1
|
Manjate F, João ED, Mwangi P, Chirinda P, Mogotsi M, Garrine M, Messa A, Vubil D, Nobela N, Kotloff K, Nataro JP, Nhampossa T, Acácio S, Weldegebriel G, Tate JE, Parashar U, Mwenda JM, Alonso PL, Cunha C, Nyaga M, Mandomando I. Genomic analysis of DS-1-like human rotavirus A strains uncovers genetic relatedness of NSP4 gene with animal strains in Manhiça District, Southern Mozambique. Sci Rep 2024; 14:30705. [PMID: 39730435 PMCID: PMC11680989 DOI: 10.1038/s41598-024-79767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024] Open
Abstract
Post rotavirus vaccine introduction in Mozambique (September 2015), we documented a decline in rotavirus-associated diarrhoea and genotypes changes in our diarrhoeal surveillance spanning 2008-2021. This study aimed to perform whole-genome sequencing of rotavirus strains from 2009 to 2012 (pre-vaccine) and 2017-2018 (post-vaccine). Rotavirus strains previously detected by conventional PCR as G2P[4], G2P[6], G3P[4], G8P[4], G8P[6], and G9P[6] from children with moderate-to-severe and less-severe diarrhoea and without diarrhoea (healthy community controls) were sequenced using Illumina MiSeq® platform and analysed using bioinformatics tools. All these G and P-type combinations exhibited DS-1-like constellation in the rest of the genome segments as, I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that strains from children with and without diarrhoea clustered together with other Mozambican and global strains. Notably, the NSP4 gene of strains G3P[4] and G8P[4] in children with diarrhoea clustered with animal strains, such as bovine and caprine, with similarity identities ranging from 89.1 to 97.0% nucleotide and 89.5-97.0% amino acids. Our findings revealed genetic similarities among rotavirus strains from children with and without diarrhoea, as well as with animal strains, reinforcing the need of implementing studies with One Health approach in our setting, to elucidate the genetic diversity of this important pathogen.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Eva D João
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Mwangi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Milton Mogotsi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Karen Kotloff
- Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - James P Nataro
- Department of Paediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Goitom Weldegebriel
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Jacqueline E Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Umesh Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Jason M Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Celso Cunha
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Martin Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique.
- ISGlobal, Barcelona, 08036, Spain.
| |
Collapse
|
2
|
Mahmoud AE, Zaki MES, Mohamed EH, Fahmy EM, Hamam SSM, Alsayed MA. Study of rotavirus genotypes G and P in one Egyptian center-cross-sectional study. Ital J Pediatr 2024; 50:247. [PMID: 39543754 PMCID: PMC11566636 DOI: 10.1186/s13052-024-01810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Rotavirus-associated gastroenteritis is a common health problem in children, different variations of rotavirus genotypes differ according to geographic locations and the practice of wide-scale vaccination. Therefore, the present study aimed to detect both the G and P genotypes of rotavirus in children ≤ 5 years old in one center in Egypt as a cross-sectional study, to correlate the genotypes with various demographic and clinical data in infected children and to evaluate the common mixed genotypes G and P in infected children. METHOD The cross-sectional study included children with acute gastroenteritis ≤ 5 years old from January 2023 till March 2024 recruited from Mansoura University Children's Hospital, Egypt based upon laboratory diagnosis by exclusion of bacterial and protozoa pathogens. The stool samples were obtained from each child and subjected to detection of rotavirus antigen by enzyme-linked immunosorbent assay (ELISA) followed by genotypes identification of G and P genotypes by nested polymerase chain reaction (PCR). RESULT A nested PCR study for rotavirus genotypes revealed that G1 was the most common genotype (24.7%) followed by G2 (21.1%), G3 (20%), G9 (20%), and G4 (14.1%). The genotyping of the P genotype revealed that P9 was the commonest genotype (24.7%), followed by P4 (21.2%), P10 (20%), P8 (17.6%) and P6 (16.5%). The commonest combined genotypes of G and P were G1P4 (85.7%), G3P8(88.2%), followed by G2P6 (77.8%) and G9P9(76.5%) and G4P9 (66.7%) followed by G4P10 (33.3%), G9P10(23.5%), G2P10(22.2%), G1P10 (14.3%), G3P10(11.8%). The distribution was significant (P = 0.001). The positive rotavirus antigen was more frequently detected in females (55.3%) than males (44.7%, Odd ratio 0.2, 95% CI 0.22-0.71, P = 0.001). There was a significant association between the summer season and positive rotavirus antigen (P = 0.001) and rural residence of the patients (Odd ratio 6,9 95%CI 3,5-13.5, P = 0.001). The significant associated clinical sign with positive rotavirus antigen was fever (Odd ratio 3,3, 95%CI 1,8-6.05, P = 0.001). The genotypes G and P were significantly associated with positive rotavirus antigen as all cases positive by antigen had been detected by nested PCR with the commonest genotypes G4 (24.7%, P = 0.001) and genotype P9 (24.7%, P = 0.001). CONCLUSION The present study highlights the common genotypes of rotavirus at one center in Egypt, G1, G2, and G3 were the commonest G genotypes. As regard genotype P the commonest genotypes were P9, P4, and P10. The commonest combined genotypes were G1P4, G3P8, G2P6. There was no effect of the practice of rotavirus vaccination at limited rates at private health sections as the rotavirus is still a major pathogen of acute gastroenteritis in children. There is a need for the inclusion of rotavirus vaccination in the national program of children vaccination in Egypt.
