1
|
Sato Y, Vatsan R, Joshi BH, Husain SR, Puri RK. A Novel Recombinant Modified Vaccinia Ankara Virus expressing Interleukin-13 Receptor α2 Antigen for Potential Cancer Immunotherapy. Curr Mol Med 2024; 24:758-770. [PMID: 36999709 DOI: 10.2174/1566524023666230331085007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Genetically altered recombinant poxviruses hold great therapeutic promise in animal models of cancer. Poxviruses can induce effective cellmediated immune responses against tumor-associated antigens. Preventive and therapeutic vaccination with a DNA vaccine expressing IL-13Rα2 can mediate partial regression of established tumors in vivo, indicating that host immune responses against IL-13Rα2 need further augmentation. OBJECTIVE The aim of the study is developing a recombinant modified vaccinia Ankara (MVA) expressing IL-13Rα2 (rMVA-IL13Rα2) virus and study in vitro infectivity and efficacy against IL-13Rα2 positive cell lines. METHODS We constructed a recombinant MVA expressing IL-13Rα2 and a green fluorescent protein (GFP) reporter gene. Purified virus titration by infection of target cells and immunostaining using anti-vaccinia and anti-IL-13Rα2 antibodies was used to confirm the identity and purity of the rMVA-IL13Rα2. RESULTS Western Blot analysis confirmed the presence of IL-13Rα2 protein (~52 kDa). Flow cytometric analysis of IL-13Rα2 negative T98G glioma cells when infected with rMVA-IL13Rα2 virus demonstrated cell-surface expression of IL-13Rα2, indicating the infectivity of the recombinant virus. Incubation of T98G-IL13Rα2 cells with varying concentrations (0.1-100 ng/ml) of interleukin-13 fused to truncated Pseudomonas exotoxin (IL13-PE) resulted in depletion of GFP+ fluorescence in T98G-IL13Rα2 cells. IL13-PE (10-1000 ng/ml) at higher concentrations also inhibited the protein synthesis in T98G-IL13Rα2 cells compared to cells infected with the control pLW44-MVA virus. IL13- PE treatment of rMVA-IL13Rα2 infected chicken embryonic fibroblast and DF-1 cell line reduced virus titer compared to untreated cells. CONCLUSION rMVA-IL13Rα2 virus can successfully infect mammalian cells to express IL-13Rα2 in a biologically active form on the surface of infected cells. To evaluate the efficacy of rMVA-IL13Rα2, immunization studies are planned in murine tumor models.
Collapse
Affiliation(s)
- Yuki Sato
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Department of Research Promotion, Division of Cancer Research, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda, Tokyo 100- 0004, Japan
| | - Ramjay Vatsan
- Gene Therapy Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Syed R Husain
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, 825 Industrial Road, Suite 400, San Carlos, CA, California, 94070, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, 825 Industrial Road, Suite 400, San Carlos, CA, California, 94070, USA
| |
Collapse
|
2
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Crausaz M, Monneret G, Conti F, Lukaszewicz AC, Marchand JB, Martin P, Inchauspé G, Venet F. A novel virotherapy encoding human interleukin-7 improves ex vivo T lymphocyte functions in immunosuppressed patients with septic shock and critically ill COVID-19. Front Immunol 2022; 13:939899. [PMID: 36045686 PMCID: PMC9422896 DOI: 10.3389/fimmu.2022.939899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
A majority of patients with sepsis surviving the first days in intensive care units (ICU) enter a state of immunosuppression contributing to their worsening. A novel virotherapy based on the non-propagative Modified Virus Ankara (MVA) expressing the human interleukin-7 (hIL-7) cytokine fused to an Fc fragment, MVA-hIL-7-Fc, was developed and shown to enhance innate and adaptive immunity and confer survival advantages in murine sepsis models. Here, we assessed the capacity of hIL-7-Fc produced by the MVA-hIL-7-Fc to improve ex vivo T lymphocyte functions from ICU patients with sepsis. Primary hepatocytes were transduced with the MVA-hIL-7-Fc or an empty MVA, and cell supernatants containing the secreted hIL-7-Fc were harvested for in vitro and ex vivo studies. Whole blood from ICU patients [septic shock = 15, coronavirus disease 2019 (COVID-19) = 30] and healthy donors (n = 36) was collected. STAT5 phosphorylation, cytokine production, and cell proliferation were assessed upon T cell receptor (TCR) stimulation in presence of MVA-hIL-7-Fc-infected cell supernatants. Cells infected by MVA-hIL-7-Fc produced a dimeric, glycosylated, and biologically active hIL-7-Fc. Cell supernatants containing the expressed hIL-7-Fc triggered the IL-7 pathway in T lymphocytes as evidenced by the increased STAT5 phosphorylation in CD3+ cells from patients and healthy donors. The secreted hIL-7-Fc improved Interferon-γ (IFN-γ) and/or Tumor necrosis factor-α (TNF-α) productions and CD4+ and CD8+ T lymphocyte proliferation after TCR stimulation in patients with bacterial and viral sepsis. This study demonstrates the capacity of the novel MVA-hIL-7-Fc-based virotherapy to restore ex vivo T cells immune functions in ICU patients with sepsis and COVID-19, further supporting its clinical development.
