1
|
Sinha I, Bitzer Z, Barnett S, Reinhart L, Umstead TM, Chroneos ZC, Lanza M, Sun D, Zhu J, Richie JP, Sinha R. Short-Term and Long-Term Effects of Electronic Cigarettes on Mouse Lungs Following Nose-Only Exposures. Chem Res Toxicol 2025. [PMID: 40401807 DOI: 10.1021/acs.chemrestox.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Health effects of electronic cigarettes (ECs) remain unknown, despite their popularity. We have determined that ECs produce highly reactive free radicals that could potentially cause damage in exposed tissues, mainly lungs. Goal for this study was to investigate the short- and long-term effects of ECs in mouse lungs. We focused on evaluating lung functions, oxidative stress related markers, and lung injury following nose-only exposures in male and female mice after 4- and 12-week periods. The EC exposure was modeled in vivo using nose-only exposures to C57BL/6 mice. For all studies, E-liquid (60:40; PG:VG) aerosols were compared to sham (compressed air) and to very low non-nicotine cigarette smoke (CS) controls in both sexes. Oxidative stress biomarkers (GSH, 8-Isoprostane, REDD1, and pGSK3β) and their selected downstream (RPS6) as well as upstream (AKT) target proteins in addition to pH2AX were measured by Western blot analysis. Lung function in mice was assessed by flexiVent and the injury scores were calculated following lung histology. Changes in cytology were also observed in cytospins from bronchoalveolar lavage (BALF). The lung injury (LI) score following 12-week exposures was significantly higher with EC and CS in female mice. Higher cell counts in BALF were mainly observed in CS exposed males and females at 4 and 12 weeks. 8-Isoprostane levels were significantly higher in EC and CS exposed males at 12 weeks. pGSK3β/GSK3β was low in males and higher in female mice at 4 weeks, and this difference was more pronounced at 12 weeks in CS exposed mice. Some mice exposed to EC and CS also showed DNA damage, as measured by pH2AX/H2AX expression. Based on the LI score, ECs were placed in between compressed air and CS. Our results showed the differentially expressed inflammation and oxidative stress/damage-related pathways from in vivo exposures to EC aerosols vs CS that could be an effective strategy for identifying EC relevant biomarkers of exposure and potential harm.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Molecular and Precision Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Zachary Bitzer
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Stephanie Barnett
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Lisa Reinhart
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Todd M Umstead
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Zissis C Chroneos
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Matthew Lanza
- Department of Comparative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Dongxiao Sun
- Mass Spectrometry Core Facility (small molecule), Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - John P Richie
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Raghu Sinha
- Department of Molecular and Precision Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
2
|
Quiros KAM, Nelson TM, Ulu A, Dominguez EC, Nordgren TM, Eskandari M. Fibrotic and emphysematous murine lung mechanics under negative-pressure ventilation. Am J Physiol Lung Cell Mol Physiol 2025; 328:L443-L455. [PMID: 39812236 PMCID: PMC12101562 DOI: 10.1152/ajplung.00087.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and the progressive nature heightens the calamity of the disease. In existing COPD studies, lung mechanics are often reported under positive-pressure ventilation (PPV) and extrapolations made from these studies pose restrictions as recent works have divulged disparate elastic and energetic results between PPV and more physiological negative-pressure ventilation (NPV) counterparts. This nonequivalence of PPV and NPV must be investigated under diseased states to augment our understanding of disease mechanics. To assess the comparability of diseased pulmonary mechanics in PPV and NPV, we pose a novel study to parse out the currently entangled contributions of ventilation mode and diseased state by analyzing murine PV curves from porcine pancreatic elastase (PPE) and hog dust extract (HDE) induced COPD models under positive and negative pressures. We find that, for PPE-exposed, under NPV, volume, compliance (C, Cstart, and Cdef), and hysteresis are increased in diseased states and that under PPV, only compliance (C and Cstart) is increased. For HDE-exposed, under NPV, volume, compliance (C, Cinf, Cdef, and K), and hysteresis are decreased, whereas, under PPV, only volume and static compliance decreased. All significant mechanical variations due to disease were observed solely at higher pressures (40 cmH2O) under both PPV and NPV. Our nuanced conclusions indicate the detection capabilities of multiple mechanics-based biomarkers are sensitive to the ventilation mode, where NPV exhibits more altered mechanics metrics in PPE-exposed and HDE-exposed groups compared with PPV counterparts, suggesting the resolution of biomarkers when applied under NPV research considerations may offer greater versatility.NEW & NOTEWORTHY We evaluate whether ubiquitous pressure-volume (PV) curve biomarkers depend on the ventilation mode under which they were collected (i.e., positive- or negative-pressure ventilation). This is a significant investigation considering recent works have revealed PV curves are distinct and noninterchangeable under the two ventilation modes. Multiple biomarkers noted under negative-pressure ventilation are lacking from positive-pressure counterparts, albeit for small-scale species considerations. Future investigations should confirm the applicability of these findings for large-scale specimens for clinical considerations.
Collapse
Affiliation(s)
- K. A. M. Quiros
- Department of Mechanical Engineering, University of California-Riverside, Riverside, California, United States
| | - T. M. Nelson
- Department of Mechanical Engineering, University of California-Riverside, Riverside, California, United States
| | - A. Ulu
- Division of Biomedical Sciences, Riverside School of Medicine, University of California-Riverside, Riverside, California, United States
| | - E. C. Dominguez
- Division of Biomedical Sciences, Riverside School of Medicine, University of California-Riverside, Riverside, California, United States
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California, United States
| | - T. M. Nordgren
- Division of Biomedical Sciences, Riverside School of Medicine, University of California-Riverside, Riverside, California, United States
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California, United States
- BREATHE Center, School of Medicine, University of California-Riverside, Riverside, California, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - M. Eskandari
- Department of Mechanical Engineering, University of California-Riverside, Riverside, California, United States
- BREATHE Center, School of Medicine, University of California-Riverside, Riverside, California, United States
- Department of Bioengineering, University of California-Riverside, Riverside, California, United States
| |
Collapse
|
3
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
4
|
Laiman V, Chuang HC, Lo YC, Yuan TH, Chen YY, Heriyanto DS, Yuliani FS, Chung KF, Chang JH. Cigarette smoke-induced dysbiosis: comparative analysis of lung and intestinal microbiomes in COPD mice and patients. Respir Res 2024; 25:204. [PMID: 38730440 PMCID: PMC11088139 DOI: 10.1186/s12931-024-02836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The impact of cigarette smoke (CS) on lung diseases and the role of microbiome dysbiosis in chronic obstructive pulmonary disease (COPD) have been previously reported; however, the relationships remain unclear. METHODS Our research examined the effects of 20-week cigarette smoke (CS) exposure on the lung and intestinal microbiomes in C57BL/6JNarl mice, alongside a comparison with COPD patients' intestinal microbiome data from a public dataset. RESULTS The study found that CS exposure significantly decreased forced vital capacity (FVC), thickened airway walls, and induced emphysema. Increased lung damage was observed along with higher lung keratinocyte chemoattractant (KC) levels by CS exposure. Lung microbiome analysis revealed a rise in Actinobacteriota, while intestinal microbiome showed significant diversity changes, indicating dysbiosis. Principal coordinate analysis highlighted distinct intestinal microbiome compositions between control and CS-exposed groups. In the intestinal microbiome, notable decreases in Patescibacteria, Campilobacterota, Defferibacterota, Actinobacteriota, and Desulfobacterota were observed. We also identified correlations between lung function and dysbiosis in both lung and intestinal microbiomes. Lung interleukins, interferon-ɣ, KC, and 8-isoprostane levels were linked to lung microbiome dysbiosis. Notably, dysbiosis patterns in CS-exposed mice were similar to those in COPD patients, particularly of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 4 patients. This suggests a systemic impact of CS exposure. CONCLUSION In summary, CS exposure induces significant dysbiosis in lung and intestinal microbiomes, correlating with lung function decline and injury. These results align with changes in COPD patients, underscoring the important role of microbiome in smoke-related lung diseases.
Collapse
Affiliation(s)
- Vincent Laiman
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Collaboration Research Center for Precision Oncology based Omics- PKR Promics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - You-Yin Chen
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Fara Silvia Yuliani
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Departments of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Bärnthaler T, Ramachandra AB, Ebanks S, Guerrera N, Sharma L, Dela Cruz CS, Humphrey JD, Manning EP. Developmental changes in lung function of mice are independent of sex as a biological variable. Am J Physiol Lung Cell Mol Physiol 2024; 326:L627-L637. [PMID: 38375577 PMCID: PMC11380952 DOI: 10.1152/ajplung.00120.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Pulmonary function testing (PFT) in mice includes biomechanical assessment of lung function relevant to physiology in health and its alteration in disease, hence, it is frequently used in preclinical modeling of human lung pathologies. Despite numerous reports of PFT in mice of various ages, there is a lack of reference data for developing mice collected using consistent methods. Therefore, we profiled PFTs in male and female C57BL/6J mice from 2 to 23 wk of age, providing reference values for age- and sex-dependent changes in mouse lung biomechanics during development and young adulthood. Although males and females have similar weights at birth, females weigh significantly less than males after 5 wk of age (P < 0.001) with largest weight gain observed between 3 and 8 wk in females and 3 and 13 wk in males, after which weight continued to increase more slowly up to 23 wk of age. Lung function parameters including static compliance and inspiratory capacity also increased rapidly between 3 and 8 wk in female and male mice, with male mice having significantly greater static compliance and inspiratory capacity than female mice (P < 0.001). Although these parameters appear higher in males at a given age, allometric scaling showed that static compliance and inspiratory compliance were comparable between the two sexes. This suggests that differences in measurements of lung function are likely body weight-based rather than sex-based. We expect these data to facilitate future lung disease research by filling a critical knowledge gap in our field.NEW & NOTEWORTHY This study provides reference values for changes in mouse lung biomechanics from 2 to 23 wk of age. There are rapid developmental changes in lung structure and function of male and female mice between the ages of 3 and 8 wk. Male mice become noticeably heavier than female mice at or about 5 wk of age. We identified that differences in normal lung function measurements are likely weight-based, not sex-based.