Collapse
Affiliation(s)
| | - Maysaa El Sayed Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Hamdy Mohamed
- Clinical Pathology Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Ehab M Fahmy
- Medical Microbiology and Immunology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | | | | |
Collapse
|
3
|
Fujii Y, Tsugawa T, Fukuda Y, Adachi S, Honjo S, Akane Y, Kondo K, Sakai Y, Tanaka T, Sato T, Higasidate Y, Kubo N, Mori T, Kato S, Hamada R, Kikuchi M, Tahara Y, Nagai K, Ohara T, Yoshida M, Nakata S, Noguchi A, Kikuchi W, Hamada H, Tokutake-Hirose S, Fujimori M, Muramatsu M. Molecular evolutionary analysis of novel NSP4 mono-reassortant G1P[8]-E2 rotavirus strains that caused a discontinuous epidemic in Japan in 2015 and 2018. Front Microbiol 2024; 15:1430557. [PMID: 39050631 PMCID: PMC11266183 DOI: 10.3389/fmicb.2024.1430557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In the 2010s, several unusual rotavirus strains emerged, causing epidemics worldwide. This study reports a comprehensive molecular epidemiological study of rotaviruses in Japan based on full-genome analysis. From 2014 to 2019, a total of 489 rotavirus-positive stool specimens were identified, and the associated viral genomes were analyzed by next-generation sequencing. The genotype constellations of those strains were classified into nine patterns (G1P[8] (Wa), G1P[8]-E2, G1P[8] (DS-1), G2P[4] (DS-1), G3P[8] (Wa), G3P[8] (DS-1), G8P[8] (DS-1), G9P[8] (Wa), and G9P[8]-E2). The major prevalent genotype differed by year, comprising G8P[8] (DS-1) (37% of that year's isolates) in 2014, G1P[8] (DS-1) (65%) in 2015, G9P[8] (Wa) (72%) in 2016, G3P[8] (DS-1) (66%) in 2017, G1P[8]-E2 (53%) in 2018, and G9P[8] (Wa) (26%) in 2019. The G1P[8]-E2 strains (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1) isolated from a total of 42 specimens in discontinuous years (2015 and 2018), which were the newly-emerged NSP4 mono-reassortant strains. Based on the results of the Bayesian evolutionary analyses, G1P[8]-E2 and G9P[8]-E2 were hypothesized to have been generated from distinct independent inter-genogroup reassortment events. The G1 strains detected in this study were classified into multiple clusters, depending on the year of detection. A comparison of the predicted amino acid sequences of the VP7 epitopes revealed that the G1 strains detected in different years encoded VP7 epitopes harboring distinct mutations. These mutations may be responsible for immune escape and annual changes in the prevalent strains.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Shuhei Adachi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Saho Honjo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yusuke Akane
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Kenji Kondo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yoshiyuki Sakai
- Department of Pediatrics, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Toju Tanaka
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Hokkaido, Japan
| | - Toshiya Sato
- Department of Pediatrics, Iwamizawa Municipal General Hospital, Hokkaido, Japan
| | - Yoshihito Higasidate
- Department of Pediatrics, Japan Community Health Care Organization Sapporo Hokushin Hospital, Hokkaido, Japan
| | - Noriaki Kubo
- Department of Pediatrics, Japan Red Cross Urakawa Hospital, Hokkaido, Japan
| | - Toshihiko Mori
- Department of Pediatrics, NTT Medical Center Sapporo, Hokkaido, Japan
| | - Shinsuke Kato
- Department of Pediatrics, Rumoi City Hospital, Hokkaido, Japan
| | - Ryo Hamada
- Department of Pediatrics, Rumoi City Hospital, Hokkaido, Japan
| | - Masayoshi Kikuchi
- Department of Pediatrics, Sunagawa City Medical Center, Hokkaido, Japan
| | - Yasuo Tahara
- Department of Pediatrics, Steel Memorial Muroran Hospital, Hokkaido, Japan
| | - Kazushige Nagai
- Department of Pediatrics, Takikawa Municipal Hospital, Hokkaido, Japan
| | - Toshio Ohara
- Department of Pediatrics, Tomakomai City Hospital, Hokkaido, Japan
| | - Masaki Yoshida
- Department of Pediatrics, Yakumo General Hospital, Hokkaido, Japan
| | | | - Atsuko Noguchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Wakako Kikuchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Shoko Tokutake-Hirose
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Makoto Fujimori
