1
|
Yang Q, Guo J, Lin H, Wei W, Fan L, Chen H, Gong Y. Machine Learning-Enhanced Network Pharmacology in Traditional Chinese Medicine: Mechanistic Insights Into Chai Hu Gui Zhi Tang for Allergic Rhinitis. Chem Biodivers 2025:e202500214. [PMID: 40207407 DOI: 10.1002/cbdv.202500214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/11/2025]
Abstract
Network pharmacology has become a widely used approach for studying complex herbal medicines. This method helps researchers identify potentially active compounds and mechanisms, which can then guide further experiments. However, current network pharmacology methods often face issues like inconsistent compound records and unreliable screening standards, leading to inaccurate results. To address these challenges, we developed an improved workflow using Chai Hu Gui Zhi Tang (CHGZT) as an example. First, we used advanced analytical techniques (ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry) to rapidly identify chemical components in the herbal formula. Next, we created a machine learning model to predict compounds with anti-allergic rhinitis activity, allowing systematic selection of key components for network analysis. Our results showed that specific compounds like cinnamic acid and citric acid may combat allergic rhinitis by regulating immune-related genes (interleukin [IL]-4 and IL-5) while influencing biological processes such as "stress response" and "metabolism of foreign substances." These findings confirm the effectiveness of our optimized method and highlight CHGZT's potential as a therapeutic option for allergic rhinitis.
Collapse
Affiliation(s)
- Qi Yang
- Facutly of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- University Engineering Research Center of Reutilization of Traditional Chinese Medicine Resources, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Nanning, China
| | - Haoqiong Lin
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- University Engineering Research Center of Reutilization of Traditional Chinese Medicine Resources, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Nanning, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- University Engineering Research Center of Reutilization of Traditional Chinese Medicine Resources, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Nanning, China
| | - Lili Fan
- Facutly of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
| | - Hao Chen
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- University Engineering Research Center of Reutilization of Traditional Chinese Medicine Resources, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Nanning, China
| | - Yanling Gong
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Nanning, China
| |
Collapse
|
2
|
Amir S, Kumar M, Kumar V, Mohanty D. HgutMgene-Miner: In silico genome mining tool for deciphering the drug-metabolizing potential of human gut microbiome. Comput Biol Med 2025; 186:109679. [PMID: 39862468 DOI: 10.1016/j.compbiomed.2025.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining. HgutMgene-Miner derives its predictive power from the MicrobiomeMetDB database, which systematically catalogs all known biotransformation reactions of xenobiotics and primary metabolites mediated by host-associated microbial enzymes. Over 10,000 isolate genomes from 830 different bacterial species found in the Unified Human Gastrointestinal Genome (UHGG) collection have been analyzed by HgutMgene-Miner. This led to the identification of 89,377 xenobiotic metabolizing enzymes (XMEs) across 13 phyla, with the greatest diversity in Bacteroidota, Firmicutes_A, Firmicutes, and Proteobacteria. Bacteroides, Clostridium, and Alitsipes were found to be the richest genera, while Actinomyces were found to encode the fewest XMEs, primarily metabolizing Diclofenac, a nonsteroidal anti-inflammatory drug. Overall, we discovered XMEs in 220 genera, exceeding the number experimentally reported in fewer than 10 genera. Notably, Eggerthella lenta's cgr2 involved in Digoxin inactivation was identified in very distant Holdemania genera, likewise Clostridium leptum's nitroreductase, involved in Nitrazepam metabolism, was found in Fusobacterium. These findings highlight the extensive and diverse distribution of XMEs across microbial taxa.
Collapse
Affiliation(s)
- Sana Amir
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Manish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vikas Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Zhang S, Hou R, Sun C, Huang Q, Lin L, Li H, Liu S, Cheng Y, Xu X. Metabolic activity of gut microbial enrichment cultures from different marine species and their transformation abilities to plastic additives. ENVIRONMENT INTERNATIONAL 2024; 190:108882. [PMID: 38996798 DOI: 10.1016/j.envint.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The role of the gut microbiota in host physiology has been previously elucidated for some marine organisms, but little information is available on their metabolic activity involved in transformation of environmental pollutants. This study assessed the metabolic profiles of the gut microbial cultures from grouper (Epinephelus coioides), green mussel (Perna viridis) and giant tiger prawn (Penaeus monodon) and investigated their transformation mechanisms to typical plastic additives. Community-level physiological profiling analysis confirmed the utilization profiles of the microbial cultures including carbon sources of carbohydrates, amines, carboxylic acids, phenolic compounds, polymers and amino acids, and the plastic additives of organophosphate flame retardants, tetrabromobisphenol A derivates and bisphenols. Using in vitro incubation, triphenyl phosphate (TPHP) was found to be rapidly metabolized into diphenyl phosphate by the gut microbiota as a representative ester-containing plastic additive, whereas the transformation of BPA (a representative phenol) was relatively slower. Interestingly, all three kinds of microbial cultures efficiently transformed the hepatic metabolite of BPA (BPA-G) back to BPA, thereby increasing its bioavailability in the body. The specific enzyme analysis confirmed the ability of the gut microbiota to perform the metabolic reactions. The results of 16S rRNA sequencing and network analysis revealed that the genera Escherichia-Shigella, Citrobacter, and Anaerospora were functional microbes, and their collaboration with fermentative microbes played pivotal roles in the transformation of the plastic additives. The structure-specific transformations by the gut microbiota and their distinct bioavailability deserve more attention in the future.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Chuansheng Sun
- Marine College, Shandong University, Weihai 264209, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuanyue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Li R, Hao Y, Shen Y, Gui L, Lv W, Yuan L, Du B, Xie L, Li J, Xu X. Impact of cadmium and diclofenac exposure on biochemical responses, transcriptome, gut microflora, and growth performance in grass carp (Ctenopharyngodonidella). CHEMOSPHERE 2024; 360:142428. [PMID: 38797211 DOI: 10.1016/j.chemosphere.2024.142428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In recent years, the concentrations of cadmium (Cd) and diclofenac (DCF) in water have frequently exceeded the standard; however, the toxic effects of these two pollutants on grass carp under single and combined exposure are unknown. In this study, the concentrations of pollutants in different tissues were detected, and the toxicities of the two pollutants to grass carp under different exposure conditions were compared based on growth traits, biochemical responses, gut microbiome, and transcriptomes. Based on these findings, the brain showed the lowest levels of Cd and DCF accumulation. Oxidative stress and pathological damage were observed in the brain and intestines. Changes in the structure and abundance of the gut microflora affect the synthesis of neurotransmitters, such as GABA and steroids. Differentially expressed genes in the brain were enriched in circadian rhythm functions. The expression of PER, CLOCK,1L-1β, 1L-17, and other genes are related to the abundance of Akkermansia, which indicates that the disorder of gut microflora will affect the normal circadian rhythm of the brain. All indices in the recovery group showed an increasing trend. Overall, the toxicity of Cd and DCF showed antagonism, and a single exposure had a stronger effect on gut microorganisms and circadian rhythm, which provided a scientific basis for exploring the comprehensive effects of different pollutants.
Collapse
Affiliation(s)
- Runbo Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yinghu Hao
- Tongling Puji Sangtian Daoyu Ecological Development Co., Ltd., Anhui, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Wenyao Lv
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Li Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Lin S, Zhu N, Zhu Y, Mao H, Zhang S. Exploratory analysis on the association of dietary live microbe and non-dietary prebiotic/probiotic intake with serum cotinine levels in the general adult population. Front Nutr 2024; 11:1405539. [PMID: 38863585 PMCID: PMC11165358 DOI: 10.3389/fnut.2024.1405539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Background Previous research has indicated the potential involvement of the microbiota in smoking-related processes. The present study seeks to examine the relationship between dietary live microbes, as well as probiotic or prebiotic consumption, and serum cotinine levels. Methods This study used data from the National Health and Nutrition Examination Survey 1999-2018. Dietary intake information and probiotic/prebiotic intake data was collected through self-reported questionnaires. Participants were stratified into low, medium, and high intake groups according to their consumption of foods with varying microbial content. Multiple linear models were applied to explore the relationships of dietary live microbes, probiotic or prebiotic use with the serum cotinine level. Results A total of 42,000 eligible participants were included in the final analysis. The weighted median serum cotinine level was 0.05 (0.01, 10.90) ng/ml. Participants with low, medium, and high dietary microbe intake represented 35.4, 43.6, and 21.0% of the cohort, respectively. Furthermore, participants were stratified into three groups based on their overall consumption of foods with variable microbe contents. The association between dietary live microbe intake and serum cotinine levels remained robust across all models, with medium intake as the reference (Model 2: β = -0.14, 95% CI: -0.20, -0.07; High: β = -0.31, 95% CI: -0.39, -0.22). Moreover, both prebiotic and probiotic use exhibited an inverse relationship with serum cotinine levels (Prebiotic: β = -0.19, 95% CI: -0.37, -0.01; Probiotic: β = -0.47, 95% CI: -0.64, -0.30). Subgroup analyses revealed no discernible interactions between dietary live microbe, prebiotic, probiotic use, and serum cotinine levels. Conclusion Our findings suggest a negative correlation between dietary live microbe intake, as well as non-dietary prebiotic/probiotic consumption, and serum cotinine levels.