Collapse
Affiliation(s)
- Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Abhay B Ramachandra
- Department of Biomedical Engineering,Yale University, New Haven, Connecticut, United States
| | - Sadè Ebanks
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Nicole Guerrera
- Department of Medicine (Cardiovascular Medicine), Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut, United States
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering,Yale University, New Haven, Connecticut, United States
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
- VA Connecticut Healthcare System, West Haven, Connecticut, United States
| |
Collapse
|
6
|
Rychlik KA, Illingworth EJ, Sanchez IF, Attreed SE, Sinha P, Casin KM, Taube N, Loube J, Tasneen R, Kabir R, Nuermberger E, Mitzner W, Kohr MJ, Sillé FCM. Long-term effects of prenatal arsenic exposure from gestational day 9 to birth on lung, heart, and immune outcomes in the C57BL/6 mouse model. Toxicol Lett 2023; 383:17-32. [PMID: 37244563 PMCID: PMC10527152 DOI: 10.1016/j.toxlet.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Prenatal arsenic exposure is a major public health concern, associated with altered birth outcomes and increased respiratory disease risk. However, characterization of the long-term effects of mid-pregnancy (second trimester) arsenic exposure on multiple organ systems is scant. This study aimed to characterize the long-term impact of mid-pregnancy inorganic arsenic exposure on the lung, heart, and immune system, including infectious disease response using the C57BL/6 mouse model. Mice were exposed from gestational day 9 till birth to either 0 or 1000 µg/L sodium (meta)arsenite in drinking water. Male and female offspring assessed at adulthood (10-12 weeks of age) did not show significant effects on recovery outcomes after ischemia reperfusion injury but did exhibit increased airway hyperresponsiveness compared to controls. Flow cytometric analysis revealed significantly greater total numbers of cells in arsenic-exposed lungs, lower MHCII expression in natural killer cells, and increased percentages of dendritic cell populations. Activated interstitial (IMs) and alveolar macrophages (AMs) isolated from arsenic-exposed male mice produced significantly less IFN-γ than controls. Conversely, activated AMs from arsenic-exposed females produced significantly more IFN-γ than controls. Although systemic cytokine levels were higher upon Mycobacterium tuberculosis (Mtb) infection in prenatally arsenic-exposed offspring there was no difference in lung Mtb burden compared to controls. This study highlights significant long-term impacts of prenatal arsenic exposure on lung and immune cell function. These effects may contribute to the elevated risk of respiratory diseases associated with prenatal arsenic exposure in epidemiology studies and point to the need for more research into mechanisms driving these maintained responses.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Public Health Program, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Emily J Illingworth
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ian F Sanchez
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah E Attreed
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Plum Island, CT, USA
| | - Prithvi Sinha
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Casin
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Taube
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jeff Loube
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raihan Kabir
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
De Luca SN, Chan SMH, Dobric A, Wang H, Seow HJ, Brassington K, Mou K, Alateeq R, Akhtar A, Bozinovski S, Vlahos R. Cigarette smoke-induced pulmonary impairment is associated with social recognition memory impairments and alterations in microglial profiles within the suprachiasmatic nucleus of the hypothalamus. Brain Behav Immun 2023; 109:292-307. [PMID: 36775074 DOI: 10.1016/j.bbi.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major, incurable respiratory condition that is primarily caused by cigarette smoking (CS). Neurocognitive disorders including cognitive dysfunction, anxiety and depression are highly prevalent in people with COPD. It is understood that increased lung inflammation and oxidative stress from CS exposure may 'spill over' into the systemic circulation to promote the onset of these extra-pulmonary comorbidities, and thus impacts the quality of life of people with COPD. The precise role of the 'spill-over' of inflammation and oxidative stress in the onset of COPD-related neurocognitive disorders are unclear. The present study investigated the impact of chronic CS exposure on anxiety-like behaviors and social recognition memory, with a particular focus on the role of the 'spill-over' of inflammation and oxidative stress from the lungs. Adult male BALB/c mice were exposed to either room air (sham) or CS (9 cigarettes per day, 5 days a week) for 24 weeks and were either daily co-administered with the NOX2 inhibitor, apocynin (5 mg/kg, in 0.01 % DMSO diluted in saline, i.p.) or vehicle (0.01 % DMSO in saline) one hour before the initial CS exposure of the day. After 23 weeks, mice underwent behavioral testing and physiological diurnal rhythms were assessed by monitoring diurnal regulation profiles. Lungs were collected and assessed for hallmark features of COPD. Consistent with its anti-inflammatory and oxidative stress properties, apocynin treatment partially lessened lung inflammation and lung function decline in CS mice. CS-exposed mice displayed marked anxiety-like behavior and impairments in social recognition memory compared to sham mice, which was prevented by apocynin treatment. Apocynin was unable to restore the decreased Bmal1-positive cells, key in cells in diurnal regulation, in the suprachiasmatic nucleus of the hypothalamus to that of sham levels. CS-exposed mice treated with apocynin was associated with a restoration of microglial area per cell and basal serum corticosterone. This data suggests that we were able to model the CS-induced social recognition memory impairments seen in humans with COPD. The preventative effects of apocynin on memory impairments may be via a microglial dependent mechanism.
Collapse
Affiliation(s)
- Simone N De Luca
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Aleksandar Dobric
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Huei Jiunn Seow
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Kurt Brassington
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Kevin Mou
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Rana Alateeq
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Alina Akhtar
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| |
Collapse
|
8
|
Matz J, Farra YM, Cotto HM, Bellini C, Oakes JM. Respiratory mechanics following chronic cigarette smoke exposure in the Apoe
−
/
−
mouse model. Biomech Model Mechanobiol 2023; 22:233-252. [PMID: 36335185 DOI: 10.1007/s10237-022-01644-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Even though cigarette smoking (CS) has been on the decline over the past 50 years, it is still the leading cause of preventable premature death in the United States. Preclinical models have investigated the cardiopulmonary effects of CS exposure (CSE), but the structure-function relationship in the respiratory system has not yet been fully explored. To evaluate these relationships, we exposed female apolipoprotein E-deficient (Apoe− / − ) mice to mainstream CS (n = 8 ) for 5 days/week over 24 weeks with room air as a control (AE,n = 8 ). To contextualize the impact of CSE, we also assessed the natural aging effects over 24 weeks of air exposure (baseline,n = 8 ). Functional assessments were performed on a small animal mechanical ventilator (flexiVent, SCIREQ), where pressure-volume curves and impedance data at four levels of positive end-expiratory pressure (P peep and with increasing doses of methacholine were collected. Constant phase model parameters (R N : Newtonian resistance, H: coefficient of tissue elastance, and G: coefficient of tissue resistance) were calculated from the impedance data. Perfusion fixed-left lung tissue was utilized for quantification of parenchyma airspace size and tissue thickness, airway wall thickness, and measurements of elastin, cytoplasm + nucleus, fibrin, and collagen content for the parenchyma and airways. Aging caused the lung to become more compliant, with an upward-leftward shift of the pressure-volume curve and a reduction in all constant phase model parameters. This was supported by larger parenchyma airspace sizes, with a reduction in cell cytoplasm + nucleus area. Airway walls became thinner, even though low-density collagen content increased. In contrast, CSE caused a downward-rightward shift of the pressure-volume curve along with an increase in H, G, and hysteresivity (η = G / H ). Organ stiffening was accompanied by enhanced airway hyper-responsiveness following methacholine challenge. Structurally, parenchyma airspaces enlarged, as indicated by an increase in equivalent airspace diameter (D 0 ), and the septum thickened with significant deposition of low-density collagen along with an influx of cells. Airway walls thickened due to deposition of both high and low-density collagen, infiltration of cells, and epithelial cell elongation. In all, our data suggest that CSE in female Apoe− / − mice reduces respiratory functionality and causes morphological alterations in both central and peripheral airways that results in lung stiffening, compared to AE controls.
Collapse
Affiliation(s)
- Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, USA
| | | | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, USA.
| |
Collapse
|
9
|
Ford NL, Lee I, Hwangbo J, Tam A, Sin DD. In vivo measurements of lung function using respiratory-gated micro-computed tomography in a smoke-exposure model of chronic obstructive pulmonary disease. J Med Imaging (Bellingham) 2023; 10:016002. [PMID: 36818545 PMCID: PMC9932522 DOI: 10.1117/1.jmi.10.1.016002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Purpose We hypothesize that in vivo respiratory-gated micro computed tomography (micro-CT) imaging can noninvasively provide structural and functional information about the lungs in a cigarette-exposure model of chronic obstructive pulmonary disease in mice. Approach Female C57BL/6 mice were exposed to cigarette smoke or ambient air for 1, 3, or 6 months. Each mouse received a respiratory-gated micro-CT scan at baseline and another scan following the exposure period, while anaesthetized and free-breathing. Images were obtained representing end-expiration and peak inspiration, and measurements were performed to characterize the lung structure and compute functional metrics. Following the final micro-CT session, the mice were euthanized and the lungs prepared for histology. Results Following 6 months of smoke-exposure, the mice exhibited larger increases in end-expiration lung volume and functional residual capacity, and a reduction in weight gain when compared with air-exposed mice. The histogram of CT numbers in the lung obtained during end-expiration also showed a shift to lower CT numbers following 6 months of smoke-exposure, indicating increased air content within the lungs. The metrics suggested air-trapping in the lung, which is consistent with emphysema. In the 3-month exposure group, only the reduction in weight gain was significant compared with the air-exposed group. Histological analysis confirmed that the 6-month smoke-exposed mice likely developed centrilobular emphysema as measured by the mean linear intercept. Conclusions Respiratory-gated micro-CT imaging of free-breathing mice at multiple respiratory phases is noninvasive and provides additional information about lung structure and function that complements postmortem techniques and could be used to monitor changes over time.
