1
|
Zambrano-Vásquez OR, Cortés-Camacho F, Castañeda-Sánchez JI, Aréchaga-Ocampo E, Valle-Velázquez E, Cabrera-Angeles JC, Sánchez-Gloria JL, Sánchez-Muñoz F, Arellano-Buendia AS, Sánchez-Lozada LG, Osorio-Alonso H. Update in non-alcoholic fatty liver disease management: role of sodium-glucose cotransporter 2 inhibitors. Life Sci 2025; 372:123638. [PMID: 40246191 DOI: 10.1016/j.lfs.2025.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes without significant alcohol consumption. It is closely associated with sedentarism, hypercaloric diets, obesity, dyslipidemia, insulin resistance, type 2 diabetes mellitus, and genetic predisposition. NAFLD comprises a spectrum of liver disorders, from simple steatosis to non-alcoholic (NASH) and liver cirrhosis. The complex etiological mechanisms include oxidative stress, inflammation, apoptosis, and fibrosis; therefore, its management is challenging. Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), a class of antidiabetic drugs, have emerged as promising therapeutic agents due to their ability to improve key metabolic parameters, including obesity, dyslipidemia, insulin resistance, and hyperglycemia. This review explores the cellular mechanisms by which SGLT2i, either as monotherapy or combined with other treatments, modulate signaling pathways involved in lipid and carbohydrate metabolism. Additionally, we examine their effects on oxidative stress, inflammation, fibrosis, and apoptosis, which are critical drivers of NAFLD progression. This review is intended to summarize the multiple benefits of SGLT2 inhibitors and to educate healthcare providers on the therapeutic potential of these drugs in order to foster their incorporation into effective NAFLD management plans.
Collapse
Affiliation(s)
- Oscar R Zambrano-Vásquez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Fernando Cortés-Camacho
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Jorge I Castañeda-Sánchez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, México City 04960, Mexico
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México City 05348, Mexico
| | - Estefanía Valle-Velázquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Juan C Cabrera-Angeles
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - José L Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fausto Sánchez-Muñoz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Abraham S Arellano-Buendia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Laura G Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico.
| |
Collapse
|
2
|
Zhu X, Zhang L, Cui W, Wang L, Xu F, Liu M, Chen S, Jiang H, He Z, Peng C, Li J. Unveiling p65 as the target of diphyllin in ameliorating metabolic dysfunction-associated steatotic liver disease via targeted protein degradation technology. Front Pharmacol 2025; 16:1567639. [PMID: 40356997 PMCID: PMC12066529 DOI: 10.3389/fphar.2025.1567639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD), characterized by hepatic steatosis, inflammation and fibrosis, is becoming a global epidemic. However, the currently available effective clinical strategies remain limited. METHODS We conducted the choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) induced MASH mouse model to explore the effects of diphyllin on MASLD mice. We employ the targeted protein degradation technology applied for the discovery of compound/protein-protein interaction to identify p65 as a potential target protein. RESULTS We determine that diphyllin, a natural arylnaphthalene lignan lactone, is effective on MASLD, evidenced by the inhibition of hepatic lipid accumulation through promoting fatty acid oxidation in vivo and in vitro. To uncover the underlying mechanisms, we design and synthesis diphyllin-based protac and identify p65 as a potential target protein. Under p65 deficiency, the effects of diphyllin on lipid metabolism are blocked in vitro. As p65 as an antagonist of NRF2, diphyllin interacts with p65, leading to the induction of the NRF2 transcriptional activity and the enhancement of antioxidant capacity. When NFR2 is inhibited, the lowering effects of diphyllin on lipid is abolished. DISCUSSION Our study presents diphyllin as a potential lead compound for MASLD therapy but also offers a novel approach for elucidating the mechanisms of action of natural products.
Collapse
Affiliation(s)
- Xuejing Zhu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai East Hospital, Shanghai, China
| | - Lei Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wenqian Cui
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Liangjie Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Fengjing Xu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mengyuan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Shuangcheng Chen
- Department of pharmacy, Nantong Health College of Jiangsu Province, Nantong, Jiangsu, China
| | - Haowen Jiang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai East Hospital, Shanghai, China
| | - Chang Peng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jinlong Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Son S, Xu C, Jang J, Dinh M, Skorobogatko Y, Fu H, Valentine JM, An G, Ying W, Yu RT, Downes M, Evans RM, Saltiel AR. Sympathetic activation of white adipose tissue recruits neutrophils to limit energy expenditure. RESEARCH SQUARE 2025:rs.3.rs-6414640. [PMID: 40321773 PMCID: PMC12047989 DOI: 10.21203/rs.3.rs-6414640/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Adipose tissue maintains energy homeostasis by storing lipids during nutrient surplus and releasing them through lipolysis in times of energy demand. While lipolysis is essential for short term metabolic adaptation, prolonged metabolic stress requires adaptive changes that preserve energy reserves. Here, we report that β-adrenergic activation of adipocytes induces a transient and depot-specific infiltration of neutrophils into white adipose tissue (WAT), particularly in lipid-rich visceral WAT. Neutrophil recruitment requires the stimulation of both lipolysis and p38 MAPK activation in adipocytes. Recruited neutrophils locally secrete IL-1β, which suppresses lipolysis and limits excessive energy expenditure. Neutrophil depletion or blockade of IL-1β production increased lipolysis, leading to reduced WAT mass upon repeated β3-adrenergic stimulation. Together, these findings reveal an unexpected role of neutrophil-derived IL-1β in preserving lipid stores during metabolic stress, highlighting a physiological function of innate immune cells in maintaining energy homeostasis.
