1
|
Sharpe CR, Ruxton GD. Can Predation Pressure Help Explain the Curious Evolution of Ballistic Seed Dispersal? Ecol Evol 2025; 15:e71081. [PMID: 40083737 PMCID: PMC11904313 DOI: 10.1002/ece3.71081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Ballistic seed dispersal (ballochory) involves the autonomous explosive release of seeds from adult plants. The unconventional mechanics of this strategy have understandably drawn considerable scientific attention. The explosive release of seeds is achieved by a variety of physical mechanisms but broadly involves the rapid coiling or shattering of seed pods to transfer kinetic energy to seeds, facilitated largely by either the evaporation or absorption of water in seed pod tissues. There has been a bias toward researching physiological and physical aspects of ballistic plants, with the evolutionary ecology being comparatively neglected. Although ballochory is represented in 23 plant families, it has never become common. This fact should invite curiosity regarding the selective pressures that encourage its evolution. Previous research has been unable to correlate ballochory with plant traits such as morphology, generation time or habitat preferences, and so we take an alternative approach in considering the evolutionary advantages that can provide insight on the shared set of circumstances that favour the evolution of this strategy. We review the known selective advantages that ballistic dispersal can confer to plants and promote a hypothesis that ballochory may be particularly selected for in instances of concentrated predation pressure on parental canopies. For plants in static and patchy landscapes, such a strategy could balance a trade-off between escaping concentrated natural enemies while maximising the probability of transport to suitable habitat. We account for its rarity by considering the major opportunity cost that may only be justified when other seed dispersal mechanisms are limited. Moving forward, we suggest experimental manipulations to test this hypothesis and promote a research agenda in the field of ballistic seed dispersal that illuminates its intriguing evolution.
Collapse
Affiliation(s)
- C. R. Sharpe
- Conservation Ecology Group, Department of BiosciencesDurham UniversityDurhamUK
| | - G. D. Ruxton
- School of Biology, Centre for Biological Diversity, Institute of Behavioural and Neural SciencesUniversity of St. AndrewsSt. AndrewsUK
| |
Collapse
|
2
|
Xia R, Qiao Y, Xu H, Ren H, Hou Z, Yan M, Li Y, Wang Y, Pan S, Xin G. 4D-label free based comparative proteomics revealed the responsive mechanisms of quality deterioration driven by spore release in shiitake mushrooms. Food Chem 2025; 464:141903. [PMID: 39515164 DOI: 10.1016/j.foodchem.2024.141903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Label-free quantitative proteomics profiles combined with biochemical analysis were applied in three spore release stages to investigate the proteome responses related to spore release inducing the quality loss of mushrooms. During the spore release, the mushrooms softened, and malondialdehyde (MDA) and total free amino acids accumulated, especially bitter amino acids. Among the 2720 identified proteins, aminoacyl-tRNA biosynthesis, oxidative phosphorylation, and other glycan degradation pathways were primarily implicated. ATP-binding cassette (ABC) transporters and purine metabolism stimulated energy consumption in the second stage, which could be responsible for the spore release. Moreover, aminoacyl-tRNA ligase and ribosomal proteins were identified as hub proteins, actively expressed, and significantly associated with quality traits. The hub proteins might play a dominant role in mediating the quality deterioration triggered by the spore release in shiitake mushrooms. The results expand the understanding of the molecular mechanisms underlying the response to spore release in shiitake mushrooms.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yitong Qiao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongli Ren
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Calaça FJS, Araújo JC, de Melo E Silva-Neto C, Xavier-Santos S. A microcosmic experimental overview of durability and nutritional aspects of feces to dung-inhabiting fungi development. Sci Rep 2024; 14:30334. [PMID: 39639096 PMCID: PMC11621789 DOI: 10.1038/s41598-024-82059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Dung serves as a critical resource for diverse organisms, including dung-inhabiting fungi, which play a key role in nutrient cycling. In this study, we examined the decomposition rates and half-lives of dung from ruminant and monogastric herbivores in a microcosm experiment, assessing the impact of autoclaving (fungal exclusion) on decomposition dynamics. Over six months, autoclaved dung decomposed more slowly, retaining greater biomass and highlighting the fungi's role in matter cycling. Decomposition followed a Gaussian linear model, with constants k ranging from 0.02 to 0.03 and half-lives of 19-23 days. Nutrient mineralization varied significantly between the start and end of the experiment, underscoring the contribution of the fungi to nutrient release. Our findings emphasize the ecological importance of dung-inhabiting fungi and suggest areas for future research on factors influencing dung decomposition in terrestrial ecosystems.
Collapse
Affiliation(s)
- Francisco J Simões Calaça
- Laboratório de Pesquisa em Ensino de Ciências-LabPEC, Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, 75132-903, Goiás, Brazil.
- Laboratório de Micologia Básica, Aplicada e Divulgação Científica-FungiLab, Universidade Estadual de Goiás, Campus Central, Anápolis, 75132-903, Goiás, Brazil.
- Secretaria de Estado da Educação de Goiás (SEDUC/GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, 74643-030, Goiás, Brazil.
- Mykocosmos-Mycology and Science Communication, Rua JP 11 Quadra 18 Lote 13, Jd. Primavera 1ª etapa, Anápolis, 75090-260, Goiás, Brazil.
| | - Jéssica Conceição Araújo
- Secretaria de Estado da Educação de Goiás (SEDUC/GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, 74643-030, Goiás, Brazil
- Mykocosmos-Mycology and Science Communication, Rua JP 11 Quadra 18 Lote 13, Jd. Primavera 1ª etapa, Anápolis, 75090-260, Goiás, Brazil
| | | | - Solange Xavier-Santos
- Laboratório de Micologia Básica, Aplicada e Divulgação Científica-FungiLab, Universidade Estadual de Goiás, Campus Central, Anápolis, 75132-903, Goiás, Brazil
| |
Collapse
|
4
|
Money NP. Microballistics in fungi and plants. Curr Biol 2024; 34:R977-R981. [PMID: 39437739 DOI: 10.1016/j.cub.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ballistic movements in biology are powered by muscle contraction, explosive chemical reactions, the formation and collapse of gas bubbles, merger of fluid droplets, and release of hydrostatic pressure. At the macroscopic end of this kinetic carnival we find jumping fleas, violent spider jaws, shrimp claw hammers, and squirting beetles and cucumbers. The speeds are startling, but the mechanisms seem familiar because they occur on a spatial scale that overlaps with our physical experiences. We jump, albeit more slowly than fleas, for example, and it does not seem strange that seeds will spurt from a swollen cucumber when it hits the ground. Ballistics in microscopic dimensions are very different, operating in a seemingly alien world of fluid mechanics where thin air becomes soup and gravity vanishes.
Collapse
Affiliation(s)
- Nicholas P Money
- Western Program and Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
5
|
Wang X, Pan C, Xia N, Zhang C, Hao B, Jin D, Su L, Zhao J, Majidi C, Zhang L. Fracture-driven power amplification in a hydrogel launcher. NATURE MATERIALS 2024; 23:1428-1435. [PMID: 39043929 DOI: 10.1038/s41563-024-01955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Robotic tasks that require robust propulsion abilities such as jumping, ejecting or catapulting require power-amplification strategies where kinetic energy is generated from pre-stored energy. Here we report an engineered accumulated strain energy-fracture power-amplification method that is inspired by the pressurized fluidic squirting mechanism of Ecballium elaterium (squirting cucumber plants). We realize a light-driven hydrogel launcher that harnesses fast liquid vapourization triggered by the photothermal response of an embedded graphene suspension. This vapourization leads to appreciable elastic energy storage within the surrounding hydrogel network, followed by rapid elastic energy release within 0.3 ms. These soft hydrogel robots achieve controlled launching at high velocity with a predictable trajectory. The accumulated strain energy-fracture method was used to create an artificial squirting cucumber that disperses artificial seeds over metres, which can further achieve smart seeding through an integrated radio-frequency identification chip. This power-amplification strategy provides a basis for propulsive motion to advance the capabilities of miniaturized soft robotic systems.
Collapse
Affiliation(s)
- Xin Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Chengfeng Pan
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China.
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Chong Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Bo Hao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Dongdong Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, People's Republic of China
| | - Lin Su
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jinsheng Zhao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Carmel Majidi
- Soft Machines Lab, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong, People's Republic of China.
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
| |
Collapse
|
6
|
Challita EJ, Rohilla P, Bhamla MS. Fluid Ejections in Nature. Annu Rev Chem Biomol Eng 2024; 15:187-217. [PMID: 38669514 PMCID: PMC11269045 DOI: 10.1146/annurev-chembioeng-100722-113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
From microscopic fungi to colossal whales, fluid ejections are universal and intricate phenomena in biology, serving vital functions such as animal excretion, venom spraying, prey hunting, spore dispersal, and plant guttation. This review delves into the complex fluid physics of ejections across various scales, exploring both muscle-powered active systems and passive mechanisms driven by gravity or osmosis. It introduces a framework using dimensionless numbers to delineate transitions from dripping to jetting and elucidate the governing forces. Highlighting the understudied area of complex fluid ejections, this review not only rationalizes the biophysics involved but also uncovers potential engineering applications in soft robotics, additive manufacturing, and drug delivery. By bridging biomechanics, the physics of living systems, and fluid dynamics, this review offers valuable insights into the diverse world of fluid ejections and paves the way for future bioinspired research across the spectrum of life.
