Lui
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timothy W Schacker
- Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Glaucia C Furtado
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amir Horowitz
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas Chomont
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Adeeb H Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Saurabh Mehandru
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. .,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Sivro A, Schuetz A, Sheward D, Joag V, Yegorov S, Liebenberg LJ, Yende-Zuma N, Stalker A, Mwatelah RS, Selhorst P, Garrett N, Samsunder N, Balgobin A, Nawaz F, Cicala C, Arthos J, Fauci AS, Anzala AO, Kimani J, Bagaya BS, Kiwanuka N, Williamson C, Kaul R, Passmore JAS, Phanuphak N, Ananworanich J, Ansari A, Abdool Karim Q, Abdool Karim SS, McKinnon LR. Integrin α 4β 7 expression on peripheral blood CD4 + T cells predicts HIV acquisition and disease progression outcomes. Sci Transl Med 2019; 10:10/425/eaam6354. [PMID: 29367348 DOI: 10.1126/scitranslmed.aam6354] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 11/02/2022]
Abstract
The gastrointestinal (GI) mucosa is central to HIV pathogenesis, and the integrin α4β7 promotes the homing of immune cells to this site, including those that serve as viral targets. Data from simian immunodeficiency virus (SIV) animal models suggest that α4β7 blockade provides prophylactic and therapeutic benefits. We show that pre-HIV infection frequencies of α4β7+ peripheral blood CD4+ T cells, independent of other T cell phenotypes and genital inflammation, were associated with increased rates of HIV acquisition in South African women. A similar acquisition effect was observed in a Kenyan cohort and in nonhuman primates (NHPs) after intravaginal SIV challenge. This association was stronger when infection was caused by HIV strains containing V2 envelope motifs with a preference for α4β7 binding. In addition, pre-HIV α4β7+ CD4+ T cells predicted a higher set-point viral load and a greater than twofold increased rate of CD4+ T cell decline. These results were confirmed in SIV-infected NHPs. Increased frequencies of pre-HIV α4β7+ CD4+ T cells were also associated with higher postinfection expression of lipopolysaccharide binding protein, a microbial translocation marker, suggestive of more extensive gut damage. CD4+ T cells expressing α4β7 were rapidly depleted very early in HIV infection, particularly from the GI mucosa, and were not restored by early antiretroviral therapy. This study provides a link between α4β7 expression and HIV clinical outcomes in humans, in line with observations made in NHPs. Given the availability of a clinically approved anti-α4β7 monoclonal antibody for treatment of inflammatory bowel disease, these data support further evaluation of targeting α4β7 integrin as a clinical intervention during HIV infection.
Collapse
Affiliation(s)
- Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute, Silver Spring, MD 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel Sheward
- Division of Medical Virology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town 7925, South Africa
| | - Vineet Joag
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sergey Yegorov
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lenine J Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Andrew Stalker
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ruth S Mwatelah
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Philippe Selhorst
- Division of Medical Virology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town 7925, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Anisha Balgobin
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Aggrey Omu Anzala
- Kenyan AIDS Vaccine Initiative, Nairobi 00202, Kenya.,Department of Medical Microbiology, University of Nairobi, Nairobi 00202, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi 00202, Kenya
| | - Bernard S Bagaya
- Uganda Virus Research Institute-International AIDS Vaccine Initiative HIV Vaccine Program, Plot 51-59, Nakiwogo Road, Entebbe, Uganda.,Department of Epidemiology and Biostatistics, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Noah Kiwanuka
- Uganda Virus Research Institute-International AIDS Vaccine Initiative HIV Vaccine Program, Plot 51-59, Nakiwogo Road, Entebbe, Uganda.,Department of Immunology and Molecular Biology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Carolyn Williamson
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Division of Medical Virology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town 7925, South Africa
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,University Health Network, Toronto, Ontario M5G IL7, Canada
| | - Jo-Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Division of Medical Virology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town 7925, South Africa.,National Health Laboratory Services, Cape Town 8005, South Africa
| | - Nittaya Phanuphak
- South East Asia Research Collaboration in HIV (SEARCH), The Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute, Silver Spring, MD 20817, USA.,South East Asia Research Collaboration in HIV (SEARCH), The Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand.,University of Amsterdam, 1000 GG Amsterdam, Netherlands
| | - Aftab Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Department of Epidemiology, Columbia University, New York, NY 10032, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Department of Epidemiology, Columbia University, New York, NY 10032, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi 00202, Kenya
| | | |
Collapse
|
18
|
Duerr R, Gorny MK. V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Vaccines (Basel) 2019; 7:vaccines7030082. [PMID: 31390725 PMCID: PMC6789775 DOI: 10.3390/vaccines7030082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) vaccine trials have lacked efficacy and empirical vaccine lead targets are scarce. Thus far, the only independent correlate of reduced risk of HIV-1 acquisition in humans is elevated levels of V2-specific antibodies identified in the modestly protective RV144 vaccine trial. Ten years after RV144, human and non-human primate vaccine studies have reassessed the potential contribution of V2-specific antibodies to vaccine efficacy. In addition, studies of natural HIV-1 infection in humans have provided insight into the development of V1V2-directed antibody responses and their impact on clinical parameters and disease progression. Functionally diverse anti-V2 monoclonal antibodies were isolated and their structurally distinct V2 epitope regions characterized. After RV144, a plethora of research studies were performed using different model systems, immunogens, protocols, and challenge viruses. These diverse studies failed to provide a clear picture regarding the contribution of V2 antibodies to vaccine efficacy. Here, we summarize the biological functions and clinical findings associated with V2-specific antibodies and discuss their impact on HIV vaccine research.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