Collapse
Affiliation(s)
- Seunghwan Son
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Cindy Xu
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Janice Jang
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Maddox Dinh
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Yuliya Skorobogatko
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Haipeng Fu
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Joseph M. Valentine
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Garam An
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Alan R. Saltiel
- Division of Endocrinology and Metabolism, Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Adeyi OE, Somade OT, Ugwor EI, Ajayi BO, Adeyi AO, Rahman SA, Adams SO, Ayanwale MO, Adediran OO, Ambali G, Phillip YP, Abass DO, Adebisi YO, Okwori KA, Moses D, Somoye AO, Ugbaja RN, Ademuyiwa O. Syringic acid through reduction of inflammation, oxidative injury, and downregulation of NF-κB-IL-6 pathway ameliorates HFD-induced pulmonary toxicity in male Wistar rats. COMPARATIVE CLINICAL PATHOLOGY 2024; 33:787-802. [DOI: 10.1007/s00580-024-03601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 01/04/2025]
|
5
|
Abdollahi A, Szramowski M, Tomoo K, Henderson GC. Metabolic responses to albumin deficiency differ distinctly between partial and full ablation of albumin expression in mice. Lipids Health Dis 2024; 23:242. [PMID: 39123208 PMCID: PMC11312229 DOI: 10.1186/s12944-024-02229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
It had been observed that homozygous albumin knockout mice (Alb-/-) exhibit low plasma free fatty acid (FFA) concentration and improved blood glucose regulation. However, it was not yet known to what extent heterozygous albumin knockout (Alb+/-) mice would display a similar phenotype. Alb-/-, Alb+/-, and wild-type (WT) female mice were studied on a low-fat diet (LFD) or high-fat diet (HFD). On both diets, decreased plasma FFA concentration, and improved glucose tolerance test were observed in Alb-/-, but not in Alb+/-, compared to WT. Plasma adiponectin concentration showed greater elevation in Alb-/- than Alb+/-. Consistent with that, adiponectin gene expression was significantly higher in Alb-/- mice than in Alb+/- and WT mice. A dose-dependent response was observed for hepatic Acadl gene expression showing higher Acadl gene expression in Alb-/- mice than in Alb+/- and WT mice. In conclusion, although female Alb+/- mice exhibited some slight differences from WT mice (e.g., increased plasma adiponectin and hepatic Acadl gene expression), Alb+/- mice did not exhibit improved glucoregulation in comparison to WT mice, indicating that a minor suppression of albumin expression is not sufficient to improve glucoregulation. Furthermore, it is now clear that although the response of female mice to HFD might be unique from how males generally respond, still the complete albumin deficiency in Alb-/- mice and the associated FFA reduction is capable of improving glucoregulation in females on this diet. The present results have implications for the role of albumin and FFA in the regulation of metabolism.
Collapse
Affiliation(s)
- Afsoun Abdollahi
- Department of Nutrition Science, Purdue University, STON 208, 700 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| | - Mirandia Szramowski
- Department of Nutrition Science, Purdue University, STON 208, 700 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| | - Keigo Tomoo
- Department of Nutrition Science, Purdue University, STON 208, 700 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| | - Gregory C Henderson
- Department of Nutrition Science, Purdue University, STON 208, 700 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Almohawes ZN, El-Kott A, Morsy K, Shati AA, El-Kenawy AE, Khalifa HS, Elsaid FG, Abd-Lateif AEKM, Abu-Zaiton A, Ebealy ER, Abdel-Daim MM, Ghanem RA, Abd-Ella EM. Salidroside inhibits insulin resistance and hepatic steatosis by downregulating miR-21 and subsequent activation of AMPK and upregulation of PPARα in the liver and muscles of high fat diet-fed rats. Arch Physiol Biochem 2024; 130:257-274. [PMID: 35061559 DOI: 10.1080/13813455.2021.2024578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
This study evaluated if salidroside (SAL) alleviates high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) by downregulating miR-21. Rats (n = 8/group) were treated for 12 weeks as normal diet (control/ND), ND + agmoir negative control (NC) (150 µg/kg), ND + SAL (300 mg/kg), HFD, HFD + SAL, HFD + compound C (an AMPK inhibitor) (200 ng/kg), HFD + SAL + NXT629 (a PPAR-α antagonist) (30 mg/kg), and HFD + SAL + miR-21 agomir (150 µg/kg). SAL improved glucose and insulin tolerance and preserved livers in HFD-fed rats. In ND and HFD-fed rats, SAL reduced levels of serum and hepatic lipids and the hepatic expression of SREBP1, SREBP2, fatty acid (FA) synthase, and HMGCOAR. It also activated hepatic Nrf2 and increased hepatic/muscular activity of AMPK and levels of PPARα. All effects afforded by SAL were prevented by CC, NXT629, and miR-21 agmoir. In conclusion, activation of AMPK and upregulation of PPARα mediate the anti-steatotic effect of SAL.
Collapse
Affiliation(s)
- Zakiah N Almohawes
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Attalla El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Cairo University, Cairo, Egypt
| | - Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Fahmy G Elsaid
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | - Eman R Ebealy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmaceutical Sciences Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Reham A Ghanem
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman M Abd-Ella
- Zoology Department, College of Science, Fayoum University, Fayoum, Egypt
- Biology Department, College of Science and Art, Al-Baha University, Al-Mandaq, Saudi Arabia
| |
Collapse
|
7
|
Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity: "Know my methods, WAT(son)". Cell Death Differ 2023; 30:279-292. [PMID: 36175539 PMCID: PMC9520110 DOI: 10.1038/s41418-022-01062-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is a state of low-grade chronic inflammation that causes multiple metabolic diseases. During obesity, signalling via cytokines of the TNF family mediate cell death and inflammation within the adipose tissue, eventually resulting in lipid spill-over, glucotoxicity and insulin resistance. These events ultimately lead to ectopic lipid deposition, glucose intolerance and other metabolic complications with life-threatening consequences. Here we review the literature on how inflammatory responses affect metabolic processes such as energy homeostasis and insulin signalling. This review mainly focuses on the role of cell death in the adipose tissue as a key player in metabolic inflammation.
Collapse
Affiliation(s)
- Ximena Hildebrandt
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mohamed Ibrahim
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nieves Peltzer
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
8
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
9
|
Regulatory Networks, Management Approaches, and Emerging Treatments of Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2022; 2022:6799414. [PMID: 36397950 PMCID: PMC9666027 DOI: 10.1155/2022/6799414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.