Collapse
Affiliation(s)
- Nancy L. Ford
- The University of British Columbia, Department of Oral Biological and Medical Sciences, Vancouver, British Columbia, Canada
- The University of British Columbia, Department of Physics and Astronomy, Vancouver, British Columbia, Canada
| | - Ian Lee
- The University of British Columbia, Department of Oral Biological and Medical Sciences, Vancouver, British Columbia, Canada
| | - Julia Hwangbo
- The University of British Columbia, Department of Oral Biological and Medical Sciences, Vancouver, British Columbia, Canada
| | - Anthony Tam
- The University of British Columbia, St. Paul’s Hospital, Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Don D. Sin
- The University of British Columbia, St. Paul’s Hospital, Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
- The University of British Columbia, Division of Respirology, Department of Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Goel K, Schweitzer KS, Serban KA, Bittman R, Petrache I. Pharmacological sphingosine-1 phosphate receptor 1 targeting in cigarette smoke-induced emphysema in mice. Am J Physiol Lung Cell Mol Physiol 2022; 322:L794-L803. [PMID: 35412858 PMCID: PMC9109793 DOI: 10.1152/ajplung.00017.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Primarily caused by chronic cigarette smoking (CS), emphysema is characterized by loss of alveolar cells comprising lung units involved in gas exchange and inflammation that culminate in airspace enlargement. Dysregulation of sphingolipid metabolism with increases of ceramide relative to sphingosine-1 phosphate (S1P) signaling has been shown to cause lung cell apoptosis and is emerging as a potential therapeutic target in emphysema. We sought to determine the impact of augmenting S1P signaling via S1P receptor 1 (S1P1) in a mouse model of CS-induced emphysema. DBA2 mice were exposed to CS for 4 or 6 mo and treated with pharmacological agonists of S1P1: phosphonated FTY720 (FTY720-1S and 2S analogs; 0.01-1.0 mg/kg) or GSK183303A (10 mg/kg). Pharmacological S1P1 agonists ameliorated CS-induced lung parenchymal apoptosis and airspace enlargement as well as loss of body weight. S1P1 agonists had modest inhibitory effects on CS-induced airspace inflammation and lung functional changes measured by Flexivent, improving lung tissue resistance. S1P1 abundance was reduced in chronic CS-conditions and remained decreased after CS-cessation or treatment with FTY720-1S. These results support an important role for S1P-S1P1 axis in maintaining the structural integrity of alveoli during chronic CS exposure and suggest that increasing both S1P1 signaling and abundance may be beneficial to counteract the effects of chronic CS exposure.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado
| | - Kelly S Schweitzer
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado
- Department of Medicine, Division of Pulmonary and Critical Care, Indiana University, Indianapolis, Indiana
| | - Karina A Serban
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado
- Department of Medicine, Division of Pulmonary and Critical Care, Indiana University, Indianapolis, Indiana
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College City University of New York, Queens, New York
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado
- Department of Medicine, Division of Pulmonary and Critical Care, Indiana University, Indianapolis, Indiana
| |
Collapse
|
11
|
Nitta NA, Sato T, Komura M, Yoshikawa H, Suzuki Y, Mitsui A, Kuwasaki E, Takahashi F, Kodama Y, Seyama K, Takahashi K. Exposure to the heated tobacco product IQOS generates apoptosis-mediated pulmonary emphysema in murine lungs. Am J Physiol Lung Cell Mol Physiol 2022; 322:L699-L711. [PMID: 35380471 DOI: 10.1152/ajplung.00215.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary emphysema is predominantly caused by chronic exposure to cigarette smoke (CS). Novel tobacco substitutes, such as heated tobacco products (HTPs), have emerged as healthier alternatives to cigarettes. IQOS, the most popular HTP in Japan, is advertised as harmless compared with conventional cigarettes. Although some studies have reported its toxicity, few in vivo studies have been conducted. Here, 12-wk-old C57BL6/J male mice were divided into three groups and exposed to air (as control), IQOS aerosol, or CS for 6 mo. After exposure, the weight gain was significantly suppressed in the IQOS and CS groups compared with the control (-4.93 g; IQOS vs. air and -5.504 g; CS vs. air). The serum cotinine level was significantly higher in the IQOS group than in the control group. The neutrophils and lymphocyte count increased in the bronchoalveolar lavage fluid of the IQOS and CS groups compared with those in the control group. Chronic IQOS exposure induced pulmonary emphysema similar to that observed in the CS group. Furthermore, expression levels of the genes involved in the apoptosis-related pathways were significantly upregulated in the lungs of the IQOS-exposed mice. Cytochrome c, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase-1 were overexpressed in the IQOS group compared with the control. Single-stranded DNA and TdT-mediated dUTP nick-end labeling-positive alveolar septal cell count significantly increased in the IQOS group compared with the control. In conclusion, chronic exposure to IQOS aerosol induces pulmonary emphysema predominantly via apoptosis-related pathways. This suggests that HTPs are not completely safe tobacco products.
Collapse
Affiliation(s)
- Naoko Arano Nitta
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Moegi Komura
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitomi Yoshikawa
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yohei Suzuki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aki Mitsui
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eriko Kuwasaki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzo Kodama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Fett J, Dimori M, Carroll JL, Morello R. Haploinsufficiency of Col5a1 causes intrinsic lung and respiratory changes in a mouse model of classical Ehlers-Danlos syndrome. Physiol Rep 2022; 10:e15275. [PMID: 35439366 PMCID: PMC9017971 DOI: 10.14814/phy2.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are inherited connective tissue diseases with primary manifestations that affect the skin and the musculoskeletal system. However, the effects of EDS on the respiratory system are not well understood and are described in the literature as sporadic case reports. We performed histological, histomorphometric, and the first in-depth characterization of respiratory system function in a mouse model of classical EDS (cEDS) with haploinsufficiency of type V collagen (Col5a1+/-). In young adult male and female mice, lung histology showed reduced alveolar density, reminiscent of emphysematous-like changes. Respiratory mechanics showed a consistent increase in respiratory system compliance accompanied by increased lung volumes in Col5a1+/- compared to control mice. Flow-volume curves, generated to mimic human spirometry measurements, demonstrated larger volumes throughout the expiratory limb of the flow volume curves in Col5a1+/- compared to controls. Some parameters showed a sexual dimorphism with significant changes in male but not female mice. Our study identified a clear respiratory phenotype in the Col5a1+/- mouse model of EDS and indicated that intrinsic respiratory and lung changes may exist in cEDS patients. Their potential impact on the respiratory function during lung infections, other respiratory disease processes, or insults may be significant and justify further clinical evaluation.
Collapse
Affiliation(s)
- Jordan Fett
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Milena Dimori
- Department of Physiology & Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - John L. Carroll
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Physiology & Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Roy Morello
- Department of Physiology & Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Orthopaedic SurgeryUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Division of GeneticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
13
|
Fujioka N, Kitabatake M, Ouji-Sageshima N, Ibaraki T, Kumamoto M, Fujita Y, Hontsu S, Yamauchi M, Yoshikawa M, Muro S, Ito T. Human Adipose-Derived Mesenchymal Stem Cells Ameliorate Elastase-Induced Emphysema in Mice by Mesenchymal-Epithelial Transition. Int J Chron Obstruct Pulmon Dis 2021; 16:2783-2793. [PMID: 34675503 PMCID: PMC8517419 DOI: 10.2147/copd.s324952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a worldwide problem because of its high prevalence and mortality. However, there is no fundamental treatment to ameliorate their pathological change in COPD lung. Recently, adipose-derived mesenchymal stem cells (ADSCs) have attracted attention in the field of regenerative medicine to repair damaged organs. Moreover, their utility in treating respiratory diseases has been reported in some animal models. However, the detailed mechanism by which ADSCs improve chronic respiratory diseases, including COPD, remains to be elucidated. We examined whether human ADSCs (hADSCs) ameliorated elastase-induced emphysema and whether hADSCs differentiated into alveolar epithelial cells in a murine model of COPD. Methods Female SCID-beige mice (6 weeks old) were divided into the following four groups according to whether they received an intratracheal injection of phosphate-buffered saline or porcine pancreatic elastase, and whether they received an intravenous injection of saline or hADSCs 3 days after intratracheal injection; Control group, hADSC group, Elastase group, and Elastase-hADSC group. We evaluated the lung function, assessed histological changes, and compared gene expression between hADSCs isolated from the lung of Elastase-hADSC group and naïve hADSCs 28 days after saline or elastase administration. Results hADSCs improved the pathogenesis of COPD, including the mean linear intercept and forced expiratory volume, in an elastase-induced emphysema model in mice. Furthermore, hADSCs were observed in the lungs of elastase-treated mice at 25 days after administration. These cells expressed genes related to mesenchymal–epithelial transition and surface markers of alveolar epithelial cells, such as TTF-1, β-catenin, and E-cadherin. Conclusion hADSCs have the potential to improve the pathogenesis of COPD by differentiating into alveolar epithelial cells by mesenchymal–epithelial transition.