19
|
Zolla-Pazner S, Alvarez R, Kong XP, Weiss S. Vaccine-induced V1V2-specific antibodies control and or protect against infection with HIV, SIV and SHIV. Curr Opin HIV AIDS 2019; 14:309-317. [PMID: 30994501 PMCID: PMC6542703 DOI: 10.1097/coh.0000000000000551] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW In humans, only one independent immunologic correlate of reduced risk of HIV infection has been identified: a robust antibody (Ab) response to the V1V2 domain of the gp120 envelope (Env) protein. In recent years, the presence and level of V1V2-specific Abs has also been correlated with protection from SIV and SHIV infections. Here, we review the multitude of studies showing the in-vivo protective effects of V1V2 Abs and review their immunologic characteristics and antiviral functions. RECENT FINDINGS Structural and immunologic studies have defined four epitope families in the V1V2 domain: one epitope family, V2q, which preferentially presents as a quaternary structure of the Env trimer, and another epitope family (V2qt) which requires the quaternary trimeric Env structure; these two epitope types are recognized by two families of monoclonal Abs (mAbs)-V2q-specific and V2qt-specific mAbs-which display broad and potent neutralizing activity. A third epitope family, V2i, is present as a discontinuous conformational structure that overlays the α4β7 integrin binding motif, and a fourth epitope family (V2p) exists on V2 peptides. Antibodies specific for V2i and V2p epitopes display only poor neutralizing activity but effectively mediate other antiviral activities and have been correlated with control of and/or protection from HIV, SIV and SHIV. Notably, V2q and V2qt Abs have not been induced by any vaccines, but V2p and V2i Abs have been readily induced with various vaccines in nonhuman primates and humans. SUMMARY The correlation of vaccine-induced V2p and V2i Abs with protection from HIV, SIV and SHIV suggests that these Ab types are extremely important to induce with prophylactic vaccines.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Raymond Alvarez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Svenja Weiss
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
20
|
Trinh HV, Gohain N, Pham PT, Hamlin C, Song H, Sanders-Buell E, Bose M, Eller LA, Jain S, Uritskiy G, Rao VB, Tovanabutra S, Michael NL, Robb ML, Joyce MG, Rao M. Humoral Response to the HIV-1 Envelope V2 Region in a Thai Early Acute Infection Cohort. Cells 2019; 8:cells8040365. [PMID: 31010245 PMCID: PMC6523213 DOI: 10.3390/cells8040365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Reduced risk of HIV-1 infection correlated with antibody responses to the envelope variable 1 and 2 regions in the RV144 vaccine trial. To understand the relationship between antibody responses, V2 sequence, and structure, plasma samples (n = 16) from an early acute HIV-1 infection cohort from Thailand infected with CRF01_AE strain were analyzed for binding to V2 peptides by surface plasmon resonance. Five participants with a range of V2 binding responses at week 24 post-infection were further analyzed against a set of four overlapping V2 peptides that were designed based on envelope single-genome amplification. Antibody responses that were relatively consistent over the four segments of the V2 region or a focused response to the C-strand (residues 165–186) of the V2 region were observed. Viral escape in the V2 region resulted in significantly reduced antibody binding. Structural modeling indicated that the C-strand and the sites of viral variation were highly accessible in the open conformation of the HIV-1 Env trimer. V2 residues, 165–186 are preferentially targeted during acute infection. Residues 169–184 were also preferentially targeted by the protective immune response in the RV144 trial, thus emphasizing the importance of these residues for vaccine design.
Collapse
Affiliation(s)
- Hung V Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Neelakshi Gohain
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Peter T Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Christopher Hamlin
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Hongshuo Song
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Leigh A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | | | | | | | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - M Gordon Joyce
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
21
|
Abstract
BACKGROUND Early steps of HIV infection are mediated by the binding of the envelope to mucosal receptors as α4β7 and the C-type lectins DC-SIGN and langerin. Previously Env-specific B-cell responses have been reported in highly exposed seronegative individuals (HESN). METHOD Here, we studied gp120-specific antibodies ability to block HIV interaction with α4β7, DC-SIGN and/or langerinin HESN. New cell-based assays were developed to analyze whether antibodies that can alter gp120 binding to α4β7, DC-SIGN and/or langerin are induced in HESN. A mucosal blocking score (MBS) was defined based on the ability of antibodies to interfere with gp120/α4β7, gp120/DC-SIGN, and gp120/langerin binding. A new MBS was evaluated in a cohort of 86 HESN individuals and compared with HIV+ patients or HIV- unexposed healthy individuals. RESULTS Antibodies reducing gp120 binding to both α4β7 and DC-SIGN were present in HESN serum but also in mucosal secretions, whereas antibodies from HIV+ patients facilitated gp120 binding to DC-SIGN. Any correlation was observed between MBS and the capacity of antibodies to neutralize infection of α4β7 CD4+ T cells with primary isolates. CONCLUSIONS MBS is significantly associated with protection in HESN and might reflect altered HIV spreading to mucosal-associated lymphoid tissues.