Collapse
Affiliation(s)
- Elio J Challita
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Pankaj Rohilla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| |
Collapse
|
7
|
Skowronski N, Malek Pour M, Singh S, Longo SJ, St Pierre R. Design and control of jumping microrobots with torque reversal latches. BIOINSPIRATION & BIOMIMETICS 2024; 19:046007. [PMID: 38697139 DOI: 10.1088/1748-3190/ad46b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Jumping microrobots and insects power their impressive leaps through systems of springs and latches. Using springs and latches, rather than motors or muscles, as actuators to power jumps imposes new challenges on controlling the performance of the jump. In this paper, we show how tuning the motor and spring relative to one another in a torque reversal latch can lead to an ability to control jump output, producing either tuneable (variable) or stereotyped jumps. We develop and utilize a simple mathematical model to explore the underlying design, dynamics, and control of a torque reversal mechanism, provides the opportunity to achieve different outcomes through the interaction between geometry, spring properties, and motor voltage. We relate system design and control parameters to performance to guide the design of torque reversal mechanisms for either variable or stereotyped jump performance. We then build a small (356 mg) microrobot and characterize the constituent components (e.g. motor and spring). Through tuning the actuator and spring relative to the geometry of the torque reversal mechanism, we demonstrate that we can achieve jumping microrobots that both jump with different take-off velocities given the actuator input (variable jumping), and those that jump with nearly the same take-off velocity with actuator input (stereotyped jumping). The coupling between spring characteristics and geometry in this system has benefits for resource-limited microrobots, and our work highlights design combinations that have synergistic impacts on output, compared to others that constrain it. This work will guide new design principles for enabling control in resource-limited jumping microrobots.
Collapse
Affiliation(s)
- Nolan Skowronski
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Mohammadamin Malek Pour
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Shashwat Singh
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Sarah J Longo
- Department of Biological Sciences, Towson University, Towson, MD 21252, United States of America
| | - Ryan St Pierre
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| |
Collapse
|
8
|
Challita EJ, Rohilla P, Bhamla MS. Fluid ejections in nature. ARXIV 2024:arXiv:2403.02359v1. [PMID: 38495571 PMCID: PMC10942486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
From microscopic fungi to colossal whales, fluidic ejections are a universal and intricate phenomenon in biology, serving vital functions such as animal excretion, venom spraying, prey hunting, spore dispersal, and plant guttation. This review delves into the complex fluid physics of ejections across various scales, exploring both muscle-powered active systems and passive mechanisms driven by gravity or osmosis. We introduce a framework using dimensionless numbers to delineate transitions from dripping to jetting and elucidate the governing forces. Highlighting the understudied area of complex fluid ejections, this work not only rationalizes the biophysics involved but also uncovers potential engineering applications in soft robotics, additive manufacturing, and drug delivery. By bridging biomechanics, the physics of living systems, and fluid dynamics, this review offers valuable insights into the diverse world of fluid ejections and paves the way for future bioinspired research across the spectrum of life.
Collapse
Affiliation(s)
- Elio J Challita
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA, 30318, USA
| | - Pankaj Rohilla
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - M Saad Bhamla
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA, 30318, USA
| |
Collapse
|
9
|
Jeong SY, Seo HB, Seo MH, Cho JW, Kwon S, Son G, Lee SY. Repeatable Acoustic Vaporization of Coated Perfluorocarbon Bubbles for Micro-Actuation Inspired by Polypodium aureum. Biomimetics (Basel) 2024; 9:106. [PMID: 38392152 PMCID: PMC10887373 DOI: 10.3390/biomimetics9020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Polypodium aureum, a fern, possesses a specialized spore-releasing mechanism like a catapult induced by the quick expansion of vaporized bubbles. This study introduces lipid-coated perfluorocarbon droplets to enable repeatable vaporization-condensation cycles, inspired by the repeatable vaporization of Polypodium aureum. Lipid-perfluorocarbon droplets have been considered not to exhibit repeatable oscillations due to bubble collapse of the low surface tension of lipid layers. However, a single lipid-dodecafluoropentane droplet with a diameter of 9.17 µm shows expansion-contraction oscillations over 4000 cycles by changing lipid composition and applying a low-power 1.7 MHz ultrasound to induce the partial vaporization of the droplets. The optimal combinations of shell composition, droplet fabrication, and acoustic conditions can minimize the damage on shell structure and promote a quick recovery of damaged shell layers. The highly expanding oscillatory microbubbles provide a new direction for fuel-free micro- or nanobots, as well as biomedical applications of contrast agents and drug delivery.
Collapse
Affiliation(s)
- Se-Yun Jeong
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Han-Bok Seo
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Myung-Hyun Seo
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jin-Woo Cho
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seho Kwon
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Gihun Son
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seung-Yop Lee
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
10
|
Arigela R, Gopalakrishnan S, Raghunathan R. Passive fungal spore release from fruit and vegetable solid waste. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131938. [PMID: 37418968 DOI: 10.1016/j.jhazmat.2023.131938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Food substrates in municipal solid wastes processing facilities and open dumpsites are a source for the release of fungal spores into air and can cause potential health and climate effects. Experiments were conducted in a laboratory scale flux chamber to measure the fungal growth and spore release from representative exposed cut fruit and vegetable substrates. The aerosolised spores were measured using an optical particle sizer. The results were compared to experiments conducted previously with a test species (Penicillium chrysogenum) on a synthetic media (czapek yeast extract agar). Significantly higher surface spore densities were observed for the fungi on the food substrates as compared to that on the synthetic media. The spore flux was high initially and then decreased on continued exposure to air. The spore emission flux normalised to the surface spore densities indicated that the emission from the food substrates was lower than the emissions from the synthetic media. A mathematical model was applied to the experimental data and the observed flux trends were explained in terms of the model parameters. A simple application of the data and the model to release from a municipal solid waste dumpsite was shown.
Collapse
Affiliation(s)
- Ravinder Arigela
- Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai, India
| | - Saranya Gopalakrishnan
- Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
11
|
Jorge JF, Patek SN. Elastic pinch biomechanisms can yield consistent launch speeds regardless of projectile mass. J R Soc Interface 2023; 20:20230234. [PMID: 37608709 PMCID: PMC10445031 DOI: 10.1098/rsif.2023.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
Energetic trade-offs are particularly pertinent to bio-ballistic systems which impart energy to projectiles exclusively during launch. We investigated such trade-offs in the spring-propelled seeds of Loropetalum chinense, Hamamelis virginiana and Fortunearia sinensis. Using similar seed-shooting mechanisms, fruits of these confamilial plants (Hamamelidaceae) span an order of magnitude in spring and seed mass. We expected that as seed mass increases, launch speed decreases. Instead, launch speed was relatively constant regardless of seed mass. We tested if fruits shoot larger seeds by storing more elastic potential energy (PE). Spring mass and PE increased as seed mass increased (in order of increasing seed mass: L. chinense, H. virginiana, F. sinensis). As seed mass to spring mass ratio increased (ratios: H. virginiana = 0.50, F. sinensis = 0.65, L. chinense = 0.84), mass-specific PE storage increased. The conversion efficiency of PE to seed kinetic energy (KE) decreased with increasing fruit mass. Therefore, similar launch speeds across scales occurred because (i) larger fruits stored more PE and (ii) smaller fruits had higher mass-specific PE storage and improved PE to KE conversion. By examining integrated spring and projectile mechanics in our focal species, we revealed diverse, energetic scaling strategies relevant to spring-propelled systems navigating energetic trade-offs.
Collapse
Affiliation(s)
| | - S. N. Patek
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Mantova M, Cochard H, Burlett R, Delzon S, King A, Rodriguez-Dominguez CM, Ahmed MA, Trueba S, Torres-Ruiz JM. On the path from xylem hydraulic failure to downstream cell death. THE NEW PHYTOLOGIST 2023; 237:793-806. [PMID: 36305207 DOI: 10.1111/nph.18578] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Xylem hydraulic failure (HF) has been identified as a ubiquitous factor in triggering drought-induced tree mortality through the damage induced by the progressive dehydration of plant living cells. However, fundamental evidence of the mechanistic link connecting xylem HF to cell death has not been identified yet. The main aim of this study was to evaluate, at the leaf level, the relationship between loss of hydraulic function due to cavitation and cell death under drought conditions and discern how this relationship varied across species with contrasting resistances to cavitation. Drought was induced by withholding water from potted seedlings, and their leaves were sampled to measure their relative water content (RWC) and cell mortality. Vulnerability curves to cavitation at the leaf level were constructed for each species. An increment in cavitation events occurrence precedes the onset of cell mortality. A variation in cells tolerance to dehydration was observed along with the resistance to cavitation. Overall, our results indicate that the onset of cellular mortality occurs at lower RWC than the one for cavitation indicating the role of cavitation in triggering cellular death. They also evidenced a critical RWC for cellular death varying across species with different cavitation resistance.
