1
|
Zhang J, Xie Z, Zhu X, Xu C, Lin J, Zhao M, Cheng Y. New insights into therapeutic strategies for targeting hepatic macrophages to alleviate liver fibrosis. Int Immunopharmacol 2025; 158:114864. [PMID: 40378438 DOI: 10.1016/j.intimp.2025.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/18/2025]
Abstract
Liver fibrosis is a wound-healing response induced by persistent liver damage, resulting from complex multicellular interactions and multifactorial networks. Without intervention, it can progress to cirrhosis and even liver cancer. Current understanding suggests that liver fibrosis is reversible, making it crucial to explore effective therapeutic strategies for its alleviation. Chronic inflammation serves as the primary driver of liver fibrosis, with hepatic macrophages playing a dual role depending on their polarization state. This review summarizes various prevention and therapeutic strategies targeting hepatic macrophages in the context of liver fibrosis. These strategies include inhibition of macrophage recruitment, modulation of macrophage activation and polarization, regulation of macrophage metabolism, and induction of phagocytosis and autophagy in hepatic macrophages. Additionally, we discuss the communication between hepatic macrophages, hepatocytes, and hepatic stellate cells (HSCs), as well as the current clinical application of anti-fibrotic drugs targeting macrophages. The goal is to identify effective therapeutic targets at each stage of macrophage participation in liver fibrosis development, with the aim of using hepatic macrophages as a target for liver fibrosis treatment.
Collapse
Affiliation(s)
- Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhaojing Xie
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Xueyu Zhu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Chenxi Xu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jiguo Lin
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Baek EB, Eun HS, Song JY, Hong EJ, Park SH, Kumbukgahadeniya P, Park SM, Kim SH, Kim SO, Kim HN, Cho YE, Won YS, Kwon HJ. Vitamin D supplementation ameliorates ductular reaction, liver inflammation and fibrosis in mice by upregulating TXNIP in ductular cells. Nat Commun 2025; 16:4420. [PMID: 40360509 PMCID: PMC12075793 DOI: 10.1038/s41467-025-59724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Ductular reaction is associated with liver disease progression, but there are no drugs targeting ductular reaction. Vitamin D deficiency is common in chronic liver diseases and related to disease progression, but the underlying mechanisms by which vitamin D regulates liver diseases progression remain unclear. Here, we show that vitamin D plasma levels are negatively correlated with the degree of ductular reaction in patients with chronic liver diseases. 1,25(OH)2D3, the active form of vitamin D, reduces 3,5-diethoxycarbonyl-1,4-dihydrocollidin (DDC)-induced ductular reaction, liver inflammation, and fibrosis in female mice and upregulates the vitamin D target gene, TXNIP (encoding thioredoxin-interacting protein), in ductular cells. Cholangiocyte-specific Txnip-knockout female mice are more susceptible to DDC-induced ductular reaction, inflammation, and fibrosis. Deletion of Txnip in cholangiocytes promotes proliferation and suppressed death. Furthermore, Txnip deficiency increases TNF-α and TGF-β secretion by cholangiocytes to stimulate Kupffer cells and hepatic stellate cells, consequently leading to inflammation and collagen deposition. Biliary Txnip deficiency abolishes the protective effects of vitamin D, and TXNIP overexpression attenuates DDC-induced ductular reaction and inflammation and fibrosis. Collectively, our findings identify new mechanism how vitamin D ameliorates liver diseases and suggest that the vitamin D/TXNIP axis is a therapeutic target for addressing ductular reaction and liver diseases.
Collapse
Affiliation(s)
- Eun Bok Baek
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jun-Yeop Song
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Se-Hee Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Republic of Korea
| | | | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Soon Ok Kim
- Department of Medical Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Ha Neul Kim
- Department of Medical Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Republic of Korea.
| | - Hyo-Jung Kwon
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Sorrentino G. Microenvironmental control of the ductular reaction: balancing repair and disease progression. Cell Death Dis 2025; 16:246. [PMID: 40180915 PMCID: PMC11968979 DOI: 10.1038/s41419-025-07590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
The ductular reaction (DR) is a dynamic adaptive cellular response within the liver, triggered by various hepatic insults and characterized by an expansion of dysmorphic biliary epithelial cells and liver progenitors. This complex response presents a dual role, playing a pivotal function in liver regeneration but, paradoxically, contributing to the progression of liver diseases, depending upon specific contextual factors and signaling pathways involved. This comprehensive review aims to offer a holistic perspective on the DR, focusing into its intricate cellular and molecular mechanisms, highlighting its pathological significance, and exploring its potential therapeutic implications. An up-to-date understanding of the DR in the context of different liver injuries is provided, analyzing its contributions to liver regeneration, inflammation, fibrosis, and ultimately carcinogenesis. Moreover, the review highlights the role of multiple microenvironmental factors, including the influence of extracellular matrix, tissue mechanics and the interplay with the intricate hepatic cell ecosystem in shaping the DR's regulation. Finally, in vitro and in vivo experimental models of the DR will be discussed, providing insights into how researchers can study and manipulate this critical cellular response. By comprehensively addressing the multifaceted nature of the DR, this review contributes to a more profound understanding of its pathophysiological role in liver diseases, thus offering potential therapeutic avenues for hepatic disorders and improving patient outcomes.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
5
|
Cerdeira CD, Brigagão MRPL. Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunol Invest 2024; 53:1030-1091. [PMID: 38913937 DOI: 10.1080/08820139.2024.2367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION An event of increasing interest during host-pathogen interactions is the polarization of patrolling/naive monocytes (MOs) into macrophage subsets (MФs). Therapeutic strategies aimed at modulating this event are under investigation. METHODS This review focuses on the mechanisms of induction/development and profile of MФs polarized toward classically proinflammatory (M1) or alternatively anti-inflammatory (M2) phenotypes in response to bacteria, fungi, parasites, and viruses. RESULTS AND DISCUSSION It highlights nuclear, cytoplasmic, and cell surface receptors (pattern recognition receptors/PPRs), microenvironmental mediators, and immune signaling. MФs polarize into phenotypes: M1 MФs, activated by IFN-γ, pathogen-associated molecular patterns (PAMPs, e.g. lipopolysaccharide) and membrane-bound PPRs ligands (TLRs/CLRs ligands); or M2 MФs, induced by interleukins (ILs-4, -10 and -13), antigen-antibody complexes, and helminth PAMPs. Polarization toward M1 and M2 profiles evolve in a pathogen-specific manner, with or without canonicity, and can vary widely. Ultimately, this can result in varying degrees of host protection or more severe disease outcome. On the one hand, the host is driving effective MФs polarization (M1 or M2); but on the other hand, microorganisms may skew the polarization through virulence factors to increase pathogenicity. Cellular/genomic reprogramming also ensures plasticity of M1/M2 phenotypes. Because modulation of polarization can occur at multiple points, new insights and emerging perspectives may have clinical implications during the inflammation-to-resolution transition; translated into practical applications as for therapeutic/vaccine design target to boost microbicidal response (M1, e.g. triggering oxidative burst) with specifics PAMPs/IFN-γ or promote tissue repair (M2, increasing arginase activity) via immunotherapy.
Collapse
|
6
|
Yang M, Liu S, Sui Y, Zhang C. Macrophage metabolism impacts metabolic dysfunction-associated steatotic liver disease and its progression. IMMUNOMETABOLISM 2024; 6:e00047. [DOI: 10.1097/in9.0000000000000047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with a progressive form of metabolic dysfunction-associated steatohepatitis (MASH), is the leading chronic liver disease worldwide, which can progress to advanced liver disease and hepatocellular carcinoma. MASLD is tightly associated with metabolic disorders such as obesity, insulin resistance, and type 2 diabetes. Macrophages, as an innate immune component and a linker of adaptive immune response, play important roles in the pathogenesis and treatment of MASLD or MASH. Metabolic reprogramming can regulate macrophage activation and polarization to inhibit MASLD or MASH progression to advanced liver disease. Here, we summarize the underlying mechanisms of how different metabolites such as amino acids, glucose, and fatty acids can regulate macrophage function and phenotype, the factors that regulate macrophage metabolism, and potential treatment options to regulate macrophage function in MASLD or MASH, as well as other associated metabolic disorders.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Connecticut Health, School of Medicine, Farmington, CT, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen, China
| | - Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Ota N, Endo S, Honma K, Iwayama K, Yamashita H, Tatsunami R, Sato K. Chloroquine regulates the lipopolysaccharide-induced inflammatory response in RAW264.7 cells. Allergol Immunopathol (Madr) 2024; 52:97-103. [PMID: 38970272 DOI: 10.15586/aei.v52i4.1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/29/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION AND OBJECTIVES Macrophage-induced inflammation plays a key role in defense against injury and harmful pathogens. Autophagy and the inflammatory response are associated; however, the relationship between the autophagy pathway and lipopolysaccharide (LPS)- induced inflammatory responses remains unknown. We aimed to determine the effect of autophagy on the LPS-induced myeloid differentiation factor 88 (MyD88)/nuclear transcription factor kB (NF-kB) pathway-mediated inflammatory response in RAW264.7 cells. MATERIALS AND METHODS To determine the effect of autophagy on the LPS-induced inflammatory response, using various in vitro assays, we determined the effect of autophagy inhibitors and inducers on the inflammatory response in RAW264.7 cells. RESULTS Chloroquine (CQ), an autophagy inhibitor, suppressed pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNFα) in LPS-stimulated RAW264.7 cells. CQ also affected inflammatory mediators such as myeloid differentiation factor 88 and NF-kB in LPS-stimulated RAW264.7 cells. CONCLUSION This study demonstrated that CQ regulates the LPS-induced inflammatory response in RAW264.7 cells. We propose that targeting the regulation of pro-inflammatory cytokine levels and inflammatory mediators using CQ is a promising therapeutic approach for preventing inflammatory injury. CQ serves as a potential therapeutic target for treating various inflammatory diseases.