Collapse
|
22
|
Karch CP, Bai H, Torres OB, Tucker CA, Michael NL, Matyas GR, Rolland M, Burkhard P, Beck Z. Design and characterization of a self-assembling protein nanoparticle displaying HIV-1 Env V1V2 loop in a native-like trimeric conformation as vaccine antigen. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:206-216. [DOI: 10.1016/j.nano.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
|
23
|
Common helical V1V2 conformations of HIV-1 Envelope expose the α4β7 binding site on intact virions. Nat Commun 2018; 9:4489. [PMID: 30367034 PMCID: PMC6203816 DOI: 10.1038/s41467-018-06794-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023] Open
Abstract
The α4β7 integrin is a non-essential HIV-1 adhesion receptor, bound by the gp120 V1V2 domain, facilitating rapid viral dissemination into gut-associated lymphoid tissues. Antibodies blocking this interaction early in infection can improve disease outcome, and V1V2-targeted antibodies were correlated with moderate efficacy reported from the RV144 HIV-1 vaccine trial. Monoclonal α4β7-blocking antibodies recognise two slightly different helical V2 conformations, and current structural data suggests their binding sites are occluded in prefusion envelope trimers. Here, we report cocrystal structures of two α4β7-blocking antibodies from an infected donor complexed with scaffolded V1V2 or V2 peptides. Both antibodies recognised the same helix-coil V2 conformation as RV144 antibody CH58, identifying a frequently sampled alternative conformation of full-length V1V2. In the context of Envelope, this α-helical form of V1V2 displays highly exposed α4β7-binding sites, potentially providing a functional role for non-native Envelope on virion or infected cell surfaces in HIV-1 dissemination, pathogenesis, and vaccine design. Antibodies blocking the V1V2 domain of HIV Envelope from binding integrin are associated with positive disease outcomes. Here, Wibmer et al. determine the structure of full length V1V2 bound to these antibodies, revealing an alternative fold of V1V2 with exposed integrin-binding sites that functions on non-native Envelope.
Collapse
|
24
|
Hioe CE, Kumar R, Upadhyay C, Jan M, Fox A, Itri V, Peachman KK, Rao M, Liu L, Lo NC, Tuen M, Jiang X, Kong XP, Zolla-Pazner S. Modulation of Antibody Responses to the V1V2 and V3 Regions of HIV-1 Envelope by Immune Complex Vaccines. Front Immunol 2018; 9:2441. [PMID: 30416503 PMCID: PMC6212562 DOI: 10.3389/fimmu.2018.02441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Prophylactic HIV vaccines must elicit antibodies (Abs) against the virus envelope glycoproteins (Env) to effectively prevent HIV infection. We investigated a vaccine platform that utilizes immune complexes made of Env proteins gp120 and monoclonal Abs (mAbs) against different gp120 epitopes. We previously observed alterations in V3 antigenicity upon formation of certain gp120/mAb complexes and demonstrated the ability of these complexes to modulate the elicitation of V3 Ab responses. However, the effects on the V1V2 domain, an important target for Abs that correlate with vaccine-induced protection against HIV, have not been studied, nor have immune complex vaccines made with non-B subtype Env. This study compared subtypes B (JRFL) and CRF_01.AE (A244) Env gp120 proteins in complex with selected gp120-specific mAbs. Allosteric and antigenic changes were detected on these immune complexes, indicating that gp120/mAb interaction induces alterations on the Env surface that may modify the Env immunogenic properties. To evaluate this idea, mice were immunized with gp120/mAb complexes or their uncomplexed gp120 counterparts. The overall serum IgG titers elicited against gp120 were comparable, but a marked skewing toward V1V2 or V3 was evident and dependent on the gp120 strain and the specificity of the mAb used to form the complexes. Compared with uncomplexed gp120JRFL, gp120JRFL complexed with CD4bs or V1V2 mAbs, but not with C2 or V3 mAbs, elicited V3 Abs of greater titers and breadth, and Abs more capable of neutralizing tier 1 virus. Epitope mapping revealed a shift to a more conserved site in the V3 crown. However, the complexes did not enhance V1V2 Ab response, and the elicited V1V2 Abs were not cross-reactive. This profile contrasts with Ab responses to gp120A244/mAb complexes. Notably, gp120A244/mAb complexes induced higher levels of V1V2 Abs with some cross-reactivity, while also stimulating weak or strain-specific V3 Abs. Sera from gp120A244/mAb complex-immunized animals displayed no measurable virus neutralization but did mediate Ab-dependent cellular phagocytosis, albeit at levels similar to that induced by gp120A244 alone. These data indicate the potential utility of immune complexes as vaccines to shape Ab responses toward or away from Env sites of interest.