Collapse
Affiliation(s)
- Shanhong Lin
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ning Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yujing Zhu
- Department of Stomatology, The Affiliated Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Haiping Mao
- Department of Ultrasound, Ninghai Third Hospital, Ningbo, China
| | - Shengmin Zhang
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Pusadkar V, Mazumder A, Azad A, Patil D, Azad RK. Deciphering Microbial Shifts in the Gut and Lung Microbiomes of COVID-19 Patients. Microorganisms 2024; 12:1058. [PMID: 38930440 PMCID: PMC11205787 DOI: 10.3390/microorganisms12061058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, results in respiratory and cardiopulmonary infections. There is an urgent need to understand not just the pathogenic mechanisms of this disease but also its impact on the physiology of different organs and microbiomes. Multiple studies have reported the effects of COVID-19 on the gastrointestinal microbiota, such as promoting dysbiosis (imbalances in the microbiome) following the disease's progression. Deconstructing the dynamic changes in microbiome composition that are specifically correlated with COVID-19 patients remains a challenge. Motivated by this problem, we implemented a biomarker discovery pipeline to identify candidate microbes specific to COVID-19. This involved a meta-analysis of large-scale COVID-19 metagenomic data to decipher the impact of COVID-19 on the human gut and respiratory microbiomes. Metagenomic studies of the gut and respiratory microbiomes of COVID-19 patients and of microbiomes from other respiratory diseases with symptoms similar to or overlapping with COVID-19 revealed 1169 and 131 differentially abundant microbes in the human gut and respiratory microbiomes, respectively, that uniquely associate with COVID-19. Furthermore, by utilizing machine learning models (LASSO and XGBoost), we demonstrated the power of microbial features in separating COVID-19 samples from metagenomic samples representing other respiratory diseases and controls (healthy individuals), achieving an overall accuracy of over 80%. Overall, our study provides insights into the microbiome shifts occurring in COVID-19 patients, shining a new light on the compositional changes.
Collapse
Affiliation(s)
- Vaidehi Pusadkar
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA;
| | - Anirudh Mazumder
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203, USA
| | - Abhijay Azad
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203, USA
| | - Deepti Patil
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA;
| |
Collapse
|
7
|
Lopez-Moreno A, Cerk K, Rodrigo L, Suarez A, Aguilera M, Ruiz-Rodriguez A. Bisphenol A exposure affects specific gut taxa and drives microbiota dynamics in childhood obesity. mSystems 2024; 9:e0095723. [PMID: 38426791 PMCID: PMC10949422 DOI: 10.1128/msystems.00957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Cumulative xenobiotic exposure has an environmental and human health impact which is currently assessed under the One Health approach. Bisphenol A (BPA) exposure and its potential link with childhood obesity that has parallelly increased during the last decades deserve special attention. It stands during prenatal or early life and could trigger comorbidities and non-communicable diseases along life. Accumulation in the nature of synthetic chemicals supports the "environmental obesogen" hypothesis, such as BPA. This estrogen-mimicking xenobiotic has shown endocrine disruptive and obesogenic effects accompanied by gut microbiota misbalance that is not yet well elucidated. This study aimed to investigate specific microbiota taxa isolated and selected by direct BPA exposure and reveal its role on the overall children microbiota community and dynamics, driving toward specific obesity dysbiosis. A total of 333 BPA-resistant isolated species obtained through culturing after several exposure conditions were evaluated for their role and interplay with the global microbial community. The selected BPA-cultured taxa biomarkers showed a significant impact on alpha diversity. Specifically, Clostridium and Romboutsia were positively associated promoting the richness of microbiota communities, while Intestinibacter, Escherichia-Shigella, Bifidobacterium, and Lactobacillus were negatively associated. Microbial community dynamics and networks analyses showed differences according to the study groups. The normal-weight children group exhibited a more enriched, structured, and connected taxa network compared to overweight and obese groups, which could represent a more resilient community to xenobiotic substances. In this sense, subnetwork analysis generated with the BPA-cultured genera showed a correlation between taxa connectivity and more diverse potential enzymatic BPA degradation capacities.IMPORTANCEOur findings indicate how gut microbiota taxa with the capacity to grow in BPA were differentially represented within differential body mass index children study groups and how these taxa affected the overall dynamics toward patterns of diversity generally recognized in dysbiosis. Community network and subnetwork analyses corroborated the better connectedness and stability profiles for normal-weight group compared to the overweight and obese groups.
Collapse
Affiliation(s)
- Ana Lopez-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- />Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Klara Cerk
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, United Kingdom
| | - Lourdes Rodrigo
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
| | - Antonio Suarez
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- />Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Alicia Ruiz-Rodriguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Melo LFMD, Aquino-Martins VGDQ, Silva APD, Oliveira Rocha HA, Scortecci KC. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem 2023; 414:135645. [PMID: 36821920 DOI: 10.1016/j.foodchem.2023.135645] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Secondary metabolites are divided into three classes: phenolic, terpenoid, and nitrogenous compounds. Phenolic compounds are also known as polyphenols and include tannins, classified as hydrolysable or condensed. Herein, we explored tannins for their ROS reduction characteristics and role in homeostasis. These activities are associated with the numbers and degree of polymerisation of reactive hydroxyl groups present in the phenolic rings of tannins. These characteristics are associated with anti-inflammatory, anti-aging, and anti-proliferative health benefits. Tannins can reduce the risk of cancer and neurodegenerative diseases, such as cardiovascular diseases and Alzheimer's, respectively. These biomolecules may be used as nutraceuticals to maintain good gut microbiota. Industrial applications include providing durability to leather, anti-corrosive properties to metals, and substrates for 3D printing and in bio-based foam manufacture. This review updates regarding tannin-based research and highlights its biological and pharmacological relevance and potential applications.
Collapse
Affiliation(s)
- Luciana Fentanes Moura de Melo
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Ariana Pereira da Silva
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil; Departamento de Bioquímica - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Katia Castanho Scortecci
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil.
| |
Collapse
|
9
|
Campana AM, Laue HE, Shen Y, Shrubsole MJ, Baccarelli AA. Assessing the role of the gut microbiome at the interface between environmental chemical exposures and human health: Current knowledge and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120380. [PMID: 36220576 PMCID: PMC10239610 DOI: 10.1016/j.envpol.2022.120380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/05/2023]
Abstract
The explosion of microbiome research over the past decade has shed light on the various ways that external factors interact with the human microbiome to drive health and disease. Each individual is exposed to more than 300 environmental chemicals every day. Accumulating evidence indicates that the microbiome is involved in the early response to environmental toxicants and biologically mediates their adverse effects on human health. However, few review articles to date provided a comprehensive framework for research and translation of the role of the gut microbiome in environmental health science. This review summarizes current evidence on environmental compounds and their effect on the gut microbiome, discusses the involved compound metabolic pathways, and covers environmental pollution-induced gut microbiota disorders and their long-term outcomes on host health. We conclude that the gut microbiota may crucially mediate and modify the disease-causing effects of environmental chemicals. Consequently, gut microbiota needs to be further studied to assess the complete toxicity of environmental exposures. Future research in this field is required to delineate the key interactions between intestinal microbiota and environmental pollutants and further to elucidate the long-term human health effects.