Collapse
Affiliation(s)
- Morgane Crausaz
- Department of Infectious Diseases, Transgene SA, Lyon, France
- EA 7426 Pathophysiology of injury-induced immunosuppression (PI3), Lyon 1 University/Hospices Civils de Lyon/bioMérieux, Hôpital Edouard Herriot, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of injury-induced immunosuppression (PI3), Lyon 1 University/Hospices Civils de Lyon/bioMérieux, Hôpital Edouard Herriot, Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d'Immunologie, Lyon, France
| | - Filippo Conti
- EA 7426 Pathophysiology of injury-induced immunosuppression (PI3), Lyon 1 University/Hospices Civils de Lyon/bioMérieux, Hôpital Edouard Herriot, Lyon, France
| | - Anne-Claire Lukaszewicz
- EA 7426 Pathophysiology of injury-induced immunosuppression (PI3), Lyon 1 University/Hospices Civils de Lyon/bioMérieux, Hôpital Edouard Herriot, Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'anesthésie-réanimation, Lyon, France
| | | | - Perrine Martin
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | | | - Fabienne Venet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d'Immunologie, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
4
|
Boudewijns R, Pérez P, Lázaro-Frías A, Van Looveren D, Vercruysse T, Thibaut HJ, Weynand B, Coelmont L, Neyts J, Astorgano D, Montenegro D, Puentes E, Rodríguez E, Dallmeier K, Esteban M, García-Arriaza J. MVA-CoV2-S Vaccine Candidate Neutralizes Distinct Variants of Concern and Protects Against SARS-CoV-2 Infection in Hamsters. Front Immunol 2022; 13:845969. [PMID: 35371064 PMCID: PMC8966703 DOI: 10.3389/fimmu.2022.845969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 12/31/2022] Open
Abstract
To control the coronavirus disease 2019 (COVID-19) pandemic and the emergence of different variants of concern (VoCs), novel vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed. In this study, we report the potent immunogenicity and efficacy induced in hamsters by a vaccine candidate based on a modified vaccinia virus Ankara (MVA) vector expressing a human codon optimized full-length SARS-CoV-2 spike (S) protein (MVA-S). Immunization with one or two doses of MVA-S elicited high titers of S- and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against parental SARS-CoV-2 and VoC alpha, beta, gamma, delta, and omicron. After SARS-CoV-2 challenge, MVA-S-vaccinated hamsters showed a significantly strong reduction of viral RNA and infectious virus in the lungs compared to the MVA-WT control group. Moreover, a marked reduction in lung histopathology was also observed in MVA-S-vaccinated hamsters. These results favor the use of MVA-S as a potential vaccine candidate for SARS-CoV-2 in clinical trials.
Collapse
Affiliation(s)
- Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Dominique Van Looveren
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
5
|
Kupke A, Volz A, Dietzel E, Freudenstein A, Schmidt J, Shams-Eldin H, Jany S, Sauerhering L, Krähling V, Gellhorn Serra M, Herden C, Eickmann M, Becker S, Sutter G. Protective CD8+ T Cell Response Induced by Modified Vaccinia Virus Ankara Delivering Ebola Virus Nucleoprotein. Vaccines (Basel) 2022; 10:vaccines10040533. [PMID: 35455282 PMCID: PMC9027530 DOI: 10.3390/vaccines10040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014–2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen. Here, we tested new vaccine candidates based on the recombinant MVA vector, encoding the EBOV nucleoprotein (MVA-EBOV-NP) or glycoprotein (MVA-EBOV-GP) for their efficacy after homologous prime-boost immunization in mice. Our aim was to investigate the role of each antigen in terms of efficacy and correlates of protection. Sera of mice vaccinated with MVA-EBOV-GP were virus-neutralizing and MVA-EBOV-NP immunization readily elicited interferon-γ-producing NP-specific CD8+ T cells. While mock-vaccinated mice succumbed to EBOV infection, all vaccinated mice survived and showed drastically decreased viral loads in sera and organs. In addition, MVA-EBOV-NP vaccinated mice became susceptible to lethal EBOV infection after depletion of CD8+ T cells prior to challenge. This study highlights the potential of MVA-based vaccines to elicit humoral immune responses as well as a strong and protective CD8+ T cell response and contributes to understanding the possible underlying mechanisms.
