1
|
Yun Y, Kim S, Lee SN, Cho HY, Choi JW. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. NANO CONVERGENCE 2024; 11:56. [PMID: 39671082 PMCID: PMC11645384 DOI: 10.1186/s40580-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea.
| | - Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
2
|
Nicolò E, Gianni C, Pontolillo L, Serafini MS, Munoz-Arcos LS, Andreopoulou E, Curigliano G, Reduzzi C, Cristofanilli M. Circulating tumor cells et al.: towards a comprehensive liquid biopsy approach in breast cancer. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:10. [PMID: 38751670 PMCID: PMC11093063 DOI: 10.21037/tbcr-23-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Liquid biopsy has emerged as a crucial tool in managing breast cancer (BC) patients, offering a minimally invasive approach to detect circulating tumor biomarkers. Until recently, the majority of the studies in BC focused on evaluating a single liquid biopsy analyte, primarily circulating tumor DNA and circulating tumor cells (CTCs). Despite the proven prognostic and predictive value of CTCs, their low abundance when detected using enrichment methods, especially in the early stages, poses a significant challenge. It is becoming evident that combining diverse circulating biomarkers, each representing different facets of tumor biology, has the potential to enhance the management of patients with BC. This article emphasizes the importance of considering these biomarkers as complementary/synergistic rather than competitive, recognizing their ability to contribute to a comprehensive disease profile. The review provides an overview of the clinical significance of simultaneously analyzing CTCs and other biomarkers, including cell-free circulating DNA, extracellular vesicles, non-canonical CTCs, cell-free RNAs, and non-malignant cells. Such a comprehensive liquid biopsy approach holds promise not only in BC but also in other cancer types, offering opportunities for early detection, prognostication, and therapy monitoring. However, addressing associated challenges, such as refining detection methods and establishing standardized protocols, is crucial for realizing the full potential of liquid biopsy in transforming our understanding and approach to BC. As the field evolves, collaborative efforts will be instrumental in unlocking the revolutionary impact of liquid biopsy in BC research and management.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Caterina Gianni
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Letizia Pontolillo
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Medical Oncology Department, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mara Serena Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Laura Sofia Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Eleni Andreopoulou
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Curigliano
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Yeh PY, Chen JY, Shen MY, Che TF, Lim SC, Wang J, Tsai WS, Frank CW, Huang CJ, Chang YC. Liposome-tethered supported lipid bilayer platform for capture and release of heterogeneous populations of circulating tumor cells. J Mater Chem B 2023; 11:8159-8169. [PMID: 37313622 DOI: 10.1039/d3tb00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.
Collapse
Affiliation(s)
- Po-Ying Yeh
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mo-Yuan Shen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ting-Fang Che
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Syer Choon Lim
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Jocelyn Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Linkou, Taoyuan, Taiwan
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chun-Jen Huang
- Department of Chemical & Materials Engineering, and NCU-Covestro Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Lessi F, Morelli M, Franceschi S, Aretini P, Menicagli M, Marranci A, Pasqualetti F, Gambacciani C, Pieri F, Grimod G, Zucchi V, Cupini S, Di Stefano AL, Santonocito OS, Mazzanti CM. Innovative Approach to Isolate and Characterize Glioblastoma Circulating Tumor Cells and Correlation with Tumor Mutational Status. Int J Mol Sci 2023; 24:10147. [PMID: 37373295 DOI: 10.3390/ijms241210147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are one of the most important causes of tumor recurrence and distant metastases. Glioblastoma (GBM) has been considered restricted to the brain for many years. Nevertheless, in the past years, several pieces of evidence indicate that hematogenous dissemination is a reality, and this is also in the caseof GBM. Our aim was to optimize CTCs' detection in GBM and define the genetic background of single CTCs compared to the primary GBM tumor and its recurrence to demonstrate that CTCs are indeed derived from the parental tumor. We collected blood samples from a recurrent IDH wt GBM patient. We genotyped the parental recurrent tumor tissue and the respective primary GBM tissue. CTCs were analyzed using the DEPArray system. CTCs Copy Number Alterations (CNAs) and sequencing analyses were performed to compare CTCs' genetic background with the same patient's primary and recurrent GBM tissues. We identified 210 common mutations in the primary and recurrent tumors. Among these, three somatic high-frequency mutations (in PRKCB, TBX1, and COG5 genes) were selected to investigate their presence in CTCs. Almost all sorted CTCs (9/13) had at least one of the mutations tested. The presence of TERT promoter mutations was also investigated and C228T variation was found in parental tumors and CTCs (C228T heterozygous and homozygous, respectively). We were able to isolate and genotype CTCs from a patient with GBM. We found common mutations but also exclusive molecular characteristics.
Collapse
Affiliation(s)
- Francesca Lessi
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Mariangela Morelli
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Sara Franceschi
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Paolo Aretini
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Michele Menicagli
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Andrea Marranci
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56122 Pisa, Italy
| | - Carlo Gambacciani
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Francesco Pieri
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Gianluca Grimod
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Vanna Zucchi
- Division of Pathology, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Samanta Cupini
- Division of Oncology, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
- Neurology Department, Foch Hospital, 92150 Suresnes, France
| | - Orazio Santo Santonocito
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Chiara Maria Mazzanti
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| |
Collapse
|
5
|
Mentink A, Isebia KT, Kraan J, Terstappen LWMM, Stevens M. Measuring antigen expression of cancer cell lines and circulating tumour cells. Sci Rep 2023; 13:6051. [PMID: 37055551 PMCID: PMC10101999 DOI: 10.1038/s41598-023-33179-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/08/2023] [Indexed: 04/15/2023] Open
Abstract
When evaluating EpCAM-based enrichment technologies for circulating tumour cells (CTCs), the cell lines used should closely resemble real CTCs, meaning the EpCAM expression of CTCs needs to be known, but also the EpCAM expression of cell lines at different institutions and times is important. As the number of CTCs in the blood is low, we enriched CTCs through the depletion of leukocytes from diagnostic leukapheresis products of 13 prostate cancer patients and measured EpCAM expression using quantitative flow cytometry. Antigen expression was compared between multiple institutions by measuring cultures from each institution. Capture efficiency was also measured for one of the used cell lines. Results show CTCs derived from castration-sensitive prostate cancer patients have varying but relatively low EpCAM expression, with median expression per patient ranging from 35 to 89,534 (mean 24,993) molecules per cell. A large variation in the antigen expression of identical cell lines cultured at different institutions was found, resulting in recoveries when using the CellSearch system ranging from 12 up to 83% for the same cell line. We conclude that large differences in capture efficiency can occur while using the same cell line. To closely resemble real CTCs from castration-sensitive prostate cancer patients, a cell line with a relatively low EpCAM expression should be used, and its expression should be monitored frequently.
Collapse
Affiliation(s)
- Anouk Mentink
- Medical Cell Biophysics Group, Techmed Center, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Khrystany T Isebia
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leon W M M Terstappen
- Medical Cell Biophysics Group, Techmed Center, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Michiel Stevens
- Medical Cell Biophysics Group, Techmed Center, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| |
Collapse
|
6
|
Phenotypic Plasticity in Circulating Tumor Cells Is Associated with Poor Response to Therapy in Metastatic Breast Cancer Patients. Cancers (Basel) 2023; 15:cancers15051616. [PMID: 36900406 PMCID: PMC10000974 DOI: 10.3390/cancers15051616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating tumor cells (CTCs) are indicators of metastatic spread and progression. In a longitudinal, single-center trial of patients with metastatic breast cancer starting a new line of treatment, a microcavity array was used to enrich CTCs from 184 patients at up to 9 timepoints at 3-month intervals. CTCs were analyzed in parallel samples from the same blood draw by imaging and by gene expression profiling to capture CTC phenotypic plasticity. Enumeration of CTCs by image analysis relying primarily on epithelial markers from samples obtained before therapy or at 3-month follow-up identified the patients at the highest risk of progression. CTC counts decreased with therapy, and progressors had higher CTC counts than non-progressors. CTC count was prognostic primarily at the start of therapy in univariate and multivariate analyses but had less prognostic utility at 6 months to 1 year later. In contrast, gene expression, including both epithelial and mesenchymal markers, identified high-risk patients after 6-9 months of treatment, and progressors had a shift towards mesenchymal CTC gene expression on therapy. Cross-sectional analysis showed higher CTC-related gene expression in progressors 6-15 months after baseline. Furthermore, patients with higher CTC counts and CTC gene expression experienced more progression events. Longitudinal time-dependent multivariate analysis indicated that CTC count, triple-negative status, and CTC expression of FGFR1 significantly correlated with inferior progression-free survival while CTC count and triple-negative status correlated with inferior overall survival. This highlights the utility of protein-agnostic CTC enrichment and multimodality analysis to capture the heterogeneity of CTCs.