Collapse
Affiliation(s)
- Marylou Mantova
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Régis Burlett
- Université Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Andrew King
- Synchrotron SOLEIL, L'Orme des Merisiers, 91190, Gif-sur-Yvette cedex, France
| | - Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Mutez A Ahmed
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA, 95616, USA
| | | | - José M Torres-Ruiz
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| |
Collapse
|
13
|
Kalayanamitra P, Kalayanamitra K, Nontajak S, Taylor PWJ, Jonglaekha N, Bussaban B. Identification, Characterization, and Control of Black Spot on Chinese Kale Caused by Sphaerobolus cuprophilus sp. nov. PLANTS (BASEL, SWITZERLAND) 2023; 12:480. [PMID: 36771565 PMCID: PMC9920292 DOI: 10.3390/plants12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Chinese kale (Brassica alboglabra) is commonly grown and consumed throughout Asia and is often treated with chemicals to control pests and diseases. In Thailand, public standards, Good Agricultural Practice (GAP), and International Federation of Organic Agriculture Movement (IFOAM) programs were introduced for the cultivation of Chinese kale with minimum input of chemical treatments. Black spot caused by the fungus Sphaerobolus has been affecting the plants grown under IFOAM standards in Chiang Mai, Thailand, for several years. Strongly adhering glebal spore masses of the fungus on leaf and stem surfaces have adversely affected postharvest management, especially in the quality classification of the product. Both morphological and phylogenetic (combined ITS, mtSSU, and EF 1-α dataset) studies confirmed a novel species, S. cuprophilus. Pathogenicity tests involving inoculation of Chinese kale by non-wound and mulch inoculation bioassays resulted in the production of symptoms of black spot and the re-isolation of S. cuprophilus, indicating that the new fungal species is the causal agent of black spots. Inhibitory effects of antagonistic bacteria and chemical fungicides, both allowed for use in plant cultivation under either IFOAM or GAP standards, indicated that Bacillus amyloliquefaciens strains (PBT2 and YMB7), chlorothalonil (20 and 500 ppm) and thiophanate-methyl (500 and 1500 ppm) were the most effective in controlling the growth of the causal fungus by 83 to 93%. However, copper oxychloride (5 to 20 ppm), a recommended chemical in control of downy mildew of Chinese kale, showed hormetic effects on S. cuprophilus by promoting the growth and sporulation of the fungus. The findings of this study provide vital information regarding the association of S. cuprophilus and Chinese kale and will support decisions to manage fungal diseases of this vegetable.
Collapse
Affiliation(s)
- Pancheewa Kalayanamitra
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kal Kalayanamitra
- Program of Postharvest Technology, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | - Sutasinee Nontajak
- Royal Project Agricultural Research and Development Center, Chiang Mai 50100, Thailand
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nuchnart Jonglaekha
- Royal Project Agricultural Research and Development Center, Chiang Mai 50100, Thailand
| | - Boonsom Bussaban
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Longo SJ, St Pierre R, Bergbreiter S, Cox S, Schelling B, Patek SN. Geometric latches enable tuning of ultrafast, spring-propelled movements. J Exp Biol 2023; 226:286280. [PMID: 36606724 DOI: 10.1242/jeb.244363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
The smallest, fastest, repeated-use movements are propelled by power-dense elastic mechanisms, yet the key to their energetic control may be found in the latch-like mechanisms that mediate transformation from elastic potential energy to kinetic energy. Here, we tested how geometric latches enable consistent or variable outputs in ultrafast, spring-propelled systems. We constructed a reduced-order mathematical model of a spring-propelled system that uses a torque reversal (over-center) geometric latch. The model was parameterized to match the scales and mechanisms of ultrafast systems, specifically snapping shrimp. We simulated geometric and energetic configurations that enabled or reduced variation of strike durations and dactyl rotations given variation of stored elastic energy and latch mediation. Then, we collected an experimental dataset of the energy storage mechanism and ultrafast snaps of live snapping shrimp (Alpheus heterochaelis) and compared our simulations with their configuration. We discovered that snapping shrimp deform the propodus exoskeleton prior to the strike, which may contribute to elastic energy storage. Regardless of the amount of variation in spring loading duration, strike durations were far less variable than spring loading durations. When we simulated this species' morphological configuration in our mathematical model, we found that the low variability of strike duration is consistent with their torque reversal geometry. Even so, our simulations indicate that torque reversal systems can achieve either variable or invariant outputs through small adjustments to geometry. Our combined experiments and mathematical simulations reveal the capacity of geometric latches to enable, reduce or enhance variation of ultrafast movements in biological and synthetic systems.
Collapse
Affiliation(s)
- Sarah J Longo
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ryan St Pierre
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Suzanne Cox
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
Hyun NP, Olberding JP, De A, Divi S, Liang X, Thomas E, St Pierre R, Steinhardt E, Jorge J, Longo SJ, Cox S, Mendoza E, Sutton GP, Azizi E, Crosby AJ, Bergbreiter S, Wood RJ, Patek SN. Spring and latch dynamics can act as control pathways in ultrafast systems. BIOINSPIRATION & BIOMIMETICS 2023; 18:026002. [PMID: 36595244 DOI: 10.1088/1748-3190/acaa7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Ultrafast movements propelled by springs and released by latches are thought limited to energetic adjustments prior to movement, and seemingly cannot adjust once movement begins. Even so, across the tree of life, ultrafast organisms navigate dynamic environments and generate a range of movements, suggesting unrecognized capabilities for control. We develop a framework of control pathways leveraging the non-linear dynamics of spring-propelled, latch-released systems. We analytically model spring dynamics and develop reduced-parameter models of latch dynamics to quantify how they can be tuned internally or through changing external environments. Using Lagrangian mechanics, we test feedforward and feedback control implementation via spring and latch dynamics. We establish through empirically-informed modeling that ultrafast movement can be controllably varied during latch release and spring propulsion. A deeper understanding of the interconnection between multiple control pathways, and the tunability of each control pathway, in ultrafast biomechanical systems presented here has the potential to expand the capabilities of synthetic ultra-fast systems and provides a new framework to understand the behaviors of fast organisms subject to perturbations and environmental non-idealities.
Collapse
Affiliation(s)
- N P Hyun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - J P Olberding
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - A De
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - S Divi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - X Liang
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - E Thomas
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - R St Pierre
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - E Steinhardt
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - J Jorge
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - S J Longo
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - S Cox
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - E Mendoza
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - G P Sutton
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - E Azizi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - A J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - S Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - R J Wood
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - S N Patek
- Biology Department, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
16
|
Xia R, Zhao X, Xin G, Sun L, Xu H, Hou Z, Li Y, Wang Y. Energy status regulated umami compound metabolism in harvested shiitake mushrooms (Lentinus edodes) with spores triggered to release. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Mahaffee WF, Margairaz F, Ulmer L, Bailey BN, Stoll R. Catching Spores: Linking Epidemiology, Pathogen Biology, and Physics to Ground-Based Airborne Inoculum Monitoring. PLANT DISEASE 2023; 107:13-33. [PMID: 35679849 DOI: 10.1094/pdis-11-21-2570-fe] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring airborne inoculum is gaining interest as a potential means of giving growers an earlier warning of disease risk in a management unit or region. This information is sought by growers to aid in adapting to changes in the management tools at their disposal and the market-driven need to reduce the use of fungicides and cost of production. To effectively use inoculum monitoring as a decision aid, there is an increasing need to understand the physics of particle transport in managed and natural plant canopies to effectively deploy and use near-ground aerial inoculum data. This understanding, combined with the nuances of pathogen-specific biology and disease epidemiology, can serve as a guide to designing improved monitoring approaches. The complexity of any pathosystem and local environment are such that there is not a generalized approach to near-ground air sampler placement, but there is a conceptual framework to arrive at a "semi-optimal" solution based on available resources. This review is intended as a brief synopsis of the linkages among pathogen biology, disease epidemiology, and the physics of the aerial dispersion of pathogen inoculum and what to consider when deciding where to locate ground-based air samplers. We leverage prior work in developing airborne monitoring tools for hops, grapes, spinach, and turf, and research into the fluid mechanics governing particle transport in sparse canopies and urban and forest environments. We present simulation studies to demonstrate how particles move in the complex environments of agricultural fields and to illustrate the limited sampling area of common air samplers.
Collapse
Affiliation(s)
- Walter F Mahaffee
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Corvallis, OR 97330
| | - Fabien Margairaz
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Lucas Ulmer
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Brian N Bailey
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616
| | - Rob Stoll
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
18
|
Wang L, Chen L, Zheng X, Yu Z, Lv W, Sheng M, Wang L, Nie P, Li H, Guan D, Cui H. Multimodal Bubble Microrobot Near an Air-Water Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203872. [PMID: 36045100 DOI: 10.1002/smll.202203872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Indexed: 05/27/2023]
Abstract
The development of multifunctional and robust swimming microrobots working at the free air-liquid interface has encountered challenge as new manipulation strategies are needed to overcome the complicated interfacial restrictions. Here, flexible but reliable mechanisms are shown that achieve a remote-control bubble microrobot with multiple working modes and high maneuverability by the assistance of a soft air-liquid interface. This bubble microrobot is developed from a hollow Janus microsphere (JM) regulated by a magnetic field, which can implement switchable working modes like pusher, gripper, anchor, and sweeper. The collapse of the microbubble and the accompanying directional jet flow play a key role for functioning in these working modes, which is analogous to a "bubble tentacle." Using a simple gamepad, the orientation and the navigation of the bubble microrobot can be easily manipulated. In particular, a speed modulation method is found for the bubble microrobot, which uses vertical magnetic field to control the orientation of the JM and the direction of the bubble-induced jet flow without changing the fuel concentration. The findings demonstrate a substantial advance of the bubble microrobot specifically working at the air-liquid interface and depict some nonintuitive mechanisms that can help develop more complicated microswimmers.