Collapse
Affiliation(s)
- Alexandra Kupke
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Munich, 80539 Munich, Germany;
| | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Astrid Freudenstein
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| | - Jörg Schmidt
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Hosam Shams-Eldin
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
| | - Sylvia Jany
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Michelle Gellhorn Serra
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Markus Eickmann
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
- Correspondence:
| | - Gerd Sutter
- German Center for Infection Research, Partner Site Munich, 80539 Munich, Germany;
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| |
Collapse
|
6
|
Kulkarni R, Chen WC, Lee Y, Kao CF, Hu SL, Ma HH, Jan JT, Liao CC, Liang JJ, Ko HY, Sun CP, Lin YS, Wang YC, Wei SC, Lin YL, Ma C, Chao YC, Chou YC, Chang W. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021; 16:e0257191. [PMID: 34499677 PMCID: PMC8428573 DOI: 10.1371/journal.pone.0257191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yin-Shoiou Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chiuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Academi Sinica SPF Animal Facility, Academia Sinica, Taipei, Taiwan
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Routhu NK, Cheedarla N, Gangadhara S, Bollimpelli VS, Boddapati AK, Shiferaw A, Rahman SA, Sahoo A, Edara VV, Lai L, Floyd K, Wang S, Fischinger S, Atyeo C, Shin SA, Gumber S, Kirejczyk S, Cohen J, Jean SM, Wood JS, Connor-Stroud F, Stammen RL, Upadhyay AA, Pellegrini K, Montefiori D, Shi PY, Menachery VD, Alter G, Vanderford TH, Bosinger SE, Suthar MS, Amara RR. A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity 2021; 54:542-556.e9. [PMID: 33631118 PMCID: PMC7859620 DOI: 10.1016/j.immuni.2021.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- COVID-19/immunology
- COVID-19/pathology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/genetics
- COVID-19 Vaccines/immunology
- Disease Models, Animal
- Gene Expression
- Gene Order
- Genetic Vectors/genetics
- Immunophenotyping
- Lung/immunology
- Lung/pathology
- Lung/virology
- Macaca
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Mice
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Vaccination/methods
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Venkata Satish Bollimpelli
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Arun K Boddapati
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ayalnesh Shiferaw
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sheikh Abdul Rahman
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Venkata Viswanadh Edara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lilin Lai
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Katharine Floyd
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shelly Wang
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sally A Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Shannon Kirejczyk
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Joyce Cohen
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sherrie M Jean
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jennifer S Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Fawn Connor-Stroud
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Rachelle L Stammen
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Amit A Upadhyay
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kathryn Pellegrini
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Thomas H Vanderford
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Steven E Bosinger
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rama Rao Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Abstract
The current COVID-19 pandemic has substantially accelerated the demands for efficient vaccines. A wide spectrum of approaches includes live attenuated and inactivated viruses, protein subunits and peptides, viral vector-based delivery, DNA plasmids, and synthetic mRNA. Preclinical studies have demonstrated robust immune responses, reduced viral loads and protection against challenges with SARS-CoV-2 in rodents and primates. Vaccine candidates based on all delivery systems mentioned above have been subjected to clinical trials in healthy volunteers. Phase I clinical trials have demonstrated in preliminary findings good safety and tolerability. Evaluation of immune responses in a small number of individuals has demonstrated similar or superior levels of neutralizing antibodies in comparison to immunogenicity detected in COVID-19 patients. Both adenovirus- and mRNA-based vaccines have entered phase II and study protocols for phase III trials with 30,000 participants have been finalized.
Collapse
|
9
|
Leal L, Fehér C, Richart V, Torres B, García F. Antiretroviral Therapy Interruption (ATI) in HIV-1 Infected Patients Participating in Therapeutic Vaccine Trials: Surrogate Markers of Virological Response. Vaccines (Basel) 2020; 8:vaccines8030442. [PMID: 32764508 PMCID: PMC7564579 DOI: 10.3390/vaccines8030442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional Human immunodeficiency Virus (HIV) cure has been proposed as an alternative to antiretroviral treatment for life, and therapeutic vaccines represent one of the most promising approaches. The goal of therapeutic vaccination is to augment virus-specific immune responses that have an impact on HIV viral load dynamics. To date, the agreed feature to evaluate the effects of these therapeutic interventions is analytical antiretroviral treatment interruption (ATI), at least until we find a reliable biomarker that can predict viral control. Different host, immunologic, and virologic markers have been proposed as predictors of viral control during ATI after therapeutic interventions. This review describes the relevance of ATI and the different surrogate markers of virological control assessed in HIV therapeutic vaccine clinical trials.
Collapse
Affiliation(s)
- Lorna Leal
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275586; Fax: +34-93-4514-438
| | - Csaba Fehér
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
| | - Valèria Richart
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
| | - Berta Torres
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
| | - Felipe García
- Infectious Diseases Department—HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; (C.F.); (V.R.); (B.T.); (F.G.)