Collapse
|
7
|
Comparative analysis of EpCAM high-expressing and low-expressing circulating tumour cells with regard to their clonal relationship and clinical value. Br J Cancer 2023; 128:1742-1752. [PMID: 36823365 PMCID: PMC10133238 DOI: 10.1038/s41416-023-02179-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Circulating tumour cells (CTCs) are mainly enriched based on the epithelial cell adhesion molecule (EpCAM). Although it was shown that an EpCAM low-expressing CTC fraction is not captured by such approaches, knowledge about its prognostic and predictive relevance and its relation to EpCAM-positive CTCs is lacking. METHODS We developed an immunomagnetic assay to enrich CTCs from metastatic breast cancer patients EpCAM independently using antibodies against Trop-2 and CD-49f and characterised their EpCAM expression. DNA of single EpCAM high expressing and low expressing CTCs was analyzed regarding chromosomal aberrations and predictive mutations. Additionally, we compared CTC-enrichment on the CellSearch system using this antibody mix and the EpCAM based enrichment. RESULTS Both antibodies acted synergistically in capturing CTCs. Patients with EpCAM high-expressing CTCs had a worse overall and progression-free survival. EpCAM high- and low-expressing CTCs presented similar chromosomal aberrations and mutations indicating a close evolutionary relationship. A sequential enrichment of CTCs from the EpCAM-depleted fraction yielded a population of CTCs not captured EpCAM dependently but harbouring predictive information. CONCLUSIONS Our data indicate that EpCAM low-expressing CTCs could be used as a valuable tumour surrogate material-although they may be prognostically less relevant than EpCAM high-expressing CTCs-and have particular benefit if no CTCs are detected using EpCAM-dependent technologies.
Collapse
|
8
|
Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24021524. [PMID: 36675033 PMCID: PMC9864237 DOI: 10.3390/ijms24021524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment. Based on the principle that what cannot be seen, cannot be targeted, a primary step in cancer management is the identification of these cells. The current review aims to encompass the state-of-the-art functional imaging techniques that enable the identification of cancer stem cells via various pathways and mechanisms. The paper presents in vivo molecular techniques that are currently available or await clinical implementation. Challenges and future prospects are highlighted to open new research avenues in cancer stem cell imaging.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - Leyla Moghaddasi
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Gianni C, Palleschi M, Merloni F, Bleve S, Casadei C, Sirico M, Di Menna G, Sarti S, Cecconetto L, Mariotti M, De Giorgi U. Potential Impact of Preoperative Circulating Biomarkers on Individual Escalating/de-Escalating Strategies in Early Breast Cancer. Cancers (Basel) 2022; 15:96. [PMID: 36612091 PMCID: PMC9817806 DOI: 10.3390/cancers15010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The research on non-invasive circulating biomarkers to guide clinical decision is in wide expansion, including the earliest disease settings. Several new intensification/de-intensification strategies are approaching clinical practice, personalizing the treatment for each patient. Moreover, liquid biopsy is revealing its potential with multiple techniques and studies available on circulating biomarkers in the preoperative phase. Inflammatory circulating cells, circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and other biological biomarkers are improving the armamentarium for treatment selection. Defining the escalation and de-escalation of treatments is a mainstay of personalized medicine in early breast cancer. In this review, we delineate the studies investigating the possible application of these non-invasive tools to give a more enlightened approach to escalating/de-escalating strategies in early breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
11
|
Motohashi Y, Nishihara T, Tanabe K. Preparation of a multifunctional photoactivated prodrug on a streptavidin scaffold bearing a DNA aptamer. Bioorg Med Chem Lett 2022; 71:128819. [PMID: 35643261 DOI: 10.1016/j.bmcl.2022.128819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022]
Abstract
Prodrugs that present strong cytotoxicity toward specific cells have been utilized for cell-type selection and purification. In this study, we designed and prepared a multifunctional, photoactivated prodrug based on a streptavidin scaffold. Biotin-labeled DNA aptamer that recognizes the membrane antigen EpCAM, and biotin-labeled photoactivated prodrug bearing the antitumor camptothecin, were prepared. Both molecules were linked to the streptavidin scaffold by simple mixing. The resulting prodrug bound to the EpCAM-overexpressing SK-BR-3 target cells and showed cytotoxic effects upon photoirradiation, corresponding to cytotoxic drug release.
Collapse
Affiliation(s)
- Yuto Motohashi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Tatsuya Nishihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
12
|
Chen L, Chen F, Niu H, Li J, Pu Y, Yang C, Wang Y, Huang R, Li K, Lei Y, Huang Y. Chimeric Antigen Receptor (CAR)-T Cell Immunotherapy Against Thoracic Malignancies: Challenges and Opportunities. Front Immunol 2022; 13:871661. [PMID: 35911706 PMCID: PMC9334018 DOI: 10.3389/fimmu.2022.871661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Different from surgery, chemical therapy, radio-therapy and target therapy, Chimeric antigen receptor-modified T (CAR-T) cells, a novel adoptive immunotherapy strategy, have been used successfully against both hematological tumors and solid tumors. Although several problems have reduced engineered CAR-T cell therapeutic outcomes in clinical trials for the treatment of thoracic malignancies, including the lack of specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR-T cell infiltration into tumor tissues, off-target toxicity, and other safety issues, CAR-T cell treatment is still full of bright future. In this review, we outline the basic structure and characteristics of CAR-T cells among different period, summarize the common tumor-associated antigens in clinical trials of CAR-T cell therapy for thoracic malignancies, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for preclinical experiments and clinical trials of CAR-T cell therapy for thoracic malignancies.
Collapse
Affiliation(s)
- Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Huatao Niu
- Department of Neurosurgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yue Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Rong Huang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
13
|
Novoselova M, Chernyshev VS, Schulga A, Konovalova EV, Chuprov-Netochin RN, Abakumova TO, German S, Shipunova VO, Mokrousov MD, Prikhozhdenko E, Bratashov DN, Nozdriukhin DV, Bogorodskiy A, Grishin O, Kosolobov SS, Khlebtsov BN, Inozemtseva O, Zatsepin TS, Deyev SM, Gorin DA. Effect of Surface Modification of Multifunctional Nanocomposite Drug Delivery Carriers with DARPin on Their Biodistribution In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2022; 5:2976-2989. [PMID: 35616387 DOI: 10.1021/acsabm.2c00289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly. FIL also improved the photoacoustic signal and particle mobility in a magnetic field gradient, a result unachievable by the LBL alone. For targeted delivery of the carriers to cancer cells, the carrier surface was modified with a designed ankyrin repeat protein (DARPin) directed toward the epithelial cell adhesion molecule (EpCAM). Flow cytometry measurements showed that the DARPin-coated capsules specifically interacted with the surface of EpCAM-overexpressing human cancer cells such as MCF7. In vivo and ex vivo biodistribution studies in FvB mice showed that the carrier surface modification with DARPin changed the biodistribution of the capsules toward epithelial cells. In particular, the capsules accumulated substantially in the lungs─a result that can be effectively used in targeted lung cancer therapy. The results of this work may aid in the further development of the "magic bullet" concept and may bring the quality of personalized medicine to another level.