Collapse
Affiliation(s)
- Natsuki Ota
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Shoya Endo
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Kouki Honma
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Kuninori Iwayama
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Hiroshi Yamashita
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Ryosuke Tatsunami
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan
| | - Keisuke Sato
- Department of Pharmacy, Hokkaido University of Science, 0068585 Sapporo, Japan;
| |
Collapse
|
8
|
Videla LA, Valenzuela R, Del Campo A, Zúñiga-Hernández J. Omega-3 Lipid Mediators: Modulation of the M1/M2 Macrophage Phenotype and Its Protective Role in Chronic Liver Diseases. Int J Mol Sci 2023; 24:15528. [PMID: 37958514 PMCID: PMC10647594 DOI: 10.3390/ijms242115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Luis Alberto Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Jessica Zúñiga-Hernández
- Biomedical Sciences Department, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
9
|
Shree Harini K, Ezhilarasan D. Wnt/beta-catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary Pancreat Dis Int 2023; 22:333-345. [PMID: 36448560 DOI: 10.1016/j.hbpd.2022.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern associated with significant morbidity and mortality. NAFLD is a spectrum of diseases originating from simple steatosis, progressing through nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis that may lead to hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is mediated by the triglyceride accumulation followed by proinflammatory cytokines expression leading to inflammation, oxidative stress, and mitochondrial dysfunction denoted as "two-hit hypothesis", advancing with a "third hit" of insufficient hepatocyte proliferation, leading to the increase in hepatic progenitor cells contributing to fibrosis and HCC. Wnt/β-catenin signaling is responsible for normal liver development, regeneration, hepatic metabolic zonation, ammonia and drug detoxification, hepatobiliary development, etc., maintaining the overall liver homeostasis. The key regulators of canonical Wnt signaling such as LRP6, Wnt1, Wnt3a, β-catenin, GSK-3β, and APC are abnormally regulated in NAFLD. Many experimental studies have shown the aberrated Wnt/β-catenin signaling during the NAFLD progression and NASH to hepatic fibrosis and HCC. Therefore, in this review, we have emphasized the role of Wnt/β-catenin signaling and its modulators that can potentially aid in the inhibition of NAFLD.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
10
|
Kundu D, Kennedy L, Zhou T, Ekser B, Meadows V, Sybenga A, Kyritsi K, Chen L, Ceci L, Wu N, Wu C, Glaser S, Carpino G, Onori P, Gaudio E, Alpini G, Francis H. p16 INK4A drives nonalcoholic fatty liver disease phenotypes in high fat diet fed mice through biliary E2F1/FOXO1/IGF-1 signaling. Hepatology 2023; 78:243-257. [PMID: 36799449 PMCID: PMC10410572 DOI: 10.1097/hep.0000000000000307] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/03/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND AND AIMS NAFLD is characterized by steatosis, hepatic inflammation, and fibrosis, which can develop into NASH. Patients with NAFLD/NASH have increased ductular reaction (DR) and biliary senescence. High fat/high cholesterol diet feeding increases biliary senescence, DR, and biliary insulin-like growth factor-1 (IGF-1) expression in mice. p16/IGF-1 converges with fork-head box transcription factor O1 (FOXO1) through E2F1. We evaluated p16 inhibition on NAFLD phenotypes and biliary E2F1/FOXO1/IGF-1 signaling. APPROACH AND RESULTS 4-week wild-type (C57BL/6J) male mice were fed a control diet (CD) or high fat/high cholesterol diet and received either p16 or control Vivo Morpholino (VM) by tail vein injection 2× during the 16th week of feeding. We confirmed p16 knockdown and examined: (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling. Human normal, NAFLD, and NASH liver samples and isolated cholangiocytes treated with control or p16 VM were evaluated for p16/E2F1/FOXO1/IGF-1 signaling. p16 VM treatment reduced cholangiocyte and hepatocyte p16. In wild-type high fat/high cholesterol diet mice with control VM, there were increased (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling; however, p16 VM treatment reduced these parameters. Biliary E2F1/FOX-O1/IGF-1 signaling increased in human NAFLD/NASH but was blocked by p16 VM. In vitro , p16 VM reduced biliary E2f1 and Foxo1 transcription by inhibiting RNA pol II binding and E2F1 binding at the Foxo1 locus, respectively. Inhibition of E2F1 reduced biliary FOXO1 in vitro. CONCLUSION Attenuating hepatic p16 expression may be a therapeutic approach for improving NAFLD/NASH phenotypes.
Collapse
Affiliation(s)
- Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | | | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | | | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Heather Francis
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| |
Collapse
|
11
|
He YH, Pan JX, Xu LM, Gu T, Chen YW. Ductular reaction in non-alcoholic fatty liver disease: When Macbeth is perverted. World J Hepatol 2023; 15:725-740. [PMID: 37397935 PMCID: PMC10308290 DOI: 10.4254/wjh.v15.i6.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated fatty liver disease is the leading cause of chronic liver diseases defined as a disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD prognosis. Ductular reaction (DR) is a common compensatory reaction associated with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their secreted substances. Recently, several studies have shown that the extent of DR parallels the stage of NASH and fibrosis. This review summarizes previous research on the correlation between DR and NASH, the potential interplay mechanism driving HPC differentiation, and NASH progression.
Collapse
Affiliation(s)
- Yang-Huan He
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Ting Gu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yuan-Wen Chen
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
12
|
Mortazavi A, Mohammad Pour Kargar H, Beheshti F, Anaeigoudari A, Vaezi G, Hosseini M. The effects of carvacrol on oxidative stress, inflammation, and liver function indicators in a systemic inflammation model induced by lipopolysaccharide in rats. INT J VITAM NUTR RES 2023; 93:111-121. [PMID: 34024144 DOI: 10.1024/0300-9831/a000711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of carvacrol (CAR) on oxidative stress, inflammation, and liver dysfunction induced by lipopolysaccharide (LPS) was explored. The rats (n=40) were daily injected (2 weeks) by saline as control, LPS (1 mg/kg, i.p.), and 25, 50 or 100 mg/kg CAR (i.p.) before LPS. LPS increased aspartate transaminase (AST: 162±13 U/L), alanine aminotransferase (ALT: 74.6±2.15 U/L), alkaline phosphatase (ALK-P: 811±51 U/L), interlukine-1β (IL-1β: 1254±51 pg/g tissue), malondialdehyde (MDA: 32±1.09 nM/g tissue), and nitric oxide (NO: 224±13.5 nM/g tissue) (P<0.01-P<0.001) while, decreased total protein(4.08±0.38 g/dl), albumin(2.79±0.16 g/dl), thiol (5.16±0.19 μM/g tissue), superoxide dismutase (SOD: 10.57±0.13 U/g tissue), and catalase (CAT: 0.78±0.02 U/g tissue) compared to control (P<0.001). CAR reversed the effects of LPS (P<0.05-P<0.001). In the rats treated by 100 mg/kg CAR, the indicators were as follows: AST: 118±10.1 U/L, ALT: 42.5±4.13 U/L, ALK-P: 597±39.91 U/L, IL-1β: 494±15 pg/g tissue, and NO: 141±5.35 nM/g tissue. Both 50 and 100 mg/kg CAR corrected oxidative stress indicators and in the group treated by 100 mg/kg CAR, they were: MDA: 23.4±0.91 nM/g tissue, thiol: 7.98±0.18 μM/g tissue, SOD: 21±0.8 U/g tissue, and CAT: 1.12±0.02 U/g tissue(P<0.05-P<0.001). In conclusion, CAR improved liver function, accompanied with antioxidant and antiinflammatory effects.
Collapse
Affiliation(s)
- Alireza Mortazavi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Chen X, Lu W, Lu C, Zhang L, Xu F, Dong H. The CaSR/TRPV4 coupling mediates pro-inflammatory macrophage function. Acta Physiol (Oxf) 2023; 237:e13926. [PMID: 36606511 DOI: 10.1111/apha.13926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Although calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 4 (TRPV4) channels are functionally expressed on macrophages, it is unclear if they work coordinately to mediate macrophage function. The present study investigates whether CaSR couples to TRPV4 channels and mediates macrophage polarization via Ca2+ signaling. METHODS The role of CaSR/TRPV4/Ca2+ signaling was assessed in lipopolysaccharide (LPS)-treated peritoneal macrophages (PMs) from wild-type (WT) and TRPV4 knockout (TRPV4 KO) mice. The expression and function of CaSR and TRPV4 in PMs were analyzed by immunofluorescence and digital Ca2+ imaging. The correlation factors of M1 polarization, CCR7, IL-1β, and TNFα were detected using q-PCR, western blot, and ELISA. RESULTS We found that PMs expressed CaSR and TRPV4, and CaSR activation-induced marked Ca2+ signaling predominately through extracellular Ca2+ entry, which was inhibited by selective pharmacological blockers of CaSR and TRPV4 channels. The CaSR activation-induced Ca2+ signaling was significantly attenuated in PMs from TRPV4 KO mice compared to those from WT mice. Moreover, the CaSR activation-induced Ca2+ entry via TRPV4 channels was inhibited by blocking phospholipases A2 (PLA2)/cytochromeP450 (CYP450) and phospholipase C (PLC)/Protein kinase C (PKC) pathways. Finally, CaSR activation promoted the expression and release of M1-associated cytokines IL-1β and TNFɑ, which were attenuated in PMs from TRPV4 KO mice. CONCLUSION We reveal a novel coupling of the CaSR and TRPV4 channels via PLA2/CYP450 and PLC/PKC pathways, promoting a Ca2+ -dependent M1 macrophage polarization. Modulation of this coupling and downstream pathways may become a potential strategy for the prevention/treatment of immune-related disease.