Collapse
Affiliation(s)
- Leilei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
| | - Li Chen
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
| | - Zexiong Yu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenchao Lv
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Minjia Sheng
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lina Wang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pengcheng Nie
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hangyu Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haihang Cui
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
19
|
The architecture and operating mechanism of a cnidarian stinging organelle. Nat Commun 2022; 13:3494. [PMID: 35715400 PMCID: PMC9205923 DOI: 10.1038/s41467-022-31090-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
The stinging organelles of jellyfish, sea anemones, and other cnidarians, known as nematocysts, are remarkable cellular weapons used for both predation and defense. Nematocysts consist of a pressurized capsule containing a coiled harpoon-like thread. These structures are in turn built within specialized cells known as nematocytes. When triggered, the capsule explosively discharges, ejecting the coiled thread which punctures the target and rapidly elongates by turning inside out in a process called eversion. Due to the structural complexity of the thread and the extreme speed of discharge, the precise mechanics of nematocyst firing have remained elusive7. Here, using a combination of live and super-resolution imaging, 3D electron microscopy, and genetic perturbations, we define the step-by-step sequence of nematocyst operation in the model sea anemone Nematostella vectensis. This analysis reveals the complex biomechanical transformations underpinning the operating mechanism of nematocysts, one of nature’s most exquisite biological micro-machines. Further, this study will provide insight into the form and function of related cnidarian organelles and serve as a template for the design of bioinspired microdevices. The venomous stinging cells of jellyfish, anemones, and corals contain an organelle, the nematocyst, which explosively discharges a venom-laden thread. Here, the authors describe the nematocyst thread and its sub-structures in the sea anemone N. vectensis, revealing a complexity and sophistication underpinning this cellular weapon.
Collapse
|
20
|
Lamacque L, Sabin F, Améglio T, Herbette S, Charrier G. Detection of acoustic events in lavender for measuring xylem vulnerability to embolism and cellular damage. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3699-3710. [PMID: 35176148 DOI: 10.1093/jxb/erac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Acoustic emission analysis is promising to investigate the physiological events leading to drought-induced injury and mortality. However, their nature and source are not fully understood, making this technique difficult to use as a direct measure of the loss of xylem hydraulic conductance. Acoustic emissions were recorded during severe dehydration in lavender plants (Lavandula angustifolia) and compared with the dynamics of embolism development and cell damage. The timing and characteristics of acoustic signals from two independent recording systems were compared by principal component analysis (PCA). Changes in water potential, branch diameter, loss of hydraulic conductance, and cellular damage were also measured to quantify drought-induced damages. Two distinct phases of acoustic emissions were observed during dehydration: the first one associated with a rapid loss of diameter and a significant increase in loss of xylem conductance (90%), and the second with slower changes in diameter and a significant increase in cellular damage. Based on PCA, a developed algorithm discriminated hydraulic-related acoustic signals from other sources, proposing a reconstruction of hydraulic vulnerability curves. Cellular damage preceded by hydraulic failure seems to lead to a lack of recovery. The second acoustic phase would allow detection of plant mortality.
Collapse
Affiliation(s)
- Lia Lamacque
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
- Institut Technique Interprofessionnel Plantes à Parfum, Médicinal, Aromatiques et Industrielles, 26740 Montboucher-sur-Jabron, France
- CNRS Aix-Marseille University, France
| | - Florian Sabin
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Mantova M, Herbette S, Cochard H, Torres-Ruiz JM. Hydraulic failure and tree mortality: from correlation to causation. TRENDS IN PLANT SCIENCE 2022; 27:335-345. [PMID: 34772610 DOI: 10.1016/j.tplants.2021.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Xylem hydraulic failure has been recognized as a pervasive factor in the triggering of drought-induced tree mortality. However, foundational evidence of the mechanistic link connecting hydraulic failure with living cell damage and tree death has not been identified yet, compromising our ability to predict mortality events. Meristematic cells are involved in the recovery of trees from drought, and focusing on their vitality and functionality after a drought event could provide novel information on the mechanistic link between hydraulic failure and drought-induced tree mortality. In this Opinion, we focus on the cell's critical hydration status for tree recovery from drought and how it links with the membrane integrity of the meristems.
Collapse
Affiliation(s)
- Marylou Mantova
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - José M Torres-Ruiz
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France.
| |
Collapse
|
22
|
Jones NAR, Klump BC, Abaurrea TM, Harrower S, Marr C, Scott L, Rendell L, Webster MM. Short-range hunters: exploring the function and constraints of water shooting in dwarf gouramis. J Exp Biol 2021; 224:273833. [PMID: 34854924 DOI: 10.1242/jeb.243477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023]
Abstract
Ballistic predation is a rare foraging adaptation: in fishes, most attention has focused on a single genus, the archerfish, known to manipulate water to shoot down prey above the water surface. However, several gourami species also exhibit apparently similar 'shooting' behaviour, spitting water up to 5 cm above the surface. In a series of experiments, we explored the shooting behaviour and aspects of its significance as a foraging ability in the dwarf gourami (Trichogaster lalius). We investigated sex differences in shooting abilities to determine whether gourami shooting is related to the sex-specific bubble nest manufacture where males mix air and water at the surface to form bubbles. We found that, actually, both sexes were equally able to shoot and could learn to shoot a novel target. In a second experiment, we presented untrained gouramis with opportunities to shoot at live prey and found they successfully shot down both fruit flies and crickets. Finally, we explored the effect of target height on shooting performance to establish potential constraints of shooting as a foraging ability. The frequency of attempted shots and success of hitting targets decreased with height, whereas latency to shoot increased. We also observed that repeatable individual differences account for variation in these measures of shooting performance. Together, our results provide evidence that gourami shooting has a foraging function analogous to that of archerfish. Gourami shooting may serve as an example of convergent evolution and provide opportunities for comparative studies into the, as yet unexplored, ecology and evolution of shooting in fishes.
Collapse
Affiliation(s)
- Nick A R Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Barbara C Klump
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell am Bodensee, Germany
| | - Teresa M Abaurrea
- Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Sophie Harrower
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Clare Marr
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Louise Scott
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Luke Rendell
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
23
|
Curatolo M, Napoli G, Nardinocchi P, Turzi S. Dehydration-induced mechanical instabilities in active elastic spherical shells. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Active elastic instabilities are common phenomena in the natural world, where they have the character of sudden mechanical morphings. Frequently, the driving force of the instability mechanisms has a chemo-mechanical nature, which makes the instabilities very different from the standard elastic instabilities. In this paper, we describe and study the active elastic instability occurring in a swollen spherical closed shell, confining a water-filled cavity, during a dehydration process. We set up a few numerical experiments based on a stress-diffusion model to give an insight into the phenomenon. Then, we present a study that looks at the chemo-mechanical problem and, through a few simplifying assumptions, allows us to derive a semi-analytical model of the phenomenon. It takes into account both the stress state and the water concentration in the walls of the shell at the onset of the instability. Moreover, it considers the invariance of the cavity volume at the onset of instability, which is due to the impossibility of instantaneously changing the cavity volume filled with water. Eventually, it is shown that the semi-analytic model matches very well the outcomes of the numerical experiments far from the initial regime; the ranges of validity of the approximated analytical model are also discussed.
Collapse
Affiliation(s)
- M. Curatolo
- Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Università di Roma, via Eudossiana, 18, I-00184 Roma, Italy
| | - G. Napoli
- Dipartimento di Matematica e Fisica ‘E. De Giorgi’, Università del Salento, Lecce, Italy
| | - P. Nardinocchi
- Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Università di Roma, via Eudossiana, 18, I-00184 Roma, Italy
| | - S. Turzi
- Dipartimento di Matematica, Politecnico di Milano, Milano, Italy
| |
Collapse
|
24
|
Aeciospore ejection in the rust pathogen Puccinia graminis is driven by moisture ingress. Commun Biol 2021; 4:1216. [PMID: 34686772 PMCID: PMC8536709 DOI: 10.1038/s42003-021-02747-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022] Open
Abstract
Fungi have evolved an array of spore discharge and dispersal processes. Here, we developed a theoretical model that explains the ejection mechanics of aeciospore liberation in the stem rust pathogen Puccinia graminis. Aeciospores are released from cluster cups formed on its Berberis host, spreading early-season inoculum into neighboring small-grain crops. Our model illustrates that during dew or rainfall, changes in aeciospore turgidity exerts substantial force on neighboring aeciospores in cluster cups whilst gaps between spores become perfused with water. This perfusion coats aeciospores with a lubrication film that facilitates expulsion, with single aeciospores reaching speeds of 0.053 to 0.754 m·s-1. We also used aeciospore source strength estimates to simulate the aeciospore dispersal gradient and incorporated this into a publicly available web interface. This aids farmers and legislators to assess current local risk of dispersal and facilitates development of sophisticated epidemiological models to potentially curtail stem rust epidemics originating on Berberis.