Collapse
Affiliation(s)
- Catarina E Hioe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,James J. Peters VA Medical Center, Bronx, NY, United States
| | - Rajnish Kumar
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,James J. Peters VA Medical Center, Bronx, NY, United States
| | - Chitra Upadhyay
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,James J. Peters VA Medical Center, Bronx, NY, United States
| | - Muzafar Jan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alisa Fox
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vincenza Itri
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristina K Peachman
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lily Liu
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Nathan C Lo
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | | |
Collapse
|
25
|
Lertjuthaporn S, Cicala C, Van Ryk D, Liu M, Yolitz J, Wei D, Nawaz F, Doyle A, Horowitch B, Park C, Lu S, Lou Y, Wang S, Pan R, Jiang X, Villinger F, Byrareddy SN, Santangelo PJ, Morris L, Wibmer CK, Biris K, Mason RD, Gorman J, Hiatt J, Martinelli E, Roederer M, Fujikawa D, Gorini G, Franchini G, Arakelyan A, Ansari AA, Pattanapanyasat K, Kong XP, Fauci AS, Arthos J. Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to α4β7. PLoS Pathog 2018; 14:e1007278. [PMID: 30153309 PMCID: PMC6130882 DOI: 10.1371/journal.ppat.1007278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/10/2018] [Accepted: 08/12/2018] [Indexed: 01/16/2023] Open
Abstract
The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4β7, a gut-homing receptor. Using both cell-surface expressed α4β7 and a soluble α4β7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4β7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4β7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4β7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4β7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4β7. It includes the canonical LDV/I α4β7 binding site, a cryptic epitope that lies 7-9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4β7 interactions. These mAbs recognize conformations absent from the β- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4β7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Matthew Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Allison Doyle
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Brooke Horowitch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Yang Lou
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States of America
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Constantinos Kurt Wibmer
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristin Biris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Joseph Hiatt
- Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Dai Fujikawa
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Giacomo Gorini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Kovit Pattanapanyasat
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
26
|
Rao M, Onkar S, Peachman KK, White Y, Trinh HV, Jobe O, Zhou Y, Dawson P, Eller MA, Matyas GR, Alving CR. Liposome-Encapsulated Human Immunodeficiency Virus-1 gp120 Induces Potent V1V2-Specific Antibodies in Humans. J Infect Dis 2018; 218:1541-1550. [DOI: 10.1093/infdis/jiy348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Sayali Onkar
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Kristina K Peachman
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Yohann White
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Hung V Trinh
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Ousman Jobe
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | | | | | - Michael A Eller
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Gary R Matyas
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Carl R Alving
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
27
|
Nguyen QN, Martinez DR, Himes JE, Whitney Edwards R, Han Q, Kumar A, Mangan R, Nicely NI, Xie G, Vandergrift N, Shen X, Pollara J, Permar SR. Predominant envelope variable loop 2-specific and gp120-specific antibody-dependent cellular cytotoxicity antibody responses in acutely SIV-infected African green monkeys. Retrovirology 2018. [PMID: 29523166 PMCID: PMC5845189 DOI: 10.1186/s12977-018-0406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The initial envelope (Env)-specific antibody response in acutely HIV-1-infected individuals and simian immunodeficiency virus (SIV)-infected rhesus monkeys (RMs) is dominated by non-neutralizing antibodies targeting Env gp41. In contrast, natural primate SIV hosts, such as African green monkeys (AGMs), develop a predominant Env gp120-specific antibody response to SIV infection. However, the fine-epitope specificity and function of SIV Env-specific plasma IgG, and their potential role on autologous virus co-evolution in SIV-infected AGMs and RMs remain unclear. Results Unlike the dominant linear gp41-specific IgG responses in RMs, SIV-infected AGMs demonstrated a unique linear variable loop 2 (V2)-specific plasma IgG response that arose concurrently with high gp120-directed antibody-dependent cellular cytotoxicity (ADCC) activity, and SIVsab-infected cell binding responses during acute infection. Moreover, SIV variants isolated from SIV-infected AGMs exhibited high amino acid mutation frequencies within the Env V1V2 loop compared to those of RMs. Notably, the linear V2-specific IgG epitope in AGMs overlaps with an analogous region of the HIV V2 loop containing the K169 mutation epitope identified in breakthrough viruses from RV144 vaccinees. Conclusion Vaccine-elicited Env V2-specific IgG responses have been proposed as an immune correlate of reduced risk in HIV-1/SIV acquisition in humans and RMs. Yet the pathways to elicit these potentially-protective V2-specific IgG responses remain unclear. In this study, we demonstrate that SIV-infected AGMs, which are the