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Hakim MS, Gazali FM, Widyaningsih SA, Parvez MK. Driving forces of continuing evolution of rotaviruses. World J Virol 2024; 13:93774. [PMID: 38984077 PMCID: PMC11229848 DOI: 10.5501/wjv.v13.i2.93774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/24/2024] Open
Abstract
Rotaviruses are non-enveloped double-stranded RNA virus that causes acute diarrheal diseases in children (< 5 years). More than 90% of the global rotavirus infection in humans was caused by Rotavirus group A. Rotavirus infection has caused more than 200000 deaths annually and predominantly occurs in the low-income countries. Rotavirus evolution is indicated by the strain dynamics or the emergence of the unprecedented strain. The major factors that drive the rotavirus evolution include the genetic shift that is caused by the reassortment mechanism, either in the intra- or the inter-genogroup. However, other factors are also known to have an impact on rotavirus evolution. This review discusses the structure and types, epidemiology, and evolution of rotaviruses. This article also reviews other supplemental factors of rotavirus evolution, such as genetic reassortment, mutation rate, glycan specificity, vaccine introduction, the host immune responses, and antiviral drugs.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam 3015GD, Netherlands
- Viral Infection Working Group, International Society of Antimicrobial Chemotherapy, London EC4R 9AN, United Kingdom
| | - Faris Muhammad Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Suci Ardini Widyaningsih
- Master of Medical Sciences in Clinical Investigation, Harvard Medical School, Boston, MA 02115, United States
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Hoa-Tran TN, Nakagomi T, Vu HM, Nguyen TTT, Dao ATH, Nguyen AT, Bines JE, Thomas S, Grabovac V, Kataoka-Nakamura C, Taichiro T, Hasebe F, Kodama T, Kaneko M, Dang HTT, Duong HT, Anh DD, Nakagomi O. Evolution of DS-1-like G8P[8] rotavirus A strains from Vietnamese children with acute gastroenteritis (2014-21): Adaptation and loss of animal rotavirus-derived genes during human-to-human spread. Virus Evol 2024; 10:veae045. [PMID: 38952820 PMCID: PMC11215986 DOI: 10.1093/ve/veae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Animal rotaviruses A (RVAs) are considered the source of emerging, novel RVA strains that have the potential to cause global spread in humans. A case in point was the emergence of G8 bovine RVA consisting of the P[8] VP4 gene and the DS-1-like backbone genes that appeared to have jumped into humans recently. However, it was not well documented what evolutionary changes occurred on the animal RVA-derived genes during circulation in humans. Rotavirus surveillance in Vietnam found that DS-1-like G8P[8] strains emerged in 2014, circulated in two prevalent waves, and disappeared in 2021. This surveillance provided us with a unique opportunity to investigate the whole process of evolutionary changes, which occurred in an animal RVA that had jumped the host species barrier. Of the 843 G8P[8] samples collected from children with acute diarrhoea in Vietnam between 2014 and 2021, fifty-eight strains were selected based on their distinctive electropherotypes of the genomic RNA identified using polyacrylamide gel electrophoresis. Whole-genome sequence analysis of those fifty-eight strains showed that the strains dominant during the first wave of prevalence (2014-17) carried animal RVA-derived VP1, NSP2, and NSP4 genes. However, the strains from the second wave of prevalence (2018-21) lost these genes, which were replaced with cognate human RVA-derived genes, thus creating strain with G8P[8] on a fully DS-1-like human RVA gene backbone. The G8 VP7 and P[8] VP4 genes underwent some point mutations but the phylogenetic lineages to which they belonged remained unchanged. We, therefore, propose a hypothesis regarding the tendency for the animal RVA-derived genes to be expelled from the backbone genes of the progeny strains after crossing the host species barrier. This study underlines the importance of long-term surveillance of circulating wild-type strains in order to better understand the adaptation process and the fate of newly emerging, animal-derived RVA among the human population. Further studies are warranted to disclose the molecular mechanisms by which spillover animal RVAs become readily transmissible among humans, and the roles played by the expulsion of animal-derived genes and herd immunity formed in the local population.