Collapse
|
25
|
A physical model of mantis shrimp for exploring the dynamics of ultrafast systems. Proc Natl Acad Sci U S A 2021; 118:2026833118. [PMID: 34389671 DOI: 10.1073/pnas.2026833118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efficient and effective generation of high-acceleration movement in biology requires a process to control energy flow and amplify mechanical power from power density-limited muscle. Until recently, this ability was exclusive to ultrafast, small organisms, and this process was largely ascribed to the high mechanical power density of small elastic recoil mechanisms. In several ultrafast organisms, linkages suddenly initiate rotation when they overcenter and reverse torque; this process mediates the release of stored elastic energy and enhances the mechanical power output of extremely fast, spring-actuated systems. Here we report the discovery of linkage dynamics and geometric latching that reveals how organisms and synthetic systems generate extremely high-acceleration, short-duration movements. Through synergistic analyses of mantis shrimp strikes, a synthetic mantis shrimp robot, and a dynamic mathematical model, we discover that linkages can exhibit distinct dynamic phases that control energy transfer from stored elastic energy to ultrafast movement. These design principles are embodied in a 1.5-g mantis shrimp scale mechanism capable of striking velocities over 26 m [Formula: see text] in air and 5 m [Formula: see text] in water. The physical, mathematical, and biological datasets establish latching mechanics with four temporal phases and identify a nondimensional performance metric to analyze potential energy transfer. These temporal phases enable control of an extreme cascade of mechanical power amplification. Linkage dynamics and temporal phase characteristics are easily adjusted through linkage design in robotic and mathematical systems and provide a framework to understand the function of linkages and latches in biological systems.
Collapse
|
26
|
Gruen V, Helfricht N, Rosenfeldt S, Schenk AS. Interface-mediated formation of basic cobalt carbonate/polyethyleneimine composite microscrolls by strain-induced self-rolling. Chem Commun (Camb) 2021; 57:7244-7247. [PMID: 34190238 DOI: 10.1039/d1cc01136g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyethyleneimine aids the gas diffusion precipitation of nano-structured basic cobalt carbonate sheets at the air/solution interface. Upon drying, these mineral films undergo self-rolling into 3D coiled structures. Exploring this principle for the design of self-supported functional materials, porous Co3O4 spirals composed of interconnected nanoparticles are obtained by thermal conversion.
Collapse
Affiliation(s)
- Viktoria Gruen
- Physical Chemistry-Colloidal Systems, University of Bayreuth, Bayreuth 95440, Germany.
| | | | | | | |
Collapse
|
27
|
Timerman D, Barrett SCH. The biomechanics of pollen release: new perspectives on the evolution of wind pollination in angiosperms. Biol Rev Camb Philos Soc 2021; 96:2146-2163. [PMID: 34076950 DOI: 10.1111/brv.12745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Evolutionary transitions from animal to wind pollination have occurred repeatedly during the history of the angiosperms, but the selective mechanisms remain elusive. Here, we propose that knowledge of pollen release biomechanics is critical for understanding the ecological and evolutionary processes underpinning this shift in pollination mode. Pollen release is the critical first stage of wind pollination (anemophily) and stamen properties are therefore likely to be under strong selection early in the transition. We describe current understanding of pollen release biomechanics to provide insights on the phenotypic and ecological drivers of wind pollination. Pollen release occurs when detachment forces dominate resistive forces retaining pollen within anthers. Detachment forces can be active or passive depending on whether they require energy input from the environment. Passive release is more widespread in anemophilous species and involves processes driven by steady or unsteady aerodynamic forces or turbulence-induced vibrations that shake pollen from anthers. We review empirical and theoretical studies suggesting that stamen vibration is likely to be a key mechanism of pollen release. The vibration response is governed by morphological and biomechanical properties of stamens, which may undergo divergent selection in the presence or absence of pollinators. Resistive forces have rarely been investigated for pollen within anthers, but are probably sensitive to environmental conditions and depend on flower age, varying systematically between animal- and wind-pollinated species. Animal and wind pollination are traditionally viewed as dichotomous alternatives because they are usually associated with strikingly different pollination syndromes. But this perspective has diverted attention from subtler, continuously varying traits which mediate the fluid dynamic process of pollen release. Reinterpreting the flower as a biomechanical entity that responds to fluctuating environmental forces may provide a promising way forward. We conclude by identifying several profitable areas for future research to obtain deeper insight into the evolution of wind pollination.
Collapse
Affiliation(s)
- David Timerman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| |
Collapse
|
28
|
Huang LJ, Fu WL. A water drop-shaped slingshot in plants: geometry and mechanics in the explosive seed dispersal of Orixa japonica (Rutaceae). ANNALS OF BOTANY 2021; 127:765-774. [PMID: 33608717 PMCID: PMC8103806 DOI: 10.1093/aob/mcab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS In angiosperms, many species disperse their seeds autonomously by rapid movement of the pericarp. The fruits of these species often have long rod- or long plate-shaped pericarps, which are suitable for ejecting seeds during fruit dehiscence by bending or coiling. However, here we show that fruit with a completely different shape can also rely on pericarp movement to disperse seeds explosively, as in Orixa japonica. METHODS Fruit morphology was observed by hard tissue sectioning, scanning electron microscopy and micro-computed tomography, and the seed dispersal process was analysed using a high-speed camera. Comparisons were made of the geometric characteristics of pericarps before and after fruit dehiscence, and the mechanical process of pericarp movement was simulated with the aid of the finite element model. KEY RESULTS During fruit dehydration, the water drop-shaped endocarp of O. japonica with sandwich structure produced two-way bending deformation and cracking, and its width increased more than three-fold before opening. Meanwhile the same shaped exocarp with uniform structure could only produce small passive deformation under relatively large external forces. The endocarp forced the exocarp to open by hygroscopic movement before seed launching, and the exocarp provided the acceleration for seed launching through a reaction force. CONCLUSIONS Two layers of water drop-shaped pericarp in O. japonica form a structure similar to a slingshot, which launches the seed at high speed during fruit dehiscence. The results suggest that plants with explosive seed dispersal appear to have a wide variety of fruit morphology, and through a combination of different external shapes and internal structures, they are able to move rapidly using many sophisticated mechanisms.
Collapse
Affiliation(s)
- Lan-Jie Huang
- College of Life Sciences, Hubei University, WuhanChina
| | - Wen-Long Fu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, WuhanChina
- University of Chinese Academy of Sciences, BeijingChina
| |
Collapse
|
29
|
Mantova M, Menezes-Silva PE, Badel E, Cochard H, Torres-Ruiz JM. The interplay of hydraulic failure and cell vitality explains tree capacity to recover from drought. PHYSIOLOGIA PLANTARUM 2021; 172:247-257. [PMID: 33432594 DOI: 10.1111/ppl.13331] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Global climatic models predict an increment in the frequency and intensity of drought events, which have important consequences on forest dieback. However, the mechanisms leading to tree mortality under drought conditions and the physiological thresholds for recovery are not totally understood yet. This study aimed to identify what are the key physiological traits that determine the tree capacity to recover from drought. Individuals of a conifer (Pseudotsuga menziesii M.) and an angiosperm (Prunus lusitanica L.) species were exposed to drought and their ability to recover after rehydration monitored. Results showed that the actual thresholds used for recovery from drought based on percentage loss of conductance (PLC) (i.e., 50% for conifers, 88% for angiosperms) do not provide accurate insights about the tree capacity for surviving extreme drought events. On the contrary, differences in stem relative water content (RWCStem ) and the level of electrolytes leakage (EL) were directly related to the capacity of the trees to recover from drought. This was the case for the conifer species, P. menziesii, for which higher RWCStem and lower EL values were related to the recovery capacity. Even if results showed a similar trend for the angiosperm P. lusitanica as for the conifers, differences between the two traits were much more subtle and did not allow an accurate differentiation between trees able to recover and those that were not. RWCStem and EL could work as indicators of tree capacity to recover from drought for conifers but more studies are required to confirm this observation for angiosperms.