Collapse
|
10
|
He J, Yang Y, Zhang F, Li Y, Li X, Pu X, He X, Zhang M, Yang X, Yu Q, Qi Y, Li X, Yu J. Effects of Poria cocos extract on metabolic dysfunction-associated fatty liver disease via the FXR/PPARα-SREBPs pathway. Front Pharmacol 2022; 13:1007274. [PMID: 36278226 PMCID: PMC9581278 DOI: 10.3389/fphar.2022.1007274] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the increase in the global prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD), no approved drug currently exists for the disease. Poria cocos (Schw.) Wolf (P. cocos) is a medicinal mushroom belonging to a family of polyporaceae widely used in TCM clinics to protect the liver and treat obesity. However, its efficacy, practical components, and underlying mechanism against MAFLD are yet to be determined. In this study, we evaluated the effects of Poria cocos (P. cocos) ethanol extract (EPC) on hepatic dyslipidemia, steatosis, and inflammation by both bioinformatics analysis and MAFLD rats induced by HFD feeding. We found EPC treatment dramatically reduced lipid accumulation, inflammatory cell infiltration, and liver injury. EPC reduced serum TC, TG levels, and hepatic TG, TBA, and NEFA contents. UHPLC Q-Trap/MS examination of BA profiles in serum and feces showed that EPC increased fecal conjugated BAs, decreased free BAs, and improved BA metabolism in HFD-fed rats. Western blot and RT-qPCR analysis showed that EPC could activate hepatic FXR and PPARα expression and reduce CYP7A1 and SREBP-1c expression. Systemic pharmacology combined with molecular docking suggested that poricoic acid B and polyporenic acid C, the major active compounds in EPC, could ameliorate lipid homeostasis by activating the nuclear receptor PPARα. We further confirmed their inhibition effects of lipid droplet deposition in steatized L-02 hepatocytes. In summary, EPC alleviated HFD-induced MAFLD by regulating lipid homeostasis and BA metabolism via the FXR/PPARα-SREBPs signaling pathway. P. cocos triterpenes, such as poricoic acid B and polyporenic acid C, were the characteristic substances of P. cocos for the treatment of MAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yan Qi
- *Correspondence: Yan Qi, ; Xuefang Li, ; Jie Yu,
| | - Xuefang Li
- *Correspondence: Yan Qi, ; Xuefang Li, ; Jie Yu,
| | - Jie Yu
- *Correspondence: Yan Qi, ; Xuefang Li, ; Jie Yu,
| |
Collapse
|
11
|
Veshkini A, Hammon HM, Lazzari B, Vogel L, Gnott M, Tröscher A, Vendramin V, Sadri H, Sauerwein H, Ceciliani F. Investigating circulating miRNA in transition dairy cows: What miRNAomics tells about metabolic adaptation. Front Genet 2022; 13:946211. [PMID: 36082001 PMCID: PMC9445238 DOI: 10.3389/fgene.2022.946211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the current study, we investigated dairy cows’ circulating microRNA (miRNA) expression signature during several key time points around calving, to get insights into different aspects of metabolic adaptation. In a trial with 32 dairy cows, plasma samples were collected on days −21, 1, 28, and 63 relative to calving. Individually extracted total RNA was subjected to RNA sequencing using NovaSeq 6,000 (Illumina, CA) on the respective platform of IGA Technology Services, Udine, Italy. MiRDeep2 was used to identify known and novel miRNA according to the miRbase collection. Differentially expressed miRNA (DEM) were assessed at a threshold of fold-change > 1.5 and false discovery rate < 0.05 using the edgeR package. The MiRWalk database was used to predict DEM targets and their associated KEGG pathways. Among a total of 1,692 identified miRNA, 445 known miRNA were included for statistical analysis, of which 84, 59, and 61 DEM were found between days −21 to 1, 1 to 28, and 28 to 63, respectively. These miRNA were annotated to KEGG pathways targeting the insulin, MAPK, Ras, Wnt, Hippo, sphingolipid, T cell receptor, and mTOR signaling pathways. MiRNA-mRNA network analysis identified miRNA as master regulators of the biological process including miR-138, miR-149-5p, miR-2466-3p, miR-214, miR-504, and miR-6523a. This study provided new insights into the miRNA signatures of transition to the lactation period. Calving emerged as a critical time point when miRNA were most affected, while the following period appeared to be recovering from massive parturition changes. The primarily affected pathways were key signaling pathways related to establishing metabolic and immune adaptations.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | | | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology of the CNR, Milan, Italy
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Gnott
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | | | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
- *Correspondence: Fabrizio Ceciliani,
| |
Collapse
|
12
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
13
|
Wang JH, Hwang SJ, Lim DW, Son CG. Cynanchum atratum Alleviates Non-Alcoholic Fatty Liver by Balancing Lipogenesis and Fatty Acid Oxidation in a High-Fat, High-Fructose Diet Mice Model. Cells 2021; 11:23. [PMID: 35011585 PMCID: PMC8750091 DOI: 10.3390/cells11010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
Cynanchum atratum, a medicinal herb, is traditionally used as an antidote, diuretic, and antipyretic in eastern Asia. The current study aimed to investigate the anti-fatty liver capacity of the ethanol extract of Cynanchum atratum (CAE) using a 10-week high-fat, high-fructose diet mouse model. A six-week treatment of CAE (from the fifth week) significantly attenuated the weights of the body, liver, and mesenteric fat without a change in diet intake. CAE also considerably restored the alterations of serum aminotransferases and free fatty acid, fasting blood glucose, serum and hepatic triglyceride, and total cholesterol, as well as platelet and leukocyte counts. Meanwhile, CAE ameliorated hepatic injury and lipid accumulation, as evidenced by histopathological and immunofluorescence observations. Additionally, CAE significantly lowered the elevation of hepatic TNF-α, the TNF-α/IL-10 ratio, fecal endotoxins, and the abundance of Gram-negative bacteria. Hepatic lipogenesis and β-oxidation-related proteins and gene expression, including PPAR-α, SREBP-1, SIRT1, FAS, CTP1, etc., were normalized markedly by CAE. In particular, the AMPK, a central regulator of energy metabolism, was phosphorylated by CAE at an even higher rate than metformin. Overall, CAE exerts anti-hepatic steatosis effects by reducing lipogenesis and enhancing fatty acid oxidation. Consequently, Cynanchum atratum is expected to be a promising candidate for treating chronic metabolic diseases.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea;
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea;
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea
| | - Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang 10326, Korea;
- Institute of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang 10326, Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea;
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea
| |
Collapse
|
14
|