Collapse
Affiliation(s)
- Marina Novoselova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Vasiliy S Chernyshev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Alexey Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Elena V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Tatiana O Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Sergei German
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,Institute of Spectroscopy of the Russian Academy of Sciences, Moscow 108840, Russia
| | - Victoria O Shipunova
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Maksim D Mokrousov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | | | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Daniil V Nozdriukhin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Andrey Bogorodskiy
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Oleg Grishin
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sergey S Kosolobov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia
| | - Olga Inozemtseva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| |
Collapse
|
14
|
Tanaka T, Ohishi T, Saito M, Kawada M, Kaneko MK, Kato Y. TrMab-6 Exerts Antitumor Activity in Mouse Xenograft Models of Breast Cancers. Monoclon Antib Immunodiagn Immunother 2022; 41:32-38. [PMID: 35225665 DOI: 10.1089/mab.2021.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2) has been reported to be overexpressed in many cancers, and is involved in cancer cell proliferation, invasion, and metastasis. We previously developed a highly sensitive anti-TROP2 monoclonal antibody (mAb) (clone TrMab-6; mouse IgG2b, kappa) using a Cell-Based Immunization and Screening method. TrMab-6 is useful for investigations using flow cytometry, Western blotting, and immunohistochemistry and possesses antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against TROP2-expressing triple-negative breast cancer (TNBC) cell lines, such as MDA-MB-231 and MDA-MB-468. This study investigated whether TrMab-6 possesses in vivo antitumor activities via ADCC/CDC activities using mouse xenograft models of TNBC cell lines. In vivo experiments on MDA-MB-231 and MDA-MB-468 xenografts revealed that TrMab-6 significantly reduced tumor growth compared with normal mouse IgG treatment. The findings of this study suggest that TrMab-6 is a promising treatment option for TROP2-expressing TNBC.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomokazu Ohishi
- Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Manabu Kawada
- Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Hsieh KY, Chung CM, Hsieh JCH, Chen GY. A Graphene Oxide-interfaced Microfluidics System for Isolating and Capturing Circulating Tumor Cells and Microemboli. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7260-7263. [PMID: 34892774 DOI: 10.1109/embc46164.2021.9629506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) are rare cell species present in peripheral blood and appear in circulatory system during cancer metastasis. As phenotype of single or aggregated CTCs can be different and may present different levels of potential aggressiveness, detecting and capturing both of them are crucial for preventing recurrence as well as achieving early-stage diagnosis. This research presents a microfluidics system aiming at isolating and highly sensitive capturing of CTCs and CTMs. A serpentine channel and a series of bifurcating micro-channels were use to separate CTCs and CTMs from other blood cells. A graphene oxide interface was patterned on glass slide to facilitate antibodies conjugation via click chemistry for capturing CTCs and CTMs, thus achieving multiplex detection in a high specificity and bio-compatibility manner.
Collapse
|
16
|
Patel DA, Blay J. Seeding metastases: The role and clinical utility of circulating tumour cells. Tumour Biol 2021; 43:285-306. [PMID: 34690152 DOI: 10.3233/tub-210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peripheral human blood is a readily-accessible source of patient material in which circulating tumour cells (CTCs) can be found. Their isolation and characterization holds the potential to provide prognostic value for various solid cancers. Enumeration of CTCs from blood is becoming a common practice in informing prognosis and may guide therapy decisions. It is further recognized that enumeration alone does not capture perspective on the heterogeneity of tumours and varying functional abilities of the CTCs to interact with the secondary microenvironment. Characterizing the isolated CTCs further, in particular assessing their functional abilities, can track molecular changes in the disease progress. As a step towards identifying a suite of functional features of CTCs that could aid in clinical decisions, developing a CTC isolation technique based on extracellular matrix (ECM) interactions may provide a more solid foundation for isolating the cells of interest. Techniques based on size, charge, density, and single biomarkers are not sufficient as they underutilize other characteristics of cancer cells. The ability of cancer cells to interact with ECM proteins presents an opportunity to utilize their full character in capturing, and also allows assessment of the features that reveal how cells might behave at secondary sites during metastasis. This article will review some common techniques and recent advances in CTC capture technologies. It will further explore the heterogeneity of the CTC population, challenges they experience in their metastatic journey, and the advantages of utilizing an ECM-based platform for CTC capture. Lastly, we will discuss how tailored ECM approaches may present an optimal platform to capture an influential heterogeneous population of CTCs.
Collapse
Affiliation(s)
- Deep A Patel
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Application of Primary/Secondary Circulating Tumor Cells for the Prediction of Biochemical Recurrence in Nonmetastatic Prostate Cancer Patients following Radical Prostatectomy or Radiotherapy: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4730970. [PMID: 34595236 PMCID: PMC8478542 DOI: 10.1155/2021/4730970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
Background Circulating tumor cells (CTCs) have been regarded as an independent prognostic marker for metastatic castration-resistant prostate cancer (mCRPC). Its prognostic value, however, in nonmetastatic prostate cancer (NMPC) is still unclear. Purpose To elucidate whether CTCs can predict the biochemical recurrence (BCR) in NMPC patients following radical prostatectomy (RP) or radiotherapy (RT). Methods PubMed, Cochrane Database, and Embase and the references in relevant studies were systematically searched. Studies that investigated the correlation of CTCs and BCR in NMPC patients after RP or RT were identified and reviewed. Overall odds ratio (OR) of BCR in such patients with/without CTCs was pooled. We also calculated and pooled overall prevalence of BCR in such CTC-positive patients. Results In total, 12 studies comprising 1917 participants were eligible for the meta-analysis and showed that the presence of secondary circulating tumor cells (SCTCs) is associated with a higher BCR rate of 59% (95% CI: 22%-88%) in patients with NMPC after RP or RT (OR = 6.12; 95% CI: 2.22-16.85; P < 0.001). However, regardless of the presence of primary circulating tumor cells (PCTCs), it has not been shown to be associated with higher BCR. Conclusions Our research demonstrated that SCTC-positive patients are associated with higher BCR compared to SCTC-negative patients in NMPC. Therefore, it is recommended that NMPC patients undergo CTC surveillance intensively after RP or RT.
Collapse
|
18
|
Schmidt M, Franken A, Wilms D, Fehm T, Neubauer HJ, Schmidt S. Selective Adhesion and Switchable Release of Breast Cancer Cells via Hyaluronic Acid Functionalized Dual Stimuli-Responsive Microgel Films. ACS APPLIED BIO MATERIALS 2021; 4:6371-6380. [PMID: 35006876 DOI: 10.1021/acsabm.1c00586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The detection of tumor cells from liquid biopsy samples is of critical importance for early cancer diagnosis, malignancy assessment, and treatment. In this work, coatings of hyaluronic acid (HA)-functionalized dual-stimuli responsive poly(N-isopropylacrylamide) (PNIPAM) microgels are used to study the specificity of breast cancer cell binding and to assess cell friendly release mechanisms for further diagnostic procedures. The microgels are established by straightforward precipitation polymerization with amine bearing comonomers and postfunctionalization with a UV-labile linker that covalently binds HA to the microgel network. Well-defined microgel coatings for cell binding are established via simple physisorption and annealing. The HA-presenting PNIPAM microgel films are shown to specifically adhere CD44 expressing breast cancer cell lines (MDA-MB-231 and MCF-7), where an increase in adhesion correlates with higher CD44 expression and HA functionalization. Upon cooling below the lower critical solution temperature of PNIPAM microgels, the cells could be released; however, 10-30% of the cells still remained on the surface even after prolonged cooling and mild mechanical agitation. A complete cell release is achieved after applying the light stimulus by short UV treatment cleaving HA units from the microgels. Owing to the comparatively straightforward preparation procedures, such dual-responsive microgel films could be considered for the effective capture, release, and diagnostics of tumor cells.
Collapse
Affiliation(s)
- Melanie Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Life Science Center, University Hospital and Medical Faculty, Heinrich-Heine University Duesseldorf, Merowingerplatz 1A, 40225 Düsseldorf, Germany
| | - Dimitri Wilms
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Life Science Center, University Hospital and Medical Faculty, Heinrich-Heine University Duesseldorf, Merowingerplatz 1A, 40225 Düsseldorf, Germany
| | - Hans J Neubauer
- Department of Obstetrics and Gynecology, Life Science Center, University Hospital and Medical Faculty, Heinrich-Heine University Duesseldorf, Merowingerplatz 1A, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
19
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients. Cancers (Basel) 2021; 13:cancers13051119. [PMID: 33807790 PMCID: PMC7961579 DOI: 10.3390/cancers13051119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Detection of circulating tumor cells (CTCs) in the blood of cancer patients is a challenging issue, since they adapt to the biochemical and physical landscape of the bloodstream. We approached the issue of CTC identification on a biophysical level. For the first time, we recorded the mechanical deformation profiles of potential CTCs, which were isolated from the blood of breast cancer patients, at the force regime of the deforming blood flow. Mechanical fingerprints of CTCs were significantly different from healthy white blood cells. We used machine learning to further evaluate the differences and identify discrimination criteria. Our results suggest that mechanical characterization of CTCs at low forces is a promising path towards CTC detection. Abstract Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection.
Collapse
|
21
|
Alvarado-Estrada K, Marenco-Hillembrand L, Maharjan S, Mainardi VL, Zhang YS, Zarco N, Schiapparelli P, Guerrero-Cazares H, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Sci Rep 2021; 11:2800. [PMID: 33531664 PMCID: PMC7854722 DOI: 10.1038/s41598-021-82634-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide. However, while the survival for patients with primary cancers is improving, the ability to prevent metastatic cancer has not. Once patients develop metastases, their prognosis is dismal. A critical step in metastasis is the transit of cancer cells in the circulatory system. In this hostile microenvironment, variations in pressure and flow can change cellular behavior. However, the effects that circulation has on cancer cells and the metastatic process remain unclear. To further understand this process, we engineered a closed-loop fluidic system to analyze molecular changes induced by variations in flow rate and pressure on primary tumor-derived lung adenocarcinoma cells. We found that cancer cells overexpress epithelial-to-mesenchymal transition markers TWIST1 and SNAI2, as well as stem-like marker CD44 (but not CD133, SOX2 and/or NANOG). Moreover, these cells display a fourfold increased percentage of side population cells and have an increased propensity for migration. In vivo, surviving circulatory cells lead to decreased survival in rodents. These results suggest that cancer cells that express a specific circulatory transition phenotype and are enriched in side population cells are able to survive prolonged circulatory stress and lead to increased metastatic disease and shorter survival.