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
10
|
Larijani MS, Ramezani A, Sadat SM. Updated Studies on the Development of HIV Therapeutic Vaccine. Curr HIV Res 2020; 17:75-84. [PMID: 31210114 DOI: 10.2174/1570162x17666190618160608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Among the various types of pharmaceuticals, vaccines have a special place. However, in the case of HIV, nearly after 40 years of its discovery, an effective vaccine still is not available. The reason lies in several facts mainly the variability and smartness of HIV as well as the complexity of the interaction between HIV and immune responses. A robust, effective, and longterm immunity is undoubtedly what a successful preventive vaccine should induce in order to prevent the infection of HIV. Failure of human trials to this end has led to the idea of developing therapeutic vaccines with the purpose of curing already infected patients by boosting their immune responses against the virus. Nevertheless, the exceptional ability of the virus to escape the immune system based on the genetically diverse envelope and variable protein products have made it difficult to achieve an efficient therapeutic vaccine. OBJECTIVE We aimed at studying and comparing different approaches to HIV therapeutic vaccines. METHODS In this review, we summarized the human trials undergoing on HIV therapeutic vaccination which are registered in the U.S. clinical trial database (clinicaltrials.gov). These attempts are divided into different tables, according to the type of formulation and application in order to classify and compare their results. RESULT/CONCLUSION Among several methods applied in studied clinical trials which are mainly divided into DNA, Protein, Peptide, Viral vectors, and Dendritic cell-based vaccines, protein vaccine strategy is based on Tat protein-induced anti-Tat Abs in 79% HIV patients. However, the studies need to be continued to achieve a durable efficient immune response against HIV-1.
Collapse
Affiliation(s)
- Mona Sadat Larijani
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Haidari G, Day S, Wood M, Ridgers H, Cope AV, Fleck S, Yan C, Reijonen K, Hannaman D, Spentzou A, Hayes P, Vogt A, Combadiere B, Cook A, McCormack S, Shattock RJ. The Safety and Immunogenicity of GTU ®MultiHIV DNA Vaccine Delivered by Transcutaneous and Intramuscular Injection With or Without Electroporation in HIV-1 Positive Subjects on Suppressive ART. Front Immunol 2019; 10:2911. [PMID: 31921170 PMCID: PMC6923267 DOI: 10.3389/fimmu.2019.02911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022] Open
Abstract
Previous studies have shown targeting different tissues via the transcutaneous (TC) and intramuscular injection (IM) with or without electroporation (EP) has the potential to trigger immune responses to DNA vaccination. The CUTHIVTHER 001 Phase I/II randomized controlled clinical trial was designed to determine whether the mode of DNA vaccination delivery (TC+IM or EP+IM) could influence the quality and function of induced cellular immune responses compared to placebo, in an HIV positive clade B cohort on antiretroviral therapy (ART). The GTU®MultiHIV B DNA vaccine DNA vaccine encoded a MultiHIV B clade fusion protein to target the cellular response. Overall the vaccine and regimens were safe and well-tolerated. There were robust pre-vaccination IFN-γ responses with no measurable change following vaccination compared to placebo. However, modest intracellular cytokine staining (ICS) responses were seen in the TC+IM group. A high proportion of individuals demonstrated potent viral inhibition at baseline that was not improved by vaccination. These results show that HIV positive subjects with nadir CD4+ counts ≥250 on suppressive ART display potent levels of cellular immunity and viral inhibition, and that DNA vaccination alone is insufficient to improve such responses. These data suggest that more potent prime-boost vaccination strategies are likely needed to improve pre-existing responses in similar HIV-1 cohorts (This study has been registered at http://ClinicalTrials.gov under registration no. NCT02457689).
Collapse
Affiliation(s)
- G Haidari
- Group of Mucosal Infection and Immunity, Department of Medicine, Imperial College London, London, United Kingdom
| | - Suzanne Day
- Group of Mucosal Infection and Immunity, Department of Medicine, Imperial College London, London, United Kingdom
| | - M Wood
- Group of Mucosal Infection and Immunity, Department of Medicine, Imperial College London, London, United Kingdom
| | - H Ridgers
- Group of Mucosal Infection and Immunity, Department of Medicine, Imperial College London, London, United Kingdom
| | - Alethea V Cope
- Group of Mucosal Infection and Immunity, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sue Fleck
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Celine Yan
- Group of Mucosal Infection and Immunity, Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Drew Hannaman
- Ichor Medical Systems Inc, San Diego, CA, United States
| | - Aggeliki Spentzou
- Group of Mucosal Infection and Immunity, Department of Medicine, Imperial College London, London, United Kingdom
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - A Vogt
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Behazine Combadiere
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Paris, France
| | - Adrian Cook
- Medical Research Council Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Sheena McCormack
- Medical Research Council Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Robin J Shattock
- Group of Mucosal Infection and Immunity, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Salvato MS, Domi A, Guzmán-Cardozo C, Medina-Moreno S, Zapata JC, Hsu H, McCurley N, Basu R, Hauser M, Hellerstein M, Guirakhoo F. A Single Dose of Modified Vaccinia Ankara Expressing Lassa Virus-like Particles Protects Mice from Lethal Intra-cerebral Virus Challenge. Pathogens 2019; 8:E133. [PMID: 31466243 PMCID: PMC6789566 DOI: 10.3390/pathogens8030133] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lassa fever surpasses Ebola, Marburg, and all other hemorrhagic fevers except Dengue in its public health impact. Caused by Lassa virus (LASV), the disease is a scourge on populations in endemic areas of West Africa, where reported incidence is higher. Here, we report construction, characterization, and preclinical efficacy of a novel recombinant vaccine candidate GEO-LM01. Constructed in the Modified Vaccinia Ankara (MVA) vector, GEO-LM01 expresses the glycoprotein precursor (GPC) and zinc-binding matrix protein (Z) from the prototype Josiah strain lineage IV. When expressed together, GP and Z form Virus-Like Particles (VLPs) in cell culture. Immunogenicity and efficacy of GEO-LM01 was tested in a mouse challenge model. A single intramuscular dose of GEO-LM01 protected 100% of CBA/J mice challenged with a lethal dose of ML29, a Mopeia/Lassa reassortant virus, delivered directly into the brain. In contrast, all control animals died within one week. The vaccine induced low levels of antibodies but Lassa-specific CD4+ and CD8+ T cell responses. This is the first report showing that a single dose of a replication-deficient MVA vector can confer full protection against a lethal challenge with ML29 virus.