Collapse
Affiliation(s)
- Xiongying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Macrophages and Wnts in Tissue Injury and Repair. Cells 2022; 11:cells11223592. [PMID: 36429021 PMCID: PMC9688352 DOI: 10.3390/cells11223592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are important players in the immune system that sense various tissue challenges and trigger inflammation. Tissue injuries are followed by inflammation, which is tightly coordinated with tissue repair processes. Dysregulation of these processes leads to chronic inflammation or tissue fibrosis. Wnt ligands are present both in homeostatic and pathological conditions. However, their roles and mechanisms regulating inflammation and tissue repair are being investigated. Here we aim to provide an overview of overarching themes regarding Wnt and macrophages by reviewing the previous literature. We aim to gain future insights into how tissue inflammation, repair, regeneration, and fibrosis events are regulated by macrophages.
Collapse
|
15
|
[Changes of YAP activity at the early stage of nonalcoholic steatohepatitis and its spatiotemporal relationship with ductular reaction in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1324-1334. [PMID: 36210705 PMCID: PMC9550545 DOI: 10.12122/j.issn.1673-4254.2022.09.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the changes in Yes-associated protein (YAP) activity at the early stage of nonalcoholic steatohepatitis (NASH) and the spatiotemporal relationship between YAP and ductular reaction (DR). METHODS Male C57BL/6J mouse models of NASH were established by feeding with a methionine- and choline-deficient (MCD) diet or a thioacetamide (TAA) diet for 12 weeks. At different time points during the feeding, liver histology of the mice was observed with HE and Masson trichrome staining. The mRNA expressions of YAP and its target genes (Ctgf, Cyr61, Acta2) were determined by qPCR, and the total protein expression level of YAP was measured with immunoblotting. The expression and distribution of YAP and the markers of DR (K19 and Sox9) were observed with immunohistochemical staining. RESULTS At the early stage of NASH induced by MCD diet (1 to 4 weeks), the mRNA expression of YAP and its target genes and the total protein expression of YAP increased significantly (P < 0.01). The number of YAP-positive hepatocytes reached the peak level of 90.8 (cells per ×400 field of view) at week 2 and then decreased to 30.8 at week 4 (P < 0.001); YAP-positive ductular cells appeared near the portal area, where DR began to occur. From 8 to 12 weeks, numerous K19/Sox9-positive DR cells were observed in the hepatic lobules around the central vein (P < 0.01), while only a few YAP-positive hepatocytes were present in the liver tissue (P > 0.05), and the number of YAP-positive ductular cells gradually increased with time (P < 0.001). At the early stage of NASH induced by TAA diet (3 days to 2 weeks), the mRNA expression of YAP and its target genes and the total protein expression of YAP increased significantly (P < 0.05), and the number of YAP-positive hepatocytes reached the peak of 69.2 at week 2 and then decreased to 55.2 at week 4 (P < 0.001); YAP-positive ductular cells first appeared at the initial location of DR near the central vein. From 6 to 12 weeks, numerous K19/Sox9-positive DR cells occurred in the hepatic lobules around the central vein (P < 0.01). While the number of YAP-positive hepatocytes decreased (P < 0.001), the number of YAP-positive ductular cells continued to increase (P < 0.001). CONCLUSION During the development of NASH, YAP activation occurs earlier than DR but they are spatiotemporally correlated. YAP activation in hepatocytes may participate in DR by promoting hepatocyte dedifferentiation.
Collapse
|
16
|
Shu W, Yang M, Yang J, Lin S, Wei X, Xu X. Cellular crosstalk during liver regeneration: unity in diversity. Cell Commun Signal 2022; 20:117. [PMID: 35941604 PMCID: PMC9358812 DOI: 10.1186/s12964-022-00918-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
The liver is unique in its ability to regenerate from a wide range of injuries and diseases. Liver regeneration centers around hepatocyte proliferation and requires the coordinated actions of nonparenchymal cells, including biliary epithelial cells, liver sinusoidal endothelial cells, hepatic stellate cells and kupffer cells. Interactions among various hepatocyte and nonparenchymal cells populations constitute a sophisticated regulatory network that restores liver mass and function. In addition, there are two different ways of liver regeneration, self-replication of liver epithelial cells and transdifferentiation between liver epithelial cells. The interactions among cell populations and regenerative microenvironment in the two modes are distinct. Herein, we first review recent advances in the interactions between hepatocytes and surrounding cells and among nonparenchymal cells in the context of liver epithelial cell self-replication. Next, we discuss the crosstalk of several cell types in the context of liver epithelial transdifferentiation, which is also crucial for liver regeneration. Video abstract
Collapse
Affiliation(s)
- Wenzhi Shu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.,Program in Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mengfan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengda Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China. .,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China. .,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
17
|
Qian Y, Shang Z, Gao Y, Wu H, Kong X. Liver Regeneration in Chronic Liver Injuries: Basic and Clinical Applications Focusing on Macrophages and Natural Killer Cells. Cell Mol Gastroenterol Hepatol 2022; 14:971-981. [PMID: 35738473 PMCID: PMC9489753 DOI: 10.1016/j.jcmgh.2022.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Liver regeneration is a necessary but complex process involving multiple cell types besides hepatocytes. Mechanisms underlying liver regeneration after partial hepatectomy and acute liver injury have been well-described. However, in patients with chronic and severe liver injury, the remnant liver cannot completely restore the liver mass and function, thereby involving liver progenitor-like cells (LPLCs) and various immune cells. RESULTS Macrophages are beneficial to LPLCs proliferation and the differentiation of LPLCs to hepatocytes. Also, cells expressing natural killer (NK) cell markers have been studied in promoting both liver injury and liver regeneration. NK cells can promote LPLC-induced liver regeneration, but the excessive activation of hepatic NK cells may lead to high serum levels of interferon-γ, thus inhibiting liver regeneration. CONCLUSIONS This review summarizes the recent research on 2 important innate immune cells, macrophages and NK cells, in LPLC-induced liver regeneration and the mechanisms of liver regeneration during chronic liver injury, as well as the latest macrophage- and NK cell-based therapies for chronic liver injury. These novel findings can further help identify new treatments for chronic liver injury, saving patients from the pain of liver transplantations.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
18
|
Liang L, Ye S, Jiang R, Zhou X, Zhou J, Meng S. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int Immunopharmacol 2022; 104:108306. [PMID: 34999396 DOI: 10.1016/j.intimp.2021.108306] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases without effective pharmacological intervention. Liensinine (LIEN), a plant-derived isoquinoline alkaloid, exerts key roles in regulating various cellular processes. However, its potential on NAFLD progression has not been reported. In the study, we attempted to explore the regulatory effects of LIEN on fatty liver, and the underlying molecular mechanisms. Our in vitro experiments showed that LIEN treatments significantly reduced the lipid deposition in palmitate acid (PA)-treated cells by improving AMP-activated protein kinase (AMPK) activation. Additionally, excessive reactive oxygen species (ROS) generation was also strongly down-regulated by LIEN in cells upon PA stimulation through enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation. Moreover, PA-triggered inflammatory response was markedly restrained by LIEN via the blockage of TGF-β-activating kinase 1/nuclear factor-κB (TAK1/NF-κB) signaling. Intriguingly, we further found that LIEN-prohibited ROS production, lipid disorder and inflammation were largely dependent on AMPK activation through repressing TAK1. Consistently, our in vivo experiments confirmed that LIEN treatments efficiently improved the metabolic disorder, insulin resistance, dyslipidemia in high fat diet (HFD)-fed mice. Furthermore, HFD-triggered oxidative stress and inflammation in liver were greatly meliorated by LIEN administration by mediating Nrf2 and TAK1 signaling pathways, respectively. Collectively, all these findings demonstrated that LIEN exerted anti-dyslipidemia, anti-oxidant and anti-inflammatory effects to alleviate NAFLD progression mainly through modulating TAK1/AMPK signaling, and thus could be considered as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Liping Liang
- Department of Nutrition, The Second People's Hospital of Lishui, Lishui 323000, China
| | - Shiwei Ye
- Department of Nutrition, The Second People's Hospital of Lishui, Lishui 323000, China
| | - Ruilai Jiang
- Department of Geriatric Respiratory & Critical Care Medicine, The Second People's Hospital of Lishui, Lishui 323000, China
| | - Xiao Zhou
- Department of Nutrition, The Second People's Hospital of Lishui, Lishui 323000, China
| | - Junjie Zhou
- Department of Clinical Laboratory, The Second People's Hospital of Lishui, Lishui 323000, China
| | - Shuiyun Meng
- Department of Geriatric Respiratory & Critical Care Medicine, The Second People's Hospital of Lishui, Lishui 323000, China.