Collapse
Affiliation(s)
- Keila Alvarado-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Valerio Luca Mainardi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milan, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cazares
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
22
|
Liu P, Jonkheijm P, Terstappen LWMM, Stevens M. Magnetic Particles for CTC Enrichment. Cancers (Basel) 2020; 12:cancers12123525. [PMID: 33255978 PMCID: PMC7760229 DOI: 10.3390/cancers12123525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the enrichment of very rare cells, such as Circulating Tumor Cells (CTCs), immunomagnetic enrichment is frequently used. For this purpose, magnetic nanoparticles (MNPs) coated with specific antibodies directed against cancer cells are used. In this review, we look at the properties such a particle needs to have in order to be used successfully, and describe the different methods used in the production of such a particle as well as the methods for their separation. Additionally, an overview is given of the antibodies that could potentially be used for this purpose. Abstract Here, we review the characteristics and synthesis of magnetic nanoparticles (MNPs) and place these in the context of their usage in the immunomagnetic enrichment of Circulating Tumor Cells (CTCs). The importance of the different characteristics is explained, the need for a very specific enrichment is emphasized and different (commercial) magnetic separation techniques are shown. As the specificity of an MNP is in a large part dependent on the antibody coated onto the particle, different strategies in the coupling of specific antibodies as well as an overview of the available antibodies is given.
Collapse
Affiliation(s)
- Peng Liu
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Pascal Jonkheijm
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Leon W. M. M. Terstappen
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
| | - Michiel Stevens
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
- Correspondence: ; Tel.: +31-53-489-4101
| |
Collapse
|
23
|
Hisey CL, Tomek P, Nursalim YNS, Chamley LW, Leung E. Towards establishing extracellular vesicle-associated RNAs as biomarkers for HER2+ breast cancer. F1000Res 2020; 9:1362. [PMID: 33447385 DOI: 10.12688/f1000research.27393.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two-chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs BIRC5 (Survivin) and YBX1, as well as long-noncoding RNAs HOTAIR, ZFAS1, and AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that BIRC5 and HOTAIR RNAs were substantially upregulated in breast tumours compared to non-tumour breast tissue, warranting further studies to explore their usefulness as biomarkers in patient EV samples. We envision this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for cancers including HER2+ breast cancer.
Collapse
Affiliation(s)
- Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Hisey CL, Tomek P, Nursalim YNS, Chamley LW, Leung E. Towards establishing extracellular vesicle-associated RNAs as biomarkers for HER2+ breast cancer. F1000Res 2020; 9:1362. [PMID: 33447385 PMCID: PMC7780337 DOI: 10.12688/f1000research.27393.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two-chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs
BIRC5 (Survivin) and
YBX1,
as well as long-noncoding RNAs
HOTAIR,
ZFAS1, and
AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that
BIRC5 and
HOTAIR RNAs were substantially upregulated in breast tumours compared to non-tumour breast tissue, warranting further studies to explore their usefulness as biomarkers in patient EV samples. We envision this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for cancers including HER2+ breast cancer.
Collapse
Affiliation(s)
- Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Li C, Wang J, Lu X, Ge H, Jin X, Guan Q, su Y, Pan R, Li P, Cai W, Zhu X. Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis. Biomaterials 2020; 255:120071. [DOI: 10.1016/j.biomaterials.2020.120071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
|
26
|
Suresh D, Ghoshdastidar S, Gangula A, Mukherjee S, Upendran A, Kannan R. Magnetic Iron Nanocubes Effectively Capture Epithelial and Mesenchymal Cancer Cells. ACS OMEGA 2020; 5:23724-23735. [PMID: 32984691 PMCID: PMC7513327 DOI: 10.1021/acsomega.0c02699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Current methods for capturing circulating tumor cells (CTCs) are based on the overexpression of cytokeratin (CK) or epithelial cell-adhesion molecule (EpCAM) on cancer cells. However, during the process of metastasis, tumor cells undergo epithelial-to-mesenchymal transition (EMT) that can lead to the loss of CK/EpCAM expression. Therefore, it is vital to develop a capturing technique independent of CK/EpCAM expression on the cancer cell. To develop this technique, it is important to identify common secondary oncogenic markers overexpressed on tumor cells before and after EMT. We analyzed the biomarker expression levels in tumor cells, before and after EMT, and found two common proteins-human epidermal growth factor receptor 2 (Her2) and epidermal growth factor receptor (EGFR) whose levels remained unaffected. So, we synthesized immunomagnetic iron nanocubes covalently conjugated with antibodies of Her2 or EGFR to capture cancer cells irrespective of the EMT status. The nanocubes showed high specificity (6-9-fold) in isolating the cancer cells of interest from a mixture of cells spiked in serum. We characterized the captured cells for identifying their EMT status. Thus, we believe the results presented here would help in the development of novel strategies for capturing both primary and metastatic cancer cells from patients' blood to develop an effective treatment plan.
Collapse
Affiliation(s)
- Dhananjay Suresh
- Department
of Bioengineering, Department of Radiology, Department of Medical Pharmacology
& Physiology, and Institute of Clinical and Translational Science, University of Missouri, Columbia, Missouri 65212, United States
| | - Shreya Ghoshdastidar
- Department
of Bioengineering, Department of Radiology, Department of Medical Pharmacology
& Physiology, and Institute of Clinical and Translational Science, University of Missouri, Columbia, Missouri 65212, United States
| | - Abilash Gangula
- Department
of Bioengineering, Department of Radiology, Department of Medical Pharmacology
& Physiology, and Institute of Clinical and Translational Science, University of Missouri, Columbia, Missouri 65212, United States
| | - Soumavo Mukherjee
- Department
of Bioengineering, Department of Radiology, Department of Medical Pharmacology
& Physiology, and Institute of Clinical and Translational Science, University of Missouri, Columbia, Missouri 65212, United States
| | - Anandhi Upendran
- Department
of Bioengineering, Department of Radiology, Department of Medical Pharmacology
& Physiology, and Institute of Clinical and Translational Science, University of Missouri, Columbia, Missouri 65212, United States
| | - Raghuraman Kannan
- Department
of Bioengineering, Department of Radiology, Department of Medical Pharmacology
& Physiology, and Institute of Clinical and Translational Science, University of Missouri, Columbia, Missouri 65212, United States
| |
Collapse
|
27
|
Lozar T, Jesenko T, Kloboves Prevodnik V, Cemazar M, Hosta V, Jericevic A, Nolde N, Grasic Kuhar C. Preclinical and Clinical Evaluation of Magnetic-Activated Cell Separation Technology for CTC Isolation in Breast Cancer. Front Oncol 2020; 10:554554. [PMID: 33042837 PMCID: PMC7522616 DOI: 10.3389/fonc.2020.554554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023] Open
Abstract
Circulating tumor cell (CTC) count is an independent prognostic factor in early breast cancer. CTCs can be found in the blood of 20% of patients prior to neoadjuvant therapy. We aimed to assess the suitability of magnetic-activated cell separation (MACS) technology for isolation and cytological characterization of CTCs. In the preclinical part of the study, cell lines were spiked into buffy coat samples derived from healthy donors, and isolated using MACS. Breast cancer cells with preserved cell morphology were successfully isolated. In the clinical part, blood for CTC isolation was drawn from 44 patients with early and locally advanced breast cancer prior to neoadjuvant chemotherapy. Standard Giemsa, Papanicolaou and pancytokeratin staining was applied. 2.3% of samples contained cells that meet both the morphological and immunocytochemical criteria for CTC. In 32.6% of samples, partially degenerated pancytokeratin negative cells with morphological features of tumor cells were observed. In 65.1% of samples, CTCs were not found. In conclusion, our results demonstrate that morphologically intact tumor cells can be isolated using MACS technology. However, morphologically intact tumor cells were not detected in the clinical part of the study. At present, MACS technology does not appear suitable for use in a clinical cytopathology laboratory.