Collapse
Affiliation(s)
- Anna Maria Campana
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yike Shen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
10
|
Wang H, Xu J, Dong P, Li Y, Cui Y, Li H, Li H, Zhang J, Wang S, Dai L. Comprehensive Analysis of Pterostilbene Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Plus Mass Spectrometer with Multiple Data-Mining Methods. ACS OMEGA 2022; 7:38561-38575. [PMID: 36340088 PMCID: PMC9631410 DOI: 10.1021/acsomega.2c03924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Pterostilbene, a stilbene phytoalexin, is mainly obtained from blueberries and grape vines; however, its metabolic mechanisms were unclear in vivo. In the present study, three different methods were used to prepare biological samples, and then, an efficient strategy based on ultrahigh-performance liquid chromatography coupled with mass spectrometry was developed to screen and identify pterostilbene metabolites in rat urine, plasma, liver, and feces. In order to elucidate pterostilbene or its metabolites involved in vitro, this study was assessed by the liver microsome system. As a result, a total of 88 pterostilbene metabolites were characterized. Among them, 77 metabolites in vivo and 14 metabolites in vitro were found; 50 and 38 metabolites were observed in rat plasma and urine, while only 4 and 12 metabolites were detected in rat feces and liver, inferring that plasma and urine possessed more diverse types of pterostilbene metabolites; 41 metabolic products were obtained by solid-phase extraction, and 9 and 10 metabolites were screened by methanol precipitation and acetonitrile precipitation, respectively, indicating that solid-phase extraction could be adopted as the most acceptable method for pterostilbene metabolism. The results also demonstrated that pterostilbene mainly underwent glucosylation, dehydrogenation, hydrogenation, demethoxylation, sulfation, NAC binding, methylene ketogenic, acetylation, and methylation. In summary, this research provides an idea for the further study of drug metabolism.
Collapse
Affiliation(s)
- Hong Wang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Jing Xu
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Pingping Dong
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| | - Yanan Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Yifang Cui
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Huajian Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Haoran Li
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250300, China
| | - Jiayu Zhang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shaoping Wang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Long Dai
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
11
|
N-Palmitoyl-D-Glucosamine Inhibits TLR-4/NLRP3 and Improves DNBS-Induced Colon Inflammation through a PPAR-α-Dependent Mechanism. Biomolecules 2022; 12:biom12081163. [PMID: 36009057 PMCID: PMC9405927 DOI: 10.3390/biom12081163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023] Open
Abstract
Similar to canine inflammatory enteropathy, inflammatory bowel disease (IBD) is a chronic idiopathic condition characterized by remission periods and recurrent flares in which diarrhea, visceral pain, rectal bleeding/bloody stools, and weight loss are the main clinical symptoms. Intestinal barrier function alterations often persist in the remission phase of the disease without ongoing inflammatory processes. However, current therapies include mainly anti-inflammatory compounds that fail to promote functional symptoms-free disease remission, urging new drug discoveries to handle patients during this step of the disease. ALIAmides (ALIA, autacoid local injury antagonism) are bioactive fatty acid amides that recently gained attention because of their involvement in the control of inflammatory response, prompting the use of these molecules as plausible therapeutic strategies in the treatment of several chronic inflammatory conditions. N-palmitoyl-D-glucosamine (PGA), an under-researched ALIAmide, resulted in being safe and effective in preclinical models of inflammation and pain, suggesting its potential engagement in the treatment of IBD. In our study, we demonstrated that micronized PGA significantly and dose-dependently reduces colitis severity, improves intestinal mucosa integrity by increasing the tight junction proteins expression, and downregulates the TLR-4/NLRP3/iNOS pathway via PPAR-α receptors signaling in DNBS-treated mice. The possibility of clinically exploiting micronized PGA as support for the treatment and prevention of inflammation-related changes in IBD patients would represent an innovative, effective, and safe strategy.
Collapse
|
12
|
Zheng S, Wang L, Xiong J, Liang G, Xu Y, Lin F. Consensus Prediction of Human Gut Microbiota-Mediated Metabolism Susceptibility for Small Molecules by Machine Learning, Structural Alerts, and Dietary Compounds-Based Average Similarity Methods. J Chem Inf Model 2022; 62:1078-1099. [PMID: 35156807 DOI: 10.1021/acs.jcim.1c00948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The human gut microbiota (HGM) colonizing human gastrointestinal tract (HGT) confers a repertoire of dynamic and unique metabolic capacities that are not possessed by the host and therefore is tentatively perceived as an alternative metabolic ″organ″ besides the liver in the host. Nevertheless, the significant contribution of HGM to the overall human metabolism is often overlooked in the modern drug discovery pipeline. Hence, a systematic evaluation of HGM-mediated drug metabolism is gradually important, and its computational prediction becomes increasingly necessary. In this work, a new data set containing both the HGM-mediated metabolism susceptible (HGMMS) and insusceptible (HGMMI) compounds (329 vs 320) was manually curated. Based on this data set, the first machine learning (ML) model, a new structural alerts (SA) model, and the K-nearest neighboring dietary compounds-based average similarity (AS) model were proposed to directly predict the HGM-mediated metabolism susceptibility for small molecules, and exhibit promising performance on three independent test sets. Finally, consensus prediction (ML/SA/AS) for DrugBank molecules revealed an intriguing phenomenon that a typical Michael acceptor ″α,β-unsaturated carbonyl group″ is a very common warhead for the design of covalent inhibitors and inclined to be metabolized by HGM in anaerobic HGT to generate the reduced metabolite without the reactive warhead, which could be a new concern to medicinal chemists. To the best of our knowledge, we gleaned the first HGMMS/HGMMI data set, developed the first HGMMS/HGMMI classification model, implemented a relatively comprehensive program based on ML/SA/AS approaches, and found a new phenomenon on the HGM-mediated deactivation of an extensively used warhead for covalent inhibitors.
Collapse
Affiliation(s)
- Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lei Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yong Xu
- Center of Chemical Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Fu Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
13
|
Rathore S, Varshney A, Mohan S, Dahiya P. An innovative approach of bioremediation in enzymatic degradation of xenobiotics. Biotechnol Genet Eng Rev 2022; 38:1-32. [PMID: 35081881 DOI: 10.1080/02648725.2022.2027628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Worldwide, environmental pollution due to a complex mixture of xenobiotics has become a serious concern. Several xenobiotic compounds cause environmental contamination due to their severe toxicity, prolonged exposure, and limited biodegradability. From the past few decades, microbial-assisted degradation (bioremediation) of xenobiotic pollutants has evolved as the most effective, eco-friendly, and valuable approach. Microorganisms have unique metabolism, the capability of genetic modification, diversity of enzymes, and various degradation pathways necessary for the bioremediation process. Microbial xenobiotic degradation is effective but a slow process that limits its application in bioremediation. However, the study of microbial enzymes for bioremediation is gaining global importance. Microbial enzymes have a huge ability to transform contaminants into non-toxic forms and thereby reduce environmental pollution. Recently, various advanced techniques, including metagenomics, proteomics, transcriptomics, metabolomics are effectively utilized for the characterization, metabolic machinery, new proteins, metabolic genes of microorganisms involved in the degradation process. These advanced molecular techniques provide a thorough understanding of the structural and functional aspects of complex microorganisms. This review gives a brief note on xenobiotics and their impact on the environment. Particular attention will be devoted to the class of pollutants and the enzymes such as cytochrome P450, dehydrogenase, laccase, hydrolase, protease, lipase, etc. capable of converting these pollutants into innocuous products. This review attempts to deliver knowledge on the role of various enzymes in the biodegradation of xenobiotic pollutants, along with the use of advanced technologies like recombinant DNA technology and Omics approaches to make the process more robust and effective.
Collapse
Affiliation(s)
| | - Ayushi Varshney
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Sumedha Mohan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Praveen Dahiya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|
14
|
Ahrodia T, Das S, Bakshi S, Das B. Structure, functions, and diversity of the healthy human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:53-82. [DOI: 10.1016/bs.pmbts.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281-5308. [PMID: 34405262 PMCID: PMC8370661 DOI: 10.1007/s00203-021-02516-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deciphered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling molecule production and controlling host's cellular health, immunity and neuropsychiatric behavior. Besides maintaining intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities including gut-brain-immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic disorders.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| |
Collapse
|
16
|
Naik A, Misra SK. Modern Sensing Approaches for Predicting Toxicological Responses of Food- and Drug-Based Bioactives on Microbiomes of Gut Origin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6396-6413. [PMID: 34081444 DOI: 10.1021/acs.jafc.1c02736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent scientific findings have correlated the gut microbes with homeostasis of human health by delineating their role in pathogen resistance, bioactive metabolization, and immune responses. Foreign materials, like xenobiotics, that induce an altering effect to the human body also influence the gut microbiome to some extent and often limit their use as a result of significant side effects. Investigating the xenobiotic effect of new therapeutic material or edible could be quite painstaking and economically non-viable. Thus, the use of predictive toxicology methods can be an innovative strategy in the food, pharma, and agriculture industries. There are reported in silico, ex vivo, in vitro, and in vivo methods to evaluate such effects but with added drawbacks, such as lower predictability, physiological dissimilarities, and high cost of associated invasive procedures. This review highlights the current and future possibilities with newer modern sensing approaches of economic and time-scale advantages for predicting toxicological responses on gut microbiomes.