| |
Collapse
|
19
|
Beheshti F, Hosseini M, Arab Z, Asghari A, Anaeigoudari A. Ameliorative role of metformin on lipopolysaccharide-mediated liver malfunction through suppression of inflammation and oxidative stress in rats. TOXIN REV 2022; 41:55-63. [DOI: 10.1080/15569543.2020.1833037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Arab
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Asghari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
20
|
Xu Y, Xu W, Liu W, Chen G, Jiang S, Chen J, Jian X, Zhang H, Liu P, Mu Y. Yiguanjian decoction inhibits macrophage M1 polarization and attenuates hepatic fibrosis induced by CCl 4/2-AAF. PHARMACEUTICAL BIOLOGY 2021; 59:1150-1160. [PMID: 34425061 PMCID: PMC8436970 DOI: 10.1080/13880209.2021.1961820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Our previous studies indicated that Yiguanjian decoction (YGJ) has an anti-hepatic-fibrosis effect and could regulate macrophage status. OBJECTIVE To elucidate the mechanism of YGJ in regulating macrophages. MATERIALS AND METHODS Liver cirrhosis was induced by CCl4 for 12 weeks combined with 2-acetylaminofluorene (2-AAF) for the last 4 weeks in male Wistar rats. YGJ (3.56 mg/kg) orally administered in the last 4 weeks, and SORA (1 mg/kg) as control. In vitro, RAW264.7 cells were treated with lipopolysaccharides (LPSs) to induce macrophage polarization to the M1 phenotype, and they were co-cultured with WB-F344 cells and allocated to M group, YGJ group (2 μg/mL) and WIF-1 group (1 μg/mL) with untreated cells as control. The differentiation direction of WB-F344 cell line was observed in the presence or absence of YGJ. Pathology, fibrosis-related cytokines, macrophage polarization-related components, and Wnt signalling pathway components were detected. RESULTS In vivo, the expression levels of α-SMA, Col (1), OV6, SOX9, EpCAM and M1 macrophage-related components (STAT1, IRF3, IRF5, IRF8, SOCS3) significantly decreased in the YGJ group compared with those in the 2-AAF/CCl4 group (p < 0.01 or 0.05). In vitro, the expression levels of M1 macrophage-related components, including STAT1, NF-κB, IRF3, IRF5, and SOCS3, in RAW264.7 cells decreased significantly in the YGJ group compared with those in the M group (p < 0.05 or p < 0.01). The expression levels of Wnt3A, FZD5, LRP-5/-6, and β-catenin significantly increased in the YGJ group compared with those in the M group (p < 0.05 or p < 0.01). In addition, the expression levels of Wnt-4/-5A/-5B, and FZD2 significantly decreased in the YGJ group compared with those in the M group (p < 0.05 or p < 0.01). CONCLUSION This study suggests that the anti-cirrhosis effect of YGJ is associated with its ability to inhibit macrophage M1-polarization, which provides a scientific basis for the clinical application of YGJ.
Collapse
Affiliation(s)
- Ying Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Wen Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Wei Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Gaofeng Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
| | - Shili Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Jiamei Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
| | - Xun Jian
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
| | - Hua Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
| | - Ping Liu
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai, Pudong District, China
| | - Yongping Mu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, Pudong District, China
- Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai, China
| |
Collapse
|
21
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Wu H, Chen C, Ziani S, Nelson LJ, Ávila MA, Nevzorova YA, Cubero FJ. Fibrotic Events in the Progression of Cholestatic Liver Disease. Cells 2021; 10:1107. [PMID: 34062960 PMCID: PMC8147992 DOI: 10.3390/cells10051107] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cholestatic liver diseases including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are associated with active hepatic fibrogenesis, which can ultimately lead to the development of cirrhosis. However, the exact relationship between the development of liver fibrosis and the progression of cholestatic liver disease remains elusive. Periductular fibroblasts located around the bile ducts seem biologically different from hepatic stellate cells (HSCs). The fibrotic events in these clinical conditions appear to be related to complex crosstalk between immune/inflammatory mechanisms, cytokine signalling, and perturbed homeostasis between cholangiocytes and mesenchymal cells. Several animal models including bile duct ligation (BDL) and the Mdr2-knockout mice have improved our understanding of mechanisms underlying chronic cholestasis. In the present review, we aim to elucidate the mechanisms of fibrosis in order to help to identify potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Hanghang Wu
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (C.C.); (S.Z.); (Y.A.N.)
| | - Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (C.C.); (S.Z.); (Y.A.N.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Department of General Surgery, Wuxi Xishan People’s Hospital, Wuxi 214000, China
| | - Siham Ziani
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (C.C.); (S.Z.); (Y.A.N.)
| | - Leonard J. Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, Scotland, UK;
- Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Matías A. Ávila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, 31008 Pamplona, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (C.C.); (S.Z.); (Y.A.N.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (C.C.); (S.Z.); (Y.A.N.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
23
|
Mandala A, Janssen RC, Palle S, Short KR, Friedman JE. Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients 2020; 12:E3166. [PMID: 33081177 PMCID: PMC7602751 DOI: 10.3390/nu12103166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one chronic liver disease worldwide and is estimated to affect nearly 40% of obese youth and up to 10% of the general pediatric population without any obvious signs or symptoms. Although the early stages of NAFLD are reversible with diet and lifestyle modifications, detecting such stages is hindered by a lack of non-invasive methods of risk assessment and diagnosis. This absence of non-invasive means of diagnosis is directly related to the scarcity of long-term prospective studies of pediatric NAFLD in children and adolescents. In the majority of pediatric NAFLD cases, the mechanisms driving the origin and rapid progression of NAFLD remain unknown. The progression from NAFLD to non-alcoholic steatohepatitis (NASH) in youth is associated with unique histological features and possible immune processes and metabolic pathways that may reflect different mechanisms compared with adults. Recent data suggest that circulating microRNAs (miRNAs) are important new biomarkers underlying pathways of liver injury. Several factors may contribute to pediatric NAFLD development, including high-sugar diets, in utero exposures via epigenetic alterations, changes in the neonatal microbiome, and altered immune system development and mitochondrial function. This review focuses on the unique aspects of pediatric NAFLD and how nutritional exposures impact the immune system, mitochondria, and liver/gastrointestinal metabolic health. These factors highlight the need for answers to how NAFLD develops in children and for early stage-specific interventions.
Collapse
Affiliation(s)
- Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Sirish Palle
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kevin R. Short
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
24
|
Thompson MD. Developmental Programming of NAFLD by Parental Obesity. Hepatol Commun 2020; 4:1392-1403. [PMID: 33024911 PMCID: PMC7527686 DOI: 10.1002/hep4.1578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The surge of obesity across generations has become an increasingly relevant issue, with consequences for associated comorbidities in offspring. Data from longitudinal birth cohort studies support an association between maternal obesity and offspring nonalcoholic fatty liver disease (NAFLD), suggesting that perinatal obesity or obesogenic diet exposure reprograms offspring liver and increases NAFLD susceptibility. In preclinical models, offspring exposed to maternal obesogenic diet have increased hepatic steatosis after diet-induced obesity; however, the implications for later NAFLD development and progression are still unclear. Although some models show increased NAFLD incidence and progression in offspring, development of nonalcoholic steatohepatitis with fibrosis may be model dependent. Multigenerational programming of NAFLD phenotypes occurs after maternal obesogenic diet exposure; however, the mechanisms for such programming remain poorly understood. Likewise, emerging data on the role of paternal obesity in offspring NAFLD development reveal incomplete mechanisms. This review will explore the impact of parental obesity and obesogenic diet exposure on offspring NAFLD and areas for further investigation, including the impact of parental diet on disease progression, and consider potential interventions in preclinical models.
Collapse
Affiliation(s)
- Michael D. Thompson
- Division of Endocrinology and DiabetesDepartment of PediatricsWashington University School of MedicineSt. LouisMO
| |
Collapse
|
25
|
Carpino G, Del Ben M, Pastori D, Carnevale R, Baratta F, Overi D, Francis H, Cardinale V, Onori P, Safarikia S, Cammisotto V, Alvaro D, Svegliati-Baroni G, Angelico F, Gaudio E, Violi F. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology 2020; 72:470-485. [PMID: 31808577 DOI: 10.1002/hep.31056] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Lipopolysaccharides (LPS) is increased in nonalcoholic fatty liver disease (NAFLD), but its relationship with liver inflammation is not defined. APPROACH AND RESULTS We studied Escherichia coli LPS in patients with biopsy-proven NAFLD, 25 simple steatosis (nonalcoholic fatty liver) and 25 nonalcoholic steatohepatitis (NASH), and in mice with diet-induced NASH. NASH patients had higher serum LPS and hepatocytes LPS localization than controls, which was correlated with serum zonulin and phosphorylated nuclear factor-κB expression. Toll-like receptor 4 positive (TLR4+ ) macrophages were higher in NASH than simple steatosis or controls and correlated with serum LPS. NASH biopsies showed a higher CD61+ platelets, and most of them were TLR4+ . TLR4+ platelets correlated with serum LPS values. In mice with NASH, LPS serum levels and LPS hepatocyte localization were increased compared with control mice and associated with nuclear factor-κB activation. Mice on aspirin developed lower fibrosis and extent compared with untreated ones. Treatment with TLR4 inhibitor resulted in lower liver inflammation in mice with NASH. CONCLUSIONS In NAFLD, Escherichia coli LPS may increase liver damage by inducing macrophage and platelet activation through the TLR4 pathway.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Maria Del Ben
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Daniele Pastori
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Francesco Baratta
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
26
|
Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev 2020; 60:101063. [PMID: 32272170 DOI: 10.1016/j.arr.2020.101063] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final hallmark of pathological remodeling, which is a major contributor to the pathogenesis of various chronic diseases and aging-related organ failure to fully control chronic wound-healing and restoring tissue function. The process of fibrosis is involved in the pathogenesis of the kidney, lung, liver, heart and other tissue disorders. Wnt is a highly conserved signaling in the aberrant wound repair and fibrogenesis, and sustained Wnt activation is correlated with the pathogenesis of fibrosis. In particular, mounting evidence has revealed that Wnt signaling played important roles in cell fate determination, proliferation and cell polarity establishment. The expression and distribution of Wnt signaling in different tissues vary with age, and these changes have key effects on maintaining tissue homeostasis. In this review, we first describe the major constituents of the Wnt signaling and their regulation functions. Subsequently, we summarize the dysregulation of Wnt signaling in aging-related fibrotic tissues such as kidney, liver, lung and cardiac fibrosis, followed by a detailed discussion of its involvement in organ fibrosis. In addition, the crosstalk between Wnt signaling and other pathways has the potential to profoundly add to the complexity of organ fibrosis. Increasing studies have demonstrated that a number of Wnt inhibitors had the potential role against tissue fibrosis, specifically in kidney fibrosis and the implications of Wnt signaling in aging-related diseases. Therefore, targeting Wnt signaling might be a novel and promising therapeutic strategy against aging-related tissue fibrosis.