Collapse
Affiliation(s)
- Nobuhiro Fujioka
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | | | | - Takahiro Ibaraki
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Makiko Kumamoto
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yukio Fujita
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shigeto Hontsu
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Motoo Yamauchi
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
14
|
Zheng X, Chen D, Zhu X, Le Grange JM, Zhou L, Zhang J. Impacts of anti-inflammatory phosphodiesterase inhibitors on a murine model of chronic pulmonary inflammation. Pharmacol Res Perspect 2021; 9:e00840. [PMID: 34327862 PMCID: PMC8322673 DOI: 10.1002/prp2.840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) often tends to respond poorly to glucocorticoid (GC) therapy. Reduced Histone deacetylase-2 (HDAC-2) activity is an important mechanism behind this GC insensitivity. In this study, we investigated the effects of three phosphodiesterase inhibitors (PDEIs), with an anti-inflammatory propensity, on cigarette smoke (CS)-induced pulmonary inflammation and HDAC-2 activity. Male C57BL/6 mice were exposed to cigarette smoke (CS) over the course of 30 weeks. Administration of the PDEIs commenced from the 29th week and followed a schedule of once daily treatments, 5 days a week, for 2 weeks. Roflumilast (ROF) was administered intragastrically (5 mg·kg-1 ), while pentoxifylline (PTX) (10 mg·kg-1 ) and theophylline (THEO) (10 mg·kg-1 ) were administered intraperitoneally, either alone or in combination with a GC (triamcinolone acetonide or TRI, 5 mg·kg-1 , i.m., single injection). Lung morphometry, as well as the activity of HDAC-2, pro-inflammatory cytokines and reactive oxygen species (ROS) were assessed at the end of the 30-week course. CS exposure was associated with a reduction in HDAC-2 activity and the up-regulation of ROS expression. PTX, ROF, and THEO administration led to the partial restoration of HDAC-2 activity, which was favorably associated with the reduction of ROS expression. However, combining TRI to any of these PDEIs did not synergistically augment HDAC-2 activity. Inactivation of HDAC-2 due to long-term CS exposure is closely related to exaggerated oxidative stress, and this reduced HDAC-2 activity could partially be restored through the use of PDEIs. This finding provides a potential novel approach for further clinical research.
Collapse
Affiliation(s)
- Xiao‐Fang Zheng
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan‐Dan Chen
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐Ling Zhu
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jehane Michael Le Grange
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu‐Qian Zhou
- Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jin‐Nong Zhang
- Department of Emergency MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
15
|
Evaluation of sex-based differences in airway size and the physiological implications. Eur J Appl Physiol 2021; 121:2957-2966. [PMID: 34331574 DOI: 10.1007/s00421-021-04778-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Recent evidence suggests healthy females have significantly smaller central conducting airways than males when matched for either height or lung volume during analysis. This anatomical sex-based difference could impact the integrative response to exercise. Our review critically evaluates the literature on direct and indirect techniques to measure central conducting airway size and their limitations. We present multiple sources highlighting the difference between male and female central conducting airway size in both pediatric and adult populations. Following the discussion of measurement techniques and results, we discuss the functional implications of these differences in central conducting airway size, including work of breathing, oxygen cost of breathing, and how these impacts will continue into elderly populations. We then discuss a range of topics for the future direction of airway differences and the benefits they could provide to both healthy and diseased populations. Specially, these sex-differences in central conducting airway size could result in different aerosol deposition or how lung disease manifests. Finally, we detail emerging techniques that uniquely allow for high-resolution imaging to be paired with detailed physiological measures.
Collapse
|
16
|
Chan SMH, Bernardo I, Mastronardo C, Mou K, De Luca SN, Seow HJ, Dobric A, Brassington K, Selemidis S, Bozinovski S, Vlahos R. Apocynin prevents cigarette smoking-induced loss of skeletal muscle mass and function in mice by preserving proteostatic signalling. Br J Pharmacol 2021; 178:3049-3066. [PMID: 33817783 PMCID: PMC8362135 DOI: 10.1111/bph.15482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose Skeletal muscle dysfunction is a major comorbidity of chronic obstructive pulmonary disease (COPD). This type of muscle dysfunction may be a direct consequence of oxidative insults evoked by cigarette smoke (CS) exposure. The present study examined the effects of a potent Nox inhibitor and reactive oxygen species (ROS) scavenger, apocynin, on CS‐induced muscle dysfunction. Experimental Approach Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks, with or without the coadministration of apocynin (5 mg·kg−1, i.p.). C2C12 myotubes exposed to either hydrogen peroxide (H2O2) or water‐soluble cigarette smoke extract (CSE) with or without apocynin (500 nM) were used as an experimental model in vitro. Key Results Eight weeks of CS exposure caused muscle dysfunction in mice, reflected by 10% loss of muscle mass and 54% loss of strength of tibialis anterior which were prevented by apocynin administration. In C2C12 myotubes, direct exposure to H2O2 or CSE caused myofibre wasting, accompanied by ~50% loss of muscle‐derived insulin‐like growth factor (IGF)‐1 and two‐fold induction of Cybb, independent of cellular inflammation. Expression of myostatin and MAFbx, negative regulators of muscle mass, were up‐regulated under H2O2 but not CSE conditions. Apocynin treatment abolished CSE‐induced Cybb expression, preserving muscle‐derived IGF‐1 expression and signalling pathway downstream of mammalian target of rapamycin (mTOR), thereby preventing myofibre wasting. Conclusion and Implications Targeted pharmacological inhibition of Nox‐derived ROS may alleviate the lung and systemic manifestations in smokers with COPD.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ivan Bernardo
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Chanelle Mastronardo
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Kevin Mou
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Huei Jiunn Seow
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Aleksandar Dobric
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Lundblad LKA, Robichaud A. Oscillometry of the respiratory system: a translational opportunity not to be missed. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1038-L1056. [PMID: 33822645 PMCID: PMC8203417 DOI: 10.1152/ajplung.00222.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Airway oscillometry has become the de facto standard for quality assessment of lung physiology in laboratory animals and has demonstrated its usefulness in understanding diseases of small airways. Nowadays, it is seeing extensive use in daily clinical practice and research; however, a question that remains unanswered is how well physiological findings in animals and humans correlate? Methodological and device differences are obvious between animal and human studies. However, all devices deliver an oscillated airflow test signal and output respiratory impedance. In addition, despite analysis differences, there are ways to interpret animal and human oscillometry data to allow suitable comparisons. The potential with oscillometry is its ability to reveal universal features of the respiratory system across species, making translational extrapolation likely to be predictive. This means that oscillometry can thus help determine if an animal model displays the same physiological characteristics as the human disease. Perhaps more importantly, it can also be useful to determine whether an intervention is effective as well as to understand if it affects the desired region of the respiratory system, e.g., the periphery of the lung. Finally, findings in humans can also inform preclinical scientists and give indications as to what type of physiological changes should be observed in animal models to make them relevant as models of human disease. The present article will attempt to demonstrate the potential of oscillometry in respiratory research, an area where the development of novel therapies is plagued with a failure rate higher than in other disease areas.
Collapse
Affiliation(s)
- Lennart K A Lundblad
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- THORASYS Thoracic Medical Systems Inc., Montreal, Quebec, Canada
| | - Annette Robichaud
- SCIREQ Scientific Respiratory Equipment Inc., Montreal, Quebec, Canada
| |
Collapse
|
18
|
Han Q, Zheng Z, Liang Q, Fu X, Yang F, Xie R, Ding J, Zhang K, Zhu P. Iguratimod reduces B-cell secretion of immunoglobulin to play a protective role in interstitial lung disease. Int Immunopharmacol 2021; 97:107596. [PMID: 33892300 DOI: 10.1016/j.intimp.2021.107596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Our study aimed to investigate the effect of Iguratimod (IGU) on bleomycin (BLM)-induced interstitial lung disease (ILD). METHODS The pulmonary fibrosis model group mice were developed by intratracheal injection of BLM. Mice were divided into two groups at random: (1) Control group (BLM group) - endotracheal BLM (BLM, 3.5 mg/kg, Kayaku, Japan) plus an intraperitoneal injection of normal saline, and (2) BLM + IGU group - intratracheal BLM (same as the control group) + IGU intraperitoneal injection (50 mg/kg/d). The alveolar lavage fluid, histopathology/immunohistochemistry, imaging, and other tests were performed on days 7, 14, 21, and 28 after injection. RESULTS Lung function, including Compliance (Crs),Tissue damping (G), Static compliance (Cst), Inspiratory capacity (IC), Elastance (Ers), Tissue elastance (H) and Respiratory system resistance (Rrs) in mice, was improved by IGU. IGU reduced BLM-induced changes in pulmonary fibrosis and pulmonary inflammation, as shown in histological examination.Collagen production and inflammatory damage in the lungs caused by BLM were also reduced by IGU. IGU reduced the expression of immunoglobulin IgG and type I collagen in BLM-induced pulmonary fibrosis mice by inhibiting the production of B cells and immunoglobulin, and also delayed the deterioration of imaging changes. CONCLUSION IGU inhibits immunoglobulin secretion by B cells to relieve pulmonary inflammation and fibrosis. IGU also plays a protective role in the lung in ILD.
Collapse
Affiliation(s)
- Qing Han
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Qiang Liang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Xianghui Fu
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Fengfan Yang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Ronghua Xie
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Jin Ding
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Kui Zhang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Ping Zhu
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China.
| |
Collapse
|
19
|
Appel E, Dommaraju S, Camacho A, Nakhaei M, Siewert B, Ahmed M, Brook A, Brook OR. Dependent lesion positioning at CT-guided lung biopsy to reduce risk of pneumothorax. Eur Radiol 2020; 30:6369-6375. [PMID: 32591892 DOI: 10.1007/s00330-020-07025-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To evaluate the impact of patient positioning during CT-guided lung biopsy on patients' outcomes. METHODS In this retrospective, IRB-approved, HIPAA-compliant study, consecutive CT-guided lung biopsies performed on 5/1/2015-12/26/2017 were included. Correlation between incidence of pneumothorax, chest tube placement, pulmonary bleeding with patient, and procedure characteristics was evaluated. Lesion-trachea-table angle (LTTA) was defined as an angle between the lesion, trachea, and horizontal line parallel to the table. Lesion above trachea has a positive LTTA. Univariate and multivariate logistic regression analysis was performed. RESULTS A total of 423 biopsies in 409 patients (68 ± 11 years, 231/409, 56% female) were included in the study. Pneumothorax occurred in 83/423 (20%) biopsies with chest tube placed in 11/423 (3%) biopsies. Perilesional bleeding occurred in 194/423 (46%) biopsies and hemoptysis in 20/423 (5%) biopsies. Univariate analysis showed an association of pneumothorax with smaller lesions (p = 0.05), positive LTTA (p = 0.002), and lesions not attached to pleura (p = 0.026) with multivariate analysis showing lesion size and LTTA to be independent risk factors. Univariate analysis showed an association of increased pulmonary bleeding with smaller lesions (p < 0.001), no attachment to the pleura (p < 0.001), needle throw < 16 mm (p = 0.05), and a longer needle path (p < 0.001). Multivariate analysis showed lesion size, a longer needle path, and lesions not attached to the pleura to be independently associated with perilesional bleeding. Risk factors for hemoptysis were longer needle path (p = 0.002), no attachment to the pleura (p = 0.03), and female sex (p = 0.04). CONCLUSIONS Interventional radiologists can reduce the pneumothorax risk during the CT-guided biopsy by positioning the biopsy site below the trachea. KEY POINTS • Positioning patient with lesion to be below the trachea for the CT-guided lung biopsy results in lower rate of pneumothorax, as compared with the lesion above the trachea. • Positioning patient with lesion to be below the trachea for the CT-guided lung biopsy does not affect rate of procedure-associated pulmonary hemorrhage or hemoptysis.