Collapse
Affiliation(s)
- Aishwarya Naik
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Santosh K Misra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| |
Collapse
|
17
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
18
|
Iannotta M, Belardo C, Trotta MC, Iannotti FA, Vitale RM, Maisto R, Boccella S, Infantino R, Ricciardi F, Mirto BF, Ferraraccio F, Panarese I, Amodeo P, Tunisi L, Cristino L, D’Amico M, di Marzo V, Luongo L, Maione S, Guida F. N-palmitoyl-D-glucosamine, a Natural Monosaccharide-Based Glycolipid, Inhibits TLR4 and Prevents LPS-Induced Inflammation and Neuropathic Pain in Mice. Int J Mol Sci 2021; 22:ijms22031491. [PMID: 33540826 PMCID: PMC7867376 DOI: 10.3390/ijms22031491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.
Collapse
Affiliation(s)
- Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Rosa Maisto
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Flavia Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Benito Fabio Mirto
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Franca Ferraraccio
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.F.); (I.P.)
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.F.); (I.P.)
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Lea Tunisi
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Luigia Cristino
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Michele D’Amico
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Vincenzo di Marzo
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agriculture and Food Science, Universitè Laval, Quebec City, QC G1V 0A6, Canada
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- I.R.C.S.S., Neuromed, 86077 Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- I.R.C.S.S., Neuromed, 86077 Pozzilli, Italy
- Correspondence: (S.M.); (F.G.); Tel.: +39-0815667658 (F.G.)
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- Correspondence: (S.M.); (F.G.); Tel.: +39-0815667658 (F.G.)
| |
Collapse
|
19
|
Monaghan TM, Sloan TJ, Stockdale SR, Blanchard AM, Emes RD, Wilcox M, Biswas R, Nashine R, Manke S, Gandhi J, Jain P, Bhotmange S, Ambalkar S, Satav A, Draper LA, Hill C, Kashyap RS. Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome. Gut Microbes 2020; 12:1752605. [PMID: 32459982 PMCID: PMC7781581 DOI: 10.1080/19490976.2020.1752605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The Central Indian gut microbiome remains grossly understudied. Herein, we sought to investigate the burden of antimicrobial resistance and diarrheal diseases, particularly Clostridioides difficile, in rural-agricultural and urban populations in Central India, where there is widespread unregulated antibiotic use. We utilized shotgun metagenomics to comprehensively characterize the bacterial and viral fractions of the gut microbiome and their encoded functions in 105 participants. RESULTS We observed distinct rural-urban differences in bacterial and viral populations, with geography exhibiting a greater influence than diarrheal status. Clostridioides difficile disease was more commonly observed in urban subjects, and their microbiomes were enriched in metabolic pathways relating to the metabolism of industrial compounds and genes encoding resistance to 3rd generation cephalosporins and carbapenems. By linking phages present in the microbiome to their bacterial hosts through CRISPR spacers, phage variation could be directly related to shifts in bacterial populations, with the auxiliary metabolic potential of rural-associated phages enriched for carbon and amino acid energy metabolism. CONCLUSIONS We report distinct differences in antimicrobial resistance gene profiles, enrichment of metabolic pathways and phage composition between rural and urban populations, as well as a higher burden of Clostridioides difficile disease in the urban population. Our results reveal that geography is the key driver of variation in urban and rural Indian microbiomes, with acute diarrheal disease, including C. difficile disease exerting a lesser impact. Future studies will be required to understand the potential role of dietary, cultural, and genetic factors in contributing to microbiome differences between rural and urban populations.
Collapse
Affiliation(s)
- Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK,CONTACT Tanya M. Monaghan NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Tim J. Sloan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Adam M. Blanchard
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Richard D. Emes
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK,Advanced Data Analysis Centre, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Mark Wilcox
- Leeds Teaching Hospitals NHS Trust and University of Leeds, UK
| | - Rima Biswas
- Biochemistry Research Centre, Central India Institute of Medical Sciences, Nagpur, India
| | - Rupam Nashine
- Biochemistry Research Centre, Central India Institute of Medical Sciences, Nagpur, India
| | - Sonali Manke
- Biochemistry Research Centre, Central India Institute of Medical Sciences, Nagpur, India
| | - Jinal Gandhi
- Biochemistry Research Centre, Central India Institute of Medical Sciences, Nagpur, India
| | - Pratishtha Jain
- Biochemistry Research Centre, Central India Institute of Medical Sciences, Nagpur, India
| | - Shrejal Bhotmange
- Biochemistry Research Centre, Central India Institute of Medical Sciences, Nagpur, India
| | - Shrikant Ambalkar
- Department of Clinical Microbiology and Infection, King’s Mill Hospital, Sherwood Forest Hospitals NHS Trust, Sutton in Ashfield, UK
| | | | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rajpal Singh Kashyap
- Biochemistry Research Centre, Central India Institute of Medical Sciences, Nagpur, India,Rajpal Singh Kashyap Biochemistry Research Centre, Central India Institute of Medical Sciences, 88/2 Bajaj Nagar, Nagpur, Maharashtra, India
| |
Collapse
|
20
|
Begum SZ, Nizam NSM, Muhamad A, Saiman MI, Crouse KA, Abdul Rahman MB. Imidazole-rich copper peptides as catalysts in xenobiotic degradation. PLoS One 2020; 15:e0238147. [PMID: 33147237 PMCID: PMC7641441 DOI: 10.1371/journal.pone.0238147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
Laccases, oxidative copper-enzymes found in fungi and bacteria were used as the basis in the design of nona- and tetrapeptides. Laccases are known to be excellent catalysts for the degradation of phenolic xenobiotic waste. However, since solvent extraction of laccases is environmentally-unfriendly and yields obtained are low, they are less preferred compared to synthetic catalysts. The histidine rich peptides were designed based on the active site of laccase extracted from Trametes versicolor through RCSB Protein Data Bank, LOMETS and PyMol software. The peptides were synthesized using Fmoc-solid phase peptide synthesis (SPPS) with 30-40% yield. These peptides were purified and characterized using LC-MS (purities >75%), FTIR and NMR spectroscopy. Synthesized copper(II)-peptides were crystallized and then analyzed spectroscopically. Their structures were elucidated using 1D and 2D NMR. Standards (o,m,p-cresol, 2,4-dichlorophenol) catalysed using laccase from Trametes versicolor (0.66 U/mg) were screened under different temperatures and stirring rate conditions. After optimizing the degradation of the standards with the best reaction conditions reported herein, medications with phenolic and aromatic structures such as ibuprofen, paracetamol (acetaminophen), salbutamol, erythromycin and insulin were screened using laccase (positive control), apo-peptides and copper-peptides. Their activities evaluated using GC-MS, were compared with those of peptide and copper-peptide catalysts. The tetrapeptide was found to have the higher degradation activity towards salbutamol (96.8%) compared with laccase at 42.8%. Ibuprofen (35.1%), salbutamol (52.9%) and erythromycin (49.7%) were reported to have the highest degradation activities using Cu-tetrapeptide as catalyst when compared with the other medications. Consequently, o-cresol (84%) was oxidized by Tp-Cu while the apo-peptides failed to oxidize the cresols. Copper(II)-peptides were observed to have higher catalytic activity compared to their parent peptides and the enzyme laccase for xenobiotic degradation.
Collapse
Affiliation(s)
- Sharifa Zaithun Begum
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Nanomolecular Laboratory, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurul Shairah Mohd Nizam
- Nanomolecular Laboratory, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azira Muhamad
- Structural & Biophysics Facility, Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Selangor, Malaysia
| | - Mohd Izham Saiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Karen Anne Crouse
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Abstract
The field of pharmacogenetic testing was hailed as one of the early successful clinical applications arising from the personalized (or precision) medicine revolution. Substantial progress has been made to identify genes and genetic variants involved in drug response and establish clinical implementation programs. Yet, drug response is a complex trait and recent work has highlighted the key role played by the gut microbiome. As the study of the gut microbiome and pharmacogenetics converge, it may be possible to generate more precise predictions of drug response and improve health outcomes to treatments. Substantial effort will be needed to understand the dynamic impact of the microbiome and the interplay with host genetics and how to implement expanded pharmacogenetic testing.