Heida A, Gruben N, Catrysse L, Koehorst M, Koster M, Kloosterhuis NJ, Gerding A, Havinga R, Bloks VW, Bongiovanni L, Wolters JC, van Dijk T, van Loo G, de Bruin A, Kuipers F, Koonen DPY, van de Sluis B. The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis. Mol Metab 2021; 54:101349. [PMID: 34626855 PMCID: PMC8581577 DOI: 10.1016/j.molmet.2021.101349] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Obesity-related chronic inflammation plays an important role in the development of Metabolic Associated Fatty Liver Disease (MAFLD). Although the contribution of the pro-inflammatory NF-κB signaling pathway to the progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is well-established, its role as an initiator of hepatic steatosis and the underlying mechanism remains unclear. Here, we investigated the hypothesis that the hepatocytic NF-κB signaling pathway acts as a metabolic regulator, thereby promoting hepatic steatosis development. METHODS A murine model expressing a constitutively active form of IKKβ in hepatocytes (Hep-IKKβca) was used to activate hepatocyte NF-κB. In addition, IKKβca was also expressed in hepatocyte A20-deficient mice (IKKβca;A20LKO). A20 is an NF-κB-target gene that inhibits the activation of the NF-κB signaling pathway upstream of IKKβ. These mouse models were fed a sucrose-rich diet for 8 weeks. Hepatic lipid levels were measured and using [1-13C]-acetate de novo lipogenesis and cholesterol synthesis rate were determined. Gene expression analyses and immunoblotting were used to study the lipogenesis and cholesterol synthesis pathways. RESULTS Hepatocytic NF-κB activation by expressing IKKβca in hepatocytes resulted in hepatic steatosis without inflammation. Ablation of hepatocyte A20 in Hep-IKKβca mice (IKKβca;A20LKO mice) exacerbated hepatic steatosis, characterized by macrovesicular accumulation of triglycerides and cholesterol, and increased plasma cholesterol levels. Both De novo lipogenesis (DNL) and cholesterol synthesis were found elevated in IKKβca;A20LKO mice. Phosphorylation of AMP-activated kinase (AMPK) - a suppressor in lipogenesis and cholesterol synthesis - was decreased in IKKβca;A20LKO mice. This was paralleled by elevated protein levels of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) and reduced phosphorylation of HMG-CoA reductase (HMGCR) both key enzymes in the cholesterol synthesis pathway. Whereas inflammation was not observed in young IKKβca;A20LKO mice sustained hepatic NF-κB activation resulted in liver inflammation, together with elevated hepatic and plasma cholesterol levels in middle-aged mice. CONCLUSIONS The hepatocytic IKK:NF-κB axis is a metabolic regulator by controlling DNL and cholesterol synthesis, independent of its central role in inflammation. The IKK:NF-κB axis controls the phosphorylation levels of AMPK and HMGCR and the protein levels of HMGCS1. Chronic IKK-mediated NF-κB activation may contribute to the initiation of hepatic steatosis and cardiovascular disease risk in MAFLD patients.
Collapse
Affiliation(s)
- Andries Heida
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nanda Gruben
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Leen Catrysse
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Martijn Koehorst
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirjam Koster
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert Gerding
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rick Havinga
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent W Bloks
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Laura Bongiovanni
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Justina C Wolters
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Theo van Dijk
- Departments of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Geert van Loo
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alain de Bruin
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Folkert Kuipers
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Departments of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Debby P Y Koonen
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Bart van de Sluis
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
Kuhn HW, Lasseter AG, Adams PP, Avile CF, Stone BL, Akins DR, Jewett TJ, Jewett MW. BB0562 is a nutritional virulence determinant with lipase activity important for Borrelia burgdorferi infection and survival in fatty acid deficient environments. PLoS Pathog 2021; 17:e1009869. [PMID: 34415955 PMCID: PMC8409650 DOI: 10.1371/journal.ppat.1009869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/01/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi relies on uptake of essential nutrients from its host environments for survival and infection. Therefore, nutrient acquisition mechanisms constitute key virulence properties of the pathogen, yet these mechanisms remain largely unknown. In vivo expression technology applied to B. burgdorferi (BbIVET) during mammalian infection identified gene bb0562, which encodes a hypothetical protein comprised of a conserved domain of unknown function, DUF3996. DUF3996 is also found across adjacent encoded hypothetical proteins BB0563 and BB0564, suggesting the possibility that the three proteins could be functionally related. Deletion of bb0562, bb0563 and bb0564 individually and together demonstrated that bb0562 alone was important for optimal disseminated infection in immunocompetent and immunocompromised mice by needle inoculation and tick bite transmission. Moreover, bb0562 promoted spirochete survival during the blood dissemination phase of infection. Gene bb0562 was also found to be important for spirochete growth in low serum media and the growth defect of Δbb0562 B. burgdorferi was rescued with the addition of various long chain fatty acids, particularly oleic acid. In mammals, fatty acids are primarily stored in fat droplets in the form of triglycerides. Strikingly, addition of glyceryl trioleate, the triglyceride form of oleic acid, to the low serum media did not rescue the growth defect of the mutant, suggesting bb0562 may be important for the release of fatty acids from triglycerides. Therefore, we searched for and identified two canonical GXSXG lipase motifs within BB0562, despite the lack of homology to known bacterial lipases. Purified BB0562 demonstrated lipolytic activity dependent on the catalytic serine residues within the two motifs. In sum, we have established that bb0562 is a novel nutritional virulence determinant, encoding a lipase that contributes to fatty acid scavenge for spirochete survival in environments deficient in free fatty acids including the mammalian host. Borrelia burgdorferi, the causative agent of Lyme disease, has a small genome and lacks the ability to synthesize essential nutrients on its own as well as many of the virulence properties typical of bacterial pathogens that contribute to disease. The clinical manifestations of Lyme disease predominantly result from inflammation in response to the B. burgdorferi infection. Therefore, nutrient acquisition functions constitute key virulence factors for the pathogen. Fatty acids are critical components of B. burgdorferi membranes and lipoproteins, which the spirochete must scavenge from the host environment. Previously, through a genetic screen for B. burgdorferi genes that are expressed during mammalian infection we identified gene of unknown function, bb0562. Herein, we demonstrate that bb0562 encodes a lipase that plays a role in the release of free fatty acids from triglycerides. Furthermore, bb0562 contributes to B. burgdorferi survival and dissemination in the mammalian host. BB0562 is important for spirochete survival in environments low in free fatty acids thereby adding to B. burgdorferi’s arsenal of nutritional virulence determinants necessary for the pathogen to be maintained in the tick-mouse enzootic cycle and to cause disseminated disease.