Collapse
Affiliation(s)
- Maria S Salvato
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | - Juan Carlos Zapata
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | - Haoting Hsu
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | - Nathanael McCurley
- Office of Technology Licensing and Commercialization, Georgia State University, Atlanta, GA 30303, USA
| | - Rahul Basu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Clinical trials with an antiretroviral therapy (ART) interruption remains indispensable for assessing strategies for ART-free HIV remission. This review highlights the lessons learned from ART interruption studies so far, including the risks to the participants and implications for HIV remission. RECENT FINDINGS Historically, analytic HIV treatment interruption (ATI) studies were commonly designed with a prolonged duration of ART interruption and with viral load set point as the primary outcome. For a variety of reasons, including participant risk, recent treatment interruption trials have frequently used time to viral rebound as the primary endpoint and have restarted ART once a predetermined viral load threshold is reached. Through treatment interruption trials, investigators have tested the efficacy of therapeutic and curative strategies that showed promise in preclinical trials, including therapeutic vaccines, latency-reversing agents, and broadly neutralizing antibodies. In most populations, ATI trials have been well tolerated, with few adverse clinical events and no significant changes to the reservoir. Several reservoir predictors of HIV-rebound timing have been reported, with a subset of trials uncovering posttreatment controllers who can maintain HIV remission despite ART discontinuation. SUMMARY Treatment interruption trials are a vital tool, but their optimal design remain uncertain and must balance participant risks with scientific rigor. The ability to predict the timing or extent of HIV rebound and identify mechanisms of posttreatment control may accelerate the development of novel therapeutics for sustained HIV remission.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent landscape of HIV therapeutic vaccine research, emphasizing the results of randomized controlled trials that included analytical treatment interruption (ATI) to assess efficacy. RECENT FINDINGS Therapeutic vaccines for HIV are designed to re-educate the host immune response in HIV-infected individuals to better control viral replication in the absence of antiretroviral therapy. No therapeutic vaccine has yet to induce long-term HIV remission following ATI in a randomized controlled trial. This is likely because the vaccines have not elicited a broad enough immune response to suppress the diverse escape variants that emerge during viral rebound, and have not been used with effective agents to reduce the HIV reservoir. Recent studies in nonhuman primates using combination approaches are showing significant successes, with several candidates eliciting significant antiviral activity following ATI. Future studies pairing these vaccines with effective reservoir reduction hold great promise. SUMMARY Therapeutic vaccines aim to modulate the immune system of HIV-infected individuals to elicit sustained virologic control in the absence of antiretroviral therapy. Therapeutic vaccines that elicit broad immune responses have recently shown promise in randomized controlled trials and nonhuman primate studies.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Lau JS, Smith MZ, Lewin SR, McMahon JH. Clinical trials of antiretroviral treatment interruption in HIV-infected individuals. AIDS 2019; 33:773-791. [PMID: 30883388 DOI: 10.1097/qad.0000000000002113] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
: Despite the benefits of antiretroviral therapy (ART) for people living with HIV, there has been a long-standing research interest in interrupting ART as a strategy to minimize adverse effects of ART as well as to test interventions aiming to achieve a degree of virological control without ART. We performed a systematic review of HIV clinical studies involving treatment interruption from 2000 to 2017 to describe the differences between treatment interruption in studies that contained and didn't contain an intervention. We assessed differences in monitoring strategies, threshold to restart ART, duration and adverse outcomes of treatment interruption, and factors aimed at minimizing transmission. We found that treatment interruption has been incorporated into 159 clinical studies since 2000 and is increasingly being included in trials to assess the efficacy of interventions to achieve sustained virological remission off ART. Great heterogeneity was noted in immunological, virological and clinical monitoring strategies, as well as in thresholds to recommence ART. Treatment interruption in recent intervention studies were more closely monitored, had more conservative thresholds to restart ART and had a shorter treatment interruption duration, compared with older treatment interruption studies that didn't include an intervention.