Collapse
Affiliation(s)
- Susanne B Haga
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 101 Science Drive, Box 3382, Durham, NC 27708, USA
| |
Collapse
|
22
|
Feng W, Liu J, Ao H, Yue S, Peng C. Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs. Theranostics 2020; 10:11278-11301. [PMID: 33042283 PMCID: PMC7532689 DOI: 10.7150/thno.47289] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Intra- and interindividual variation in drug responses is one major reason for the failure of drug therapy, drug toxicity, and even the death of patients. Precision medicine, or personalized medicine, is a field of medicine that customizes an individual's medical diagnosis and treatment based on his/her genes, microbiomes, environments, etc. Over the past decade, a large number of studies have demonstrated that gut microbiota can modify the efficacy and toxicity of drugs, and the extent of the modification varies greatly from person to person because of the variability of the gut microbiota. Personalized manipulation of gut microbiota is an important approach to rectify the abnormal drug response. In this review, we aim to improve drug efficacy and reduce drug toxicity by combining precision medicine and gut microbiota. After describing the interactions between gut microbiota and xenobiotics, we discuss (1) the effects of gut microbiota on drug efficacy and toxicity and the corresponding mechanisms, (2) the variability of gut microbiota, which leads to variation in drug responses, (3) the biomarkers used for the patient stratification and treatment decisions before the use of drugs, and (4) the methods used for the personalized manipulation of gut microbiota to improve drug outcomes. Overall, we hope to improve the drug response by incorporating the knowledge of gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Yue
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Banerjee S, Suter MA, Aagaard KM. Interactions between Environmental Exposures and the Microbiome: Implications for Fetal Programming. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 13:39-48. [PMID: 33283070 PMCID: PMC7716732 DOI: 10.1016/j.coemr.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decades of population-based health outcomes data highlight the importance of understanding how environmental exposures in pregnancy affect maternal and neonatal outcomes. Animal model research and epidemiological studies have revealed that such exposures are able to alter fetal programming through stable changes in the epigenome, including altered DNA methylation patterns and histone modifications in the developing fetus and infant. It is similarly known that while microbes can biotransform environmental chemicals via conjugation and de-conjugation, specific exposures can also alter the community profile and function of the human microbiome. In this review, we consider how alterations to the maternal and or fetal/infant microbiome through environmental exposures could directly and indirectly alter fetal programming. We highlight two specific environmental exposures, cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs), and outline their effects on the developing fetus and the perinatal (maternal and fetal/infant) microbiome. We further consider how chemical exposures in the setting of natural disasters may be of particular importance to environmental health.
Collapse
Affiliation(s)
- Sohini Banerjee
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Departments of Molecular & Human Genetics, Molecular & Cell Biology, and Molecular Physiology & Biophysics, 1 Baylor Plaza, Houston, TX 77030
| | - Melissa A. Suter
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Departments of Molecular & Human Genetics, Molecular & Cell Biology, and Molecular Physiology & Biophysics, 1 Baylor Plaza, Houston, TX 77030
| | - Kjersti M. Aagaard
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Departments of Molecular & Human Genetics, Molecular & Cell Biology, and Molecular Physiology & Biophysics, 1 Baylor Plaza, Houston, TX 77030
| |
Collapse
|
24
|
Gut microbiota and aging-A focus on centenarians. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165765. [DOI: 10.1016/j.bbadis.2020.165765] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/10/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
|
25
|
Siriyappagouder P, Galindo-Villegas J, Dhanasiri AKS, Zhang Q, Mulero V, Kiron V, Fernandes JMO. Pseudozyma Priming Influences Expression of Genes Involved in Metabolic Pathways and Immunity in Zebrafish Larvae. Front Immunol 2020; 11:978. [PMID: 32528473 PMCID: PMC7256946 DOI: 10.3389/fimmu.2020.00978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Fungi, particularly yeasts, are known essential components of the host microbiota but their functional relevance in development of immunity and physiological processes of fish remains to be elucidated. In this study, we used a transcriptomic approach and a germ-free (GF) fish model to determine the response of newly hatched zebrafish larvae after 24 h exposure to Pseudozyma sp. when compared to conventionally-raised (CR) larvae. We observed 59 differentially expressed genes in Pseudozyma-exposed GF zebrafish larvae compared to their naïve control siblings. Surprisingly, in CR larvae, there was not a clear transcriptome difference between Pseudozyma-exposed and control larvae. Differentially expressed genes in GF larvae were involved in host metabolic pathways, mainly peroxisome proliferator-activated receptors, steroid hormone biosynthesis, drug metabolism and bile acid biosynthesis. We also observed a significant change in the transcript levels of immune-related genes, namely complement component 3a, galectin 2b, ubiquitin specific peptidase 21, and aquaporins. Nevertheless, we did not observe any significant response at the cellular level, since there were no differences between neutrophil migration or proliferation between control and yeast-exposed GF larvae. Our findings reveal that exposure to Pseudozyma sp. may affect metabolic pathways and immune-related processes in germ-free zebrafish, suggesting that commensal yeast likely play a significant part in the early development of fish larvae.
Collapse
Affiliation(s)
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | | | - Qirui Zhang
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
26
|
Jing TZ, Qi FH, Wang ZY. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? MICROBIOME 2020; 8:38. [PMID: 32178739 PMCID: PMC7077154 DOI: 10.1186/s40168-020-00823-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/05/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. RESULTS The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. CONCLUSION The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.
Collapse
Affiliation(s)
- Tian-Zhong Jing
- School of Forestry, Northeast Forestry University, Harbin, 150040 China
| | - Feng-Hui Qi
- School of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Zhi-Ying Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
27
|
Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review. Biomedicines 2020; 8:biomedicines8020039. [PMID: 32093399 PMCID: PMC7167868 DOI: 10.3390/biomedicines8020039] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Numerous studies have demonstrated the role of the microbiota in supporting the physiological functions, owing to its metabolomic component. The presence of biocomponents generally leads to the correction of the microbial pattern correlated with the reduction of oxidative pressure. This study aims to present the main processes that correlate the bioavailability and bioactivity of some functional components through the action of the human microbiota. The use of probiotics and prebiotics is an innovative manner involving alternatives that increase the bioavailability of certain natural or metabolic components has been proposed. Probiotic strains (Saccharomyces cerevisiae or Lactobacillus (L.) plantarum) may represent an intermediary for increasing the antioxidant bioactivity, and they may be administered in the form of a biomass enriched with functional compounds, such as phenolic acids. The limiting effect of gastrointestinal transit is, in several cases, the key to the biopharmaceutical value of new products (or supplements). The identification of newer ways of formulating supplements also involves the compatibility of different types of products, the testing of bioaccessibility, and the elimination of biotransformations.
Collapse
|
28
|
Nakov R, Velikova T. Chemical Metabolism of Xenobiotics by Gut Microbiota. Curr Drug Metab 2020; 21:260-269. [PMID: 32124693 DOI: 10.2174/1389200221666200303113830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/05/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023]
Abstract
Among the gut microbiota's newly explored roles in human biology is the ability to modify the chemical structures of foreign compounds (xenobiotics). A growing body of evidence has now provided sufficient acumen on the role of the gut microbiota on xenobiotic metabolism, which could have an intense impact on the therapy for various diseases in the future. Gut microbial xenobiotic metabolites have altered bioavailability, bioactivity and toxicity and can intervene with the actions of human xenobiotic-metabolizing enzymes to affect the destiny of other ingested molecules. These modifications are diverse and could lead to physiologically important consequences. In the current manuscript we aim to review the data currently available on how the gut microbiota directly modifies drugs, dietary compounds, chemicals, pollutants, pesticides and herbal supplements.
Collapse
Affiliation(s)
- Radislav Nakov
- Clinic of Gastroenterology, Tsaritsa Yoanna University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | | |
Collapse
|
29
|
ALTVEŞ S, YILDIZ HK, VURAL HC. Interaction of the microbiota with the human body in health and diseases. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2019; 39:23-32. [PMID: 32328397 PMCID: PMC7162693 DOI: 10.12938/bmfh.19-023] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
The human body contains many microorganisms, including a large number of bacteria, viruses, fungi, and protozoa, which are referred to as the microbiota. Compared with the number of cells comprising the human body, that of the microbiota has been found to be much larger. The microbiome is defined as microorganisms and their genomes have been shown to contain about 100 times more genes than the human genome. The microbiota affects many vital functions in the human body. It contributes to regulation of the immune system, digestion of food, production of vitamins such as B12 and K, metabolization of xenobiotic materials, and many other tasks. Many factors affect the microbiota biodiversity, such as diet, medicines including antibiotics, relationships with the environment, pregnancy, and age. Studies have shown that the lack of microbiota diversity leads to many diseases like autoimmune diseases such as diabetes type I, rheumatism, muscular dystrophy, problems in blood coagulation due to lack of vitamin K, and disturbances in the transfer of nerve cells due to lack of vitamin B12, in addition to its involvement in a number of conditions such as cancer, memory disorders, depression, stress, autism, and Alzheimer's disease. The aim of this review is to summarize the latest studies discussing the relationship between the microbiota and the human body in health and diseases.