Collapse
Affiliation(s)
- Elisabeth Appel
- Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, Boston, MA, 02215, USA
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sujithraj Dommaraju
- Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, Boston, MA, 02215, USA
| | - Andrés Camacho
- Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, Boston, MA, 02215, USA
| | - Masoud Nakhaei
- Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, Boston, MA, 02215, USA
| | - Bettina Siewert
- Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, Boston, MA, 02215, USA
| | - Muneeb Ahmed
- Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, Boston, MA, 02215, USA
| | - Alexander Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, Boston, MA, 02215, USA
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
van der Plas A, Pouly S, Blanc N, Haziza C, de La Bourdonnaye G, Titz B, Hoeng J, Ivanov NV, Taranu B, Heremans A. Impact of switching to a heat-not-burn tobacco product on CYP1A2 activity. Toxicol Rep 2020; 7:1480-1486. [PMID: 33204648 PMCID: PMC7649435 DOI: 10.1016/j.toxrep.2020.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/18/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cigarette smoking induces cytochrome P450 1A2 (CYP1A2) expression and activity, while smoking cessation normalizes the levels of this enzyme. The aim of this publication is to summarize the data on CYP1A2 gene expression and activity in preclinical and clinical studies on the Tobacco Heating System (THS), currently marketed as IQOS® with HEETs®, and to summarize the potential effects on CYP1A2 to be expected upon switching to reduced-risk products (RRPs). METHODS We summarized PMI's preclinical and clinical data on the effects of switching from cigarette smoking to THS. RESULTS Data from four preclinical mouse and rat studies showed that, upon either cessation of cigarette smoke exposure or switching to THS exposure, the upregulation of CYP1A2 observed with exposure to cigarette smoke reverted close to fresh-air levels. Data from four clinical studies yielded similar results on CYP1A2 activity within a time frame of five days. Furthermore, the effects of switching to THS were similar to those seen after smoking cessation. CONCLUSIONS Because smoking cessation and switching to either electronic cigarettes or THS seem to have similar effects on CYP1A2 activity, the same measures taken for patients treated with narrow therapeutic index drugs that are metabolized by CYP1A2 and who quit smoking should be recommended for those switching to RRPs.
Collapse
Affiliation(s)
- Angela van der Plas
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sandrine Pouly
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nicolas Blanc
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Christelle Haziza
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Bjorn Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V. Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Brindusa Taranu
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Annie Heremans
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
21
|
Ha AW, Sudhadevi T, Ebenezer DL, Fu P, Berdyshev EV, Ackerman SJ, Natarajan V, Harijith A. Neonatal therapy with PF543, a sphingosine kinase 1 inhibitor, ameliorates hyperoxia-induced airway remodeling in a murine model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2020; 319:L497-L512. [PMID: 32697651 DOI: 10.1152/ajplung.00169.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hyperoxia (HO)-induced lung injury contributes to bronchopulmonary dysplasia (BPD) in preterm newborns. Intractable wheezing seen in BPD survivors is associated with airway remodeling (AWRM). Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling promotes HO-mediated neonatal BPD; however, its role in the sequela of AWRM is not known. We noted an increased concentration of S1P in tracheal aspirates of neonatal infants with severe BPD, and earlier, demonstrated that Sphk1-/- mice showed protection against HO-induced BPD. The role of SPHK1/S1P in promoting AWRM following exposure of neonates to HO was investigated in a murine model. Therapy using PF543, the specific SPHK1 inhibitor, during neonatal HO reduced alveolar simplification followed by reduced AWRM in adult mice. This was associated with reduced airway hyperreactivity to intravenous methacholine. Neonatal HO exposure was associated with increased expression of SPHK1 in lung tissue of adult mice, which was reduced with PF543 therapy in the neonatal stage. This was accompanied by amelioration of HO-induced reduction of E-cadherin in airway epithelium. This may be suggestive of arrested partial epithelial mesenchymal transition (EMT) induced by HO. In vitro studies using human primary airway epithelial cells (HAEpCs) showed that SPHK1 inhibition or deletion restored HO-induced reduction in E-cadherin and reduced formation of mitochondrial reactive oxygen species (mtROS). Blocking mtROS with MitoTempo attenuated HO-induced partial EMT of HAEpCs. These results collectively support a therapeutic role for PF543 in preventing HO-induced BPD in neonates and the long-term sequela of AWRM, thus conferring a long-term protection resulting in improved lung development and function.
Collapse
Affiliation(s)
- Alison W Ha
- Department of Biochemistry, University of Illinois, Chicago, Illinois
| | - Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | | | - Steven J Ackerman
- Department of Biochemistry, University of Illinois, Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Medicine, University of Illinois, Chicago, Illinois
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
22
|
De Cunto G, Cavarra E, Bartalesi B, Lucattelli M, Lungarella G. Innate Immunity and Cell Surface Receptors in the Pathogenesis of COPD: Insights from Mouse Smoking Models. Int J Chron Obstruct Pulmon Dis 2020; 15:1143-1154. [PMID: 32547002 PMCID: PMC7246326 DOI: 10.2147/copd.s246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly associated with smoking habit. Inflammation is the major initiating process whereby neutrophils and monocytes are attracted into the lung microenvironment by external stimuli present in tobacco leaves and in cigarette smoke, which promote chemotaxis, adhesion, phagocytosis, release of superoxide anions and enzyme granule contents. A minority of smokers develops COPD and different molecular factors, which contribute to the onset of the disease, have been put forward. After many years of research, the pathogenesis of COPD is still an object of debate. In vivo models of cigarette smoke-induced COPD may help to unravel cellular and molecular mechanisms underlying the pathogenesis of COPD. The mouse represents the most favored animal choice with regard to the study of immune mechanisms due to its genetic and physiological similarities to humans, the availability of a large variability of inbred strains, the presence in the species of several genetic disorders analogous to those in man, and finally on the possibility to create models “made-to-measure” by genetic manipulation. The review outlines the different response of mouse strains to cigarette smoke used in COPD studies while retaining a strong focus on their relatability to human patients. These studies reveal the importance of innate immunity and cell surface receptors in the pathogenesis of pulmonary injury induced by cigarette smoking. They further advance the way in which we use wild type or genetically manipulated strains to improve our overall understanding of a multifaceted disease such as COPD. The structural and functional features, which have been found in the different strains of mice after chronic exposure to cigarette smoke, can be used in preclinical studies to develop effective new therapeutic agents for the different phenotypes in human COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Pandit P, Perez RL, Roman J. Sex-Based Differences in Interstitial Lung Disease. Am J Med Sci 2020; 360:467-473. [PMID: 32487327 DOI: 10.1016/j.amjms.2020.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
Interstitial lung diseases comprise a family of progressive pulmonary disorders that are often idiopathic or associated with various systemic diseases and that is characterized by bilateral lung involvement with inflammation and tissue remodeling or fibrosis. The impact of sex, including the anatomic and physiologic traits that one is born with, on the development and progression of interstitial lung diseases is not entirely clear. Variances between men and women are driven by differences in male and female biology and sex hormones, among other differences, but their role remains uncertain. In this review, we summarize sex-related differences in the epidemiology and progression of certain interstitial lung diseases with a focus on the connective tissue related interstitial lung diseases, idiopathic pulmonary fibrosis, and sarcoidosis. We also discuss cellular and pre-clinical studies that might shed light on the potential mechanisms responsible for these differences in the hope of unveiling potential targets for intervention and stimulating research in this needed field of investigation.
Collapse
Affiliation(s)
- Pooja Pandit
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine; Jane & Leonard Korman Respiratory Institute, Jefferson Health, Thomas Jefferson University, 834 Walnut St, Philadelphia, PA 19107 USA
| | - Rafael L Perez
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine; Jane & Leonard Korman Respiratory Institute, Jefferson Health, Thomas Jefferson University, 834 Walnut St, Philadelphia, PA 19107 USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine; Jane & Leonard Korman Respiratory Institute, Jefferson Health, Thomas Jefferson University, 834 Walnut St, Philadelphia, PA 19107 USA.
| |
Collapse
|
24
|
Tam A, Filho FSL, Ra SW, Yang J, Leung JM, Churg A, Wright JL, Sin DD. Effects of sex and chronic cigarette smoke exposure on the mouse cecal microbiome. PLoS One 2020; 15:e0230932. [PMID: 32251484 PMCID: PMC7135149 DOI: 10.1371/journal.pone.0230932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Chronic smoke exposure is associated with weight loss in patients with Chronic Obstructive Pulmonary Disease (COPD). However, the biological contribution of chronic smoking and sex on the cecal microbiome has not been previously investigated. METHODS Adult male, female and ovariectomized mice were exposed to air (control group) or smoke for six months using a standard nose-only smoke exposure system. DNA was extracted from the cecal content using the QIAGEN QIAamp® DNA Mini Kit. Droplet digital PCR was used to generate total 16S bacterial counts, followed by Illumina MiSeq® analysis to determine microbial community composition. The sequencing data were resolved into Amplicon Sequence Variants and analyzed with the use of QIIME2®. Alpha diversity measures (Richness, Shannon Index, Evenness and Faith's Phylogenetic Diversity) and beta diversity (based on Bray-Curtis distances) were assessed and compared according to smoke exposure and sex. RESULTS The microbial community was different between male and female mice, while ovariectomy made the cecal microbiome similar to that of male mice. Chronic smoke exposure led to significant changes in the cecal microbial community in both male and female mice. The organism, Alistipes, was the most consistent bacteria identified at the genus level in the cecal content that was reduced with chronic cigarette exposure and its expression was positively related to the whole-body weight of these mice. CONCLUSION Chronic smoke exposure is associated with changes in the cecal content microbiome; these changes may play a role in the weight changes that are observed in cigarette smokers.