Collapse
Affiliation(s)
- Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hung Manh Vu
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Trang Thu Thi Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh Thi Hai Dao
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh The Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Sarah Thomas
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Varja Grabovac
- Vaccine-Preventable Diseases and Immunization Unit, Division of Programmes for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila 1000, Philippines
| | - Chikako Kataoka-Nakamura
- Center Surveillance Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka 768-0065, Japan
| | - Takemura Taichiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Miho Kaneko
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Huyen Thi Thanh Dang
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hong Thi Duong
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Dang Duc Anh
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
6
|
Zou W, Yu Q, Liu Y, Li Q, Chen H, Gao J, Shi C, Wang Y, Chen W, Bai X, Yang B, Zhang J, Dong B, Ruan B, Zhou L, Xu G, Hu Z, Yang X. Genotype analysis of rotaviruses isolated from children during a phase III clinical trial with the hexavalent rotavirus vaccine in China. Virol Sin 2023; 38:889-899. [PMID: 37972894 PMCID: PMC10786658 DOI: 10.1016/j.virs.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
The oral hexavalent live human-bovine reassortant rotavirus vaccine (RV6) developed by Wuhan Institute of Biological Products Co., Ltd (WIBP) has finished a randomized, placebo-controlled phase III clinical trial in four provinces of China in 2021. The trail demonstrated that RV6 has a high vaccine efficacy against the prevalent strains and is safe for use in infants. During the phase III clinical trial (2019-2021), 200 rotavirus-positive fecal samples from children with RV gastroenteritis (RVGE) were further studied. Using reverse transcription-polymerase chain reaction and high-throughput sequencing, VP7 and VP4 sequences were obtained and their genetic characteristics, as well as the differences in antigenic epitopes of VP7, were analyzed in detail. Seven rotavirus genotypes were identified. The predominant rotavirus genotype was G9P [8] (77.0%), followed by prevalent strains G8P [8] (8.0%), G3P [8] (3.5%), G3P [9] (1.5%), G1P [8] (1.0%), G2P [4] (1.0%), and G4P [6] (1.0%). The amino acid sequence identities of G1, G2, G3, G4, G8, and G9 genotypes of isolates compared to the vaccine strains were 98.8%, 98.2%-99.7%, 88.4%-99.4%, 98.2%, 94.2%-100%, and 93.9%-100%, respectively. Notably, the vaccine strains exhibited high similarity in amino acid sequence, with only minor differences in antigenic epitopes compared to the Chinese endemic strains. This supports the potential application of the vaccine in preventing diseases caused by rotaviruses.
Collapse
Affiliation(s)
- Wenqi Zou
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Qingchuan Yu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yan Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qingliang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Hong Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Jiamei Gao
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Chen Shi
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Ying Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Wei Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Xuan Bai
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Biao Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Jiuwei Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Ben Dong
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Bo Ruan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Liuyifan Zhou
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Gelin Xu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Zhongyu Hu
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China; China National Biotec Group, Beijing, 100024, China.
| |
Collapse
|
7
|
Sashina TA, Velikzhanina EI, Morozova OV, Epifanova NV, Novikova NA. Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia. Arch Virol 2023; 168:215. [PMID: 37524885 DOI: 10.1007/s00705-023-05838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Reassortant DS-1-like rotavirus A strains have been shown to circulate widely in many countries around the world. In Russia, the prevalence of such strains remains unclear due to the preferred use of the traditional binary classification system. In this work, we obtained partial sequence data from all 11 genome segments and determined the full-genotype constellations of rare and reassortant rotaviruses circulating in Nizhny Novgorod in 2016-2019. DS-1-like G3P[8] and G8P[8] strains were found, reflecting the global trend. Most likely, these strains were introduced into the territory of Russia from other countries but subsequently underwent further evolutionary changes locally. G3P[8], G9P[8], and G12P[8] Wa-like strains of subgenotypic lineages that are unusual for the territory of Russia were also identified. Reassortant G2P[8], G4P[4], and G9P[4] strains with one Wa-like gene (VP4 or VP7) on a DS-1-like backbone were found, and these apparently had a local origin. Feline-like G3P[9] and G6P[9] strains were found to be phylogenetically close to BA222 isolated from a cat in Italy but carried some traces of reassortment with human strains from Russia and other countries. Thus, full-genotype determination of rotavirus A strains in Nizhny Novgorod has clarified some questions related to their origin and evolution.