Collapse
Affiliation(s)
- He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, California, 92897, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
27
|
Novel Combinatorial Regimen of Garcinol and Curcuminoids for Non-alcoholic Steatohepatitis (NASH) in Mice. Sci Rep 2020; 10:7440. [PMID: 32366854 PMCID: PMC7198554 DOI: 10.1038/s41598-020-64293-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), a chronic liver disease with a significant unmet clinical need. In this study, we examined the protective effects of Garcinia indica extract standardized to contain 20% w/w of Garcinol (GIE) and 95% Curcuminoids w/w from Curcuma longa (Curcuminoids) in a Stelic animal model (STAM) of NASH. The STAM mice developed steatosis, hepatocyte ballooning, and inflammation, which were significantly reduced by the combination of GIE and Curcuminoids, resulting in a lower NAFLD activity score. The treatment reduced fibrosis as observed by Sirius red staining, liver hydroxyproline content and mRNA levels of TGF- β and collagen in the liver. Immunostaining with alpha-smooth muscle actin (α SMA) revealed a significant reduction in hepatic stellate cells. Intriguingly, the combination regimen markedly decreased the mRNA levels of MCP1 and CRP and both mRNA and protein levels of TNF-α. NF-kB, reduced the hepatic and circulating FGF21 levels and altered the nonenzymatic (glutathione) and enzymatic antioxidant markers (Glutathione peroxidase, and superoxide dismutase). Our results suggest that the combination of GIE and Curcuminoids can reduce the severity of NASH by reducing steatosis, fibrosis, oxidative stress, and inflammation. The results suggest that the combinatorial regimen could be an effective supplement to prevent the progression of liver steatosis to inflammation and fibrosis in NASH.
Collapse
|
28
|
Kurniawan DW, Storm G, Prakash J, Bansal R. Role of spleen tyrosine kinase in liver diseases. World J Gastroenterol 2020; 26:1005-1019. [PMID: 32205992 PMCID: PMC7081001 DOI: 10.3748/wjg.v26.i10.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most hematopoietic cells and non-hematopoietic cells and play a crucial role in both immune and non-immune biological responses. SYK mediate diverse cellular responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-dependent signalling pathways, ITAMs-independent and ITAMs-semi-dependent signalling pathways. In liver, SYK expression has been observed in parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and Kupffer cells), and found to be positively correlated with the disease severity. The implication of SYK pathway has been reported in different liver diseases including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using kinase inhibitors have shown to attenuate the progression of liver diseases thereby suggesting SYK as a highly promising therapeutic target. This review summarizes the current understanding of SYK and its therapeutic implication in liver diseases.
Collapse
Affiliation(s)
- Dhadhang Wahyu Kurniawan
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacy, Universitas Jenderal Soedirman, Purwokerto 53132, Indonesia
| | - Gert Storm
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmaceutics, University of Utrecht, Utrecht 3454, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Enschede 7500, the Netherlands
| |
Collapse
|
29
|
Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells 2020; 9:cells9030590. [PMID: 32131439 PMCID: PMC7140508 DOI: 10.3390/cells9030590] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by lipid accumulation in hepatocytes in the absence of excessive alcohol consumption. The global prevalence of NAFLD is constantly increasing. NAFLD is a disease spectrum comprising distinct stages with different prognoses. Non-alcoholic steatohepatitis (NASH) is a progressive condition, characterized by liver inflammation and hepatocyte ballooning, with or without fibrosis. The natural history of NAFLD is negatively influenced by NASH onset and by the progression towards advanced fibrosis. Pathogenetic mechanisms and cellular interactions leading to NASH and fibrosis involve hepatocytes, liver macrophages, myofibroblast cell subpopulations, and the resident progenitor cell niche. These cells are implied in the regenerative trajectories following liver injury, and impairment or perturbation of these mechanisms could lead to NASH and fibrosis. Recent evidence underlines the contribution of extra-hepatic organs/tissues (e.g., gut, adipose tissue) in influencing NASH development by interacting with hepatic cells through various molecular pathways. The present review aims to summarize the role of hepatic parenchymal and non-parenchymal cells, their mutual influence, and the possible interactions with extra-hepatic tissues and organs in the pathogenesis of NAFLD.
Collapse
|
30
|
Ko S, Russell JO, Molina LM, Monga SP. Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns. ANNUAL REVIEW OF PATHOLOGY 2020; 15:23-50. [PMID: 31399003 PMCID: PMC7212705 DOI: 10.1146/annurev-pathmechdis-012419-032824] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is a complex organ performing numerous vital physiological functions. For that reason, it possesses immense regenerative potential. The capacity for repair is largely attributable to the ability of its differentiated epithelial cells, hepatocytes and biliary epithelial cells, to proliferate after injury. However, in cases of extreme acute injury or prolonged chronic insult, the liver may fail to regenerate or do so suboptimally. This often results in life-threatening end-stage liver disease for which liver transplantation is the only effective treatment. In many forms of liver injury, bipotent liver progenitor cells are theorized to be activated as an additional tier of liver repair. However, the existence, origin, fate, activation, and contribution to regeneration of liver progenitor cells is hotly debated, especially since hepatocytes and biliary epithelial cells themselves may serve as facultative stem cells for one another during severe liver injury. Here, we discuss the evidence both supporting and refuting the existence of liver progenitor cells in a variety of experimental models. We also debate the validity of developing therapies harnessing the capabilities of these cells as potential treatments for patients with severe and chronic liver diseases.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Laura M Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
31
|
Jarman EJ, Boulter L. Targeting the Wnt signaling pathway: the challenge of reducing scarring without affecting repair. Expert Opin Investig Drugs 2020; 29:179-190. [DOI: 10.1080/13543784.2020.1718105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward J. Jarman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| |
Collapse
|
32
|
Franchitto A, Carpino G, Alisi A, De Peppo F, Overi D, De Stefanis C, Romito I, De Vito R, Caccamo R, Sonia B, Alessandra S, Mosca A, Alterio A, Onori P, Gaudio E, Nobili V. The Contribution of the Adipose Tissue-Liver Axis in Pediatric Patients with Nonalcoholic Fatty Liver Disease after Laparoscopic Sleeve Gastrectomy. J Pediatr 2020; 216:117-127.e2. [PMID: 31526528 DOI: 10.1016/j.jpeds.2019.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/16/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To evaluate the histopathologic modifications in liver and visceral adipose tissue (VAT), and to correlate these changes with clinical measures, adipokine production, and proinflammatory cytokines in a population of adolescents with obesity with nonalcoholic fatty liver disease (NAFLD) who underwent laparoscopic sleeve gastrectomy (LSG). STUDY DESIGN Twenty adolescents with obesity who underwent LSG and with biopsy-proven NAFLD were included. Patients underwent clinical evaluation and blood tests at baseline and 1 year after the surgical procedure. Liver and VAT specimens were processed for routine histology, immunohistochemistry, and immunofluorescence. RESULTS In adolescents with obesity and NAFLD, hepatic histologic alterations were uncorrelated with VAT inflammation. LSG induced in both liver and VAT tissue histopathology amelioration and macrophage profile modification that were correlated with body mass index and improvement in insulin resistance. The adipokine profile in liver and VAT was associated with weight loss and histologic improvement after LSG. Serum proinflammatory cytokines were correlated with liver and VAT histopathology and IL-1β and IL-6 levels were independently predicted by liver necroinflammatory grade. CONCLUSIONS This study suggests a unique adipose tissue/fatty liver crosstalk in pediatric patients. LSG induces a similar pattern of histologic improvement in the liver and in VAT. Besides VAT, our results strengthen the role of the liver in adipocytokine production and its contribution to systemic inflammation in pediatric patients with NAFLD.
Collapse
Affiliation(s)
- Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children Hospital, Rome, Italy
| | - Francesco De Peppo
- Department of Pediatric Surgery, Pediatric Surgery Unit, "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristiano De Stefanis
- Histology-Core Facility "Bambino Gesù" Children's Hospital- Institute of Hospitalization and Scientific Care, Rome, Italy
| | - Ilaria Romito
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children Hospital, Rome, Italy
| | - Rita De Vito
- Department of Pathology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Romina Caccamo
- Department of Pediatric Surgery, Pediatric Surgery Unit, "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Battaglia Sonia
- Department of Pediatric Surgery, Pediatric Surgery Unit, "Bambino Gesù" Children's Hospital, Rome, Italy
| | | | - Antonella Mosca
- Hepatology, Gastroenterology and Nutrition Unit - Bambino Gesù Children's Hospital, Rome, Italy.
| | - Arianna Alterio
- Hepatology, Gastroenterology and Nutrition Unit - Bambino Gesù Children's Hospital, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Valerio Nobili
- Hepatology, Gastroenterology and Nutrition Unit - Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatric - University "La Sapienza", Rome, Italy
| |
Collapse
|
33
|
Jonscher KR, Abrams J, Friedman JE. Maternal Diet Alters Trained Immunity in the Pathogenesis of Pediatric NAFLD. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:315-325. [PMID: 33426540 PMCID: PMC7793570 DOI: 10.33696/immunology.2.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pediatric nonalcoholic fatty liver disease (NAFLD) affects 1 in 10 children in the US, increases risk of cirrhosis and transplantation in early adulthood, and shortens lifespan, even after transplantation. Exposure to maternal obesity and/or a diet high in fat, sugar and cholesterol is strongly associated with development of NAFLD in offspring. However, mechanisms by which "priming" of the immune system in early life increases susceptibility to NAFLD are poorly understood. Recent studies have focused on the role "non-reparative" macrophages play in accelerating inflammatory signals promoting fibrogenesis. In this Commentary, we review evidence that the pioneering gut bacteria colonizing the infant intestinal tract remodel the naïve immune system in the offspring. Epigenetic changes in hematopoietic stem and progenitor cells, induced by exposure to an obesogenic diet in utero, may skew lineage commitment of myeloid cells during gestation. Further, microbial dysbiosis in neonatal life contributes to training innate immune cell responsiveness in the gut, bone marrow, and liver, leading to developmental programming of pediatric NAFLD. Comprehensive understanding of how different gut bacteria and their byproducts shape development of the early innate immune system and microbiome will uncover early interventions to prevent NAFLD pathophysiology.