Collapse
Affiliation(s)
- Taja Lozar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronika Kloboves Prevodnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Violeta Hosta
- Department of Dermatovenereology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Anja Jericevic
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Natasa Nolde
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Cvetka Grasic Kuhar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Brechbuhl HM, Vinod-Paul K, Gillen AE, Kopin EG, Gibney K, Elias AD, Hayashi M, Sartorius CA, Kabos P. Analysis of circulating breast cancer cell heterogeneity and interactions with peripheral blood mononuclear cells. Mol Carcinog 2020; 59:1129-1139. [PMID: 32822091 DOI: 10.1002/mc.23242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023]
Abstract
For solid tumors, extravasation of cancer cells and their survival in circulation represents a critical stage of the metastatic process that lacks complete understanding. Gaining insight into interactions between circulating tumor cells (CTCs) and other peripheral blood mononuclear cells (PBMCs) may provide valuable prognostic information. The purpose of this study was to use single-cell RNA-sequencing (scRNA-seq) of liquid biopsies from breast cancer patients to begin defining intravascular interactions. We captured CTCs from the peripheral blood of breast cancer patients using size-exclusion membranes followed by scRNA-seq of enriched CTCs and carry-over PBMCs. Transcriptome analysis identified two populations of CTCs: one enriched for transcripts indicative of estrogen responsiveness and increased proliferation and another enriched for transcripts characteristic of reduced proliferation and epithelial-mesenchymal transition (EMT). We applied interactome and pathway analysis to determine interactions between CTCs and other captured cells. Our analysis predicted for enhanced immune evasion in the CTC population with EMT characteristics. In addition, PD-1/PD-L1 pathway activation and T cell exhaustion were predicted in T cells isolated from breast cancer patients compared with normal T cells. We conclude that scRNA-seq of breast cancer CTCs generally stratifies them into two types based on their proliferative and epithelial state and differential potential to interact with PBMCs. Better understanding of CTC subtypes and their intravascular interactions may help design treatments directed against CTCs with high metastatic and immune-evasive competence.
Collapse
Affiliation(s)
- Heather M Brechbuhl
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Kiran Vinod-Paul
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Austin E Gillen
- Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado
| | - Etana G Kopin
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Kari Gibney
- Department of Medicine, Cancer Center, University of Colorado, Aurora, Colorado
| | - Anthony D Elias
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | | | | | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| |
Collapse
|
29
|
Drucker A, Teh EM, Kostyleva R, Rayson D, Douglas S, Pinto DM. Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients. PLoS One 2020; 15:e0237308. [PMID: 32790691 PMCID: PMC7425969 DOI: 10.1371/journal.pone.0237308] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
The isolation and analysis of circulating tumor cells (CTC) has the potential to provide minimally invasive diagnostic, prognostic and predictive information. Widespread clinical implementation of CTC analysis has been hampered by a lack of comparative investigation between different analytic methodologies in clinically relevant settings. The objective of this study was to evaluate four different CTC isolation techniques–those that rely on surface antigen expression (EpCAM or CD45 using DynaBeads® or EasySep™ systems) or the biophysical properties (RosetteSep™ or ScreenCell®) of CTCs. These were evaluated using cultured cells in order to calculate isolation efficiency at various levels including; inter-assay and inter-operator variability, protocol complexity and turn-around time. All four techniques were adequate at levels above 100 cells/mL which is commonly used for the evaluation of new isolation techniques. Only the RosetteSep™ and ScreenCell® techniques were found to provide adequate sensitivity at a level of 10 cells/mL. These techniques were then applied to the isolation and analysis of circulating tumor cells blood drawn from metastatic breast cancer patients where CTCs were detected in 54% (15/28) of MBC patients using the RosetteSep™ and 75% (6/8) with ScreenCell®. Overall, the ScreenCell® method had better sensitivity.
Collapse
Affiliation(s)
- Arik Drucker
- Division of Medical Oncology, Department of Medicine, Dalhousie University and Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Evelyn M. Teh
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Ripsik Kostyleva
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Daniel Rayson
- Division of Medical Oncology, Department of Medicine, Dalhousie University and Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Susan Douglas
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Devanand M. Pinto
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
30
|
Zapatero A, Gómez-Caamaño A, Cabeza Rodriguez MÁ, Muinelo-Romay L, Martin de Vidales C, Abalo A, Calvo Crespo P, Leon Mateos L, Olivier C, Vega Piris LV. Detection and dynamics of circulating tumor cells in patients with high-risk prostate cancer treated with radiotherapy and hormones: a prospective phase II study. Radiat Oncol 2020; 15:137. [PMID: 32487218 PMCID: PMC7268302 DOI: 10.1186/s13014-020-01577-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are an established prognostic marker in castration-resistant prostate cancer but have received little attention in localized high-risk disease. We studied the detection rate of CTCs in patients with high-risk prostate cancer before and after androgen deprivation therapy and radiotherapy to assess its value as a prognostic and monitoring marker. PATIENTS AND METHODS We performed a prospective analysis of CTCs in the peripheral blood of 65 treatment-naïve patients with high-risk prostate cancer. EpCAM-positive CTCs were enumerated using the CELLSEARCH system at 4 timepoints. A cut off of 0 vs ≥ 1 CTC/7.5 ml blood was defined as a threshold for negative versus positive CTCs status. RESULTS CTCs were detected in 5/65 patients (7.5%) at diagnosis, 8/62 (12.9%) following neoadjuvant androgen deprivation and 11/59 (18.6%) at the end of radiotherapy, with a median CTC count/7.5 ml of 1 (range, 1-136). Only 1 patient presented a positive CTC result 9 months after radiotherapy. Positive CTC status (at any timepoint) was not significantly associated with any clinical or pathologic factors. However, when we analyzed variations in CTC patterns following treatment, we observed a significant association between conversion of CTCs and stages T3 (P = 0.044) and N1 (P = 0.002). Detection of CTCs was not significantly associated with overall survival (P > 0.40). CONCLUSIONS Our study showed a low detection rate for CTCs in patients with locally advanced high-risk prostate cancer. The finding of a de novo positive CTC count after androgen deprivation therapy is probably due to a passive mechanism associated with the destruction of the tumor. Further studies with larger samples and based on more accurate detection of CTCs are needed to determine the potential prognostic and therapeutic value of this approach in non-metastatic prostate cancer. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT01800058.
Collapse
Affiliation(s)
- Almudena Zapatero
- Radiation Oncology Department, Hospital Universitario de la Princesa, Health Research Institute IIS-IP, Diego de León 62, 28006, Madrid, Spain.
| | | | | | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), CIBERONC, Santiago de Compostela, Spain
| | - Carmen Martin de Vidales
- Radiation Oncology Department, Hospital Universitario de la Princesa, Health Research Institute IIS-IP, Diego de León 62, 28006, Madrid, Spain
| | - Alicia Abalo
- Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), CIBERONC, Santiago de Compostela, Spain
| | | | - Luis Leon Mateos
- Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Olivier
- Radiation Oncology Department, Hospital Universitario de la Princesa, Health Research Institute IIS-IP, Diego de León 62, 28006, Madrid, Spain
| | - Lorena Vega Vega Piris
- Methodology Unit, Health Research Institute of Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
31
|
Fanelli GN, Naccarato AG, Scatena C. Recent Advances in Cancer Plasticity: Cellular Mechanisms, Surveillance Strategies, and Therapeutic Optimization. Front Oncol 2020; 10:569. [PMID: 32391266 PMCID: PMC7188928 DOI: 10.3389/fonc.2020.00569] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The processes of recurrence and metastasis, through which cancer relapses locally or spreads to distant sites in the body, accounts for more than 90% of cancer-related deaths. At present there are very few treatment options for patients at this stage of their disease. The main obstacle to successfully treat advanced cancer is the cells' ability to change in ways that make them resistant to treatment. Understanding the cellular mechanisms that mediate this cancer cell plasticity may lead to improved patient survival. Epigenetic reprogramming, together with tumor microenvironment, drives such dynamic mechanisms favoring tumor heterogeneity, and cancer cell plasticity. In addition, the development of new approaches that can report on cancer plasticity in their native environment have profound implications for studying cancer biology and monitoring tumor progression. We herein provide an overview of recent advancements in understanding the mechanisms regulating cell plasticity and current strategies for their monitoring and therapy management.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Nini A, Hoffmann MJ, Lampignano R, Große Siemer R, van Dalum G, Szarvas T, Cotarelo CL, Schulz WA, Niederacher D, Neubauer H, Stoecklein NH, Niegisch G. Evaluation of HER2 expression in urothelial carcinoma cells as a biomarker for circulating tumor cells. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:355-367. [PMID: 32212383 DOI: 10.1002/cyto.b.21877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Detection of circulating tumor cells (CTC) by techniques based on epithelial cell adhesion molecule (EpCAM) is suboptimal in urothelial carcinoma (UC). As HER2 is thought to be broadly expressed in UC, we explored its utility for CTC detection. METHODS HER2 and EpCAM expression was analyzed in 18 UC cell lines (UCCs) by qRT-PCR, western blot and fluorescence-activated cell scanning (FACS) and compared to the strongly HER2-expressing breast cancer cell line SKBR3 and other controls. HER2 expression in UC patient tissues was measured by qRT PCR and correlated with data on survival and risk for metastasis. UCCs with high EpCAM and variable HER2 expression were used for spike-in experiments in the CellSearch system. Twenty-one blood samples from 13 metastatic UC patients were analyzed for HER2-positive CTCs with CellSearch. RESULTS HER2 mRNA and protein were broadly expressed in UCC, with some heterogeneity, but at least 10-fold lower than in the HER-2+ SKBR3 cells. Variations were unrelated to cellular phenotype or clinicopathological characteristics. EpCAM expression was essentially restricted to UCCs with epitheloid phenotypes. Heterogeneity of EpCAM and HER2 expression was observed also in spike-in experiments. The 7 of 21 blood samples from 6 of 13 patients were enumerated as CTC positive via EpCAM, but only one sample stained weakly positive (1+) for HER2. CONCLUSIONS Detection rate of CTCs by EpCAM in UC is poor, even in metastatic patients. Because of its widespread expression, particularly in patients with high risk of metastasis, detection of HER2 could improve identification of UC CTCs, which is why combined detection using antibodies for EpCAM and HER2 may be beneficial.