Collapse
Affiliation(s)
- Tatiana A Sashina
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation.
| | - E I Velikzhanina
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - O V Morozova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N V Epifanova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N A Novikova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| |
Collapse
|
8
|
Zhou X, Wang Y, Chen N, Pang B, Liu M, Cai K, Kobayashi N. Surveillance of Human Rotaviruses in Wuhan, China (2019-2022): Whole-Genome Analysis of Emerging DS-1-like G8P[8] Rotavirus. Int J Mol Sci 2023; 24:12189. [PMID: 37569563 PMCID: PMC10419309 DOI: 10.3390/ijms241512189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Group A rotaviruses (RVAs) are major etiologic agents of gastroenteritis in infants and young children worldwide. To study the prevalence and genetic characteristics of RVAs, a hospital-based surveillance study was conducted in Wuhan, China from June 2019 through May 2022. The detection rates of RVAs were 19.40% (142/732) and 3.51% (8/228) in children and adults, respectively. G9P[8] was the predominant genotype, followed by G8P[8] and G3P[8]. G8P[8] emerged and was dominant in the 2021-2022 epidemic season. The genome constellation of six G8P[8] strains was assigned to G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP7, VP4, VP2, VP3, NSP1, NSP2, NSP3, and NSP5 genes of these G8P[8] strains clustered closely with those of the G8P[8] strains in Asia and were distant from those of the P[8] and G2P[4] strains simultaneously detected in Wuhan. In contrast, the VP1, VP6, and NSP4 genes were closely related to the typical G2P[4] rotavirus, including those of G2P[4] strains simultaneously detected in Wuhan. The detection rate of RVAs decreased in the COVID-19 pandemic era. It was deduced that the G8P[8] rotaviruses that emerged in China may be reassortants, carrying the VP6, VP1, and NSP4 genes derived from the G2P[4] rotavirus in the backbone of the neighboring DS-1-like G8P[8] strains represented by CAU17L-103.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Yuanhong Wang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Beibei Pang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Manqing Liu
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
9
|
Jampanil N, Kumthip K, Maneekarn N, Khamrin P. Genetic Diversity of Rotaviruses Circulating in Pediatric Patients and Domestic Animals in Thailand. Trop Med Infect Dis 2023; 8:347. [PMID: 37505643 PMCID: PMC10383398 DOI: 10.3390/tropicalmed8070347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Rotavirus A is a highly contagious virus that causes acute gastroenteritis in humans and a wide variety of animals. In this review, we summarized the information on rotavirus described in the studies in the last decade (2008 to 2021) in Thailand, including the prevalence, seasonality, genetic diversity, and interspecies transmission. The overall prevalence of rotavirus infection in humans ranged from 15-33%. Rotavirus infection was detected throughout the year and most frequently in the dry and cold months, typically in March. The diversity of rotavirus genotypes varied year to year and from region to region. From 2008 to 2016, rotavirus G1P[8] was detected as the most predominant genotype in Thailand. After 2016, G1P[8] decreased significantly and other genotypes including G3P[8], G8P[8], and G9P[8] were increasingly detected from 2016 to 2020. Several uncommon rotavirus strains such as G1P[6], G4P[6], and G3P[10] have also been occasionally detected. In addition, most studies on rotavirus A infection in animals in Thailand from 2011 to 2021 reported the detection of rotavirus A in piglets and canine species. It was reported that rotavirus could cross the host species barrier between humans and animals through interspecies transmission and genetic reassortment mechanisms. The surveillance of rotavirus infection is crucial to identify the trend of rotavirus infection and the emergence of novel rotavirus genotypes in this country. The data provide information on rotavirus infection and the diversity of rotavirus genotypes circulating in the pre-vaccination period, and the data will be useful for the evaluation of the effectiveness of rotavirus vaccine implementation in Thailand.
Collapse
Affiliation(s)
- Nutthawadee Jampanil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Medeiros RS, França Y, Viana E, de Azevedo LS, Guiducci R, de Lima Neto DF, da Costa AC, Luchs A. Genomic Constellation of Human Rotavirus G8 Strains in Brazil over a 13-Year Period: Detection of the Novel Bovine-like G8P[8] Strains with the DS-1-like Backbone. Viruses 2023; 15:664. [PMID: 36992373 PMCID: PMC10056101 DOI: 10.3390/v15030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Rotavirus (RVA) G8 is frequently detected in animals, but only occasionally in humans. G8 strains, however, are frequently documented in nations in Africa. Recently, an increase in G8 detection was observed outside Africa. The aims of the study were to monitor G8 infections in the Brazilian human population between 2007 and 2020, undertake the full-genotype characterization of the four G8P[4], six G8P[6] and two G8P[8] RVA strains and conduct phylogenetic analysis in order to understand their genetic diversity and evolution. A total of 12,978 specimens were screened for RVA using ELISA, PAGE, RT-PCR and Sanger sequencing. G8 genotype represented 0.6% (15/2434) of the entirely RVA-positive samples. G8P[4] comprised 33.3% (5/15), G8P[6] 46.7% (7/15) and G8P[8] 20% (3/15). All G8 strains showed a short RNA pattern. All twelve selected G8 strains displayed a DS-1-like genetic backbone. The whole-genotype analysis on a DS-1-like backbone identified four different genotype-linage constellations. According to VP7 analysis, the Brazilian G8P[8] strains with the DS-1-like backbone strains were derived from cattle and clustered with newly DS-1-like G1/G3/G9/G8P[8] strains and G2P[4] strains. Brazilian IAL-R193/2017/G8P[8] belonged to a VP1/R2.XI lineage and were grouped with bovine-like G8P[8] strains with the DS-1-like backbone strains detected in Asia. Otherwise, the Brazilian IAL-R558/2017/G8P[8] possess a "Distinct" VP1/R2 lineage never previously described and grouped apart from any of the DS-1-like reference strains. Collectively, our findings suggest that the Brazilian bovine-like G8P[8] strains with the DS-1-like backbone strains are continuously evolving and likely reassorting with local RVA strains rather than directly relating to imports from Asia. The Brazilian G8P[6]-DS-1-like strains have been reassorted with nearby co-circulating American strains of the same DS-1 genotype constellation. However, phylogenetic analyses revealed that these strains have some genetic origin from Africa. Finally, rather than being African-born, Brazilian G8P[4]-DS-1-like strains were likely imported from Europe. None of the Brazilian G8 strains examined here exhibited signs of recent zoonotic reassortment. G8 strains continued to be found in Brazil according to their intermittent and localized pattern, thus, does not suggest that a potential emergence is taking place in the country. Our research demonstrates the diversity of G8 RVA strains in Brazil and adds to the understanding of G8P[4]/P[6]/P[8] RVA genetic diversity and evolution on a global scale.