Collapse
Affiliation(s)
- Karen R. Jonscher
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
| | - Jesse Abrams
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
- Departments of Physiology and Pediatrics, University of Oklahoma Health Sciences Center, USA
| |
Collapse
|
34
|
Hepatoprotective effect of ultrasonicated ginseng berry extract on a rat mild bile duct ligation model. J Ginseng Res 2019; 43:606-617. [PMID: 31695567 PMCID: PMC6823758 DOI: 10.1016/j.jgr.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
Background The Panax ginseng berry extract (GBE) is well known to have an antidiabetic effect. The aim of this study is to evaluate and investigate the protective effect of ultrasonication-processed P. ginseng berry extract (UGBE) compared with GBE on liver fibrosis induced by mild bile duct ligation (MBDL) model in rats. After ultrasonication process, the composition ratio of ginsenoside in GBE was changed. The component ratio of ginsenosides Rh1, Rh4, Rg2, Rg3, Rk1, Rk3, and F4 in the extract was elevated. Methods In this study, the protective effect of the newly developed UGBE was evaluated on hepatotoxicity and neuronal damage in MBDL model. Silymarin (150 mg/kg) was used for positive control. UGBE (100 mg/kg, 250 mg/kg, 500 mg/kg), GBE (250 mg/kg), and silymarin (150 mg/kg) were orally administered for 6 weeks after MBDL surgery. Results The MBDL surgery induced severe hepatotoxicity that leads to liver inflammation in rats. Also, the serum ammonia level was increased by MBDL surgery. However, the liver dysfunction of MBDL surgery–operated rats was attenuated by UGBE treatment via myeloid differentiation factor 88-dependent Toll-like receptor 4 signaling pathways. Conclusion UGBE has a protective effect on liver fibrosis induced by MBDL in rats through inhibition of the TLR4 signaling pathway in liver.
Collapse
|
35
|
Farzanegi P, Dana A, Ebrahimpoor Z, Asadi M, Azarbayjani MA. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur J Sport Sci 2019; 19:994-1003. [PMID: 30732555 DOI: 10.1080/17461391.2019.1571114] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disorder which is associated with accumulation of fats in the liver. It causes a wide variety of pathological effects such as non-alcoholic steatohepatitis (NASH) and cirrhosis, insulin resistance, obesity, hypertension, dyslipidaemia, diabetes and cardiovascular disease. The molecular mechanisms that cause the initiation and progression of NAFLD are not fully understood. Oxidative stress (OS) induced by reactive oxygen species (ROS) and inflammation are likely a significant mechanism which can lead to hepatic cell death and tissue injury. Mitochondrial abnormalities, down-regulation of several antioxidant enzymes, glutathione (GSH) depletion and decreased activity of GSH-dependent antioxidants, accumulation of leukocytes and hepatic inflammation are the major sources of ROS overproduction in NAFLD. Excessive production of ROS suppresses the capacity of other antioxidant defence systems in NAFLD and causes further oxidative damage. Regular exercise can be considered as an effective strategy for treatment of NAFLD. It improves NAFLD by reducing intrahepatic fat content, increasing β-oxidation of fatty acids, inducing hepato-protective autophagy, overexpressing peroxisome proliferator-activated receptor- γ (PPAR-γ), as well as attenuating hepatocyte apoptosis and increasing insulin sensitivity. Exercise training also suppresses ROS overproduction and OS in NAFLD via up-regulation of several antioxidant enzymes and anti-inflammatory mediators. Therefore, an understanding of these molecules and signalling pathways gives us valuable information about NAFLD progression and a method for developing a suitable clinical treatment. This review aimed to evaluate sources of ROS and OS in NAFLD and the molecular mechanisms involved in the beneficial effects of exercises on NAFLD.
Collapse
Affiliation(s)
- Parvin Farzanegi
- a Department of Exercise Physiology, Sari Branch , Islamic Azad University , Sari , Iran
| | - Amir Dana
- b Department of Physical Education, Tabriz Branch , Islamic Azad University , Tabriz , Iran
| | - Zeynab Ebrahimpoor
- c Department of Exercise Physiology, Qaemshahr Branch , Islamic Azad University , Qaemshahr , Iran
| | - Mahdieh Asadi
- a Department of Exercise Physiology, Sari Branch , Islamic Azad University , Sari , Iran
| | - Mohammad Ali Azarbayjani
- d Department of Exercise Physiology , Islamic Azad University, Central Tehran Branch , Tehran , Iran
| |
Collapse
|
36
|
The Number of Liver Galectin-3 Positive Cells Is Dually Correlated with NAFLD Severity in Children. Int J Mol Sci 2019; 20:ijms20143460. [PMID: 31337151 PMCID: PMC6679049 DOI: 10.3390/ijms20143460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disease ranging from steatosis to non-alcoholic steatohepatitis (NASH). Galectin-3 (Gal-3), which is a β-galactoside binding protein, has been associated with liver fibrosis, but its role in NAFLD remains elusive. We investigated the expression of Gal-3 in liver resident cells and its potential association with liver damage in 40 children with biopsy-proven NAFLD. We found that several liver cells expressed Gal-3. The number of total Gal-3 positive cells decreased with the severity of disease and the cells were correlated with the presence of steatosis and the diagnosis of NASH. CD68 macrophages expressed Gal-3 but the number CD68/Gal-3 positive cells was significantly reduced in patients diagnosed with steatosis and NASH. Triple CD68/CD206/Gal-3, which represented the subpopulation of M2 macrophages, were mainly present in patients without NASH, and clearly reduced in patients with steatosis and NASH. On the contrary, the number of α-smooth muscle actin (SMA)/Gal-3 positive cells increased with the severity of fibrosis in children with NAFLD. Our data demonstrated that the number of Gal-3 positive cells was associated with tissue damage in different ways, which suggests a dual role of this protein in the pathogenesis of pediatric NAFLD, even if the role of Gal-3 deserves further studies.
Collapse
|
37
|
Han J, Zhang X, Lau JKC, Fu K, Lau HC, Xu W, Chu ES, Lan H, Yu J. Bone marrow-derived macrophage contributes to fibrosing steatohepatitis through activating hepatic stellate cells. J Pathol 2019; 248:488-500. [PMID: 30945293 PMCID: PMC6767065 DOI: 10.1002/path.5275] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
The role of macrophages in fibrosing steatohepatitis is largely unclear. We characterized the origin and molecular mechanisms of macrophages and its targeted therapy of fibrosing steatohepatitis. Fibrosing steatohepatitis was established in Alms1 mutant (foz/foz) and C57BL/6J wildtype mice fed high‐fat/high‐cholesterol or methionine‐ and choline‐deficient diet. Bone marrow transplantation was performed to track the macrophage origin in fibrosing steatohepatitis. Macrophages were depleted using liposomal clodronate. Primary macrophages were isolated from bone marrow for adoptive transfer into mice. We found that macrophage infiltration is induced in two mouse models of fibrosing steatohepatitis and human nonalcoholic steatohepatitis‐fibrosis patients. Bone marrow‐derived macrophages (BMMs) contribute to the hepatic macrophage accumulation in experimental fibrosing steatohepatitis. Depletion of hepatic BMMs by liposomal clodronate during liver injury attenuated fibrosing steatohepatitis, whilst BMMs depletion after liver injury delayed the regression of fibrosing steatohepatitis. The pro‐fibrotic effect of macrophages was associated with reduced activation of hepatic stellate cells (HSCs), collagen deposition and hepatic expression of key pro‐fibrotic factors (TIMP1, TIMP2, and TGFβ1) and endoplasmic reticulum stress markers (GRP78, IRE1α, and PDI). Conversely, adoptive transfer of BMMs significantly aggravated fibrosing steatohepatitis. Moreover, macrophage‐conditioned medium directly promoted the phenotypic transition of primary quiescent HSCs to activated HSCs; it enhanced activation and proliferation but decreased apoptosis of HSC cell lines (LX‐2 and HSC‐T6). The effect of BMMs in promoting fibrosing steatohepatitis was mediated by inducing key pro‐fibrosis factors and signaling pathways including cytokine/chemokine, TGFβ and complement cascade as assessed by cDNA expression array. Complement 3a receptor (C3ar1) was a predominant effector of macrophage mediated fibrosing steatohepatitis. Knockout of C3ar1 in mice blunted development of fibrosing steatohepatitis. In conclusion, BMMs promoted the progression of fibrosing steatohepatitis during injury, whereas macrophages reduced fibrosing steatohepatitis in the recovery phase of liver injury. Increasing anti‐fibrotic macrophages and decreasing pro‐fibrotic macrophages are promising approaches for fibrosing steatohepatitis. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Juqiang Han
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.,Institute of Liver Disease, The Seventh Medical Centre of PLA General Hospital, Beijing, PR China
| | - Xiang Zhang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jennie K-C Lau
- Faculty of Medicine, SHHO College, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kaili Fu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Ch Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Weiqi Xu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Eagle Sh Chu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Huiyao Lan
- Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
38
|
Hajighasem A, Farzanegi P, Mazaheri Z. Effects of combined therapy with resveratrol, continuous and interval exercises on apoptosis, oxidative stress, and inflammatory biomarkers in the liver of old rats with non-alcoholic fatty liver disease. Arch Physiol Biochem 2019; 125:142-149. [PMID: 29463133 DOI: 10.1080/13813455.2018.1441872] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. OBJECTIVE Effects of combined therapy with resveratrol, interval and continuous exercises on oxidative stress, inflammation, and apoptosis in the liver of rats with NAFLD. METHODS NAFLD rats were organised in patient, saline, resveratrol (RSV), continuous exercise, interval exercise, continuous exercise + RSV, and interval exercise + RSV groups. RESULTS Resveratrol supplementation alone or in combination with interval and continuous training significantly decreased malondialdehyde and TNF-α level (p < .05), while the levels of catalase; superoxide dismutase and IL-10 were significantly increased (p < .05). Although RSV alone significantly decreased the percentage of apoptotic cells (17.12%), its combination with interval (10.74%), and continuous (14.85%) exercise training demonstrated higher anti-apoptotic activity (p < .05). CONCLUSIONS Although resveratrol alone has an antioxidant, anti-apoptotic and anti-inflammatory properties, combined therapy with interval, and continuous training can be more effective to mitigate these abnormalities in NAFLD patients.