Collapse
Affiliation(s)
- Anthony Tam
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Fernando Sergio Leitao Filho
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Seung Won Ra
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Julia Yang
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Janice M Leung
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Andrew Churg
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne L Wright
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Accordini S, Calciano L, Marcon A, Pesce G, Antó JM, Beckmeyer-Borowko AB, Carsin AE, Corsico AG, Imboden M, Janson C, Keidel D, Locatelli F, Svanes C, Burney PGJ, Jarvis D, Probst-Hensch NM, Minelli C. Incidence trends of airflow obstruction among European adults without asthma: a 20-year cohort study. Sci Rep 2020; 10:3452. [PMID: 32103063 PMCID: PMC7044325 DOI: 10.1038/s41598-020-60478-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/13/2020] [Indexed: 11/08/2022] Open
Abstract
Investigating COPD trends may help healthcare providers to forecast future disease burden. We estimated sex- and smoking-specific incidence trends of pre-bronchodilator airflow obstruction (AO) among adults without asthma from 11 European countries within a 20-year follow-up (ECRHS and SAPALDIA cohorts). We also quantified the extent of misclassification in the definition based on pre-bronchodilator spirometry (using post-bronchodilator measurements from a subsample of subjects) and we used this information to estimate the incidence of post-bronchodilator AO (AOpost-BD), which is the primary characteristic of COPD. AO incidence was 4.4 (95% CI: 3.5-5.3) male and 3.8 (3.1-4.6) female cases/1,000/year. Among ever smokers (median pack-years: 20, males; 12, females), AO incidence significantly increased with ageing in men only [incidence rate ratio (IRR), 1-year increase: 1.05 (1.03-1.07)]. A strong exposure-response relationship with smoking was found both in males [IRR, 1-pack-year increase: 1.03 (1.02-1.04)] and females [1.03 (1.02-1.05)]. The positive predictive value of AO for AOpost-BD was 59.1% (52.0-66.2%) in men and 42.6% (35.1-50.1%) in women. AOpost-BD incidence was 2.6 (1.7-3.4) male and 1.6 (1.0-2.2) female cases/1,000/year. AO incidence was considerable in Europe and the sex-specific ageing-related increase among ever smokers was strongly related to cumulative tobacco exposure. AOpost-BD incidence is expected to be half of AO incidence.
Collapse
Affiliation(s)
- Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Giancarlo Pesce
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Sorbonne Universités, INSERM UMR-S 1136, IPLESP, Team EPAR, F75012, Paris, France
| | - Josep M Antó
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anna B Beckmeyer-Borowko
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anne-Elie Carsin
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Angelo G Corsico
- Division of Respiratory Diseases, IRCCS 'San Matteo' Hospital Foundation-University of Pavia, Pavia, Italy
| | - Medea Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Dirk Keidel
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Francesca Locatelli
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Peter G J Burney
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Deborah Jarvis
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Nicole M Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Cosetta Minelli
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
26
|
Tam A, Tanabe N, Churg A, Wright JL, Hogg JC, Sin DD. Sex differences in lymphoid follicles in COPD airways. Respir Res 2020; 21:46. [PMID: 32033623 PMCID: PMC7006095 DOI: 10.1186/s12931-020-1311-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/30/2020] [Indexed: 01/20/2023] Open
Abstract
Background Female smokers have increased risk for chronic obstructive pulmonary disease (COPD) compared with male smokers who have a similar history of cigarette smoke exposure. Tertiary lymphoid follicles are often found in the lungs of patients with severe COPD but sex-related differences have not been previously investigated. We determined the impact of female sex hormones on chronic cigarette smoke-induced expression of lymphoid aggregates in mice with COPD-like pathologies. Methods Lymphoid aggregate counts, total aggregate cross-sectional area and foamy macrophage counts were determined morphometrically in male, female, and ovariectomized mice exposed to air or cigarette smoke for 6 months. B-cell activating factor (BAFF) protein expression and markers of oxidative stress were evaluated in mouse lung tissues by immunofluorescence staining and gene expression analyses. Quantitative histology was performed on lung tissue sections of human COPD lungs to evaluate follicle formation. Results Lymphoid follicle and foamy macrophage counts as well as the total follicle cross-sectional area were differentially increased in lung tissues of female mice compared to male mice, and these differences were abolished by ovariectomy. These lymphoid aggregates were positive for CD45, CD20, CD21 and BAFF expression. Differential increases in Mmp12 and Cxcl2 gene expression correlated with an increase in foamy macrophages in parenchymal tissues of female but not male mice after smoke exposure. Parenchymal tissues from female mice failed to induce antioxidant-related genes in response to smoke exposure, and this effect was restored by ovariectomy. 3-nitrotyrosine, a stable marker of oxidative stress, positively correlated with Mmp12 and Cxcl2 gene expression. Hydrogen peroxide induced BAFF protein in mouse macrophage cell line. In human lung tissues, female smokers with severe COPD demonstrated increased numbers of lymphoid follicles compared with males. Conclusions Chronic smoke exposure increases the risk of lymphoid aggregate formation in female mice compared with male mice, which is mediated female sex hormones and BAFF expression in an oxidative environment.
Collapse
Affiliation(s)
- Anthony Tam
- Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine, Vancouver, British Columbia, Canada
| | - Naoya Tanabe
- Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine, Vancouver, British Columbia, Canada.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Andrew Churg
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne L Wright
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James C Hogg
- Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine, Vancouver, British Columbia, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine, Vancouver, British Columbia, Canada.
| |
Collapse
|
27
|
Cheng H, Wang H, Wu C, Zhang Y, Bao T, Tian Z. Proteomic analysis of sex differences in hyperoxic lung injury in neonatal mice. Int J Med Sci 2020; 17:2440-2448. [PMID: 33029086 PMCID: PMC7532490 DOI: 10.7150/ijms.42073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Sex-specific differences in the severity of bronchopulmonary dysplasia (BPD) are due to different susceptibility to hyperoxic lung injury, but the mechanism is unclear. In this study, neonatal male and female mouse pups (C57BL/6J) were exposed to hyperoxia and lung tissues were excised on postnatal day 7 for histological analysis and tandem mass tags proteomic analysis. We found that the lung sections from the male mice following postnatal hyperoxia exposure had increased alveolar simplification, significant aberrant pulmonary vascularization and arrest in angiogenesis compared with females. Comparison of differentially expressed proteins revealed 377 proteins unique to female and 425 unique to male as well as 750 proteins in both male and female. Bioinformatics analysis suggested that several differentially expressed proteins could contribute to the differences in sex-specific susceptibility to hyperoxic lung injury. Our results may help identify sex-specific biomarkers and therapeutic targets of BPD.
Collapse
Affiliation(s)
- Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Huifang Wang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Chantong Wu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Yuan Zhang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| |
Collapse
|
28
|
Tang R, Fraser A, Magnus MC. Female reproductive history in relation to chronic obstructive pulmonary disease and lung function in UK biobank: a prospective population-based cohort study. BMJ Open 2019; 9:e030318. [PMID: 31662371 PMCID: PMC6830692 DOI: 10.1136/bmjopen-2019-030318] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Sex differences in respiratory physiology and predilection for developing chronic obstructive pulmonary disease (COPD) have been documented, suggesting that female sex hormones may influence pathogenesis. We investigated whether aspects of female reproductive health might play a role in risk of COPD among women. DESIGN Population-based prospective cohort study. SETTING UK Biobank recruited across 22 centres in the UK between 2006 to 2010. PRIMARY AND SECONDARY OUTCOMES MEASURES We examined a range of female reproductive health indicators in relation to risk of COPD-related hospitalisation/death (n=271 271) using Cox proportional hazards regression; and lung function (n=273 441) using linear regression. RESULTS Parity >3 was associated with greater risk of COPD-related hospitalisation/death (adjusted HR 1.45; 95% CI: 1.16 to 1.82) and lower forced expiratory volume at 1 second/forced vital capacity ratio (FEV1/FVC) (adjusted mean difference -0.06; 95% CI: -0.07 to 0.04). Any oral contraception use was associated with lower risk of COPD-related hospitalisation/death (adjusted HR 0.85; 95% CI: 0.74 to 0.97) and greater FEV1/FVC (adjusted mean difference 0.01; 95% CI: 0.003 to 0.03). Late menarche (age >15) and early menopause (age <47) were also associated with greater risk of COPD-related hospitalisation/death (but not lung function), while endometriosis was associated with greater FEV1/FVC (not COPD-related hospitalisation/death). Early menarche (age <12 years) was associated with lower FEV1/FVC (but not COPD hospitalisation/death). Associations with polycystic ovary syndrome (PCOS) or ovarian cysts, any hormone replacement therapy (HRT) use, hysterectomy-alone and both hysterectomy and bilateral oophorectomy were in opposing directions for COPD-related hospitalisation/death (greater risk) and FEV1/FVC (positive association). CONCLUSIONS Multiple female reproductive health indicators across the life course are associated with COPD-related hospitalisation/death and lung function. Further studies are necessary to understand the opposing associations of PCOS/ovarian cysts, HRT and hysterectomy with COPD and objective measures of airway obstruction.