Collapse
|
16
|
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80:31-47. [PMID: 30172933 PMCID: PMC7105045 DOI: 10.1016/j.actbio.2018.08.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Engineering vaccine-based therapeutics for infectious diseases is highly challenging, as trial formulations are often found to be nonspecific, ineffective, thermally or hydrolytically unstable, and/or toxic. Vaccines have greatly improved the therapeutic landscape for treating infectious diseases and have significantly reduced the threat by therapeutic and preventative approaches. Furthermore, the advent of recombinant technologies has greatly facilitated growth within the vaccine realm by mitigating risks such as virulence reversion despite making the production processes more cumbersome. In addition, seroconversion can also be enhanced by recombinant technology through kinetic and nonkinetic approaches, which are discussed herein. Recombinant technologies have greatly improved both amino acid-based vaccines and DNA-based vaccines. A plateau of interest has been reached between 2001 and 2010 for the scientific community with regard to DNA vaccine endeavors. The decrease in interest may likely be attributed to difficulties in improving immunogenic properties associated with DNA vaccines, although there has been research demonstrating improvement and optimization to this end. Despite improvement, to the extent of our knowledge, there are currently no regulatory body-approved DNA vaccines for human use (four vaccines approved for animal use). This article discusses engineering DNA vaccines against infectious diseases while discussing advantages and disadvantages of each, with an emphasis on applications of these DNA vaccines. Statement of Significance This review paper summarizes the state of the engineered/recombinant DNA vaccine field, with a scope entailing “Engineering DNA vaccines against infectious diseases”. We endeavor to emphasize recent advances, recapitulating the current state of the field. In addition to discussing DNA therapeutics that have already been clinically translated, this review also examines current research developments, and the challenges thwarting further progression. Our review covers: recombinant DNA-based subunit vaccines; internalization and processing; enhancing immune protection via adjuvants; manufacturing and engineering DNA; the safety, stability and delivery of DNA vaccines or plasmids; controlling gene expression using plasmid engineering and gene circuits; overcoming immunogenic issues; and commercial successes. We hope that this review will inspire further research in DNA vaccine development.
Collapse
|
17
|
Perdiguero B, Raman SC, Sánchez-Corzo C, Sorzano COS, Valverde JR, Esteban M, Gómez CE. Potent HIV-1-Specific CD8 T Cell Responses Induced in Mice after Priming with a Multiepitopic DNA-TMEP and Boosting with the HIV Vaccine MVA-B. Viruses 2018; 10:v10080424. [PMID: 30104537 PMCID: PMC6116222 DOI: 10.3390/v10080424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Suresh C Raman
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Carlos Oscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - José Ramón Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Hu X, Valentin A, Cai Y, Dayton F, Rosati M, Ramírez-Salazar EG, Kulkarni V, Broderick KE, Sardesai NY, Wyatt LS, Earl PL, Moss B, Mullins JI, Pavlakis GN, Felber BK. DNA Vaccine-Induced Long-Lasting Cytotoxic T Cells Targeting Conserved Elements of Human Immunodeficiency Virus Gag Are Boosted Upon DNA or Recombinant Modified Vaccinia Ankara Vaccination. Hum Gene Ther 2018; 29:1029-1043. [PMID: 29869530 PMCID: PMC6152849 DOI: 10.1089/hum.2018.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DNA-based vaccines able to induce efficient cytotoxic T-cell responses targeting conserved elements (CE) of human immunodeficiency virus type 1 (HIV-1) Gag have been developed. These CE were selected by stringent conservation, the ability to induce T-cell responses with broad human leukocyte antigen coverage, and the association between recognition of CE epitopes and viral control in HIV-infected individuals. Based on homology to HIV, a simian immunodeficiency virus p27gag CE DNA vaccine has also been developed. This study reports on the durability of the CE-specific T-cell responses induced by HIV and simian immunodeficiency virus CE DNA-based prime/boost vaccine regimens in rhesus macaques, and shows that the initially primed CE-specific T-cell responses were efficiently boosted by a single CE DNA vaccination after the long rest period (up to 2 years). In another cohort of animals, the study shows that a single inoculation with non-replicating recombinant Modified Vaccinia Ankara (rMVA62B) also potently boosted CE-specific responses after around 1.5 years of rest. Both CE DNA and rMVA62B booster vaccinations increased the magnitude and cytotoxicity of the CE-specific responses while maintaining the breadth of CE recognition. Env produced by rMVA62B did not negatively interfere with the recall of the Gag CE responses. rMVA62B could be beneficial to further boosting the immune response to Gag in humans. Vaccine regimens that employ CE DNA as a priming immunogen hold promise for application in HIV prevention and therapy.