Collapse
Affiliation(s)
- Safaa ALTVEŞ
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hatice Kübra YILDIZ
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hasibe Cingilli VURAL
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
30
|
Shaffer M, Thurimella K, Quinn K, Doenges K, Zhang X, Bokatzian S, Reisdorph N, Lozupone CA. AMON: annotation of metabolite origins via networks to integrate microbiome and metabolome data. BMC Bioinformatics 2019; 20:614. [PMID: 31779604 PMCID: PMC6883642 DOI: 10.1186/s12859-019-3176-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/28/2019] [Indexed: 12/26/2022] Open
Abstract
Background Untargeted metabolomics of host-associated samples has yielded insights into mechanisms by which microbes modulate health. However, data interpretation is challenged by the complexity of origins of the small molecules measured, which can come from the host, microbes that live within the host, or from other exposures such as diet or the environment. Results We address this challenge through development of AMON: Annotation of Metabolite Origins via Networks. AMON is an open-source bioinformatics application that can be used to annotate which compounds in the metabolome could have been produced by bacteria present or the host, to evaluate pathway enrichment of host verses microbial metabolites, and to visualize which compounds may have been produced by host versus microbial enzymes in KEGG pathway maps. Conclusions AMON empowers researchers to predict origins of metabolites via genomic information and to visualize potential host:microbe interplay. Additionally, the evaluation of enrichment of pathway metabolites of host versus microbial origin gives insight into the metabolic functionality that a microbial community adds to a host:microbe system. Through integrated analysis of microbiome and metabolome data, mechanistic relationships between microbial communities and host phenotypes can be better understood.
Collapse
Affiliation(s)
- M Shaffer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - K Thurimella
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - K Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 80045CO, Aurora, USA
| | - K Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 80045CO, Aurora, USA
| | - X Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 80045CO, Aurora, USA.,Present address: BioElectron Technology Corporation, Mountain View, CA, 94043, USA
| | - S Bokatzian
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 80045CO, Aurora, USA
| | - N Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 80045CO, Aurora, USA
| | - C A Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
31
|
Sadgrove NJ, Jones GL. From Petri Dish to Patient: Bioavailability Estimation and Mechanism of Action for Antimicrobial and Immunomodulatory Natural Products. Front Microbiol 2019; 10:2470. [PMID: 31736910 PMCID: PMC6834656 DOI: 10.3389/fmicb.2019.02470] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023] Open
Abstract
The new era of multidrug resistance of pathogens against frontline antibiotics has compromised the immense therapeutic gains of the 'golden age,' stimulating a resurgence in antimicrobial research focused on antimicrobial and immunomodulatory components of botanical, fungal or microbial origin. While much valuable information has been amassed on the potency of crude extracts and, indeed, purified compounds there are too many reports that uncritically extrapolate observed in vitro activity to presumed ingestive and/or topical therapeutic value, particularly in the discipline of ethnopharmacology. Thus, natural product researchers would benefit from a basic pharmacokinetic and pharmacodynamic understanding. Furthermore, therapeutic success of complex mixtures or single components derived therefrom is not always proportionate to their MIC values, since immunomodulation can be the dominant mechanism of action. Researchers often fail to acknowledge this, particularly when 'null' activity is observed. In this review we introduce the most up to date theories of oral and topical bioavailability including the metabolic processes affecting xenobiotic biotransformation before and after drugs reach the site of their action in the body. We briefly examine the common methodologies employed in antimicrobial, immunomodulatory and pharmacokinetic research. Importantly, we emphasize the contribution of synergies and/or antagonisms in complex mixtures as they affect absorptive processes in the body and sometimes potentiate activity. Strictly in the context of natural product research, it is important to acknowledge the potential for chemotypic variation within important medicinal plants. Furthermore, polar head space and rotatable bonds give a priori indications of the likelihood of bioavailability of active metabolites. Considering this and other relatively simple chemical insights, we hope to provide the basis for a more rigorous scientific assessment, enabling researchers to predict the likelihood that observed in vitro anti-infective activity will translate to in vivo outcomes in a therapeutic context. We give worked examples of tentative pharmacokinetic assessment of some well-known medicinal plants.
Collapse
Affiliation(s)
- Nicholas John Sadgrove
- Pharmaceuticals and Nutraceuticals (PAN) Group, School of Science and Technology, University of New England, Armidale, NSW, Australia
- Jodrell Science Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Graham Lloyd Jones
- Pharmaceuticals and Nutraceuticals (PAN) Group, School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
32
|
Senapati T, Kothidar A, Banerjee SK, DAS B. Insights into the gastrointestinal tract microbiomes of Indian population. J Biosci 2019; 44:113. [PMID: 31719222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trillions of microbes living in the gastrointestinal tract (GIT) of the human body finely tune homeostatic equilibrium in the GIT ecosystem and encode key functionalities that play crucial role in host metabolic functions, synthesis of macro- and micronutrients, xenobiotics metabolisms, development of innate and adaptive immune systems, tissue and organ developments and resistance against invasion of enteric pathogens. The microbial diversity and richness of GIT ecosystem varies greatly between individuals and over time. Extent of taxonomic and functional variations in GIT ecosystem is linked with dietary habit, pharmaceuticals usages, age, sex, body mass index, ethnicity, geography, altitude and civilization. Understanding a holistic picture of GIT microbiome of healthy people living across geography and identifying population specific 'keystone' taxa is of immense importance for identifying microbial species that may provide protection against chronic and metabolic diseases. Knowledge on geographic or ethnicity specific microbial signatures may also help us to understand the varied efficacy of different drugs and vaccines in different population. India is the home of more than 1.36 billion people belonging to 2000 human communities residing in well distinct geography. In the present review, we discuss the microbial signatures in health and diseases of the rural and urban Indians living in sea level and high altitude areas.
Collapse
Affiliation(s)
- Tarosi Senapati
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
| | | | | | | |
Collapse
|
33
|
Senapati T, Kothidar A, Banerjee SK, Das B. Insights into the gastrointestinal tract microbiomes of Indian population. J Biosci 2019. [DOI: 10.1007/s12038-019-9927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Ribeiro LF, Lopes EM, Kishi LT, Ribeiro LFC, Menegueti MG, Gaspar GG, Silva-Rocha R, Guazzaroni ME. Microbial Community Profiling in Intensive Care Units Expose Limitations in Current Sanitary Standards. Front Public Health 2019; 7:240. [PMID: 31555629 PMCID: PMC6724580 DOI: 10.3389/fpubh.2019.00240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022] Open
Abstract
Hospital-associated infections (HAIs) are a leading cause of morbidity and mortality in intensive care units (ICUs) and neonatal intensive care units (NICUs). Organisms causing these infections are often present on surfaces around the patient. Given that microbiota may vary across different ICUs, the HAI-related microbial signatures within these units remain underexplored. In this study, we use deep-sequencing analyses to explore and compare the structure of bacterial communities at inanimate surfaces of the ICU and NICU wards of The Medical School Clinics Hospital (Brazil). The data revealed that NICU presents higher biodiversity than ICU and surfaces closest to the patient showed a peculiar microbiota, distinguishing one unit from the other. Several facultative anaerobes or obligate anaerobes HAI-related genera were classified as biomarkers for the NICU, whereas Pseudomonas was the main biomarker for ICU. Correlation analyses revealed a distinct pattern of microbe-microbe interactions for each unit, including bacteria able to form multi-genera biofilms. Furthermore, we evaluated the effect of concurrent cleaning over the ICU bacterial community. The results showed that, although some bacterial populations decreased after cleaning, various HAI-related genera were quite stable following sanitization, suggesting being well-adapted to the ICU environment. Overall, these results enabled identification of discrete ICU and NICU reservoirs of potentially pathogenic bacteria and provided evidence for the presence of a set of biomarkers genera that distinguish these units. Moreover, the study exposed the inconsistencies of the routine cleaning to minimize HAI-related genera contamination.