Collapse
Affiliation(s)
- Marylou Mantova
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Paulo E Menezes-Silva
- Laboratório de Fisiologia Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Goiânia, Brazil
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | |
Collapse
|
30
|
Harrison JS, Porter ML, McHenry MJ, Robinson HE, Patek SN. Scaling and development of elastic mechanisms: the tiny strikes of larval mantis shrimp. J Exp Biol 2021; 224:258491. [PMID: 33914038 DOI: 10.1242/jeb.235465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Latch-mediated spring actuation (LaMSA) is used by small organisms to produce high acceleration movements. Mathematical models predict that acceleration increases as LaMSA systems decrease in size. Adult mantis shrimp use a LaMSA mechanism in their raptorial appendages to produce extremely fast strikes. Until now, however, it was unclear whether mantis shrimp at earlier life-history stages also strike using elastic recoil and latch mediation. We tested whether larval mantis shrimp (Gonodactylaceus falcatus) use LaMSA and, because of their smaller size, achieve higher strike accelerations than adults of other mantis shrimp species. Based on microscopy and kinematic analyses, we discovered that larval G. falcatus possess the components of, and actively use, LaMSA during their fourth larval stage, which is the stage of development when larvae begin feeding. Larvae performed strikes at high acceleration and speed (mean: 4.133×105 rad s-2, 292.7 rad s-1; 12 individuals, 25 strikes), which are of the same order of magnitude as for adults - even though adult appendages are up to two orders of magnitude longer. Larval strike speed (mean: 0.385 m s-1) exceeded the maximum swimming speed of similarly sized organisms from other species by several orders of magnitude. These findings establish the developmental timing and scaling of the mantis shrimp LaMSA mechanism and provide insights into the kinematic consequences of scaling limits in tiny elastic mechanisms.
Collapse
Affiliation(s)
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697, USA
| | - H Eve Robinson
- Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
31
|
Longo SJ, Ray W, Farley GM, Harrison J, Jorge J, Kaji T, Palmer AR, Patek SN. Snaps of a tiny amphipod push the boundary of ultrafast, repeatable movement. Curr Biol 2021; 31:R116-R117. [PMID: 33561405 DOI: 10.1016/j.cub.2020.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Surprisingly, the fastest motions are not produced by large animals or robots. Rather, small organisms or structures, including cnidarian stinging cells, fungal shooting spores, and mandible strikes of ants, termites, and spiders, hold the world acceleration records.1-5 These diverse systems share common features: they rapidly convert potential energy - stored in deformed material or fluid - into kinetic energy when a latch is released.4-6 However, the fastest of these are not repeatable, because mechanical components are broken or ejected.5,6 Furthermore, some of these systems must overcome the added challenge of moving in water, where high density and viscosity constrain acceleration at small sizes. Here we report the kinematics of repeatable, ultrafast snaps by tiny marine amphipods (Dulichiella cf. appendiculata). Males use their enlarged major claw, which can exceed 30% of body mass, to snap a 1 mm-long dactyl with a diameter equivalent to a human hair (184 μm). The claw snaps closed extremely rapidly, averaging 93 μs, 17 m s-1, and 2.4 x 105 m s-2. These snaps are among the smallest and fastest of any documented repeatable movement, and are sufficiently fast to operate in the inertial hydrodynamic regime (Reynolds number (Re) >10,000). They generate audible pops and rapid water jets, which occasionally yield cavitation, and may be used for defense. These amphipod snaps push the boundaries of acceleration and size for repeatable movements, particularly in water, and exemplify how new biomechanical insights can arise from unassuming animals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- S J Longo
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | - W Ray
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - G M Farley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - J Harrison
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - J Jorge
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - T Kaji
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - A R Palmer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
32
|
Daza JD, Stanley EL, Bolet A, Bauer AM, Arias JS, Čerňanský A, Bevitt JJ, Wagner P, Evans SE. Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic feeders. Science 2020; 370:687-691. [DOI: 10.1126/science.abb6005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Juan D. Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Edward L. Stanley
- Department of Herpetology, Florida Museum of Natural History, Gainesville, FL, USA
| | - Arnau Bolet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Aaron M. Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - J. Salvador Arias
- Unidad Ejecutora Lillo, CONICET - FML, San Miguel de Tucumán, Argentina
| | - Andrej Čerňanský
- Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Joseph J. Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Philipp Wagner
- Department of Research and Conservation, Allwetterzoo Münster, Münster, Germany
| | - Susan E. Evans
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
33
|
Abstract
With millions of years' evolution, plants and fungi have developed a variety of ballistic dispersal structures for seeds or spores. One typical example is the catapult of an Oxalis sp., which can realize a consecutive seed ejection by triggering only one seed. If the protrusion on an aril, a specialized outgrowth covering a seed, is disturbed, cracks would occur and cause the opening of the aril. Subsequently, the whole aril snaps and transforms its stored strain energy to eject the inside seed with an optimal launching angle. Once the first seed is triggered, its curly aril will contact the next seed's protrusion and induce its firing. This chain effect will further trigger the remaining seeds in turns, within 0.1 s. Inspired by this phenomenon, we invented a bionic ejection device to launch projectiles with high efficiency. This exploration is promising for a number of applications, such as drug delivery and oil displacement.
Collapse
Affiliation(s)
- Shanpeng Li
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- College of Engineering, Lishui University, Lishui, 323000, China
| | - Yun Zhang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianlin Liu
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
34
|
García-Pérez P, Lozano-Milo E, Landín M, Gallego PP. Machine Learning Technology Reveals the Concealed Interactions of Phytohormones on Medicinal Plant In Vitro Organogenesis. Biomolecules 2020; 10:biom10050746. [PMID: 32403395 PMCID: PMC7278175 DOI: 10.3390/biom10050746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 01/03/2023] Open
Abstract
Organogenesis constitutes the biological feature driving plant in vitro regeneration, in which the role of plant hormones is crucial. The use of machine learning (ML) technology stands out as a novel approach to characterize the combined role of two phytohormones, the auxin indoleacetic acid (IAA) and the cytokinin 6-benzylaminopurine (BAP), on the in vitro organogenesis of unexploited medicinal plants from the Bryophyllum subgenus. The predictive model generated by neurofuzzy logic, a combination of artificial neural networks (ANNs) and fuzzy logic algorithms, was able to reveal the critical factors affecting such multifactorial process over the experimental dataset collected. The rules obtained along with the model allowed to decipher that BAP had a pleiotropic effect on the Bryophyllum spp., as it caused different organogenetic responses depending on its concentration and the genotype, including direct and indirect shoot organogenesis and callus formation. On the contrary, IAA showed an inhibiting role, restricted to indirect shoot regeneration. In this work, neurofuzzy logic emerged as a cutting-edge method to characterize the mechanism of action of two phytohormones, leading to the optimization of plant tissue culture protocols with high large-scale biotechnological applicability.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Eva Lozano-Milo
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Mariana Landín
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago, E-15782 Santiago de Compostela, Spain;
- Instituto de Investigación Sanitaria de Santiago (IDIS), E-15782 Santiago de Compostela, Spain
| | - Pedro Pablo Gallego
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
- Correspondence: ; Tel.: +34-986-812-595
| |
Collapse
|
35
|
Zhang Q, Fu WL, Wang XF, Huang LJ. Ingenious floral structure drives explosive pollination in Hydrilla verticillata (Hydrocharitaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:480-486. [PMID: 31860937 DOI: 10.1111/plb.13085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
In explosive pollination, many structures and mechanisms have evolved to achieve high-speed stamen movement. The male flower of the submerged plant Hydrilla verticillata is reported to be able to release pollen explosively some time after leaving the mother plant time, but the mechanism of stamen movement and the related functional structure in this species are unclear. In this study, we observed the male flower structure and pollen dispersal process of H. verticillata. We analysed the stamen movements during the pollen dispersal process and conducted several controlled experiments to study the process of storage and release of elastic potential energy in explosive pollination. When the male flower of H. verticillata is bound to the united bracts, the sepals accumulate elastic potential energy through the expansion of basal extensor cells. After the male flower is liberated from the mother plant, the stamens unfold rapidly with the sepals under adhesion and transfer the elastic potential energy to the filament in seconds. Once stamens unfold to a critical angle, at which the elasticity of the filament just exceeds the adhesion between sepals and anthers, the stamens automatically rebound and release pollen in milliseconds. These results reveal that Catapult-like stamens, spoon-shaped sepals and enclosed united bracts in the spathe together constitute the functional structure in rapid stamen movement of H. verticillata. They ensure that the pollen can be released on the water surface, and thus adapt successfully to the pollen-epihydrophilous pollination.
Collapse
Affiliation(s)
- Q Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - W-L Fu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - X-F Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - L-J Huang
- College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
36
|
Olberding JP, Deban SM, Rosario MV, Azizi E. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement. Integr Comp Biol 2020; 59:1515-1524. [PMID: 31397849 DOI: 10.1093/icb/icz139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Systems powered by elastic recoil need a latch to prevent motion while a spring is loaded but allow motion during spring recoil. Some jumping animals that rely on elastic recoil use the increasing mechanical advantage of limb extensor muscles to accomplish latching. We examined the ways in which limb morphology affects latching and the resulting performance of an elastic-recoil mechanism. Additionally, because increasing mechanical advantage is a consequence of limb extension that may be found in many systems, we examined the mechanical consequences for muscle in the absence of elastic elements. By simulating muscle contractions against a simplified model of an extending limb, we found that increasing mechanical advantage can limit the work done by muscle by accelerating muscle shortening during limb extension. The inclusion of a series elastic element dramatically improves mechanical output by allowing for additional muscle work that is stored and released from the spring. This suggests that elastic recoil may be beneficial for more animals than expected when assuming peak isotonic power output from muscle during jumping. The mechanical output of elastic recoil depends on limb morphology; long limbs moving small loads maximize total work, but it is done at a low power, whereas shorter limbs moving larger loads do less work at a higher power. This work-power trade-off of limb morphology is true with or without an elastic element. Systems with relatively short limbs may have performance that is robust to variable conditions such as body mass or muscle activation, while long-limbed systems risk complete failure with relatively minor perturbations. Finally, a changing mechanical advantage latch allows for muscle work to be done simultaneously with spring recoil, changing the predictions for spring mechanical properties. Overall, the design constraints revealed by considering the mechanics of this particular latch will inform our understanding of the evolution of elastic-recoil mechanisms and our attempts to engineer similar systems.