Collapse
Affiliation(s)
- Xintao Hu
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Antonio Valentin
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | - Yanhui Cai
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Frances Dayton
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | - Margherita Rosati
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | | | - Viraj Kulkarni
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| | | | | | - Linda S Wyatt
- 4 Laboratory of Viral Diseases, NIAID, Bethesda, Maryland
| | | | - Bernard Moss
- 4 Laboratory of Viral Diseases, NIAID, Bethesda, Maryland
| | | | - George N Pavlakis
- 2 Human Retrovirus Section, National Cancer Institute, Frederick, Maryland
| | - Barbara K Felber
- 1 Human Retrovirus Pathogenesis Section, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
19
|
Mothe B, Brander C. HIV T-Cell Vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:31-51. [DOI: 10.1007/978-981-13-0484-2_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Rosás-Umbert M, Mothe B, Noguera-Julian M, Bellido R, Puertas MC, Carrillo J, Rodriguez C, Perez-Alvarez N, Cobarsí P, Gomez CE, Esteban M, Jímenez JL, García F, Blanco J, Martinez-Picado J, Paredes R, Brander C. Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B. PLoS One 2017; 12:e0184929. [PMID: 28953921 PMCID: PMC5617163 DOI: 10.1371/journal.pone.0184929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/13/2017] [Indexed: 01/02/2023] Open
Abstract
The most relevant endpoint in therapeutic HIV vaccination is the assessment of time to viral rebound or duration of sustained control of low-level viremia upon cART treatment cessation. Structured treatment interruptions (STI) are however not without risk to the patient and reliable predictors of viral rebound/control after therapeutic HIV-1 vaccination are urgently needed to ensure patient safety and guide therapeutic vaccine development. Here, we integrated immunological and virological parameters together with viral rebound dynamics after STI in a phase I therapeutic vaccine trial of a polyvalent MVA-B vaccine candidate to define predictors of viral control. Clinical parameters, proviral DNA, host HLA genetics and measures of humoral and cellular immunity were evaluated. A sieve effect analysis was conducted comparing pre-treatment viral sequences to breakthrough viruses after STI. Our results show that a reduced proviral HIV-1 DNA at study entry was independently associated with two virological parameters, delayed HIV-1 RNA rebound (p = 0.029) and lower peak viremia after treatment cessation (p = 0.019). Reduced peak viremia was also positively correlated with a decreased number of HLA class I allele associated polymorphisms in Gag sequences in the rebounding virus population (p = 0.012). Our findings suggest that proviral DNA levels and the number of HLA-associated Gag polymorphisms may have an impact on the clinical outcome of STI. Incorporation of these parameters in future therapeutic vaccine trials may guide refined immunogen design and help conduct safer STI approaches.
Collapse
Affiliation(s)
- Miriam Rosás-Umbert
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- “Lluita contra la SIDA” Foundation, Hospital Germans Trias i Pujol, Badalona, Spain
- University of VIC and Central Catalonia, Vic, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- University of VIC and Central Catalonia, Vic, Spain
| | - Rocío Bellido
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Maria C. Puertas
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - C. Rodriguez
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Núria Perez-Alvarez
- “Lluita contra la SIDA” Foundation, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Patricia Cobarsí
- “Lluita contra la SIDA” Foundation, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | - Felipe García
- Hospital Clinic–HIVACAT, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- University of VIC and Central Catalonia, Vic, Spain
- Health Sciences Research Institute Germans Trias i Pujol, IGTP, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- “Lluita contra la SIDA” Foundation, Hospital Germans Trias i Pujol, Badalona, Spain
- University of VIC and Central Catalonia, Vic, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- University of VIC and Central Catalonia, Vic, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
21
|
Huang Y, Pantaleo G, Tapia G, Sanchez B, Zhang L, Trondsen M, Hovden AO, Pollard R, Rockstroh J, Ökvist M, Sommerfelt MA. Cell-Mediated Immune Predictors of Vaccine Effect on Viral Load and CD4 Count in a Phase 2 Therapeutic HIV-1 Vaccine Clinical Trial. EBioMedicine 2017; 24:195-204. [PMID: 28970080 PMCID: PMC5652289 DOI: 10.1016/j.ebiom.2017.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023] Open
Abstract
Background In a placebo-controlled trial of the peptide-based therapeutic HIV-1 p24Gag vaccine candidate Vacc-4x, participants on combination antiretroviral therapy (cART) received six immunizations over 18 weeks, followed by analytical treatment interruption (ATI) between weeks 28 and 52. Cell-mediated immune responses were investigated as predictors of Vacc-4x effect (VE) on viral load (VL) and CD4 count during ATI. Methods All analyses of week 28 responses and fold-changes relative to baseline considered per-protocol participants (Vacc-4x:placebo = 72:32) resuming cART after week 40. Linear regression models with interaction tests were used. VE was estimated as the Vacc-4x–placebo difference in log10-transformed VL (VEVL) or CD4 count (VECD4). Findings A lower fold-change of CD4+ T-cell proliferation was associated with VECD4 at week 48 (p = 0.036, multiplicity adjusted q = 0.036) and week 52 (p = 0.040, q = 0.080). A higher fold-change of IFN-γ in proliferation supernatants was associated with VEVL at week 44 (p = 0.047, q = 0.07). A higher fold-change of TNF-α was associated with VEVL at week 44 (p = 0.045, q = 0.070), week 48 (p = 0.028, q = 0.070), and week 52 (p = 0.037, q = 0.074). A higher fold-change of IL-6 was associated with VEVL at week 48 (p = 0.017, q = 0.036). TNF-α levels (> median) were associated with VECD4 at week 48 (p = 0.009, q = 0.009). Interpretation These exploratory analyses highlight the potential value of investigating biomarkers in T-cell proliferation supernatants for VE in clinical studies. Ex vivo CD4+ T-cell proliferation was predictive of Vacc-4x effect. IFN-γ, TNF-α and IL-6 secretion in T-cell proliferation supernatants were predictive of Vacc-4x effect. Such immune predictors could be utilized to mitigate risks associated with cART interruption towards HIV cure.