Collapse
Affiliation(s)
- Roberta Salzone Medeiros
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Lais Sampaio de Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Daniel Ferreira de Lima Neto
- General Coordination of Public Health Laboratories, Department of Strategic Articulation in Epidemiology and Health Surveillance, Ministry of Health, Brasília 70068-900, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| |
Collapse
|
11
|
Fujii Y. [Changes in rotavirus epidemic strains]. Uirusu 2023; 73:33-44. [PMID: 39343518 DOI: 10.2222/jsv.73.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rotavirus is a major cause of gastroenteritis in infants and is widely prevalent throughout the world regardless of the hygienic environment. However, it is not easy to understand the overall picture of rotavirus epidemic because of the great variety of genotypes and the large inter-seasonal and regional differences in the prevalent strains. Fortunately, the rotavirus vaccines now widely used around the world are highly effective and safe. The number of rotavirus gastroenteritis cases is declining dramatically, especially in high-income countries. In Japan, rotavirus vaccines have been included in the routine vaccination program since October 2020. Additionally, the impact of the SARS-CoV-2 pandemic control measures on the rotavirus epidemic was also very significant. These synergistic effects have resulted in few rotavirus outbreaks in recent years. Nevertheless, rotavirus is unlikely to be completely eradicated, and indeed a small number of sporadic cases continue to be reported. It will continue to be important to maintain high vaccination coverage and to continuously investigate prevalent strains. This review will provide an overview of the rotavirus epidemic situation in Japan and abroad. Annual changes in domestic epidemic strains that have been revealed by steady research to date will also be presented.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology 2, National Institute of Infectious Diseases
| |
Collapse
|
12
|
Okitsu S, Khamrin P, Hikita T, Thongprachum A, Pham NTK, Hoque SA, Hayakawa S, Maneekarn N, Ushijima H. Changing distribution of rotavirus A genotypes circulating in Japanese children with acute gastroenteritis in outpatient clinic, 2014-2020. J Infect Public Health 2022; 15:816-825. [PMID: 35759807 DOI: 10.1016/j.jiph.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Rotavirus A (RVA) is a major cause of severe acute gastroenteritis (AGE) in infants and children worldwide. In Japan, two kinds of rotavirus vaccines have been introduced as voluntary vaccines in 2011 and 2012, respectively, and launched into the national vaccine program in October 2020. METHODS In this study, we investigated prevalence of RVA and their molecular characterization in the stool samples collected from infants and children with AGE who visited one outpatient clinic in Japan, from July 2014 to June 2020, during voluntary vaccination with two kinds of rotavirus vaccines. RESULTS The RVA detection rates decreased from 44.7 % in 2014-2015 to 35.4 % in 2018-2019, whereas in 2019-2020 the numbers of samples collected were dramatically decreased and none of RVA was detected. During this study period, rotavirus vaccination rates in this area increased from 32.4 % to 62.2 %. Distribution of RVA VP7 (G), VP4 (P), and VP6 (I) genotypes in this area had changed year by year; the major genotype combinations were G1P[8]I1 and G1P[8]I2 in 2014-2015, G2P[4]I2 and G9P[8]I1 in 2015-2016, G1P[8]I1 and G8P[8]I2 in 2017-2018, and G8P[8]I2 in 2018-2019. Phylogenetic analysis demonstrated that VP7 nucleotide sequences of G1 were genetically diverse compared with those of other G genotypes in this study. Meanwhile, predominance of unusual G2P[8]I1, G2P[8]I2 and mixed P genotypes were observed only in 2016-2017, but did not carry on in 2017-2019. The equine-like G3 was detected only in 2016-2017. CONCLUSIONS The results revealed diversity of RVA genotypes and the genotype combinations have changed year by year in Japan, during the study period of 2016-2020.