Collapse
Affiliation(s)
- Jeffrey P Olberding
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, USA
| | - Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, SCA 110, Tampa, FL, USA
| | - Michael V Rosario
- Department of Biology, West Chester University, 700 South High Street, West Chester, PA, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, USA
| |
Collapse
|
37
|
Berg O, Singh K, Hall MR, Schwaner MJ, Müller UK. Thermodynamics of the Bladderwort Feeding Strike-Suction Power from Elastic Energy Storage. Integr Comp Biol 2020; 59:1597-1608. [PMID: 31406979 DOI: 10.1093/icb/icz144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The carnivorous plant bladderwort exemplifies the use of accumulated elastic energy to power motion: respiration-driven pumps slowly load the walls of its suction traps with elastic energy (∼1 h). During a feeding strike, this energy is released suddenly to accelerate water (∼1 ms). However, due to the traps' small size and concomitant low Reynolds number, a significant fraction of the stored energy may be dissipated as viscous friction. Such losses and the mechanical reversibility of Stokes flow are thought to degrade the feeding success of other suction feeders in this size range, such as larval fish. In contrast, triggered bladderwort traps are generally successful. By mapping the energy budget of a bladderwort feeding strike, we illustrate how this smallest of suction feeders can perform like an adult fish.
Collapse
Affiliation(s)
- Otto Berg
- Department of Chemistry, California State University Fresno, Fresno, CA, USA
| | - Krizma Singh
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | - Maxwell R Hall
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | | | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA, USA
| |
Collapse
|
38
|
Patek SN. The Power of Mantis Shrimp Strikes: Interdisciplinary Impacts of an Extreme Cascade of Energy Release. Integr Comp Biol 2020; 59:1573-1585. [PMID: 31304967 DOI: 10.1093/icb/icz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the course of a single raptorial strike by a mantis shrimp (Stomatopoda), the stages of energy release span six to seven orders of magnitude of duration. To achieve their mechanical feats of striking at the outer limits of speeds, accelerations, and impacts among organisms, they use a mechanism that exemplifies a cascade of energy release-beginning with a slow and forceful, spring-loading muscle contraction that lasts for hundreds of milliseconds and ending with implosions of cavitation bubbles that occur in nanoseconds. Mantis shrimp use an elastic mechanism built of exoskeleton and controlled with a latching mechanism. Inspired by both their mechanical capabilities and evolutionary diversity, research on mantis shrimp strikes has provided interdisciplinary and fundamental insights to the fields of elastic mechanisms, fluid dynamics, evolutionary dynamics, contest dynamics, the physics of fast, small systems, and the rapidly-expanding field of bioinspired materials science. Even with these myriad connections, numerous discoveries await, especially in the arena of energy flow through materials actuating and controlling fast, impact fracture resistant systems.
Collapse
Affiliation(s)
- S N Patek
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
39
|
Spatial and temporal changes in buccal pressure during prey-capture in the trumpetfish (Aulostomus maculatus). ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Lotus seedpod-inspired hydrogels as an all-in-one platform for culture and delivery of stem cell spheroids. Biomaterials 2019; 225:119534. [DOI: 10.1016/j.biomaterials.2019.119534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/28/2019] [Indexed: 01/01/2023]
|
41
|
de Ruiter J, Arnbjerg-Nielsen SF, Herren P, Høier F, De Fine Licht HH, Jensen KH. Fungal artillery of zombie flies: infectious spore dispersal using a soft water cannon. J R Soc Interface 2019; 16:20190448. [PMID: 31662074 DOI: 10.1098/rsif.2019.0448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dead sporulating female fly cadavers infected by the house fly-pathogenic fungus Entomophthora muscae are attractive to healthy male flies, which by their physical inspection may mechanically trigger spore release and by their movement create whirlwind airflows that covers them in infectious conidia. The fungal artillery of E. muscae protrudes outward from the fly cadaver, and consists of a plethora of micrometric stalks that each uses a liquid-based turgor pressure build-up to eject a jet of protoplasm and the initially attached spore. The biophysical processes that regulate the release and range of spores, however, are unknown. To study the physics of ejection, we design a biomimetic 'soft cannon' that consists of a millimetric elastomeric barrel filled with fluid and plugged with a projectile. We precisely control the maximum pressure leading up to the ejection, and study the cannon efficiency as a function of its geometry and wall elasticity. In particular, we predict that ejection velocity decreases with spore size. The calculated flight trajectories under aerodynamic drag predict that the minimum spore size required to traverse a quiescent layer of a few millimetres around the fly cadaver is approximately 10 µm. This corroborates with the natural size of E. muscae conidia (approx. 27 µm) being large enough to traverse the boundary layer but small enough (less than 40 µm) to be lifted by air currents. Based on this understanding, we show how the fungal spores are able to reach a new host.
Collapse
Affiliation(s)
- Jolet de Ruiter
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Agrotechnology and Food Sciences Group, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| | | | - Pascal Herren
- Department of Plant and Environmental Sciences, University of Copenhagen, 1971 Frederiksberg, Denmark
| | - Freja Høier
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, 1971 Frederiksberg, Denmark
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
42
|
Poppinga S, Böse AS, Seidel R, Hesse L, Leupold J, Caliaro S, Speck T. A seed flying like a bullet: ballistic seed dispersal in Chinese witch-hazel (Hamamelis mollis OLIV., Hamamelidaceae). J R Soc Interface 2019; 16:20190327. [PMID: 31387485 PMCID: PMC6731504 DOI: 10.1098/rsif.2019.0327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
The fruits of Chinese witch-hazel (Hamamelis mollis, Hamamelidaceae) act as 'drying squeeze catapults', shooting their seeds several metres away. During desiccation, the exocarp shrinks and splits open, and subsequent endocarp deformation is a complex three-dimensional shape change, including formation of dehiscence lines, opening of the apical part and formation of a constriction at the middle part. Owing to the constriction forming, mechanical pressure is increasingly applied on the seed until ejection. We describe a structural latch system consisting of connective cellular structures between endocarp and seed, which break with a distinct cracking sound upon ejection. A maximum seed velocity of 12.3 m s-1, maximum launch acceleration of 19 853 m s-2 (approx. 2000g) and maximum seed rotational velocity of 25 714 min-1 were measured. We argue that miniscule morphological differences between the inner endocarp surface and seed, which features a notable ridge, are responsible for putting spin on the seed. This hypothesis is further corroborated by the observation that there is no preferential seed rotation direction among fruits. Our findings show that H. mollis has evolved similar mechanisms for stabilizing a 'shot out' seed as humans use for stabilizing rifle bullets and are discussed in an ecological (dispersal biology), biomechanical (seed ballistics) and functional-morphological (fine-tuning and morphospace of functional endocarps) contexts, and promising additional aspects for future studies are proposed.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Anne-Sophie Böse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Robin Seidel
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Linnea Hesse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sandra Caliaro
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
43
|
Longo SJ, Cox SM, Azizi E, Ilton M, Olberding JP, St Pierre R, Patek SN. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. ACTA ACUST UNITED AC 2019; 222:222/15/jeb197889. [PMID: 31399509 DOI: 10.1242/jeb.197889] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid biological movements, such as the extraordinary strikes of mantis shrimp and accelerations of jumping insects, have captivated generations of scientists and engineers. These organisms store energy in elastic structures (e.g. springs) and then rapidly release it using latches, such that movement is driven by the rapid conversion of stored elastic to kinetic energy using springs, with the dynamics of this conversion mediated by latches. Initially drawn to these systems by an interest in the muscle power limits of small jumping insects, biologists established the idea of power amplification, which refers both to a measurement technique and to a conceptual framework defined by the mechanical power output of a system exceeding muscle limits. However, the field of fast elastically driven movements has expanded to encompass diverse biological and synthetic systems that do not have muscles - such as the surface tension catapults of fungal spores and launches of plant seeds. Furthermore, while latches have been recognized as an essential part of many elastic systems, their role in mediating the storage and release of elastic energy from the spring is only now being elucidated. Here, we critically examine the metrics and concepts of power amplification and encourage a framework centered on latch-mediated spring actuation (LaMSA). We emphasize approaches and metrics of LaMSA systems that will forge a pathway toward a principled, interdisciplinary field.