Collapse
Affiliation(s)
- Amir Hajighasem
- a Department of Exercise Physiology, Sari Branch , Islamic Azad University , Sari , Iran
| | - Parvin Farzanegi
- a Department of Exercise Physiology, Sari Branch , Islamic Azad University , Sari , Iran
| | - Zohreh Mazaheri
- b Department of Anatomical Sciences, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
39
|
Thompson MD, Derse A, Ferey JLA, Reid M, Xie Y, Christ M, Chatterjee D, Nguyen C, Harasymowicz N, Guilak F, Moley KH, Davidson NO. Transgenerational impact of maternal obesogenic diet on offspring bile acid homeostasis and nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2019; 316:E674-E686. [PMID: 30860882 PMCID: PMC6482665 DOI: 10.1152/ajpendo.00474.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Studies show maternal obesity is a risk factor for metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in offspring. Here we evaluated potential mechanisms underlying these phenotypes. Female C57Bl6 mice were fed chow or an obesogenic high-fat/high-sucrose (HF/HS) diet with subsequent mating of F1 and F2 female offspring to lean males to develop F2 and F3 generations, respectively. Offspring were fed chow or fibrogenic (high transfat, cholesterol, fructose) diets, and histopathological, metabolic changes, and bile acid (BA) homeostasis was evaluated. Chow-fed F1 offspring from maternal HF/HS lineages (HF/HS) developed periportal fibrosis and inflammation with aging, without differences in hepatic steatosis but increased BA pool size and shifts in BA composition. F1, but not F2 or F3, offspring from HF/HS showed increased steatosis on a fibrogenic diet, yet inflammation and fibrosis were paradoxically decreased in F1 offspring, a trend continued in F2 and F3 offspring. HF/HS feeding leads to increased periportal fibrosis and inflammation in chow-fed offspring without increased hepatic steatosis. By contrast, fibrogenic diet-fed F1 offspring from HF/HS dams exhibited worse hepatic steatosis but decreased inflammation and fibrosis. These findings highlight complex adaptations in NAFLD phenotypes with maternal diet.
Collapse
Affiliation(s)
- Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Alaina Derse
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremie LA Ferey
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Michaela Reid
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Miranda Christ
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Deyali Chatterjee
- Deparment of Pathology, Washington University in St. Louis, St. Louis, Missouri
| | - Chau Nguyen
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Natalia Harasymowicz
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Nicholas Oliver Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
40
|
Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJG, Bujanda L, Banales JM. Wnt-β-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol 2019; 16:121-136. [PMID: 30451972 DOI: 10.1038/s41575-018-0075-9] [Citation(s) in RCA: 388] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The canonical Wnt-β-catenin pathway is a complex, evolutionarily conserved signalling mechanism that regulates fundamental physiological and pathological processes. Wnt-β-catenin signalling tightly controls embryogenesis, including hepatobiliary development, maturation and zonation. In the mature healthy liver, the Wnt-β-catenin pathway is mostly inactive but can become re-activated during cell renewal and/or regenerative processes, as well as in certain pathological conditions, diseases, pre-malignant conditions and cancer. In hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults, Wnt-β-catenin signalling is frequently hyperactivated and promotes tumour growth and dissemination. A substantial proportion of liver tumours (mainly HCC and, to a lesser extent, CCA) have mutations in genes encoding key components of the Wnt-β-catenin signalling pathway. Likewise, hepatoblastoma, the most common paediatric liver cancer, is characterized by Wnt-β-catenin activation, mostly as a result of β-catenin mutations. In this Review, we discuss the most relevant molecular mechanisms of action and regulation of Wnt-β-catenin signalling in liver development and pathophysiology. Moreover, we highlight important preclinical and clinical studies and future directions in basic and clinical research.
Collapse
Affiliation(s)
- Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health (ISCIII), Madrid, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
41
|
Carpino G, Cardinale V, Folseraas T, Overi D, Grzyb K, Costantini D, Berloco PB, Di Matteo S, Karlsen TH, Alvaro D, Gaudio E. Neoplastic Transformation of the Peribiliary Stem Cell Niche in Cholangiocarcinoma Arisen in Primary Sclerosing Cholangitis. Hepatology 2019; 69:622-638. [PMID: 30102768 DOI: 10.1002/hep.30210] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory cholangiopathy frequently complicated by cholangiocarcinoma (CCA). Massive proliferation of biliary tree stem/progenitor cells (BTSCs), expansion of peribiliary glands (PBGs), and dysplasia were observed in PSC. The aims of the present study were to evaluate the involvement of PBGs and BTSCs in CCA which emerged in PSC patients. Specimens from normal liver (n = 5), PSC (n = 20), and PSC-associated CCA (n = 20) were included. Samples were processed for histology, immunohistochemistry, and immunofluorescence. In vitro experiments were performed on human BTSCs, human mucinous primary CCA cell cultures, and human cholangiocyte cell lines (H69). Our results indicated that all CCAs emerging in PSC patients were mucin-producing tumors characterized by PBG involvement and a high expression of stem/progenitor cell markers. Ducts with neoplastic lesions showed higher inflammation, wall thickness, and PBG activation compared to nonneoplastic PSC-affected ducts. CCA showed higher microvascular density and higher expression of nuclear factor kappa B, interleukin-6, interleukin-8, transforming growth factor β, and vascular endothelial growth factor-1 compared to nonneoplastic ducts. CCA cells were characterized by a higher expression of epithelial-to-mesenchymal transition (EMT) traits and by the absence of primary cilia compared to bile ducts and PBG cells in controls and patients with PSC. Our in vitro study demonstrated that lipopolysaccharide and oxysterols (PSC-related stressors) induced the expression of EMT traits, the nuclear factor kappa B pathway, autophagy, and the loss of primary cilia in human BTSCs. Conclusion: CCA arising in patients with PSC is characterized by extensive PBG involvement and by activation of the BTSC niche in these patients, the presence of duct lesions at different stages suggests a progressive tumorigenesis.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Daniele Costantini
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Sabina Di Matteo
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Tom Hemming Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Xu Y, Fan WW, Xu W, Jiang SL, Chen GF, Liu C, Chen JM, Zhang H, Liu P, Mu YP. Yiguanjian decoction enhances fetal liver stem/progenitor cell-mediated repair of liver cirrhosis through regulation of macrophage activation state. World J Gastroenterol 2018; 24:4759-4772. [PMID: 30479463 PMCID: PMC6235803 DOI: 10.3748/wjg.v24.i42.4759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether Yiguanjian decoction (YGJ) has an anti-liver cirrhotic effect and whether it regulates hepatic stem cell differentiation. METHODS A rat model of liver cirrhosis was established via subcutaneous injection of carbon tetrachloride (CCl4) for 8 wk. From the beginning of the ninth week, the rats received 2-acetylaminofluorene (2-AAF) by oral gavage and a DLK-1+ fetal liver stem/progenitor cell (FLSPC) transplant or an FLSPC transplant in combination with YGJ treatment for 4 wk. In vitro, lipopolysaccharide (LPS)-activated macrophages were co-cultured with WB-F344 cells, and the differentiation of WB-F344 cells was observed in the presence and absence of YGJ treatment. RESULTS FLSPC transplantation improved liver function and histopathology, and inhibited the activation of the non-canonical Wnt signaling pathway, while activating the canonical Wnt signaling pathway. YGJ enhanced the therapeutic effects of FLSPCs and also promoted the liver regeneration differentiation of FLSPCs into hepatocytes. In vitro, LPS-activated macrophages promoted the differentiation of WB-F344 cells into myofibroblasts, and the canonical Wnt signaling was inhibited while the non-canonical Wnt signaling was activated in WB-F344 cells. YGJ suppressed the activation of macrophages and then inhibited non-canonical Wnt signaling and promoted canonical Wnt signaling. CONCLUSION YGJ enhances FLSPC-mediated repair of liver cirrhosis through regulation of macrophage activation state, and YGJ in combination with stem cell transplantation may be a suitable treatment for end-stage liver cirrhosis.