natural hosts of SIV, exhibited high plasma linear V2-specific IgG binding responses that arose concurrently with SIV Env gp120-directed ADCC-mediating, and SIV-infected cell plasma IgG binding responses during acute SIV infection, which were not present in acutely SIV-infected RMs. The linear V2-specific antibody response in AGMs targets an overlapping epitope of the proposed site of vaccine-induced immune pressure defined in the moderately protective RV144 HIV-1 vaccine trial. Identifying host factors that control the early elicitation of Env V2-specific IgG and ADCC antibody responses in these natural SIV hosts could inform vaccination strategies aimed at rapidly inducing potentially-protective HIV-1 Env-specific responses in humans. Electronic supplementary material The online version of this article (10.1186/s12977-018-0406-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quang N Nguyen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David R Martinez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jonathon E Himes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - R Whitney Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Qifeng Han
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Riley Mangan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan I Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guanhua Xie
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan Vandergrift
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA. .,Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
28
|
Extracellular Matrix Proteins Mediate HIV-1 gp120 Interactions with α 4β 7. J Virol 2017; 91:JVI.01005-17. [PMID: 28814519 DOI: 10.1128/jvi.01005-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 01/01/2023] Open
Abstract
Gut-homing α4β7high CD4+ T lymphocytes have been shown to be preferentially targeted by human immunodeficiency virus type 1 (HIV-1) and are implicated in HIV-1 pathogenesis. Previous studies demonstrated that HIV-1 envelope protein gp120 binds and signals through α4β7 and that this likely contributes to the infection of α4β7high T cells and promotes cell-to-cell virus transmission. Structures within the second variable loop (V2) of gp120, including the tripeptide motif LDV/I, are thought to mediate gp120-α4β7 binding. However, lack of α4β7 binding has been reported in gp120 proteins containing LDV/I, and the precise determinants of gp120-α4β7 binding are not fully defined. In this work, we report the novel finding that fibronectins mediate indirect gp120-α4β7 interactions. We show that Chinese hamster ovary (CHO) cells used to express recombinant gp120 produced fibronectins and other extracellular matrix proteins that copurified with gp120. CHO cell fibronectins were able to mediate the binding of a diverse panel of gp120 proteins to α4β7 in an in vitro cell binding assay. The V2 loop was not required for fibronectin-mediated binding of gp120 to α4β7, nor did V2-specific antibodies block this interaction. Removal of fibronectin through anion-exchange chromatography abrogated V2-independent gp120-α4β7 binding. Additionally, we showed a recombinant human fibronectin fragment mediated gp120-α4β7 interactions similarly to CHO cell fibronectin. These findings provide an explanation for the apparently contradictory observations regarding the gp120-α4β7 interaction and offer new insights into the potential role of fibronectin and other extracellular matrix proteins in HIV-1 biology.IMPORTANCE Immune tissues within the gut are severely damaged by HIV-1, and this plays an important role in the development of AIDS. Integrin α4β7 plays a major role in the trafficking of lymphocytes, including CD4+ T cells, into gut lymphoid tissues. Previous reports indicate that some HIV-1 gp120 envelope proteins bind to and signal through α4β7, which may help explain the preferential infection of gut CD4+ T cells. In this study, we demonstrate that extracellular matrix proteins can mediate interactions between gp120 and α4β7 This suggests that the extracellular matrix may be an important mediator of HIV-1 interaction with α4β7-expressing cells. These findings provide new insight into the nature of HIV-1-α4β7 interactions and how these interactions may represent targets for therapeutic intervention.
Collapse
|
29
|
Retroviral envelope proteins: Involvement in neuropathogenesis. J Neurol Sci 2017; 380:151-163. [DOI: 10.1016/j.jns.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
|
30
|
Chand S, Messina EL, AlSalmi W, Ananthaswamy N, Gao G, Uritskiy G, Padilla-Sanchez V, Mahalingam M, Peachman KK, Robb ML, Rao M, Rao VB. Glycosylation and oligomeric state of envelope protein might influence HIV-1 virion capture by α4β7 integrin. Virology 2017; 508:199-212. [PMID: 28577856 PMCID: PMC5526109 DOI: 10.1016/j.virol.2017.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
The α4ß7 integrin present on host cells recognizes the V1V2 domain of the HIV-1 envelope protein. This interaction might be involved in virus transmission. Administration of α4ß7-specific antibodies inhibit acquisition of SIV in a macaque challenge model. But the molecular details of V1V2: α4ß7 interaction are unknown and its importance in HIV-1 infection remains controversial. Our biochemical and mutational analyses show that glycosylation is a key modulator of V1V2 conformation and binding to α4ß7. Partially glycosylated, but not fully glycosylated, envelope proteins are preferred substrates for α4ß7 binding. Surprisingly, monomers of the envelope protein bound strongly to α4ß7 whereas trimers bound poorly. Our results suggest that a conformationally flexible V1V2 domain allows binding of the HIV-1 virion to the α4ß7 integrin, which might impart selectivity for the poorly glycosylated HIV-1 envelope containing monomers to be more efficiently captured by α4ß7 integrin present on mucosal cells at the time of HIV-1 transmission.