Collapse
Affiliation(s)
- S J Longo
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - S M Cox
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - E Azizi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - M Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, USA
| | - J P Olberding
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - R St Pierre
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
44
|
Farley GM, Wise MJ, Harrison JS, Sutton GP, Kuo C, Patek SN. Adhesive latching and legless leaping in small, worm-like insect larvae. J Exp Biol 2019; 222:222/15/jeb201129. [DOI: 10.1242/jeb.201129] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Jumping is often achieved using propulsive legs, yet legless leaping has evolved multiple times. We examined the kinematics, energetics and morphology of long-distance jumps produced by the legless larvae of gall midges (Asphondylia sp.). They store elastic energy by forming their body into a loop and pressurizing part of their body to form a transient ‘leg’. They prevent movement during elastic loading by placing two regions covered with microstructures against each other, which likely serve as a newly described adhesive latch. Once the latch releases, the transient ‘leg’ launches the body into the air. Their average takeoff speeds (mean: 0.85 m s−1; range: 0.39–1.27 m s−1) and horizontal travel distances (up to 36 times body length or 121 mm) rival those of legged insect jumpers and their mass-specific power density (mean: 910 W kg−1; range: 150–2420 W kg−1) indicates the use of elastic energy storage to launch the jump. Based on the forces reported for other microscale adhesive structures, the adhesive latching surfaces are sufficient to oppose the loading forces prior to jumping. Energetic comparisons of insect larval crawling versus jumping indicate that these jumps are orders of magnitude more efficient than would be possible if the animals had crawled an equivalent distance. These discoveries integrate three vibrant areas in engineering and biology – soft robotics, small, high-acceleration systems, and adhesive systems – and point toward a rich, and as-yet untapped area of biological diversity of worm-like, small, legless jumpers.
Collapse
Affiliation(s)
- G. M. Farley
- Biology Department, Duke University, Durham, NC 27708, USA
| | - M. J. Wise
- Department of Biology, Roanoke College, Salem, VA 24153, USA
| | - J. S. Harrison
- Biology Department, Duke University, Durham, NC 27708, USA
| | - G. P. Sutton
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - C. Kuo
- Division of Evolutionary Biology, Ludwig Maximilian University of Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - S. N. Patek
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
45
|
Hesse L, Leupold J, Poppinga S, Wick M, Strobel K, Masselter T, Speck T. Resolving Form–Structure–Function Relationships in Plants with MRI for Biomimetic Transfer. Integr Comp Biol 2019; 59:1713-1726. [DOI: 10.1093/icb/icz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
In many biomimetic approaches, a deep understanding of the form–structure–function relationships in living and functionally intact organisms, which act as biological role models, is essential. This knowledge is a prerequisite for the identification of parameters that are relevant for the desired technical transfer of working principles. Hence, non-invasive and non-destructive techniques for static (3D) and dynamic (4D) high-resolution plant imaging and analysis on multiple hierarchical levels become increasingly important. In this study we demonstrate that magnetic resonance imaging (MRI) can be used to resolve the plants inner tissue structuring and functioning on the example of four plant concept generators with sizes larger than 5 mm used in current biomimetic research projects: Dragon tree (Dracaena reflexa var. angustifolia), Venus flytrap (Dionaea muscipula), Sugar pine (Pinus lambertiana) and Chinese witch hazel (Hamamelis mollis). Two different MRI sequences were applied for high-resolution 3D imaging of the differing material composition (amount, distribution, and density of various tissues) and condition (hydrated, desiccated, and mechanically stressed) of the four model organisms. Main aim is to better understand their biomechanics, development, and kinematics. The results are used as inspiration for developing novel design and fabrication concepts for bio-inspired technical fiber-reinforced branchings and smart biomimetic actuators.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | | | | | - Tom Masselter
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS—FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
46
|
Abstract
The extraordinary snaps of snapping shrimp evolved through simple morphological transitions with remarkable mechanical results.
Collapse
Affiliation(s)
- S N Patek
- Biology Department, Duke University, Durham, NC 27708, USA.
| | - Sarah J Longo
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
47
|
Pedersoli GD, Leme FM, Leite VG, Teixeira SP. Anatomy solves the puzzle of explosive pollen release in wind-pollinated urticalean rosids. AMERICAN JOURNAL OF BOTANY 2019; 106:489-506. [PMID: 30875436 DOI: 10.1002/ajb2.1254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY This study details the unusual synorganization of the staminate flower in wind-pollinated urticalean rosids to add the missing pieces that complete the puzzle of the explosive mechanism of pollen release in this group. METHODS Flower buds and flowers were analyzed using light and scanning electron microscopy. KEY RESULTS The pistillode, stamens, and sepals form a floral apparatus that explosively releases pollen to be carried by the wind. The anthers dehisce when the stamens are still inflexed on the floral bud and are enveloped by the sepals and supported by an inflated pistillode. The distension of the filaments presses the pistillode, which decreases the pressure exerted on the anthers by releasing the air accumulated internally through its apical orifice. The extended filaments and the dehiscent free anthers move rapidly outward from the center of the flower. This movement of the filaments is then blocked by the robust basally united sepals, which causes a rapid inversion of the anther position, thus hurling the pollen grains far from the flower. The pollen grains are released grouped by the mucilage produced in high quantity in the cells found in all floral organs. CONCLUSIONS The anatomical structure of the pistillode and the finding of mucilaginous cells are the main features that help in the understanding the explosive mechanism of pollen release in urticalean rosids. The pistillode can be considered an exaptation because it was evolved later to provide a new role in the plant, optimizing male fitness.
Collapse
Affiliation(s)
- Giseli D Pedersoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Flávia M Leme
- Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato 255, 13083-862, Campinas, SP, Brazil
- Universidade Federal do Mato Grosso do Sul, Instituto de Biociências, Cidade Universitária, C.P. 549, Campo Grande, 79070-900, MS, Brazil
| | - Viviane G Leite
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Simone P Teixeira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
48
|
Madronich S, Björn LO, McKenzie RL. Solar UV radiation and microbial life in the atmosphere. Photochem Photobiol Sci 2018; 17:1918-1931. [PMID: 29978175 DOI: 10.1039/c7pp00407a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many microorganisms are alive while suspended in the atmosphere, and some seem to be metabolically active during their time there. One of the most important factors threatening their life and activity is solar ultraviolet (UV) radiation. Quantitative understanding of the spatial and temporal survival patterns in the atmosphere, and of the ultimate deposition of microbes to the surface, is limited by a number factors some of which are discussed here. These include consideration of appropriate spectral sensitivity functions for biological damage (e.g. inactivation), and the estimation of UV radiation impingent on a microorganism suspended in the atmosphere. We show that for several bacteria (E. coli, S. typhimurium, and P. acnes) the inactivation rates correlate well with irradiances weighted by the DNA damage spectrum in the UV-B spectral range, but when these organisms show significant UV-A (or visible) sensitivities, the correlations become clearly non-linear. The existence of these correlations enables the use of a single spectrum (here DNA damage) as a proxy for sensitivity spectra of other biological effects, but with some caution when the correlations are strongly non-linear. The radiative quantity relevant to the UV exposure of a suspended particle is the fluence rate at an altitude above ground, while down-welling irradiance at ground-level is the quantity most commonly measured or estimated in satellite-derived climatologies. Using a radiative transfer model that computes both quantities, we developed a simple parameterization to exploit the much larger irradiance data bases to estimate fluence rates, and present the first fluence-rate based climatology of DNA-damaging UV radiation in the atmosphere. The estimation of fluence rates in the presence of clouds remains a particularly challenging problem. Here we note that both reductions and enhancements in the UV radiation field are possible, depending mainly on cloud optical geometry and prevailing solar zenith angles. These complex effects need to be included in model simulations of the atmospheric life cycle of the organisms.
Collapse
|
49
|
Wang LL, Chen L, Zhang J, Duan JM, Wang L, Silber-Li ZH, Zheng X, Cui HH. Efficient Propulsion and Hovering of Bubble-Driven Hollow Micromotors underneath an Air-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10426-10433. [PMID: 30091934 DOI: 10.1021/acs.langmuir.8b02249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bubble-driven micromotors have attracted substantial interest due to their remarkable self-motile and cargo-delivering abilities in biomedical or environmental applications. Here, we developed a hollow micromotor that experiences fast self-propulsion underneath an air-liquid interface by periodic bubble growth and collapse. The collapsing of a single microbubble induces a ∼1 m·s-1 impulsive jetting flow that instantaneously pushes the micromotor forward. Unlike previously reported micromotors propelled by the recoiling of bubbles, cavitation-induced jetting further utilizes the energy stored in the bubble to propel the micromotor and thus enhances the energy conversion efficiency by 3 orders of magnitude. Four different modes of propulsion are, for the first time, identified by quantifying the dependence of propulsion strength on microbubble size. Meanwhile, the vertical component of the jetting flow counteracts the buoyancy of the micromotor-bubble dimer and facilitates counterintuitive hovering underneath the air-liquid interface. This work not only enriches the understanding of the propulsion mechanism of bubble-driven micromotors but also gives insight into the physical aspects of cavitation bubble dynamics near the air-liquid interface on the microscale.
Collapse
Affiliation(s)
- Lei-Lei Wang
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Li Chen
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Jing Zhang
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Jin-Ming Duan
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Lei Wang
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Zhan-Hua Silber-Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics , Chinese Academy of Science , Beijing 100190 , China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics , Chinese Academy of Science , Beijing 100190 , China
| | - Hai-Hang Cui
- School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| |
Collapse
|
50
|
Galstyan A, Hay A. Snap, crack and pop of explosive fruit. Curr Opin Genet Dev 2018; 51:31-36. [DOI: 10.1016/j.gde.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 11/29/2022]
|