Collapse
Affiliation(s)
- Hunter W. Kuhn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Amanda G. Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Philip P. Adams
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institute of Health, Bethesda, Maryland, United States of America
| | - Carlos Flores Avile
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Brandee L. Stone
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kowalczuk A, Bourebaba N, Kornicka-Garbowska K, Turlej E, Marycz K, Bourebaba L. Hyoscyamus albus nortropane alkaloids reduce hyperglycemia and hyperinsulinemia induced in HepG2 cells through the regulation of SIRT1/NF-kB/JNK pathway. Cell Commun Signal 2021; 19:61. [PMID: 34034759 PMCID: PMC8152357 DOI: 10.1186/s12964-021-00735-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/24/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chronic superphysiological glucose and insulin concentrations are known to trigger several tissue and organ failures, including insulin resistance, oxidative stress and chronic low-grade inflammation. Hence, the screening for molecules that may counteract such conditions is essential in current existing therapeutic strategies, thereby the use of medicinal plant derivatives represents a promising axis in this regard. METHODS In this study, the effect of a selected traditional medicinal plant, Hyoscyamus albus from which, calystegines have been isolated, was investigated in an experimental model of hyperinsulinemia and hyperglycemia induced on HepG2 cells. The mRNA and protein expression levels of different insulin signaling, gluconeogenic and inflammatory pathway- related molecules were examined. Additionally, cell viability and apoptosis, oxidative stress extent and mitochondrial dysfunctions were assayed using flow cytometric and qRT-PCR techniques. RESULTS Treatment of IR HepG2 cells with calystegines strongly protected the injured cells from apoptosis, oxidative stress and mitochondrial integrity loss. Interestingly, nortropane alkaloids efficiently regulated the impaired glucose metabolism in IR HepG2 cells, through the stimulation of glucose uptake and the modulation of SIRT1/Foxo1/G6PC/mTOR pathway, which is governing the hepatic gluconeogenesis. Furthermore, the alkaloidal extract restored the defective insulin signaling pathway, mainly by promoting the expression of Insr at the mRNA and protein levels. What is more, treated cells exhibited significant mitigated inflammatory response, as evidenced by the modulation and the regulation of the NF- κB/JNK/TLR4 axis and the downstream proinflammatory cytokines recruitment. CONCLUSION Overall, the present investigation demonstrates that calystegines from Hyoscyamus albus provide cytoprotection to the HepG2 cells against insulin/glucose induced insulin resistance and apoptosis due to the regulation of SIRT1/Foxo1/G6PC/mTOR and NF-κB/JNK/TLR4 signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Anna Kowalczuk
- grid.419694.70000 0004 0622 0266National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Nabila Bourebaba
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Wisznia Mała, Poland ,grid.411200.60000 0001 0694 6014Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | | | - Eliza Turlej
- grid.411200.60000 0001 0694 6014Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Wisznia Mała, Poland ,Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszyński University (UKSW), Dewajtis 5, 01-815 Warsaw, Poland
| | - Lynda Bourebaba
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Wisznia Mała, Poland ,grid.411200.60000 0001 0694 6014Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| |
Collapse
|
17
|
Zhang Y, Gong Y. Allicin regulates Treg/Th17 balance in mice with collagen-induced arthritis by increasing the expression of MEKK2 protein. Food Sci Nutr 2021; 9:2364-2371. [PMID: 34026055 PMCID: PMC8116865 DOI: 10.1002/fsn3.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 11/27/2022] Open
Abstract
To study the role of Allicin in regulating Treg/Th17 ratio in splenic lymphocyte by increasing the expression of MEKK2 protein in MAPK signaling pathway, and to explore the mechanism of immune response in mice with collagen-induced arthritis (CIA). Mouse CIA model was induced by chicken collagen type II, and experimental mice were randomly divided into NC group, Model group, and Allicin group. HE staining was used to compare the degree of joint pathological damage in mice of each group, and Masson staining to observe the proliferation of collagen tissue in each group. Flow cytometry detected Treg/Th17 ratio in splenic lymphocytes. Furthermore, RT-PCR and WB were used to detect the mRNA and protein expression of related transcription factors and inflammatory factors Foxp3, ROR-γt, and IL-17A, as well as MEK2 protein expression in splenic lymphocytes. The results showed that Allicin treatment could reduce the severity of arthritis and the proliferation of collagen fibers on the surface of cartilage and bone joints in CIA mice. Compared with NC group, Treg decreased and Th17 increased in spleen lymphocyte of Model group (p < .01); after Allicin treatment, Treg increased while Th17 decreased significantly (p < .01). Meanwhile, MEKK2 protein expression in spleen lymphocyte of Model group decreased compared to that in NC group (p < .01), and MEK2 protein expression increased significantly after Allicin treatment (p < .01). To sum up, the present study suggests that MEKK2 protein plays an important role in the pathogenesis of CIA model. In terms of mechanism, Allicin may play a therapeutic role in rheumatoid arthritis (RA) by increasing the expression of MEKK2 protein and affecting Treg/Th17 ratio.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Rheumatism and ImmunityWeifang People's HospitalWeifang CityChina
| | - Yufang Gong
- Department of Rheumatism and ImmunityWeifang People's HospitalWeifang CityChina
| |
Collapse
|
18
|
Diabetes, inflammation, and the adiponectin paradox: Therapeutic targets in SARS-CoV-2. Drug Discov Today 2021; 26:2036-2044. [PMID: 33775925 PMCID: PMC7997138 DOI: 10.1016/j.drudis.2021.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Aging and pre-existing conditions in older patients increase severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) severity and its complications, although the causes remain unclear. Apart from acute pulmonary syndrome, Coronavirus 2019 (COVID-19) can increasingly induce chronic conditions. Importantly, SARS-CoV-2 triggers de novo type 2 diabetes mellitus (T2DM) linked to age-associated cardiovascular disease (CVD), cancers, and neurodegeneration. Mechanistically, SARS-CoV-2 induces inflammation, possibly through damage-associated molecular pattern (DAMP) signaling and ‘cytokine storm,’ causing insulin resistance and the adiponectin (APN) paradox, a phenomenon linking metabolic dysfunction to chronic disease. Accordingly, preventing the APN paradox by suppressing APN-related inflammatory signaling might prove beneficial. A better understanding could uncover novel therapies for SARS-CoV-2 and its chronic disorders.