Collapse
Affiliation(s)
- Subhash Chand
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Emily L Messina
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Wadad AlSalmi
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Guofen Gao
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Gherman Uritskiy
- Department of Biology, The Catholic University of America, Washington DC 20064
| | | | | | - Kristina K Peachman
- Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Merlin L Robb
- Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington DC 20064.
| |
Collapse
|
31
|
Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nat Commun 2017; 8:15711. [PMID: 28593989 PMCID: PMC5472724 DOI: 10.1038/ncomms15711] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian–human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1β in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques. A previous human HIV-1 vaccine clinical trial, boosting with HIV envelope protein from two strains, demonstrated moderate vaccine efficacy. Here, Bradley et al. show that a pentavalent HIV envelope protein boost improves protection from viral challenge in non-human primates and they identify immune correlates of protection.
Collapse
|
32
|
Torres OB, Matyas GR, Rao M, Peachman KK, Jalah R, Beck Z, Michael NL, Rice KC, Jacobson AE, Alving CR. Heroin-HIV-1 (H2) vaccine: induction of dual immunologic effects with a heroin hapten-conjugate and an HIV-1 envelope V2 peptide with liposomal lipid A as an adjuvant. NPJ Vaccines 2017; 2:13. [PMID: 29263870 PMCID: PMC5604742 DOI: 10.1038/s41541-017-0013-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
A synthetic heroin analog (MorHap) and a synthetic 42 amino acid V2 loop peptide from A/E strain of HIV-1 gp120 envelope protein that was previously used in a successful phase III vaccine trial were constructed as antigens together with liposomes containing monophosphoryl lipid A as an adjuvant, to explore the feasibility of producing a dual use vaccine both for treatment of heroin addiction and prevention of HIV-1 infection among injection drug users. The V2 peptide was tethered by a palmitoyl fatty acyl tail embedded in the liposomal lipid bilayer, and the heroin analog was conjugated to tetanus toxoid as a carrier protein that was mixed with the adjuvant. Upon comparison of a linear V2 peptide with a cyclic peptide, differences were found in the secondary configurations by circular dichroism, with the tethered cyclic peptide (palm-cyclic peptide) entirely in a random coil, and the tethered linear V2 peptide (palm-linear V2 peptide) entirely in a beta-sheet. Upon immunization of mice, palm-cyclic peptide induced anti-cyclic peptide endpoint titers >106 and was considered to be a better immunogen overall than palm-linear V2 peptide for inducing antibodies to gp120 and gp70-V1V2. The antibodies also inhibited the binding of V2 peptide to the HIV-1 α4β7 integrin receptor. Antibody titers to MorHap, even with the presence of injected cyclic peptide, were very high, and resulted in inhibition of the hyper-locomotion and antinociception effects of injected heroin. From these initial experiments, we conclude that with a potent adjuvant and mostly synthetic constituents, a vaccine directed to heroin and HIV-1 (H2 vaccine) could be a feasible objective. A vaccine designed to treat heroin addiction while at the same time preventing HIV infection elicited strong immune responses in mice. Scientists from the US government led by Carl Alving from the Walter Reed Army Institute of Research in Bethesda, Maryland, created a dual vaccine formulated with three main components: a segment of a protein expressed on the surface of HIV; synthetic molecules that resemble heroin and its degradation products; and a potent adjuvant to stimulate the immune system. Mice immunized with this vaccine had high antibody titers against the HIV surface protein as well as heroin and its derivatives. These mice also showed dulled responses to injected heroin. The findings suggest this vaccine strategy could help fight heroin abuse and the high risk of HIV infection among intravenous drug users.