Collapse
Affiliation(s)
- Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | | | - Aksara Thongprachum
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand; Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Fukuda S, Akari Y, Hatazawa R, Negoro M, Tanaka T, Asada K, Nakamura H, Sugiura K, Umemoto M, Kuroki H, Ito H, Tanaka S, Ito M, Ide T, Murata T, Taniguchi K, Suga S, Kamiya H, Nakano T, Taniguchi K, Komoto S. Rapid spread of unusual G9P[8] human rotavirus strains possessing NSP4 genes of the E2 genotype in Japan. Jpn J Infect Dis 2022; 75:466-475. [DOI: 10.7883/yoken.jjid.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Yuki Akari
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital, Japan
| | - Takaaki Tanaka
- Department of Pediatrics, Kawasaki Medical School, Japan
| | | | | | | | | | | | - Hiroaki Ito
- Department of Pediatrics, Kameda Medical Center, Japan
| | - Shigeki Tanaka
- Department of Pediatrics, Mie Chuo Medical Center, Japan
| | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | | | - Shigeru Suga
- Department of Pediatrics, National Mie Hospital, Japan
| | - Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| |
Collapse
|
14
|
Miranda ARM, da Silva Mendes G, Santos N. Rotaviruses A and C in dairy cattle in the state of Rio de Janeiro, Brazil. Braz J Microbiol 2022; 53:1657-1663. [PMID: 35478312 PMCID: PMC9433513 DOI: 10.1007/s42770-022-00764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/16/2022] [Indexed: 11/28/2022] Open
Abstract
Stool samples were collected from calves from nine family-based small dairy farms in the state of Rio de Janeiro, for detection and characterization of rotavirus (RV) species A, B, and C (RVA, RVB, and RVC, respectively) by reverse transcription polymerase chain reaction. Twenty-six samples (27.7%) were positive for at least one of the species: 22 (23.4%) samples were positive only for RVA, 3 (3.2%) were positive for RVC, and one sample (1.1%) had co-infection of RVA and RVC. RVB was not detected. Seven (21.9%; n = 32) animals with diarrhea and 19 (30.1% n = 62) asymptomatic animals were positive, with no significant difference in positivity (p = 0.3677). RV was detected in all properties studied, at rates between 14.3 and 80%, demonstrating the widespread circulation of RV in four of the seven geographic regions of the state of Rio de Janeiro. Infection was more prevalent among animals ≤ 6 months of age. Sequence analysis of a portion of the RVA VP6-encoding gene identified the I2 genotype. RVC was also detected; to our knowledge, this is the first description of this agent in cattle in Brazil. The data presented here should add knowledge regarding the importance and prevalence of RV in our national territory, and may facilitate the planning and implementation of control and prevention measures for bovine rotavirus infections in Brazil.
Collapse
Affiliation(s)
- Adriele R M Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho - 373, Cidade Universitária, Rio de Janeiro, RJ, 21.947-902, Brazil
| | - Gabriella da Silva Mendes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho - 373, Cidade Universitária, Rio de Janeiro, RJ, 21.947-902, Brazil
| | - Norma Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho - 373, Cidade Universitária, Rio de Janeiro, RJ, 21.947-902, Brazil.
| |
Collapse
|
15
|
Alotaibi MA, Al-Amad S, Chenari Bouket A, Al-Aqeel H, Haider E, Hijji AB, Belbahri L, Alenezi FN. High Occurrence Among Calves and Close Phylogenetic Relationships With Human Viruses Warrants Close Surveillance of Rotaviruses in Kuwaiti Dairy Farms. Front Vet Sci 2022; 9:745934. [PMID: 35356787 PMCID: PMC8959109 DOI: 10.3389/fvets.2022.745934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Rotavirus, one of the main pathogens causing morbidity and mortality in neonatal dairy calves worldwide, is responsible for 30–44% of cattle deaths. It is considered to be the most common etiologic agent of diarrhea in neonatal dairy calves and children, the dominant type being group A. Two hundred seventy animals from 27 farms from 2 regions of Kuwait were tested for the presence of Rotavirus serogroup A (RVA) using latex agglutination test (LAT) and reverse transcription–polymerase chain (RT-PCR) testing. RVA non-structural proteins NSP1-2, NSP4-5 and capsid protein genes VP1-7 were characterized by next generation sequencing. LAT was positive in 15.56% of the animals, and RT-PCR in 28.89%. Using RT-PCR as a reference method, LAT was 100% specific but only 83.33% sensitive. ANOVA analysis showed correlation only with the location of the farms but no significant correlation with the age and sex of the animals. Although there was a tendency of clustering of RVA positive animals, it did not reach statistical significance (p = 0.035 for LAT). The phylogenetic analysis showed that Kuwaiti isolates of group A rotavirus clustered with human rotaviruses. Taken together, it seems that rotavirus was present in most of the dairy farms in Kuwait. The high occurrence of the virus in calves in Kuwaiti dairy farms and the close phylogenetic affinity with human isolates warrants urgent action to minimize and control its spread between calves in farms.