Collapse
Affiliation(s)
- Ying Xu
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Wei-Wei Fan
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Wen Xu
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Shi-Li Jiang
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Gao-Feng Chen
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Cheng Liu
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Jia-Mei Chen
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Hua Zhang
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Ping Liu
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Yong-Ping Mu
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai 201203, China
- Clinical Key Laboratory of TCM of Shanghai, Shanghai 201203, China
| |
Collapse
|
43
|
Kazankov K, Alisi A, Møller HJ, De Vito R, Rittig S, Mahler B, Nobili V, Grønbæk H. Macrophage Markers Are Poorly Associated With Liver Histology in Children With Nonalcoholic Fatty Liver Disease. J Pediatr Gastroenterol Nutr 2018; 67:635-642. [PMID: 30074574 DOI: 10.1097/mpg.0000000000002111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We have previously demonstrated associations between the macrophage activation marker soluble (s)CD163 and histology of nonalcoholic fatty liver disease (NAFLD) in adults, and elevated sCD163 levels in children with obesity with NAFLD. Macrophage activation has, however, not been investigated in children with biopsy-proven NAFLD, which was the objective of the present study. METHODS We used in-house enzyme-linked immunosorbent assays to measure sCD163 and the novel macrophage marker soluble mannose receptor (sMR) in a cross-sectional (n = 155) pediatric NAFLD cohort, and a cohort of NAFLD children (n = 36) undergoing a randomized trial by the probiotic VSL#3. We included 56 healthy nonobese children for comparison. RESULTS Levels of sCD163 and sMR were higher in both of the NAFLD cohorts compared with controls (P < 0.001). In the cross-sectional cohort, sCD163 only showed trends toward association with ballooning (rho = 0.14, P = 0.08) and portal inflammation (rho = 0.17, P = 0.08). sMR showed similar associations with liver histology. In the VSL#3 cohort, sCD163 correlated inversely with steatosis (rho = -0.35, P = 0.04), and lobular (rho = -0.57, P < 0.001) and portal inflammation (rho = -0.38, P = 0.02); sMR was not associated with any histological scores. Neither sCD163 nor sMR changed significantly during intervention, and without association with NAFLD resolution. CONCLUSIONS The macrophage activation markers sCD163 and sMR showed poor associations with liver histology in 2 different cohorts of children with biopsy-proven NAFLD, and none of the markers decreased during successful intervention. These results are in contrast with studies of adult NAFLD and may suggest a possibility of different roles for macrophages in the pathogenesis of adult and pediatric NAFLD.
Collapse
Affiliation(s)
- Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N
- Department of Internal Medicine, Randers Regional Hospital, Randers, Denmark
| | - Anna Alisi
- Molecular Genetics of Complex Phenotypes, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark
| | - Rita De Vito
- Unit of Pathology, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Søren Rittig
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Birgitte Mahler
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Valerio Nobili
- Hepatology, Gastroenterology and Nutrition, "Bambino Gesù" Children's Hospital, IRCCS
- Pediatric Department, University La Sapienza Rome, Rome, Italy
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N
| |
Collapse
|
44
|
Overi D, Carpino G, Cardinale V, Franchitto A, Safarikia S, Onori P, Alvaro D, Gaudio E. Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases. Int J Mol Sci 2018; 19:ijms19102917. [PMID: 30257529 PMCID: PMC6213374 DOI: 10.3390/ijms19102917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression.
Collapse
Affiliation(s)
- Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Samira Safarikia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| |
Collapse
|
45
|
Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 2018; 674:57-69. [PMID: 29944952 DOI: 10.1016/j.gene.2018.06.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/08/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the Wnt signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different interactions with Wnt signaling pathway-regulated liver fibrosis. The Wnt signaling pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the Wnt signaling pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of Wnt signaling pathway activation in liver fibrosis. For example, antagonist to Wnt and Wnt ligands could inhibit liver fibrosis by regulating Wnt/β-catenin signaling pathway. These findings identify the Wnt signaling pathway as a potentially important for therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective Wnt-based drugs.
Collapse
|
46
|
Peterson KR, Cottam MA, Kennedy AJ, Hasty AH. Macrophage-Targeted Therapeutics for Metabolic Disease. Trends Pharmacol Sci 2018; 39:536-546. [PMID: 29628274 DOI: 10.1016/j.tips.2018.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 01/22/2023]
Abstract
Macrophages are cells of the innate immune system that are resident in all tissues, including metabolic organs such as the liver and adipose tissue (AT). Because of their phenotypic flexibility, they play beneficial roles in tissue homeostasis, but they also contribute to the progression of metabolic disease. Thus, they are ideal therapeutic targets for diseases such as insulin resistance (IR), nonalcoholic fatty liver disease (NAFLD), and atherosclerosis. Recently, discoveries in the area of drug delivery have facilitated phenotype-specific targeting of macrophages. In this review we discuss advances in potential therapeutics for metabolic diseases via macrophage-specific delivery. We highlight micro- and nanoparticles, liposomes, and oligopeptide complexes, and how they can be used to alter macrophage phenotype for a more metabolically favorable tissue environment.
Collapse
Affiliation(s)
- Kristin R Peterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; These authors contributed equally to this work
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; These authors contributed equally to this work
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
47
|
Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway. Eur J Pharmacol 2018; 825:107-118. [DOI: 10.1016/j.ejphar.2018.02.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/28/2022]
|
48
|
Nobili V, Carpino G, De Peppo F, Caccamo R, Mosca A, Romito I, Overi D, Franchitto A, Onori P, Alisi A, Gaudio E. Laparoscopic Sleeve Gastrectomy Improves Nonalcoholic Fatty Liver Disease-Related Liver Damage in Adolescents by Reshaping Cellular Interactions and Hepatic Adipocytokine Production. J Pediatr 2018; 194:100-108.e3. [PMID: 29198531 DOI: 10.1016/j.jpeds.2017.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To investigate whether the modulation of local cellular cross-talks and the modification of hepatic adipocytokine expression could mechanistically explain the improvement of liver histopathology after laparoscopic sleeve gastrectomy (LSG) in adolescents with nonalcoholic fatty liver disease (NAFLD). STUDY DESIGN Twenty obese (body mass index of ≥35 kg/m2) adolescents who underwent LSG and with biopsy-proven NAFLD were included. At baseline (T0) and 1 year after treatment, patients underwent clinical evaluation, blood tests, and liver biopsy. Hepatic progenitor cells, hepatic stellate cells (HSCs), macrophages, and adipocytokines were evaluated by immunohistochemistry and immunofluorescence. RESULTS Liver biopsy samples after LSG demonstrated a significant improvement of NAFLD Activity Score and fibrosis. Immunohistochemistry indicated a significant reduction of hepatocyte cell cycle arrest, ductular reaction, activated HSC, and macrophage number after LSG compared with T0. The activation state of HSC was accompanied by modification in the expression of the autophagy marker LC3. Hepatocyte expression of adiponectin was significant higher after LSG than into T0. Moreover, LSG caused decreased resistin expression in Sox9+ hepatic progenitor cells compared with T0. The number of S100A9+ macrophages was also reduced by LSG correlating with resistin expression. Finally, serum levels of proinflammatory cytokines significantly correlated with macrophages and activated HSC numbers. CONCLUSIONS The histologic improvement induced by LSG is associated with the reduced activation of local cellular compartments (hepatic progenitor cells, HSCs, and macrophages), thus, strengthening the role of cellular interactions and hepatic adipocytokine production in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Valerio Nobili
- Hepatometabolic Unit, Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Francesco De Peppo
- Pediatric Surgery Unit, Bambino Gesù Children's Hospital, Palidoro, Roma, Italy
| | - Romina Caccamo
- Pediatric Surgery Unit, Bambino Gesù Children's Hospital, Palidoro, Roma, Italy
| | - Antonella Mosca
- Hepatometabolic Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Ilaria Romito
- Liver Research Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Alisi
- Liver Research Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
49
|
Carpino G, Cardinale V, Folseraas T, Overi D, Floreani A, Franchitto A, Onori P, Cazzagon N, Berloco PB, Karlsen TH, Alvaro D, Gaudio E. Hepatic Stem/Progenitor Cell Activation Differs between Primary Sclerosing and Primary Biliary Cholangitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:627-639. [PMID: 29248458 DOI: 10.1016/j.ajpath.2017.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 02/08/2023]
Abstract
Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are human primary cholangiopathies characterized by the damage of mature cholangiocytes and by the appearance of ductular reaction (DR) as the results of hepatic progenitor cell activation. This study evaluated the differences in progenitor cell niche activation between these two cholangiopathies. Liver tissue was obtained from healthy liver donors (n = 5) and from patients with PSC (n = 20) or PBC (n = 20). DR, progenitor cell phenotype, and signaling pathways were investigated by IHC analysis and immunofluorescence. Our results indicated that DR was more extended, appeared earlier, and had a higher proliferation index in PBC compared with PSC. In PBC, DR was strongly correlated with clinical prognostic scores. A higher percentage of sex determining region Y-box (SOX)9+ and cytokeratin 19+ cells but fewer features of hepatocyte fate characterized progenitor cell activation in PBC versus PSC. Lower levels of laminin and neurogenic locus notch homolog protein 1 but higher expression of wingless-related integration site (WNT) family pathway components characterize progenitor cell niche in PSC compared with PBC. In conclusion, progenitor cell activation differs between PSC and PBC and is characterized by a divergent fate commitment and different signaling pathway predominance. In PBC, DR represents a relevant histologic prognostic marker.
Collapse
Affiliation(s)
- Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Trine Folseraas
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Nora Cazzagon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Pasquale B Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Tom H Karlsen
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
50
|
Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4629495. [PMID: 29379583 PMCID: PMC5742885 DOI: 10.1155/2017/4629495] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/07/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
GSK-3 is a ubiquitously expressed serine/threonine kinase existing as GSK-3α and GSK-3β isoforms, both active under basal conditions and inactivated upon phosphorylation by different upstream kinases. Initially discovered as a regulator of glycogen synthesis, GSK-3 is also involved in several signaling pathways controlling many different key functions. Here, we discuss recent advances regarding (i) GSK-3 structure, function, regulation, and involvement in several cancers, including hepatocarcinoma, cholangiocarcinoma, breast cancer, prostate cancer, leukemia, and melanoma (active GSK-3 has been shown to induce apoptosis in some cases or inhibit apoptosis in other cases and to induce cancer progression or inhibit tumor cell proliferation, suggesting that different GSK-3 modulators may address different specific targets); (ii) GSK-3 involvement in autophagy modulation, reviewing signaling pathways involved in neurodegenerative and liver diseases; (iii) GSK-3 role in oxidative stress and autophagic cell death, focusing on liver injury; (iv) GSK-3 as a possible therapeutic target of natural substances and synthetic inhibitors in many diseases; and (v) GSK-3 role as modulator of mammalian aging, related to metabolic alterations characterizing senescent cells and age-related diseases. Studies summarized here underline the GSK-3 multifaceted role and indicate such kinase as a molecular target in different pathologies, including diseases associated with autophagy dysregulation.
Collapse
|