Collapse
|
19
|
Daniel PV, Dogra S, Rawat P, Choubey A, Khan AS, Rajak S, Kamthan M, Mondal P. NF-κB p65 regulates hepatic lipogenesis by promoting nuclear entry of ChREBP in response to a high carbohydrate diet. J Biol Chem 2021; 296:100714. [PMID: 33930463 PMCID: PMC8144664 DOI: 10.1016/j.jbc.2021.100714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Overconsumption of sucrose and other sugars has been associated with nonalcoholic fatty liver disease (NAFLD). Reports suggest hepatic de novo lipogenesis (DNL) as an important contributor to and regulator of carbohydrate-induced hepatic lipid accumulation in NAFLD. The mechanisms responsible for the increase in hepatic DNL due to overconsumption of carbohydrate diet are less than clear; however, literatures suggest high carbohydrate diet to activate the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP), which further transcribes genes involved in DNL. Here, we provide an evidence of an unknown link between nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and increased DNL. Our data indicates high carbohydrate diet to enforce nuclear shuttling of hepatic NF-κB p65 and repress transcript levels of sorcin, a cytosolic interacting partner of ChREBP. Reduced sorcin levels, further prompted ChREBP nuclear translocation, leading to enhanced DNL and intrahepatic lipid accumulation both in vivo and in vitro. We further report that pharmacological inhibition of NF-κB abrogated high carbohydrate diet-mediated sorcin repression and thereby prevented ChREBP nuclear translocation and this, in turn, attenuated hepatic lipid accumulation both in in vitro and in vivo. Additionally, sorcin knockdown blunted the lipid-lowering ability of the NF-κB inhibitor in vitro. Together, these data suggest a heretofore unknown role for NF-κB in regulating ChREBP nuclear localization and activation, in response to high carbohydrate diet, for further explorations in lines of NAFLD therapeutics.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Priya Rawat
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Abhinav Choubey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India.
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
| |
Collapse
|
20
|
Pflug KM, Sitcheran R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int J Mol Sci 2020; 21:E8470. [PMID: 33187137 PMCID: PMC7696043 DOI: 10.3390/ijms21228470] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022] Open
Abstract
NF-κB-inducing kinase (NIK), the essential upstream kinase, which regulates activation of the noncanonical NF-κB pathway, has important roles in regulating immunity and inflammation. In addition, NIK is vital for maintaining cellular health through its control of fundamental cellular processes, including differentiation, growth, and cell survival. As such aberrant expression or regulation of NIK is associated with several disease states. For example, loss of NIK leads to severe immune defects, while the overexpression of NIK is observed in inflammatory diseases, metabolic disorders, and the development and progression of cancer. This review discusses recent studies investigating the therapeutic potential of NIK inhibitors in various diseases.
Collapse
Affiliation(s)
- Kathryn M. Pflug
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| | - Raquel Sitcheran
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| |
Collapse
|
21
|
TLR4/AP-1-Targeted Anti-Inflammatory Intervention Attenuates Insulin Sensitivity and Liver Steatosis. Mediators Inflamm 2020; 2020:2960517. [PMID: 33013197 PMCID: PMC7519185 DOI: 10.1155/2020/2960517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/15/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023] Open
Abstract
Insulin resistance has been shown to be the common pathogenesis of many metabolic diseases. Metainflammation is one of the important characteristics of insulin resistance. Macrophage polarization mediates the production and development of metainflammation. Toll-like receptor 4 (TLR4) mediates macrophage activity and is probably the intersection of immunity and metabolism, but the detailed mechanism is probably not fully understood. Activated protein 1 (AP1) signaling pathway is very important in macrophage activation-mediated inflammation. However, it is unclear whether AP1 signaling pathway mediates metabolic inflammation in the liver. We aimed to investigate the effects of macrophage TLR4-AP1 signaling pathway on hepatocyte metabolic inflammation, insulin sensitivity, and lipid deposition, as well as to explore the potential of TLR4-AP1 as new intervention targets of insulin resistance and liver steatosis. TLR4 and AP1 were silenced in the RAW264.7 cells by lentiviral siRNA transfection. In vivo transduction of lentivirus was administered in mice fed with high-fat diet. Insulin sensitivity and inflammation were evaluated in the treated cells or animals. Our results indicated that TLR4/AP-1 siRNA transfection alleviated high-fat diet-induced systemic and hepatic inflammation, obesity, and insulin resistance in mice. Additionally, TLR4/AP-1 siRNA transfection mitigated palmitic acid- (PA-) induced inflammation in RAW264.7 cells and metabolic abnormalities in cocultured AML hepatocytes. Herein, we propose that TLR4-AP1 signaling pathway activation plays a crucial role in high fat- or PA-induced metabolic inflammation and insulin resistance in hepatocytes. Intervention of the TLR4 expression regulates macrophage polarization and metabolic inflammation and further alleviates insulin resistance and lipid deposition in hepatocytes.