Collapse
Affiliation(s)
- Rosalind Tang
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria Christine Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
29
|
Naz S, Bhat M, Ståhl S, Forsslund H, Sköld CM, Wheelock ÅM, Wheelock CE. Dysregulation of the Tryptophan Pathway Evidences Gender Differences in COPD. Metabolites 2019; 9:metabo9100212. [PMID: 31581603 PMCID: PMC6835831 DOI: 10.3390/metabo9100212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Increased activity of indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase (TPH) have been reported in individuals with chronic obstructive pulmonary disease (COPD). We therefore investigated the effect of gender stratification upon the observed levels of tryptophan metabolites in COPD. Tryptophan, serotonin, kynurenine, and kynurenic acid were quantified in serum of never-smokers (n = 39), smokers (n = 40), COPD smokers (n = 27), and COPD ex-smokers (n = 11) by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The individual metabolite associations with lung function, blood, and bronchoalveolar lavage (BAL) immune-cell composition, as well as chemokine and cytokine levels, were investigated. Stratification by gender and smoking status revealed that the observed alterations in kynurenine and kynurenic acid, and to a lesser extent serotonin, were prominent in males, irrespective of COPD status (kynurenine p = 0.005, kynurenic acid p = 0.009, and serotonin p = 0.02). Inferred serum IDO activity and kynurenine levels decreased in smokers relative to never-smokers (p = 0.005 and p = 0.004, respectively). In contrast, inferred tryptophan hydroxylase (TPH) activity and serotonin levels showed an increase with smoking that reached significance with COPD (p = 0.01 and p = 0.01, respectively). Serum IDO activity correlated with blood CXC chemokine ligand 9 (CXCL9, p = 0.0009, r = 0.93) and chemokine (C-C motif) ligand 4 (CCL4.(p = 0.04, r = 0.73) in female COPD smokers. Conversely, serum serotonin levels correlated with BAL CD4+ T-cells (%) (p = 0.001, r = 0.92) and CD8+ T-cells (%) (p = 0.002, r = -0.90) in female COPD smokers, but not in male COPD smokers (p = 0.1, r = 0.46 and p = 0.1, r = -0.50, respectively). IDO- and TPH-mediated tryptophan metabolites showed gender-based associations in COPD, which were primarily driven by smoking status.
Collapse
Affiliation(s)
- Shama Naz
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden;
| | - Maria Bhat
- Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, SE 171 65 Solna, Sweden; (M.B.); (S.S.)
- Department of Clinical Neuroscience, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Sara Ståhl
- Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, SE 171 65 Solna, Sweden; (M.B.); (S.S.)
- Department of Clinical Neuroscience, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
| | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
- Correspondence: (Å.M.W.); (C.E.W.); Tel.: +46-70-2200308 (Å.M.W.); +46-8-524-87630 (C.E.W.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden;
- Correspondence: (Å.M.W.); (C.E.W.); Tel.: +46-70-2200308 (Å.M.W.); +46-8-524-87630 (C.E.W.)
| |
Collapse
|
30
|
Han MK, Arteaga-Solis E, Blenis J, Bourjeily G, Clegg DJ, DeMeo D, Duffy J, Gaston B, Heller NM, Hemnes A, Henske EP, Jain R, Lahm T, Lancaster LH, Lee J, Legato MJ, McKee S, Mehra R, Morris A, Prakash YS, Stampfli MR, Gopal-Srivastava R, Laposky AD, Punturieri A, Reineck L, Tigno X, Clayton J. Female Sex and Gender in Lung/Sleep Health and Disease. Increased Understanding of Basic Biological, Pathophysiological, and Behavioral Mechanisms Leading to Better Health for Female Patients with Lung Disease. Am J Respir Crit Care Med 2019; 198:850-858. [PMID: 29746147 DOI: 10.1164/rccm.201801-0168ws] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Female sex/gender is an undercharacterized variable in studies related to lung development and disease. Notwithstanding, many aspects of lung and sleep biology and pathobiology are impacted by female sex and female reproductive transitions. These may manifest as differential gene expression or peculiar organ development. Some conditions are more prevalent in women, such as asthma and insomnia, or, in the case of lymphangioleiomyomatosis, are seen almost exclusively in women. In other diseases, presentation differs, such as the higher frequency of exacerbations experienced by women with chronic obstructive pulmonary disease or greater cardiac morbidity among women with sleep-disordered breathing. Recent advances in -omics and behavioral science provide an opportunity to specifically address sex-based differences and explore research needs and opportunities that will elucidate biochemical pathways, thus enabling more targeted/personalized therapies. To explore the status of and opportunities for research in this area, the NHLBI, in partnership with the NIH Office of Research on Women's Health and the Office of Rare Diseases Research, convened a workshop of investigators in Bethesda, Maryland on September 18 and 19, 2017. At the workshop, the participants reviewed the current understanding of the biological, behavioral, and clinical implications of female sex and gender on lung and sleep health and disease, and formulated recommendations that address research gaps, with a view to achieving better health outcomes through more precise management of female patients with nonneoplastic lung disease. This report summarizes those discussions.
Collapse
Affiliation(s)
- MeiLan K Han
- 1 Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Emilio Arteaga-Solis
- 2 Division of Pediatric Pulmonology, Columbia University Medical Center, New York, New York
| | - John Blenis
- 3 Pharmacology Ph.D. Program, Sandra and Edward Meyer Cancer Center, New York, New York
| | - Ghada Bourjeily
- 4 Department of Medicine, Brown University, Providence, Rhode Island
| | - Deborah J Clegg
- 5 Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Dawn DeMeo
- 6 Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jeanne Duffy
- 7 Department of Medicine and.,8 Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ben Gaston
- 9 Pediatric Pulmonology, Case Western Reserve University, Cleveland, Ohio
| | - Nicola M Heller
- 10 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Anna Hemnes
- 11 Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Petri Henske
- 12 Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raksha Jain
- 13 Division of Pulmonary and Critical Care, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tim Lahm
- 14 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa H Lancaster
- 15 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joyce Lee
- 16 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | | | - Sherry McKee
- 18 Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Reena Mehra
- 19 Neurologic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alison Morris
- 20 Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Y S Prakash
- 21 Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Martin R Stampfli
- 22 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rashmi Gopal-Srivastava
- 23 Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Aaron D Laposky
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | | | - Lora Reineck
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | - Xenia Tigno
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | - Janine Clayton
- 25 Office of Research on Women's Health, NIH-Office of the Director, Bethesda, Maryland
| |
Collapse
|
31
|
van der Plaat DA, Pereira M, Pesce G, Potts JF, Amaral AF, Dharmage SC, Garcia-Aymerich JM, Thompson JR, Gómez Real F, Jarvis DL, Minelli C, Leynaert B. Age at menopause and lung function: a Mendelian randomisation study. Eur Respir J 2019; 54:13993003.02421-2018. [DOI: 10.1183/13993003.02421-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
In observational studies, early menopause is associated with lower forced vital capacity (FVC) and a higher risk of spirometric restriction, but not airflow obstruction. It is, however, unclear if this association is causal. We therefore used a Mendelian randomisation (MR) approach, which is not affected by classical confounding, to assess the effect of age at natural menopause on lung function.We included 94 742 naturally post-menopausal women from the UK Biobank and performed MR analyses on the effect of age at menopause on forced expiratory volume in 1 s (FEV1), FVC, FEV1/FVC, spirometric restriction (FVC<lower limit of normal (LLN)) and airflow obstruction (FEV1/FVC<LLN). We used the inverse variance-weighted method, as well as methods that adjust for pleiotropy, and compared MR with observational analyses.The MR analyses showed higher FEV1/FVC and a 15% lower risk of airflow obstruction for women with early (<45 years) compared to normal (45–55 years) menopause. Despite some evidence of pleiotropy, the results were consistent when using MR methods robust to pleiotropy. Similar results were found among never- and ever-smokers, while the protective effect seemed less strong in women who had ever used menopause hormone treatment and in overweight women. There was no strong evidence of an association with FVC or spirometric restriction. In observational analyses of the same dataset, early menopause was associated with a pronounced reduction in FVC and a 13% higher risk of spirometric restriction.Our MR results suggest that early menopause has a protective effect on airflow obstruction. Further studies are warranted to better understand the inconsistency with observational findings, and to investigate the underlying mechanisms and role of female sex hormones.
Collapse
|
32
|
Phillips B, Szostak J, Titz B, Schlage WK, Guedj E, Leroy P, Vuillaume G, Martin F, Buettner A, Elamin A, Sewer A, Sierro N, Choukrallah MA, Schneider T, Ivanov NV, Teng C, Tung CK, Lim WT, Yeo YS, Vanscheeuwijck P, Peitsch MC, Hoeng J. A six-month systems toxicology inhalation/cessation study in ApoE -/- mice to investigate cardiovascular and respiratory exposure effects of modified risk tobacco products, CHTP 1.2 and THS 2.2, compared with conventional cigarettes. Food Chem Toxicol 2019; 126:113-141. [PMID: 30763686 DOI: 10.1016/j.fct.2019.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Smoking is one of the major modifiable risk factors in the development and progression of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Modified-risk tobacco products (MRTP) are being developed to provide substitute products for smokers who are unable or unwilling to quit, to lessen the smoking-related health risks. In this study, the ApoE-/- mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F, or aerosol from two potential MRTPs based on the heat-not-burn principle, carbon heated tobacco product 1.2 (CHTP1.2) and tobacco heating system 2.2 (THS 2.2), on the cardiorespiratory system over a 6-month period. In addition, cessation or switching to CHTP1.2 after 3 months of CS exposure was assessed. A systems toxicology approach combining physiology, histology and molecular measurements was used to evaluate the impact of MRTP aerosols in comparison to CS. CHTP1.2 and THS2.2 aerosols, compared with CS, demonstrated lower impact on the cardiorespiratory system, including low to absent lung inflammation and emphysematous changes, and reduced atherosclerotic plaque formation. Molecular analyses confirmed the lower engagement of pathological mechanisms by MRTP aerosols than CS. Both cessation and switching to CHTP1.2 reduced the observed CS effects to almost sham exposure levels.