Collapse
Affiliation(s)
- Alessandro Nini
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Department of Urology, Saarland University, Homburg/Saar, Germany
| | - Michèle Janine Hoffmann
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Rita Lampignano
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Robert Große Siemer
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Guus van Dalum
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tibor Szarvas
- Department of Urology, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Department of Urology, Semmelweis University Budapest, Budapest, Hungary
| | - Cristina Lopez Cotarelo
- Department of Pathology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Arthur Schulz
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Nikolas Hendrik Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
33
|
Lin Z, Luo G, Du W, Kong T, Liu C, Liu Z. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903899. [PMID: 31747120 DOI: 10.1002/smll.201903899] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/13/2019] [Indexed: 05/03/2023]
Abstract
Cancer remains the leading cause of death worldwide despite the enormous efforts that are made in the development of cancer biology and anticancer therapeutic treatment. Furthermore, recent studies in oncology have focused on the complex cancer metastatic process as metastatic disease contributes to more than 90% of tumor-related death. In the metastatic process, isolation and analysis of circulating tumor cells (CTCs) play a vital role in diagnosis and prognosis of cancer patients at an early stage. To obtain relevant information on cancer metastasis and progression from CTCs, reliable approaches are required for CTC detection and isolation. Additionally, experimental platforms mimicking the tumor microenvironment in vitro give a better understanding of the metastatic microenvironment and antimetastatic drugs' screening. With the advancement of microfabrication and rapid prototyping, microfluidic techniques are now increasingly being exploited to study cancer metastasis as they allow precise control of fluids in small volume and rapid sample processing at relatively low cost and with high sensitivity. Recent advancements in microfluidic platforms utilized in various methods for CTCs' isolation and tumor models recapitulating the metastatic microenvironment (tumor-on-a-chip) are comprehensively reviewed. Future perspectives on microfluidics for cancer metastasis are proposed.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guanyi Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Weixiang Du
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
34
|
Costa C, Dávila-Ibáñez AB. Methodology for the Isolation and Analysis of CTCs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:45-59. [PMID: 32304079 DOI: 10.1007/978-3-030-35805-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of deaths related to breast cancer are caused by metastasis. Understanding the process of metastasis is key to achieve a reduction on breast cancer mortality. Currently, liquid biopsies are gaining attention in this regard. Circulating tumor cells (CTCs), an important component of liquid biopsies, are cells shed from primary tumor that disseminate to blood circulation being responsible of distal metastasis. Hence, the study CTCs is a promising alternative to monitor the progress of metastasis disease and can be used for early diagnosis of cancers as well as for earlier assessment of cancer recurrence and therapy efficacy. Despite their clinical interest, CTC analysis is not recommended by oncology guidelines so far. The main reason is that there is no gold standard technology for CTCs isolation and most of the current technologies are not yet validated for clinical use. In this chapter we will focus on the most relevant technologies for CTC isolation based on their properties and depending on whether it is a positive or negative selection. We also describe each technology based on its potential use and its relevance in breast cancer. The chapter also contains a future perspective including the challenges and requirements of CTC detection.
Collapse
Affiliation(s)
- Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| | - Ana B Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
35
|
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 2019; 12:137. [PMID: 31847897 PMCID: PMC6918551 DOI: 10.1186/s13045-019-0833-3] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
In the fight against cancer, early detection is a key factor for successful treatment. However, the detection of cancer in the early stage has been hindered by the intrinsic limits of conventional cancer diagnostic methods. Nanotechnology provides high sensitivity, specificity, and multiplexed measurement capacity and has therefore been investigated for the detection of extracellular cancer biomarkers and cancer cells, as well as for in vivo imaging. This review summarizes the latest developments in nanotechnology applications for cancer diagnosis. In addition, the challenges in the translation of nanotechnology-based diagnostic methods into clinical applications are discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Xiaomei Gao
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Ting Liu
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
36
|
Liu R, Chu CH, Wang N, Ozkaya-Ahmadov T, Civelekoglu O, Lee D, Arifuzzman AKM, Sarioglu AF. Combinatorial Immunophenotyping of Cell Populations with an Electronic Antibody Microarray. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904732. [PMID: 31631578 DOI: 10.1002/smll.201904732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Immunophenotyping is widely used to characterize cell populations in basic research and to diagnose diseases from surface biomarkers in the clinic. This process usually requires complex instruments such as flow cytometers or fluorescence microscopes, which are typically housed in centralized laboratories. Microfluidics are combined with an integrated electrical sensor network to create an antibody microarray for label-free cell immunophenotyping against multiple antigens. The device works by fractionating the sample via capturing target subpopulations in an array of microfluidic chambers functionalized against different antigens and by electrically quantifying the cell capture statistics through a network of code-multiplexed electrical sensors. Through a combinatorial arrangement of antibody sequences along different microfluidic paths, the device can measure the prevalence of different cell subpopulations in a sample from computational analysis of the electrical output signal. The device performance is characterized by analyzing heterogeneous samples of mixed tumor cell populations and then the technique is applied to determine leukocyte subpopulations in blood samples and the results are validated against complete blood cell count and flow cytometry results. Label-free immunophenotyping of cell populations against multiple targets on a disposable electronic chip presents opportunities in global health and telemedicine applications for cell-based diagnostics and health monitoring.
Collapse
Affiliation(s)
- Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ningquan Wang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tevhide Ozkaya-Ahmadov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ozgun Civelekoglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dohwan Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - A K M Arifuzzman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - A Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
37
|
DAPK1 loss triggers tumor invasion in colorectal tumor cells. Cell Death Dis 2019; 10:895. [PMID: 31772156 PMCID: PMC6879526 DOI: 10.1038/s41419-019-2122-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death worldwide. Despite the improvement of surgical and chemotherapeutic treatments, as of yet, the disease has not been overcome due to metastasis to distant organs. Hence, it is of great relevance to understand the mechanisms responsible for metastasis initiation and progression and to identify novel metastatic markers for a higher chance of preventing the metastatic disease. The Death-associated protein kinase 1 (DAPK1), recently, has been shown to be a potential candidate for regulating metastasis in CRC. Hence, the aim of the study was to investigate the impact of DAPK1 protein on CRC aggressiveness. Using CRISPR/Cas9 technology, we generated DAPK1-deficient HCT116 monoclonal cell lines and characterized their knockout phenotype in vitro and in vivo. We show that loss of DAPK1 implemented changes in growth pattern and enhanced tumor budding in vivo in the chorioallantoic membrane (CAM) model. Further, we observed more tumor cell dissemination into chicken embryo organs and increased invasion capacity using rat brain 3D in vitro model. The novel identified DAPK1-loss gene expression signature showed a stroma typical pattern and was associated with a gained ability for remodeling the extracellular matrix. Finally, we suggest the DAPK1-ERK1 signaling axis being involved in metastatic progression of CRC. Our results highlight DAPK1 as an anti-metastatic player in CRC and suggest DAPK1 as a potential predictive biomarker for this cancer type.