Collapse
|
22
|
Jiang X, Zheng J, Zhang S, Wang B, Wu C, Guo X. Advances in the Involvement of Gut Microbiota in Pathophysiology of NAFLD. Front Med (Lausanne) 2020; 7:361. [PMID: 32850884 PMCID: PMC7403443 DOI: 10.3389/fmed.2020.00361] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and progresses to non-steatohepatitis (NASH) when the liver displays overt inflammatory damage. Increasing evidence has implicated critical roles for dysbiosis and microbiota-host interactions in NAFLD pathophysiology. In particular, microbiota alter intestine absorption of nutrients and intestine permeability, whose dysregulation enhances the delivery of nutrients, endotoxin, and microbiota metabolites to the liver and exacerbates hepatic fat deposition and inflammation. While how altered composition of gut microbiota attributes to NAFLD remains to be elucidated, microbiota metabolites are shown to be involved in the regulation of hepatocyte fat metabolism and liver inflammatory responses. In addition, intestinal microbes and circadian coordinately adjust metabolic regulation in different stages of life. During aging, altered composition of gut microbiota, along with circadian clock dysregulation, appears to contribute to increased incidence and/or severity of NAFLD.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Rivers SL, Klip A, Giacca A. NOD1: An Interface Between Innate Immunity and Insulin Resistance. Endocrinology 2019; 160:1021-1030. [PMID: 30807635 PMCID: PMC6477778 DOI: 10.1210/en.2018-01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
Abstract
Insulin resistance is driven, in part, by activation of the innate immune system. We have discussed the evidence linking nucleotide-binding oligomerization domain (NOD)1, an intracellular pattern recognition receptor, to the onset and progression of obesity-induced insulin resistance. On a molecular level, crosstalk between downstream NOD1 effectors and the insulin receptor pathway inhibits insulin signaling, potentially through reduced insulin receptor substrate action. In vivo studies have demonstrated that NOD1 activation induces peripheral, hepatic, and whole-body insulin resistance. Also, NOD1-deficient models are protected from high-fat diet (HFD)-induced insulin resistance. Moreover, hematopoietic NOD1 deficiency prevented HFD-induced changes in proinflammatory macrophage polarization status, thus protecting against the development of metabolic inflammation and insulin resistance. Serum from HFD-fed mice activated NOD1 signaling ex vivo; however, the molecular identity of the activating factors remains unclear. Many have proposed that an HFD changes the gut permeability, resulting in increased translocation of bacterial fragments and increased circulating NOD1 ligands. In contrast, others have suggested that NOD1 ligands are endogenous and potentially lipid-derived metabolites produced during states of nutrient overload. Nevertheless, that NOD1 contributes to the development of insulin resistance, and that NOD1-based therapy might provide benefit, is an exciting advancement in metabolic research.
Collapse
Affiliation(s)
- Sydney L Rivers
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Amira Klip
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Adria Giacca, MD, Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King’s College Circle, No. 3336, Toronto, Ontario M5S 1A8, Canada. E-mail:
| |
Collapse
|
24
|
Jia D, Li ZW, Zhou X, Gao Y, Feng Y, Ma M, Wu Z, Li W. A novel berberine-metformin hybrid compound exerts therapeutic effects on obese type 2 diabetic rats. Clin Exp Pharmacol Physiol 2019; 46:533-544. [PMID: 30883863 DOI: 10.1111/1440-1681.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the biological activities of a novel berberine-metformin hybrid compound (BMH473) as an anti-diabetic agent. BMH473 exhibited significant anti-hyperglycaemic and anti-hyperlipidaemic effects on T2DM rats. In white adipose tissue, BMH473 reduced the perirenal and epididymal adipose tissue mass and modulated the lesions in perirenal adipose tissue, by inhibiting the protein expressions of PPAR-Ɣ, C/EBP-α and SREBP-1c as well as the mRNA expressions of lipogenic genes. Moreover, BMH473 downregulated the levels of pro-inflammatory cytokines in perirenal adipose tissue through the suppression of p-NF-κB. In liver, BMH473 reduced liver ectopic fat accumulation, by regulating the protein expression levels of SREBP-1c and PPAR-α as well as the mRNA expression levels of lipogenic genes. In addition, BMH473 inhibited hepatic gluconeogenesis by promoting the phosphorylation levels of AMPK α and ACC, and down-regulating the mRNA expression levels of FBPase, G6Pase and PEPCK. Furthermore, BMH473 exhibited significant inhibitory effects on lipogenesis and lipid accumulation in 3T3-L1 adipocytes by modulating the protein expression levels of PPAR-Ɣ, C/EBP-α and SREBP-1 c as well as the mRNA expression levels of lipogenic genes. In conclusion, our results suggest that the newly synthesized BMH473 is beneficial for maintaining glucose and lipid homeostasis in type 2 diabetic rats, and exhibits better anti-hyperlipidaemic effects compared to metformin and berberine.