Collapse
Affiliation(s)
| | - Erica M Lopes
- Department of Cellular and Molecular Biology, FMRP -University of São Paulo, Ribeirao Preto, Brazil
| | - Luciano T Kishi
- National Laboratory of Scientific Computing, Petrópolis, Brazil
| | | | - Mayra Gonçalves Menegueti
- Infection Control Service, The Medical School Clinics Hospital, University of São Paulo, Ribeirao Preto, Brazil
| | - Gilberto Gambero Gaspar
- Infection Control Service, The Medical School Clinics Hospital, University of São Paulo, Ribeirao Preto, Brazil
| | - Rafael Silva-Rocha
- Department of Cellular and Molecular Biology, FMRP -University of São Paulo, Ribeirao Preto, Brazil
| | | |
Collapse
|
35
|
Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions. Pharmacol Rev 2019; 71:198-224. [PMID: 30890566 DOI: 10.1124/pr.118.015768] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The microbiome plays a key role in health and disease, and there has been considerable interest in therapeutic targeting of the microbiome as well as mining this rich resource in drug discovery efforts. However, a growing body of evidence suggests that the gut microbiota can itself influence the actions of a range of xenobiotics, in both beneficial and potentially harmful ways. Traditionally, clinical studies evaluating the pharmacokinetics of new drugs have mostly ignored the important direct and indirect effects of the gut microbiome on drug metabolism and efficacy. Despite some important observations from xenobiotic metabolism in general, there is only an incomplete understanding of the scope of influence of the microbiome specifically on drug metabolism and absorption, and how this might influence systemic concentrations of parent compounds and toxic metabolites. The significance of both microbial metabolism of xenobiotics and the impact of the gut microbiome on host hepatic enzyme systems is nonetheless gaining traction and presents a further challenge in drug discovery efforts, with implications for improving treatment outcomes or counteracting adverse drug reactions. Microbial factors must now be considered when determining drug pharmacokinetics and the impact that an evolving and dynamic microbiome could have in this regard. In this review, we aim to integrate the contribution of the gut microbiome in health and disease to xenobiotic metabolism focusing on therapeutic interventions, pharmacological drug action, and chemical biotransformations that collectively will have implications for the future practice of precision medicine.
Collapse
Affiliation(s)
- Gerard Clarke
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - Kiran V Sandhu
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - Brendan T Griffin
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland (G.C., K.V.S., B.T.G., T.G.D., J.F.C., N.P.H.), INFANT Research Centre (G.C.), Department of Psychiatry and Neurobehavioural Science (G.C., T.G.D.), School of Pharmacy (B.T.G.), and Departments of Anatomy and Neuroscience (J.F.C.), Pharmacology and Therapeutics (N.P.H.), and Physiology (N.P.H.), University College Cork, Cork, Ireland
| |
Collapse
|
36
|
Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C, Wishart DS. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform 2019; 11:2. [PMID: 30612223 PMCID: PMC6689873 DOI: 10.1186/s13321-018-0324-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
Background A number of computational tools for metabolism prediction have been developed over the last 20 years to predict the structures of small molecules undergoing biological transformation or environmental degradation. These tools were largely developed to facilitate absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, although there is now a growing interest in using such tools to facilitate metabolomics and exposomics studies. However, their use and widespread adoption is still hampered by several factors, including their limited scope, breath of coverage, availability, and performance. Results To address these limitations, we have developed BioTransformer, a freely available software package for accurate, rapid, and comprehensive in silico metabolism prediction and compound identification. BioTransformer combines a machine learning approach with a knowledge-based approach to predict small molecule metabolism in human tissues (e.g. liver tissue), the human gut as well as the environment (soil and water microbiota), via its metabolism prediction tool. A comprehensive evaluation of BioTransformer showed that it was able to outperform two state-of-the-art commercially available tools (Meteor Nexus and ADMET Predictor), with precision and recall values up to 7 times better than those obtained for Meteor Nexus or ADMET Predictor on the same sets of pharmaceuticals, pesticides, phytochemicals or endobiotics under similar or identical constraints. Furthermore BioTransformer was able to reproduce 100% of the transformations and metabolites predicted by the EAWAG pathway prediction system. Using mass spectrometry data obtained from a rat experimental study with epicatechin supplementation, BioTransformer was also able to correctly identify 39 previously reported epicatechin metabolites via its metabolism identification tool, and suggest 28 potential metabolites, 17 of which matched nine monoisotopic masses for which no evidence of a previous report could be found. Conclusion BioTransformer can be used as an open access command-line tool, or a software library. It is freely available at https://bitbucket.org/djoumbou/biotransformerjar/. Moreover, it is also freely available as an open access RESTful application at www.biotransformer.ca, which allows users to manually or programmatically submit queries, and retrieve metabolism predictions or compound identification data. Electronic supplementary material The online version of this article (10.1186/s13321-018-0324-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jarlei Fiamoncini
- INRA, Human Nutrition Unit, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.,Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada.,Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Claudine Manach
- INRA, Human Nutrition Unit, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada. .,Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada.
| |
Collapse
|
37
|
Moen AEF, Lindstrøm JC, Tannæs TM, Vatn S, Ricanek P, Vatn MH, Jahnsen J. The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients. Sci Rep 2018; 8:17278. [PMID: 30467421 PMCID: PMC6250705 DOI: 10.1038/s41598-018-35243-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022] Open
Abstract
Active microbes likely have larger impact on gut health status compared to inactive or dormant microbes. We investigate the composition of active and total mucosal microbiota of treatment-naïve ulcerative colitis (UC) patients to determine the microbial picture at the start-up phase of disease, using both a 16S rRNA transcript and gene amplicon sequencing. DNA and RNA were isolated from the same mucosal colonic biopsies. Our aim was to identify active microbial members of the microbiota in early stages of disease and reveal which members are present, but do not act as major players. We demonstrated differences in active and total microbiota of UC patients when comparing inflamed to non-inflamed tissue. Several taxa, among them the Proteobacteria phyla and families therein, revealed lower transcriptional activity despite a high presence. The Bifidobacteriaceae family of the Actinobacteria phylum showed lower abundance in the active microbiota, although no difference in presence was detected. The most abundant microbiota members of the inflamed tissue in UC patients were not the most active. Knowledge of active members of microbiota in UC patients could enhance our understanding of disease etiology. The active microbial community composition did not deviate from the total when comparing UC patients to non-IBD controls.
Collapse
Affiliation(s)
- Aina E Fossum Moen
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Jonas Christoffer Lindstrøm
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Tone Møller Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway.
| | - Simen Vatn
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | | |
Collapse
|
38
|
Katz Sand I, Zhu Y, Ntranos A, Clemente JC, Cekanaviciute E, Brandstadter R, Crabtree-Hartman E, Singh S, Bencosme Y, Debelius J, Knight R, Cree BAC, Baranzini SE, Casaccia P. Disease-modifying therapies alter gut microbial composition in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 6:e517. [PMID: 30568995 PMCID: PMC6278850 DOI: 10.1212/nxi.0000000000000517] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/10/2018] [Indexed: 11/24/2022]
Abstract
Objective To determine the effects of the disease-modifying therapies, glatiramer acetate (GA) and dimethyl fumarate (DMF), on the gut microbiota in patients with MS. Methods Participants with relapsing MS who were either treatment-naive or treated with GA or DMF were recruited. Peripheral blood mononuclear cells were immunophenotyped. Bacterial DNA was extracted from stool, and amplicons targeting the V4 region of the bacterial/archaeal 16S rRNA gene were sequenced (Illumina MiSeq). Raw reads were clustered into Operational Taxonomic Units using the GreenGenes database. Differential abundance analysis was performed using linear discriminant analysis effect size. Phylogenetic investigation of communities by reconstruction of unobserved states was used to investigate changes to functional pathways resulting from differential taxon abundance. Results One hundred sixty-eight participants were included (treatment-naive n = 75, DMF n = 33, and GA n = 60). Disease-modifying therapies were associated with changes in the fecal microbiota composition. Both therapies were associated with decreased relative abundance of the Lachnospiraceae and Veillonellaceae families. In addition, DMF was associated with decreased relative abundance of the phyla Firmicutes and Fusobacteria and the order Clostridiales and an increase in the phylum Bacteroidetes. Despite the different changes in bacterial taxa, there was an overlap between functional pathways affected by both therapies. Interpretation Administration of GA or DMF is associated with differences in gut microbial composition in patients with MS. Because those changes affect critical metabolic pathways, we hypothesize that our findings may highlight mechanisms of pathophysiology and potential therapeutic intervention requiring further investigation.