Collapse
Affiliation(s)
- Oscar B Torres
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, 20817 MD USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Kristina K Peachman
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, 20817 MD USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Rashmi Jalah
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, 20817 MD USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Zoltan Beck
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, 20817 MD USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Kenner C Rice
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 9800 Medical Drive, Bethesda, 20892 MD USA.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, 20892 MD USA
| | - Arthur E Jacobson
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 9800 Medical Drive, Bethesda, 20892 MD USA.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, 20892 MD USA
| | - Carl R Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| |
Collapse
|
33
|
Karnasuta C, Akapirat S, Madnote S, Savadsuk H, Puangkaew J, Rittiroongrad S, Rerks-Ngarm S, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Tartaglia J, Sinangil F, Francis DP, Robb ML, de Souza MS, Michael NL, Excler JL, Kim JH, O'Connell RJ, Karasavvas N. Comparison of Antibody Responses Induced by RV144, VAX003, and VAX004 Vaccination Regimens. AIDS Res Hum Retroviruses 2017; 33:410-423. [PMID: 28006952 PMCID: PMC5439458 DOI: 10.1089/aid.2016.0204] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RV144 prime-boost regimen demonstrated efficacy against HIV acquisition while VAX003 and VAX004 did not. Although these trials differed by risk groups, immunization regimens, and immunogens, antibody responses may have contributed to the differences observed in vaccine efficacy. We assessed HIV-specific IgG, both total and subclass, and IgA binding to HIV envelope (Env): gp120 proteins and Cyclic V2 (CycV2) and CycV3 peptides and gp70 V1 V2 scaffolds in these 3 HIV vaccine trials. After two protein immunizations, IgG responses to 92TH023 gp120 (contained in ALVAC-HIV vaccine) were significantly higher in RV144 but responses to other Env were higher in the VAX trials lacking ALVAC-HIV. IgG responses declined significantly between vaccinations. All trials induced antibodies to gp70 V1 V2 but VAX004 responses to 92TH023 gp70 V1 V2 were weak. All CycV2 responses were undetectable in VAX004 while 92TH023 gp70 V1 V2 was detected in both RV144 and VAX003 but MN CycV2 was detected only in VAX003. Multiple protein vaccinations in VAX trials did not improve magnitude or durability of V1 V2 and CycV2 antibodies. Herpes simplex virus glycoprotein D (gD) peptide at the N terminus of AIDSVAX® B/E and B/B gp120 proteins induced antibodies in all trials, although significantly higher in VAX trials. gD peptide induced IgA, IgG1, IgG2, and IgG3 but not IgG4. Multiple protein vaccinations decreased IgG3 and increased IgG4 changing subclass contribution to total IgG. Although confounded by different modes of HIV transmission, higher Env-specific IgA and IgG4 binding antibodies induced in the VAX trials compared to RV144 raises the hypothesis that these differences may have contributed to different vaccine efficacy results.
Collapse
Affiliation(s)
- Chitraporn Karnasuta
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Siriwat Akapirat
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sirinan Madnote
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Hathairat Savadsuk
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Jiraporn Puangkaew
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Surawach Rittiroongrad
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jaranit Kaewkungwal
- Center of Excellence for Biomedical and Public Health Informatics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California
| | - Donald P. Francis
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | | | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Robert J. O'Connell
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nicos Karasavvas
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
34
|
Rationally Designed Immunogens Targeting HIV-1 gp120 V1V2 Induce Distinct Conformation-Specific Antibody Responses in Rabbits. J Virol 2016; 90:11007-11019. [PMID: 27707920 DOI: 10.1128/jvi.01409-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
The V1V2 region of HIV-1 gp120 harbors a major vulnerable site targeted by a group of broadly neutralizing monoclonal antibodies (MAbs) such as PG9 through strand-strand recognition. However, this epitope region is structurally polymorphic as it can also form a helical conformation recognized by RV144 vaccine-induced MAb CH58. This structural polymorphism is a potential mechanism for masking the V1V2 vulnerable site. Designing immunogens that can induce conformation-specific antibody (Ab) responses may lead to vaccines targeting this vulnerable site. We designed a panel of immunogens engrafting the V1V2 domain into trimeric and pentameric scaffolds in structurally constrained conformations. We also fused V1V2 to an Fc fragment to mimic the unconstrained V1V2 conformation. We tested these V1V2-scaffold proteins for immunogenicity in rabbits and assessed the responses by enzyme-linked immunosorbent assay (ELISA) and competition assays. Our V1V2 immunogens induced distinct conformation-specific Ab responses. Abs induced by structurally unconstrained immunogens reacted preferentially with unconstrained V1V2 antigens, suggesting recognition of the helical configuration, while Abs induced by the structurally constrained immunogens reacted preferentially with constrained V1V2 antigens, suggesting recognition of the β-strand conformation. The Ab responses induced by the structurally constrained immunogens were more broadly reactive and had higher titers than those induced by the structurally unconstrained immunogens. Our results demonstrate that immunogens presenting the different structural conformations of the gp120 V1V2 vulnerable site can be designed and that these immunogens induce distinct Ab responses with epitope conformation specificity. Therefore, these structurally constrained V1V2 immunogens are vaccine prototypes targeting the V1V2 domain of the HIV-1 envelope. IMPORTANCE The correlates analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the V1V2 region of HIV-1 gp120 was responsible for the modest protection observed in the trial. In addition, V1V2 harbors one of the key vulnerable sites of HIV-1 Env recognized by a family of broadly neutralizing MAbs such as PG9. Thus, V1V2 is a key target for vaccine development. However, this vulnerable site is structurally polymorphic, and designing immunogens that present different conformations is crucial for targeting this site. We show here that such immunogens can be designed and that they induced conformation-specific antibody responses in rabbits. Our immunogens are therefore prototypes of vaccine candidates targeting the V1V2 region of HIV-1 Env.