Collapse
Affiliation(s)
- Dan Jia
- Integrated Chinese and Western Medicine Post-doctoral Research Station, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Zi Wen Li
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Xinxin Zhou
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Gao
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Feng
- Central Laboratory of Guangdong Pharmaceutical University, GuangZhou, China
| | - Min Ma
- Integrated Chinese and Western Medicine Post-doctoral Research Station, Jinan University, Guangzhou, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Weimin Li
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Kaur P, Choudhury D. Insulin Promotes Wound Healing by Inactivating NFkβP50/P65 and Activating Protein and Lipid Biosynthesis and alternating Pro/Anti-inflammatory Cytokines Dynamics. Biomol Concepts 2019; 10:11-24. [DOI: 10.1515/bmc-2019-0002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
AbstractFour hundred and twenty-two million people have diabetes due to excess free body glucose in their body fluids. Diabetes leads to various problems including retinopathy, neuropathy, arthritis, damage blood vessels etc; it also causes a delay in wound healing. Insufficiency of insulin is the main reason for diabetes-I and systemic insulin treatment is a remedy. The perspective of the potential use of insulin/insulin based drugs to treat chronic wounds in diabetic conditions is focused on in this review. At the site of the wound, TNF-ɑ, IFN-ϒ, IL-1β and IL-6 pro-inflammatory cytokines cause the generation of free radicals, leading to inflammation which becomes persistent in diabetes. Insulin induces expression of IL-4/IL-13, IL-10 anti-inflammatory cytokines etc which further down-regulates NFkβP50/P65 assembly. Insulin shifts the equilibrium towards NFkβP50/P50 which leads to down-regulation of inflammatory cytokines such as IL-6, IL-10 etc through STAT6, STAT3 and c-Maf activation causing nullification of an inflammatory condition. Insulin also promotes protein and lipid biosynthesis which indeed promotes wound recovery. Here, in this article, the contributions of insulin in controlling wound tissue microenvironments and remodulation of tissue have been summarised, which may be helpful to develop novel insulin-based formulation(s) for effective treatment of wounds in diabetic conditions.
Collapse
Affiliation(s)
- Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| |
Collapse
|
26
|
Zheng W, Zhou J, Song S, Kong W, Xia W, Chen L, Zeng T. Dipeptidyl-Peptidase 4 Inhibitor Sitagliptin Ameliorates Hepatic Insulin Resistance by Modulating Inflammation and Autophagy in ob/ob Mice. Int J Endocrinol 2018; 2018:8309723. [PMID: 30123267 PMCID: PMC6079465 DOI: 10.1155/2018/8309723] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity and type 2 diabetes are the most common metabolic diseases globally. They are associated with inflammation, oxidative stress, autophagy, and insulin resistance. Sitagliptin, a dipeptidyl-peptidase 4 inhibitor, has been reported to show multiple biological activities beyond the antidiabetic property. This study was aimed at investigating the effect of sitagliptin on hepatic steatosis, insulin resistance, inflammation, and autophagy and exploring the underlying molecular mechanism. In the current study, ob/ob mice, a mouse model of genetic obesity and diabetes, were administered via gavage with sitagliptin 50 mg/kg daily for 4 weeks. Changes in glycolipid metabolism, inflammatory responses, and autophagy in the liver were evaluated. Body weight gain, lipid metabolic disorder, and hepatic steatosis as well as systemic and hepatic insulin sensitivity in ob/ob mice were significantly attenuated after sitagliptin treatment. Furthermore, sitagliptin decreased inflammatory responses by regulating macrophage M1/M2 polarization and inhibiting the activities of NF-κB and JNK. Moreover, sitagliptin increased the levels of phosphorylation of AMPK and decreased those of mTOR. This study indicates that sitagliptin significantly ameliorates the development of hepatic steatosis and insulin resistance in ob/ob mice by inhibiting inflammatory responses and activating autophagy via AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Zhou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Shasha Song
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenfang Xia
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
27
|
MiR-30a targets IL-1α and regulates islet functions as an inflammation buffer and response factor. Sci Rep 2017; 7:5270. [PMID: 28706254 PMCID: PMC5509704 DOI: 10.1038/s41598-017-05560-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetes is an inflammatory disease. Inflammation plays an important role in islet functions. However, the exact mechanisms by which inflammation affects islet functions remain unclear. In this study, we investigated the regulatory effects of miR-30a on inflammation and islet functions. The results indicate that miR-30a serves as an inflammation-resolving buffer factor by targeting interleukin 1a (IL-1α) in immune cells and in islet cells, which might play an important role in inflammation homeostasis. miR-30a ameliorates islet functions in an inflammatory micro-environment by targeting the IL-1α/nuclear factor kappa B (NFKB) p65 subunit (p65)/p62 (SQSTM1)/insulin axis, which can be developed into a novel antidiabetic approach. miR-30a serves as a promising inflammation-response biomarker in inflammatory diseases and is possibly activated by the toll-like receptor 4 (TLR4)/IL-1α/NFKB pathways. However, the exact molecular mechanisms by which miR-30a regulates inflammation and islet functions as well as the potential applications in transitional medicine require further elucidation.
Collapse
|
28
|
Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, Ren B. The Role of HMGB1 in the Pathogenesis of Type 2 Diabetes. J Diabetes Res 2016; 2016:2543268. [PMID: 28101517 PMCID: PMC5215175 DOI: 10.1155/2016/2543268] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Significance. With an alarming increase in recent years, diabetes mellitus has become a global challenge. Despite advances in treatment of diabetes mellitus, currently, medications available are unable to control the progression of diabetes and its complications. Growing evidence suggests that inflammation is an important pathogenic mediator in the development of diabetes mellitus. The perspectives including suggestions for new therapies involving the shift from metabolic stress to inflammation should be taken into account. Critical Issues. High-mobility group box 1 (HMGB1), a nonhistone nuclear protein regulating gene expression, was rediscovered as an endogenous danger signal molecule to trigger inflammatory responses when released into extracellular milieu in the late 1990s. Given the similarities of inflammatory response in the development of T2D, we will discuss the potential implication of HMGB1 in the pathogenesis of T2D. Importantly, we will summarize and renovate the role of HMGB1 and HMGB1-mediated inflammatory pathways in adipose tissue inflammation, insulin resistance, and islet dysfunction. Future Directions. HMGB1 and its downstream receptors RAGE and TLRs may serve as potential antidiabetic targets. Current and forthcoming projects in this territory will pave the way for prospective approaches targeting the center of HMGB1-mediated inflammation to improve T2D and its complications.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Jixin Zhong
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiangzhi Zhang
- Department of Medicine, Hospital of Yangtze University, Jingzhou 434000, China
| | - Ziwei Liu
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Yuan Yang
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Quan Gong
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Boxu Ren
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
29
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|