Collapse
Affiliation(s)
- Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Charles Teng
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ching Keong Tung
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Wei Ting Lim
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ying Shan Yeo
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
33
|
Dominelli PB, Ripoll JG, Cross TJ, Baker SE, Wiggins CC, Welch BT, Joyner MJ. Sex differences in large conducting airway anatomy. J Appl Physiol (1985) 2018; 125:960-965. [PMID: 30024341 DOI: 10.1152/japplphysiol.00440.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway luminal area is the major determinant of resistance to airflow in the tracheobronchial tree. Women may have smaller central conducting airways than men; however, previous evidence is confounded by an indirect assessment of airway geometry and by subjects with prior smoking history. The purpose of this study was to examine the effect of sex on airway size in healthy nonsmokers. Using low-dose high-resolution computed tomography, we retrospectively assessed airway luminal area in healthy men ( n = 51) and women ( n = 73) of varying ages (19-86 yr). Subjects with a positive smoking history, cardiopulmonary disease, or a body mass index > 40 kg/m2 were excluded. Luminal areas of the trachea, right and left main bronchus, bronchus intermediate, left and right upper lobes, and the left lower lobe were analyzed at three discrete points. The luminal areas of the conducting airways were ~26%-35% smaller in women. The trachea had the largest differences in luminal area between men and women (298 ± 47 vs. 195 ± 28 mm2 or 35% smaller for men and women, respectively), whereas the left lower lobe had the smallest differences (57 ± 15 vs. 42 ± 9 mm2 or 26% smaller for men and women, respectively). When a subset of subjects was matched for height, the sex differences in airway luminal area persisted, with women being ~20%-30% smaller. With all subjects, there were modest relationships between height and airway luminal area ( r = 0.73-0.53, P < 0.05). Although there was considerable overlap between sexes, the luminal areas of the large conducting airways were smaller in healthy women than in men. NEW & NOTEWORTHY Previous evidence for sex differences in airway size has been confounded by indirect measures and/or cohorts with significant smoking histories or pathologies. We found that central airways in healthy women were significantly smaller (~26%-35%) than men. The significant sex-difference in airway size was attenuated (20%-30% smaller) but preserved in a subset of subjects matched for height. Over a range of ages, healthy women have smaller central airways than men.
Collapse
Affiliation(s)
| | - Juan G Ripoll
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Troy J Cross
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota.,Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| | - Sarah E Baker
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Chad C Wiggins
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Brian T Welch
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
34
|
Hogmalm A, Bry M, Bry K. Pulmonary IL-1β expression in early life causes permanent changes in lung structure and function in adulthood. Am J Physiol Lung Cell Mol Physiol 2018; 314:L936-L945. [DOI: 10.1152/ajplung.00256.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chorioamnionitis, mechanical ventilation, oxygen therapy, and postnatal infection promote inflammation in the newborn lung. The long-term consequences of pulmonary inflammation during infancy have not been well characterized. The aim of this study was to examine the impact of inflammation during the late saccular to alveolar stages of lung development on lung structure and function in adulthood. To induce IL-1β expression in the pulmonary epithelium of mice with a tetracycline-inducible human IL-1β transgene, doxycycline was administered via intraperitoneal injections to bitransgenic pups and their littermate controls on postnatal days (PN) 0, 0.5, and 1. Lung structure, inflammation, and airway reactivity were studied in adulthood. IL-1β production in early life resulted in increased numbers of macrophages and neutrophils on PN21, but inflammation subsided by PN42. Permanent changes in alveolar structure, i.e., larger alveoli and thicker alveolar walls, were present from PN21 to PN84. Lack of alveolar septation thus persisted after IL-1β production and inflammation had ceased. Early IL-1β production caused goblet cell hyperplasia, enhanced calcium-activated chloride channel 3 (CLCA3) protein expression, and increased airway reactivity in response to methacholine on PN42. Lymphoid follicles were present adjacent to small airways in the lungs of adult bitransgenic mice, and levels of the B cell chemoattractant CXC-motif ligand (CXCL) 13 were elevated in the lungs of bitransgenic mice compared with controls. In conclusion, IL-1β-induced pulmonary inflammation in early life causes a chronic lung disease in adulthood.
Collapse
Affiliation(s)
- Anna Hogmalm
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maija Bry
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Kristina Bry
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| |
Collapse
|
35
|
Robichaud A, Fereydoonzad L, Limjunyawong N, Rabold R, Allard B, Benedetti A, Martin JG, Mitzner W. Automated full-range pressure-volume curves in mice and rats. J Appl Physiol (1985) 2017; 123:746-756. [PMID: 28751375 DOI: 10.1152/japplphysiol.00856.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
Abstract
Pressure-volume (PV) curves constructed over the entire lung volume range can reliably detect functional changes in mouse models of lung diseases. In the present study, we constructed full-range PV curves in healthy and elastase-treated mice using either a classic manually operated technique or an automated approach using a computer-controlled piston ventilator [flexiVent FX; Scientific Respiratory Equipment (SCIREQ), Montreal, Quebec, Canada]. On the day of the experiment, subjects were anesthetized, tracheotomized, and mechanically ventilated. Following an initial respiratory mechanics scan and degassing of the lungs with 100% O2, full-range PV curves were constructed using either the classic or the automated technique. In control mice, superimposable curves were obtained, and statistical equivalence was attained between the two methodologies. In the elastase-treated ones, where significant changes in respiratory mechanics and lung volumes were expected, very small differences were observed between the two techniques, and the criteria for statistical equivalence were met in two out of four parameters assessed. The automated technique was adapted to rats and used to estimate the functional residual capacity (FRC) by volume subtraction. This novel approach generated FRC estimates consistent with the literature, with added accuracy relative to the existing method in diseased subjects. In conclusion, the automated technique generated full-range PV curves that were equivalent or very close to those obtained with the classic method under physiological or severe pathological conditions. The automation facilitated some technical aspects of the procedure, eased its use across species, and helped derive a more accurate estimate of FRC in preclinical models of respiratory disease.NEW & NOTEWORTHY Partial and full-range pressure-volume (PV) curves are frequently used to characterize lung disease models. Whereas automated techniques exist to construct partial PV curves, a manually operated approach is classically employed to build the full-range ones. In this study, the full-range PV curve technique was automated using a computer-controlled piston ventilator. The automation simplified the technique, facilitated its extension to other species, and inspired a novel way of estimating the functional residual capacity in laboratory rodents.
Collapse
Affiliation(s)
| | | | - Nathachit Limjunyawong
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| | - Richard Rabold
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| | - Benoit Allard
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrea Benedetti
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| |
Collapse
|
36
|
Lewis BW, Sultana R, Sharma R, Noël A, Langohr I, Patial S, Penn AL, Saini Y. Early Postnatal Secondhand Smoke Exposure Disrupts Bacterial Clearance and Abolishes Immune Responses in Muco-Obstructive Lung Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:1170-1183. [PMID: 28667160 DOI: 10.4049/jimmunol.1700144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/05/2017] [Indexed: 01/15/2023]
Abstract
Secondhand smoke (SHS) exposure has been linked to the worsening of ongoing lung diseases. However, whether SHS exposure affects the manifestation and natural history of imminent pediatric muco-obstructive airway diseases such as cystic fibrosis remains unclear. To address these questions, we exposed Scnn1b transgenic (Scnn1b-Tg+) mice to SHS from postnatal day (PND) 3-21 and lung phenotypes were examined at PND22. Although a majority of filtered air (FA)-exposed Scnn1b-Tg+ (FA-Tg+) mice successfully cleared spontaneous bacterial infections by PND22, the SHS-exposed Scnn1b-Tg+ (SHS-Tg+) mice failed to resolve these infections. This defect was associated with suppressed antibacterial defenses, i.e., phagocyte recruitment, IgA secretion, and Muc5b expression. Whereas the FA-Tg+ mice exhibited marked mucus obstruction and Th2 responses, SHS-Tg+ mice displayed a dramatic suppression of these responses. Mechanistically, downregulated expression of IL-33, a stimulator of type II innate lymphoid cells, in lung epithelial cells was associated with suppression of neutrophil recruitment, IgA secretions, Th2 responses, and delayed bacterial clearance in SHS-Tg+ mice. Cessation of SHS exposure for 21 d restored previously suppressed responses, including phagocyte recruitment, IgA secretion, and mucous cell metaplasia. However, in contrast with FA-Tg+ mice, the SHS-Tg+ mice had pronounced epithelial necrosis, alveolar space consolidation, and lymphoid hyperplasia; indicating lagged unfavorable effects of early postnatal SHS exposure in later life. Collectively, our data show that early postnatal SHS exposure reversibly suppresses IL-33 levels in airspaces which, in turn, results in reduced neutrophil recruitment and diminished Th2 response. Our data indicate that household smoking may predispose neonates with muco-obstructive lung disease to bacterial exacerbations.
Collapse
Affiliation(s)
- Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Razia Sultana
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Rahul Sharma
- National Hansen's Disease Program, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803; and
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803;
| |
Collapse
|
37
|
Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences. Int J Mol Sci 2017; 18:ijms18020457. [PMID: 28230786 PMCID: PMC5343990 DOI: 10.3390/ijms18020457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP) and heart rate (HR) were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR), and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2) protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS) method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1) and glucocorticoid-induced leucine zipper protein (Gilz), together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology.
Collapse
|