Collapse
|
38
|
D'Oronzo S, Lovero D, Palmirotta R, Stucci LS, Tucci M, Felici C, Cascardi E, Giardina C, Cafforio P, Silvestris F. Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Sci Rep 2019; 9:17276. [PMID: 31754145 PMCID: PMC6872745 DOI: 10.1038/s41598-019-53660-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Enumeration of circulating tumor cells (CTCs) may reflect the metastatic potential of breast cancer (BC). By using the DEPArray, we investigated CTCs with respect to their epithelial-to-mesenchymal transition phenotype and compared their genomic heterogeneity with tissue biopsies. Seventeen stage IV BC patients were enrolled. Pre-enriched CTC suspensions were stained with fluorescent-labeled antibodies to epithelial (E) and mesenchymal (M) markers. CTC samples were processed by DEPArray system and clustered in relation to their markers. DNA from CTCs, as well as from primary tumor samples, was sequenced by next generation sequencing to assess the mutational state of 50 major cancer-related genes. We identified four different CTC subsets that harbored different gene variants. The most heterogenous CTC subsets included the M+/E- phenotype, which, however, expressed only 7 repeatedly mutated genes, while in the M-/E+ subset multiple mutations affected only 2 out of 50 genes. When matching all gene variants among CTC subsets, a small number of mutations was shared by only 4 genes, namely ATM, FGFR3, PIK3CA, and TP53 that, however, were absent in primary tumors. Our results postulate that the detected mutations in all CTC subsets may be considered as genomic markers of metastatic dissemination to be investigated during early stages of BC.
Collapse
Affiliation(s)
- Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Eliano Cascardi
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Carmela Giardina
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy.
| |
Collapse
|
39
|
Irani S. Emerging insights into the biology of metastasis: A review article. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:833-847. [PMID: 31579438 PMCID: PMC6760483 DOI: 10.22038/ijbms.2019.32786.7839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Metastasis means the dissemination of the cancer cells from one organ to another which is not directly connected to the primary site. Metastasis has a crucial role in the prognosis of cancer patients. A few theories, different types of cell and several molecular pathways have been proposed to explain the mechanism of metastasis. In this work, the related articles in the limited period of time, 2000-mid -2018 were reviewed, through search in PubMed, Google Scholar and Scopus database. The articles published in the last two decades related to the biology of cancer metastasis were selected and the most important factors were discussed. Metastasis is critical factor to predict survival in patients with advanced cancer and prognosis determines the treatment plan. Many different cell types and various signaling pathways control the metastatic process. Metastasis is a multistep process. Many signaling pathways and molecules are involved in metastasis. Increasing knowledge about the mechanism of metastasis can help in finding the promising targets of cancer therapy.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan,Iran, Lecturer at Griffith University, Gold Coast, Australia
| |
Collapse
|
40
|
The Integration of a Three-Dimensional Spheroid Cell Culture Operation in a Circulating Tumor Cell (CTC) Isolation and Purification Process: A Preliminary Study of the Clinical Significance and Prognostic Role of the CTCs Isolated from the Blood Samples of Head and Neck Cancer Patients. Cancers (Basel) 2019; 11:cancers11060783. [PMID: 31174311 PMCID: PMC6627984 DOI: 10.3390/cancers11060783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023] Open
Abstract
Conventional positive and negative selection-based circulating tumor cell (CTC) isolation methods might generally ignore metastasis-relevant CTCs that underwent epithelial-to- mesenchymal transition and suffer from a low CTC purity problem, respectively. To address these issues, we previously proposed a 2-step CTC isolation method integrating a negative selection CTC isolation and subsequent spheroid cell culture. In addition to its ability to isolate CTCs, more importantly, the spheroid cell culture used could serve as a cell culture model mimicking the process of new tumor tissue formation during cancer metastasis. Therefore, it is promising not only to selectively isolate metastasis-relevant CTCs but also to test the potential of cancer metastasis and thus the prognosis of disease. To explore these issues, experiments were performed. The key findings of this study demonstrated that the method was able to harvest both epithelial (E)- and mesenchymal (M)-type CTCs without selection bias. Moreover, both the M-type CTC count and the information obtained from the multidrug resistance-associated protein 2 (MRP2) and MRP5 gene expression analysis of the CTCs isolated via the 2-step CTC isolation method might be able to serve as prognostic factors for progression-free survival in head and neck squamous cell carcinoma.
Collapse
|
41
|
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel) 2019; 11:cancers11040483. [PMID: 30959764 PMCID: PMC6521045 DOI: 10.3390/cancers11040483] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
42
|
Chen Q, Yao L, Burner D, Minev B, Lu L, Wang M, Ma W. Epithelial membrane protein 2: a novel biomarker for circulating tumor cell recovery in breast cancer. Clin Transl Oncol 2019; 21:433-442. [PMID: 30218306 DOI: 10.1007/s12094-018-1941-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/02/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE EpCAM is a common marker used in the detection of circulating tumor cells (CTC). Disseminated cancer cells display the characteristics of epithelial-to-mesenchymal transition events. The purpose of this study was to assess the potential of epithelial membrane protein 2 (EMP2) as a novel biomarker for CTC retrieval in breast cancer. METHODS MCF7 and MDA-MB-231 cells were stained with either anti-EpCAM or anti-EMP2 mAbs, respectively, followed by flow cytometric assay to measure their expression levels. PBMCs isolated from healthy donors were used for breast cancer cell spiking. CD45-depleted PBMCs from breast cancer patients' blood were used for CTC capturing. Immunomagnetic separation was used to enrich breast cancer cells. Cytospin centrifugation was performed to concentrate the captured cells, followed by immunofluorescence staining with anti-CD45 mAb, anti-pan cytokeratin mAb and DAPI. Fluorescent images were taken using a confocal microscope for CTC counts. RESULT MDA-MB-231 cells had 2.56 times higher EMP2 expression than MCF7 cells, and EMP2 had a significantly higher capture efficiency than EpCAM for MCF7 cells. Furthermore, anti-EMP2 was capable of capturing MCF7 cells that escaped in the flow-through of anti-EpCAM. Likewise, EMP2 had a significantly higher capture efficiency on MDA-MB-231 cells when compared to MCF7 cells. Most importantly, EMP2 biomarker was successfully used for CTC capture in patients with primary breast cancer. CONCLUSIONS EMP2 is superior to EpCAM for capturing both MCF7 and MDA-MB-231 cells. Additionally, EMP2 is a novel biomarker and capable of capturing breast cancer cells in patient blood samples.
Collapse
Affiliation(s)
- Q Chen
- Key Laboratory for Translational Medicine and the Division of Breast Surgery, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - L Yao
- Key Laboratory for Translational Medicine and the Division of Breast Surgery, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - D Burner
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - B Minev
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Calidi Biotherapeutics, San Diego, CA, 92121, USA
| | - L Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT, 06520, USA
| | - M Wang
- Division of Gastrointestinal SurgeryThe First Affiliated Hospital and the Department of Clinical Medicine, Jiaxing University School of Medicine, Jiaxing, 314001, Zhejiang, China.
| | - W Ma
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
43
|
Abstract
Circulating tumor cells (CTCs) play a central role in tumor dissemination and metastases, which are ultimately responsible for most cancer deaths. Technologies that allow for identification and enumeration of rare CTC from cancer patients' blood have already established CTC as an important clinical biomarker for cancer diagnosis and prognosis. Indeed, current efforts to robustly characterize CTC as well as the associated cells of the tumor microenvironment such as circulating cancer associated fibroblasts (cCAF), are poised to unmask key insights into the metastatic process. Ultimately, the clinical utility of CTC will be fully realized once CTC can be reliably cultured and proliferated as a biospecimen for precision management of cancer patients, and for discovery of novel therapeutics. In this review, we highlight the latest CTC capture and analyses technologies, and discuss in vitro strategies for culturing and propagating CTC.
Collapse
Affiliation(s)
- Ashutosh Agarwal
- Assistant Professor, Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami
| | - Marija Balic
- Associate Professor, Division of Oncology, Department of Internal Medicine, Research Unit Circulating Tumor Cells and Cancer Stem Cells, Medical University of Graz, Austria
| | - Dorraya El-Ashry
- Associate Professor, Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Richard J. Cote
- Professor and Joseph R. Coulter Jr. Chair, Department of Pathology & Laboratory Medicine, Director, John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami Miller School of Medicine
| |
Collapse
|
44
|
Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: A comprehensive review. Clin Genet 2019; 95:643-660. [PMID: 30671931 DOI: 10.1111/cge.13514] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Due to its complexity in nature, effective breast cancer treatment can encounter many challenges. Traditional methods of cancer detection such as tissue biopsy are not comprehensive enough to capture the entire genomic landscape of breast tumors. However, with the introduction of novel techniques, the application of liquid biopsy has been enhanced, enabling the improvement of various aspects of breast cancer management including early diagnosis and screening, prediction of prognosis, early detection of relapse, serial sampling and efficient longitudinal monitoring of disease progress and response to treatment. Various components of tumor cells released into the blood circulation can be analyzed in liquid biopsy sampling, some of which include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free RNA, tumor-educated platelets and exosomes. These components can be utilized for different purposes. As an example, ctDNA can be sequenced for genetic profiling of the tumors to enhance individualized treatment and longitudinal screening. CTC plasma count analysis or ctDNA detection after curative tumor resection surgery could facilitate early detection of minimal residual disease, aiding in the initiation of adjuvant therapy to prevent recurrence. Furthermore, CTC plasma count can be assessed to determine the stage and prognosis of breast cancer. In this review, we discuss the advantages and limitations of the various components of liquid biopsy used in breast cancer diagnosis and will expand on aspects that require further focus in future research.