Collapse
|
35
|
Byrareddy SN, Arthos J, Cicala C, Villinger F, Ortiz KT, Little D, Sidell N, Kane MA, Yu J, Jones JW, Santangelo PJ, Zurla C, McKinnon LR, Arnold KB, Woody CE, Walter L, Roos C, Noll A, Van Ryk D, Jelicic K, Cimbro R, Gumber S, Reid MD, Adsay V, Amancha PK, Mayne AE, Parslow TG, Fauci AS, Ansari AA. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science 2016; 354:197-202. [PMID: 27738167 PMCID: PMC5405455 DOI: 10.1126/science.aag1276] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/09/2016] [Indexed: 01/20/2023]
Abstract
Antiretroviral drug therapy (ART) effectively suppresses replication of both the immunodeficiency viruses, human (HIV) and simian (SIV); however, virus rebounds soon after ART is withdrawn. SIV-infected monkeys were treated with a 90-day course of ART initiated at 5 weeks post infection followed at 9 weeks post infection by infusions of a primatized monoclonal antibody against the α4β7 integrin administered every 3 weeks until week 32. These animals subsequently maintained low to undetectable viral loads and normal CD4+ T cell counts in plasma and gastrointestinal tissues for more than 9 months, even after all treatment was withdrawn. This combination therapy allows macaques to effectively control viremia and reconstitute their immune systems without a need for further therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- CD4 Lymphocyte Count
- CD4-Positive T-Lymphocytes/immunology
- Combined Modality Therapy
- Cytokines/blood
- Disease Models, Animal
- Female
- Gastrointestinal Tract/immunology
- Immunization, Passive/methods
- Infusions, Intravenous
- Integrin alpha4/immunology
- Integrin beta Chains/immunology
- Killer Cells, Natural/immunology
- Macaca mulatta
- Male
- Membrane Glycoproteins/immunology
- Simian Acquired Immunodeficiency Syndrome/blood
- Simian Acquired Immunodeficiency Syndrome/drug therapy
- Simian Acquired Immunodeficiency Syndrome/therapy
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/isolation & purification
- T-Lymphocyte Subsets/immunology
- Tretinoin/blood
- Viral Envelope Proteins/immunology
- Viral Load/immunology
- Viremia/blood
- Viremia/drug therapy
- Viremia/therapy
- Viremia/virology
Collapse
Affiliation(s)
- Siddappa N Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Arthos
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA. Division of Pathology, The Yerkes National Primate Center of Emory University, Atlanta, GA 30329, USA
| | - Kristina T Ortiz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dawn Little
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30680, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30680, USA
| | - Lyle R McKinnon
- Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caroline E Woody
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Donald Van Ryk
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Katija Jelicic
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Raffaello Cimbro
- Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| | - Sanjeev Gumber
- Division of Pathology, The Yerkes National Primate Center of Emory University, Atlanta, GA 30329, USA
| | - Michelle D Reid
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Volkan Adsay
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Praveen K Amancha
- Division of Pathology, The Yerkes National Primate Center of Emory University, Atlanta, GA 30329, USA
| | - Ann E Mayne
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tristram G Parslow
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
36
|
Liu F, Fan X, Auclair S, Ferguson M, Sun J, Soong L, Hou W, Redfield RR, Birx DL, Ratto-Kim S, Robb ML, Kim JH, Michael NL, Hu H. Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection. PLoS Pathog 2016; 12:e1005663. [PMID: 27280548 PMCID: PMC4900544 DOI: 10.1371/journal.ppat.1005663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022] Open
Abstract
Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis. HIV infection is closely associated with enhanced host susceptibility to various opportunistic infections (OIs), among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is an early and common manifestation. Even in the era of effective ART, mucosal candidiasis is still a clinically relevant presentation in HIV-infected patients. The underlying mechanisms are not well defined. CD4-mediated immunity is the major host defense mechanism against C. albicans. We here investigated a group of ART naïve, HIV-infected human subjects and examined longitudinally the impact of HIV on C. albicans-specific CD4 T-cell immunity as compared to CD4 T-cell immunity specific for CMV, another opportunistic pathogen that usually does not cause active disease in early HIV infection. We found that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo and were preferentially depleted in progressive HIV-infected individuals as compared to CMV-specific CD4 T cells. Of importance, we also found that in these HIV-infected subjects C. albicans-specific CD4 T cell response manifested a sequential dysfunction with earlier impairment of Th17, but not Th1, functions. Our study suggests an immunological basis that helps explain the earlier and more common onsets of mucosal candidiasis in progressive HIV-infected patients.
Collapse
Affiliation(s)
- Fengliang Liu
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiuzhen Fan
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sarah Auclair
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Monique Ferguson
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Robert R. Redfield
- Institute of Human Virology and Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Deborah L. Birx
- U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Silvia Ratto-Kim
- U.S. Military HIV Research Program, Henry M. Jackson Foundation, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Henry M. Jackson Foundation, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea; U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Haitao Hu
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|