Collapse
Affiliation(s)
- Ilana Katz Sand
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Yunjiao Zhu
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Achilles Ntranos
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Jose C Clemente
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Egle Cekanaviciute
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Rachel Brandstadter
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Elizabeth Crabtree-Hartman
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Sneha Singh
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Yadira Bencosme
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Justine Debelius
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Rob Knight
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Bruce A C Cree
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Sergio E Baranzini
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| | - Patrizia Casaccia
- Department of Neurology (I.K.S., A.N., R.B., Y.B.), Department of Neuroscience (Y.Z., P.C.), and Department of Genetics & Genomic Sciences, Icahn Institute for Genomics & Multiscale Biology (J.C.C.), Icahn School of Medicine at Mount Sinai; Department of Neurology (E.C., E.C.-H., S.S., B.A.C.C., S.E.B.), Weill Institute for Neurosciences, University of California, San Francisco; E.C. is now with Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA; Department of Pediatrics (J.D., R.K.), Department of Computer Science & Engineering (R.K.), and Center for Microbiome Innovation (R.K.), University of California, San Diego; and Neuroscience Initiative (P.C.), Advanced Research Science Center at the Graduate Center of the City University of New York
| |
Collapse
|
39
|
Kuntal BK, Chandrakar P, Sadhu S, Mande SS. 'NetShift': a methodology for understanding 'driver microbes' from healthy and disease microbiome datasets. ISME JOURNAL 2018; 13:442-454. [PMID: 30287886 DOI: 10.1038/s41396-018-0291-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
The combined effect of mutual association within the co-inhabiting microbes in human body is known to play a major role in determining health status of individuals. The differential taxonomic abundance between healthy and disease are often used to identify microbial markers. However, in order to make a microbial community based inference, it is important not only to consider microbial abundances, but also to quantify the changes observed among inter microbial associations. In the present study, we introduce a method called 'NetShift' to quantify rewiring and community changes in microbial association networks between healthy and disease. Additionally, we devise a score to identify important microbial taxa which serve as 'drivers' from the healthy to disease. We demonstrate the validity of our score on a number of scenarios and apply our methodology on two real world metagenomic datasets. The 'NetShift' methodology is also implemented as a web-based application available at https://web.rniapps.net/netshift.
Collapse
Affiliation(s)
- Bhusan K Kuntal
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., 54-B Hadapsar Industrial Estate, Pune, 411 013, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Pune, 411 008, India
| | - Pranjal Chandrakar
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., 54-B Hadapsar Industrial Estate, Pune, 411 013, India.,Decision Sciences, Indian Institute of Management Bangalore, Bannerghatta Road, Bengaluru, Karnataka, 560076, India
| | - Sudipta Sadhu
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., 54-B Hadapsar Industrial Estate, Pune, 411 013, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., 54-B Hadapsar Industrial Estate, Pune, 411 013, India.
| |
Collapse
|
40
|
Mesnage R, Antoniou MN, Tsoukalas D, Goulielmos GN, Tsatsakis A. Gut microbiome metagenomics to understand how xenobiotics impact human health. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Tandon D, Haque MM, R. S, Shaikh S, P. S, Dubey AK, Mande SS. A snapshot of gut microbiota of an adult urban population from Western region of India. PLoS One 2018; 13:e0195643. [PMID: 29624599 PMCID: PMC5889170 DOI: 10.1371/journal.pone.0195643] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
The human gut microbiome contributes to a broad range of biochemical and metabolic functions that directly or indirectly affect human physiology. Several recent studies have indicated that factors like age, geographical location, genetic makeup, and individual health status significantly influence the diversity, stability, and resilience of the gut microbiome. Of the mentioned factors, geographical location (and related dietary/socio-economic context) appears to explain a significant portion of microbiome variation observed in various previously conducted base-line studies on human gut microbiome. Given this context, we have undertaken a microbiome study with the objective of cataloguing the taxonomic diversity of gut microbiomes sampled from an urban cohort from Ahmedabad city in Western India. Computational analysis of microbiome sequence data corresponding to 160 stool samples (collected from 80 healthy individuals at two time-points, 60 days apart) has indicated a Prevotella-dominated microbial community. Given that the typical diet of participants included carbohydrate and fibre-rich components (predominantly whole grains and legume-based preparations), results appear to validate the proposed correlation between diet/geography and microbiome composition. Comparative analysis of obtained gut microbiome profiles with previously published microbiome profiles from US, China, Finland, and Japan additionally reveals a distinct taxonomic and (inferred) functional niche for the sampled microbiomes.
Collapse
Affiliation(s)
- Disha Tandon
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Hadapsar Industrial Estate, Pune Maharashtra, India
| | - Mohammed Monzoorul Haque
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Hadapsar Industrial Estate, Pune Maharashtra, India
| | - Saravanan R.
- Tata Chemicals Ltd. Innovation Centre, Ambedveth, Mulshi, Pune, Maharashtra, India
| | - Shafiq Shaikh
- Veeda Clinical Research Pvt. Ltd. Near IIM, Ambawadi, Ahmedabad, Gujarat, India
| | - Sriram P.
- Genotypic Technology (P) Ltd., Poojari Layout, Bangalore, India
| | - Ashok Kumar Dubey
- Tata Chemicals Ltd. Innovation Centre, Ambedveth, Mulshi, Pune, Maharashtra, India
- * E-mail: (SSM); (AKD)
| | - Sharmila S. Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Hadapsar Industrial Estate, Pune Maharashtra, India
- * E-mail: (SSM); (AKD)
| |
Collapse
|
42
|
Eng A, Borenstein E. Taxa-function robustness in microbial communities. MICROBIOME 2018; 6:45. [PMID: 29499759 PMCID: PMC5833107 DOI: 10.1186/s40168-018-0425-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/19/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND The species composition of a microbial community is rarely fixed and often experiences fluctuations of varying degrees and at varying frequencies. These perturbations to a community's taxonomic profile naturally also alter the community's functional profile-the aggregate set of genes encoded by community members-ultimately altering the community's overall functional capacities. The magnitude of such functional changes and the specific shift that will occur in each function, however, are strongly dependent on how genes are distributed across community members' genomes. This gene distribution, in turn, is determined by the taxonomic composition of the community and would markedly differ, for example, between communities composed of species with similar genomic content vs. communities composed of species whose genomes encode relatively distinct gene sets. Combined, these observations suggest that community functional robustness to taxonomic perturbations could vary widely across communities with different compositions, yet, to date, a systematic study of the inherent link between community composition and robustness is lacking. RESULTS In this study, we examined how a community's taxonomic composition influences the robustness of that community's functional profile to taxonomic perturbation (here termed taxa-function robustness) across a wide array of environments. Using a novel simulation-based computational model to quantify this taxa-function robustness in host-associated and non-host-associated communities, we find notable differences in robustness between communities inhabiting different body sites, including significantly higher robustness in gut communities compared to vaginal communities that cannot be attributed solely to differences in species richness. We additionally find between-site differences in the robustness of specific functions, some of which are potentially related to site-specific environmental conditions. These taxa-function robustness differences are most strongly associated with differences in overall functional redundancy, though other aspects of gene distribution also influence taxa-function robustness in certain body environments, and are sufficient to cluster communities by environment. Further analysis revealed a correspondence between our robustness estimates and taxonomic and functional shifts observed across human-associated communities. CONCLUSIONS Our analysis approach revealed intriguing taxa-function robustness variation across environments and identified features of community and gene distribution that impact robustness. This approach could be further applied for estimating taxa-function robustness in novel communities and for informing the design of synthetic communities with specific robustness requirements.
Collapse
Affiliation(s)
- Alexander Eng
- Department of Genome Sciences, University of Washington, Seattle, WA, 98102, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA, 98102, USA.
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, 98102, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
43
|
Abstract
The human gut microbiota makes key contributions to the metabolism of ingested compounds (xenobiotics), transforming hundreds of dietary components, industrial chemicals, and pharmaceuticals into metabolites with altered activities, toxicities, and lifetimes within the body. The chemistry of gut microbial xenobiotic metabolism is often distinct from that of host enzymes. Despite their important consequences for human biology, the gut microbes, genes, and enzymes involved in xenobiotic metabolism are poorly understood. Linking these microbial transformations to enzymes and elucidating their biological effects is undoubtedly challenging. However, recent studies demonstrate that integrating traditional and emerging technologies can enable progress toward this goal. Ultimately, a molecular understanding of gut microbial xenobiotic metabolism will guide personalized medicine and nutrition, inform toxicology risk assessment, and improve drug discovery and development.
Collapse
Affiliation(s)
- Nitzan Koppel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Vayu Maini Rekdal
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA. .,Broad Institute, Cambridge, MA 02139, USA
| |
Collapse
|