Collapse
Affiliation(s)
- Sahar Alimirzaie
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Maryam Bagherzadeh
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Pallante P, Pisapia P, Bellevicine C, Malapelle U, Troncone G. Circulating Tumour Cells in Predictive Molecular Pathology: Focus on Drug-Sensitive Assays and 3D Culture. Acta Cytol 2019; 63:171-181. [PMID: 30759433 DOI: 10.1159/000496213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Molecular cytopathology is a rapidly evolving field of cytopathology that provides biological information about the response to personalised therapy and about the prognosis of neoplasms diagnosed on cytological samples. Biomarkers such as circulating tumour cells and circulating tumour DNA are increasingly being evaluated in blood and in other body fluids. Such liquid biopsies are non-invasive, repeatable, and feasible also in patients with severe comorbidities. However, liquid biopsy may be challenging due to a low concentration of biomarkers. In such cases, biomarkers can be detected with highly sensitive molecular techniques, which in turn should be validated and integrated in a complex algorithm that includes tissue-based molecular assessments. The aim of this review is to provide the cytopathologist with practical information that is relevant to daily practice, particularly regarding the emerging role of circulating tumour cells in the field of predictive molecular pathology.
Collapse
Affiliation(s)
- Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore," National Research Council (CNR), Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy,
| |
Collapse
|
46
|
Chen WX, Li JG, Wan XH, Zou XS, Qi SY, Zhang YQ, Weng QM, Li JY, Xiong WM, Xie C, Cheng WL. Design of a microfluidic chip consisting of micropillars and its use for the enrichment of nasopharyngeal cancer cells. Oncol Lett 2019; 17:1581-1588. [PMID: 30675216 PMCID: PMC6341559 DOI: 10.3892/ol.2018.9771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to discuss the design of a microfluidic chip consisting of columns, and its use for the enrichment of nasopharyngeal cancer (NPC) cells. A microfluidic chip experiment was simulated using FLUENT software. Within the microfluidic chip, aptamers were bound to the reaction chamber (consisting of columns) using a biotin-avidin system. Cell suspension was introduced into the reaction chamber to capture NPC cells. NPC cells were subsequently eluted, and the capture rate of the cells was calculated. The modified aptamer-bound microfluidic chip was able to capture NPC cells with a capture rate of ~90%. The modified aptamer-bound microfluidic chip has a wide range of potential applications for the diagnosis of NPC.
Collapse
Affiliation(s)
- Wen-Xue Chen
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Jin-Gao Li
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xiang-Hui Wan
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xue-Sen Zou
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Shu-Yi Qi
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Yu-Qing Zhang
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Qiu-Min Weng
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Jun-Yu Li
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Wen-Min Xiong
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Chen Xie
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Wei-Liang Cheng
- Jiangxi Railway Health Supervision Institute, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|
47
|
Yahyazadeh Mashhadi SM, Kazemimanesh M, Arashkia A, Azadmanesh K, Meshkat Z, Golichenari B, Sahebkar A. Shedding light on the EpCAM: An overview. J Cell Physiol 2019; 234:12569-12580. [DOI: 10.1002/jcp.28132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Seyed Muhammad Yahyazadeh Mashhadi
- Department of Virology Pasteur Institute of Iran Tehran Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Production Expert at Samandaroo 8 (Biotech Pharmaceutical) Co. Mashhad Iran
| | | | - Arash Arashkia
- Department of Virology Pasteur Institute of Iran Tehran Iran
| | | | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
| | - Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
48
|
Hao N, Nie Y, Tadimety A, Shen T, Zhang JX. Microfluidics-enabled rapid manufacturing of hierarchical silica-magnetic microflower toward enhanced circulating tumor cell screening. Biomater Sci 2018; 6:3121-3125. [PMID: 30375583 PMCID: PMC6246810 DOI: 10.1039/c8bm00851e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The emergence of microfluidic techniques provides new opportunities for chemical synthesis and biomedical applications. Herein, we first develop a microfluidics-based flow and sustainable strategy to synthesize hierarchical silica-magnetic microflower with unique multilayered structure for the efficient capture of circulating tumor cells through our engineered microfluidic screening chip. The production of microflower materials can be realized within 94 milliseconds and a yield of nearly 5 grams per hour can be achieved. The enhanced bioaccessibility of such a multilayered microflower towards cancer cells (MCF-7 and MDA-MB-231) is demonstrated, and the cancer cell capture efficiency of this hierarchical immunomagnetic system in clinical blood samples is significantly increased compared with a standard CellSearch™ assay. These findings bring new insights for engineering functional micro-/nanomaterials in liquid biopsy.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Ting Shen
- NanoLite Systems, 1521 Concord Pike, Wilmington, DE 19803, United States
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| |
Collapse
|
49
|
EpCAM high and EpCAM low circulating tumor cells in metastatic prostate and breast cancer patients. Oncotarget 2018; 9:35705-35716. [PMID: 30479699 PMCID: PMC6235023 DOI: 10.18632/oncotarget.26298] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/25/2018] [Indexed: 01/21/2023] Open
Abstract
The presence of high expressing epithelial cell adhesion molecule (EpCAMhigh) circulating tumor cells (CTC) enumerated by CellSearch® in blood of cancer patients is strongly associated with poor prognosis. This raises the question about the presence and relation with clinical outcome of low EpCAM expressing CTC (EpCAMlow CTC). In the EU-FP7 CTC-Trap program, we investigated the presence of EpCAMhigh and EpCAMlow CTC using CellSearch, followed by microfiltration of the EpCAMhigh CTC depleted blood. Blood samples of 108 castration-resistant prostate cancer patients and 22 metastatic breast cancer patients were processed at six participating sites, using protocols and tools developed in the CTC-Trap program. Of the prostate cancer patients, 53% had ≥5 EpCAMhigh CTC and 28% had ≥5 EpCAMlow CTC. For breast cancer patients, 32% had ≥5 EpCAMhigh CTC and 36% had ≥5 EpCAMlow CTC. 70% of prostate cancer patients and 64% of breast cancer patients had in total ≥5 EpCAMhigh and/or EpCAMlow CTC, increasing the number of patients in whom CTC are detected. Castration-resistant prostate cancer patients with ≥5 EpCAMhigh CTC had shorter overall survival versus those with <5 EpCAMhigh CTC (p = 0.000). However, presence of EpCAMlow CTC had no relation with overall survival. This emphasizes the importance to demonstrate the relation with clinical outcome when presence of CTC identified with different technologies are reported, as different CTC subpopulations can have different relations with clinical outcome.
Collapse
|
50
|
Nelep C, Eberhardt J. Automated rare single cell picking with the ALS cellcelector™. Cytometry A 2018; 93:1267-1270. [PMID: 30184320 PMCID: PMC6586056 DOI: 10.1002/cyto.a.23568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Molecular analysis of rare single cells like circulating tumor cells (CTCs) from whole blood patient samples bears multiple challenges. One of those challenges is the efficient and ideally loss-free isolation of CTCs over contaminating white and red blood cells. While there is a multitude of commercial and non-commercial systems available for the enrichment of CTCs their cell output does not deliver the purity most molecular analysis methods require. Here we describe the ALS CellCelector™ which can solve this challenge allowing the retrieval of 100% pure single CTCs from blood processed by different upstream enrichment techniques. It is a multifunctional, extremely flexible system for automated screening of cell culture plates, Petri dishes, and microscope slides. Fixed or live single cells or multicellular clusters detected during screening can be picked out of those plates automatically. The complete scan and picking process is fully documented hence allowing highest standardization and reproducibility of all processes. Use of CellCelector allowed the isolation of pure single tumor cells or clusters from liquid biopsies of breast, prostate, ovarian, colorectal, lung, and brain cancers for their subsequent molecular analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
|