No immune correlates or predictors of therapeutic vaccine effect (i.e. a reduction in viral load compared to placebo on treatment interruption) for human immunodeficiency virus (HIV)-1 are known. We investigated a broad array of cytokines/chemokines produced in T-cell proliferation supernatants from a placebo-controlled clinical study of a therapeutic HIV vaccine. Although such supernatants do not provide cell type-specific readouts, the cytokines/chemokines studied included T-helper (Th)1, Th2, growth factor, immuno-modulatory and pro-inflammatory functions. Specifically, we found that, IFN-γ, TNF-α and IL-6 secretion correlated with vaccine effect, suggesting such supernatants could represent important sample material not previously considered for the identification of immune markers of vaccine effect.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, M2-C200, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, BH10-527, CH-1011 Lausanne, Switzerland.
| | - Gonzalo Tapia
- Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, BH10-527, CH-1011 Lausanne, Switzerland.
| | - Brittany Sanchez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, M2-C200, WA, USA.
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, M2-C200, WA, USA.
| | | | | | - Richard Pollard
- University of California, Davis School of Medicine, 4150 V Street, Suite G500 PSSB, 95817 Sacramento, CA, USA.
| | - Jürgen Rockstroh
- Oberarzt an der Medizinischen Universitätsklinik, Innere-Rheuma-Tropen Ambulanz, Sigmund-Freud-Str. 25, 53105 Bonn, Venusberg, Germany.
| | - Mats Ökvist
- Bionor Pharma AS, P.O. Box 1477 Vika, NO-0116 Oslo, Norway.
| | | |
Collapse
|
22
|
Leal L, Lucero C, Gatell JM, Gallart T, Plana M, García F. New challenges in therapeutic vaccines against HIV infection. Expert Rev Vaccines 2017; 16:587-600. [PMID: 28431490 DOI: 10.1080/14760584.2017.1322513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a growing interest in developing curative strategies for HIV infection. Therapeutic vaccines are one of the most promising approaches. We will review the current knowledge and the new challenges in this research field. Areas covered: PubMed and ClinicalTrial.gov databases were searched to review the progress and prospects for clinical development of immunotherapies aimed to cure HIV infection. Dendritic cells (DC)-based vaccines have yielded the best results in the field. However, major immune-virologic barriers may hamper current vaccine strategies. We will focus on some new challenges as the antigen presentation by DCs, CTL escape mutations, B cell follicle sanctuary, host immune environment (inflammation, immune activation, tolerance), latent reservoir and the lack of surrogate markers of response. Finally, we will review the rationale for designing new therapeutic vaccine candidates to be used alone or in combination with other strategies to improve their effectiveness. Expert commentary: In the next future, the combination of DCs targeting candidates, inserts to redirect responses to unmutated parts of the virus, adjuvants to redirect responses to sanctuaries or improve the balance between activation/tolerance (IL-15, anti-PD1 antibodies) and latency reversing agents could be necessary to finally achieve the remission of HIV-1 infection.
Collapse
Affiliation(s)
- Lorna Leal
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Constanza Lucero
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Josep M Gatell
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Teresa Gallart
- b Retrovirology and Viral Immunopathology Laboratories, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Montserrat Plana
- b Retrovirology and Viral Immunopathology Laboratories, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Felipe García
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| |
Collapse
|
23
|
Hsu DC, Ananworanich J. Immune Interventions to Eliminate the HIV Reservoir. Curr Top Microbiol Immunol 2017; 417:181-210. [PMID: 29071472 DOI: 10.1007/82_2017_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.
Collapse
Affiliation(s)
- Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. .,US Military HIV Research Program (MHRP), 6720-A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA.
| |
Collapse
|