Collapse
Affiliation(s)
- Mohammad A. Alotaibi
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
- *Correspondence: Mohammad A. Alotaibi
| | - S. Al-Amad
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Ali Chenari Bouket
- East Azarbaijan Agricultural and Natural Resources Research and Education Center, Plant Protection Research Department, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - H. Al-Aqeel
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - E. Haider
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - A. Bin Hijji
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, Neuchatel, Switzerland
| | | |
Collapse
|
16
|
Amit LN, Mori D, John JL, Chin AZ, Mosiun AK, Jeffree MS, Ahmed K. Emergence of equine-like G3 strains as the dominant rotavirus among children under five with diarrhea in Sabah, Malaysia during 2018-2019. PLoS One 2021; 16:e0254784. [PMID: 34320003 PMCID: PMC8318246 DOI: 10.1371/journal.pone.0254784] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Rotavirus infection is a dilemma for developing countries, including Malaysia. Although commercial rotavirus vaccines are available, these are not included in Malaysia's national immunization program. A scarcity of data about rotavirus genotype distribution could be partially to blame for this policy decision, because there are no data for rotavirus genotype distribution in Malaysia over the past 20 years. From January 2018 to March 2019, we conducted a study to elucidate the rotavirus burden and genotype distribution in the Kota Kinabalu and Kunak districts of the state of Sabah. Stool specimens were collected from children under 5 years of age, and rotavirus antigen in these samples was detected using commercially available kit. Electropherotypes were determined by polyacrylamide gel electrophoresis of genomic RNA. G and P genotypes were determined by RT-PCR using type specific primers. The nucleotide sequence of the amplicons was determined by Sanger sequencing and phylogenetic analysis was performed by neighbor-joining method. Rotavirus was identified in 43 (15.1%) children with watery diarrhea. The male:female ratio (1.9:1) of the rotavirus-infected children clearly showed that it affected predominantly boys, and children 12-23 months of age. The genotypes identified were G3P[8] (74% n = 31), followed by G1P[8] (14% n = 6), G12P[6](7% n = 3), G8P[8](3% n = 1), and GxP[8] (3% n = 1). The predominant rotavirus circulating among the children was the equine-like G3P[8] (59.5% n = 25) with a short electropherotype. Eleven electropherotypes were identified among 34 strains, indicating substantial diversity among the circulating strains. The circulating genotypes were also phylogenetically diverse and related to strains from several different countries. The antigenic epitopes present on VP7 and VP4 of Sabahan G3 and equine-like G3 differed considerably from that of the RotaTeq vaccine strain. Our results also indicate that considerable genetic exchange is occurring in Sabahan strains. Sabah is home to a number of different ethnic groups, some of which culturally are in close contact with animals, which might contribute to the evolution of diverse rotavirus strains. Sabah is also a popular tourist destination, and a large number of tourists from different countries possibly contributes to the diversity of circulating rotavirus genotypes. Considering all these factors which are contributing rotavirus genotype diversity, continuous surveillance of rotavirus strains is of utmost importance to monitor the pre- and post-vaccination efficacy of rotavirus vaccines in Sabah.
Collapse
Affiliation(s)
- Lia Natasha Amit
- Faculty of Medicine and Health Sciences, Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Daisuke Mori
- Faculty of Medicine and Health Sciences, Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jecelyn Leaslie John
- Faculty of Medicine and Health Sciences, Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Abraham Zefong Chin
- Faculty of Medicine and Health Sciences, Department of Community and Family Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Andau Konodan Mosiun
- Kunak District Health Office, Ministry of Health Malaysia, Kunak, Sabah, Malaysia
| | - Mohammad Saffree Jeffree
- Faculty of Medicine and Health Sciences, Department of Community and Family Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kamruddin Ahmed
- Faculty of Medicine and Health Sciences, Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Medicine and Health Sciences, Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- * E-mail:
| |
Collapse
|
17
|
Pasittungkul S, Lestari FB, Puenpa J, Chuchaona W, Posuwan N, Chansaenroj J, Mauleekoonphairoj J, Sudhinaraset N, Wanlapakorn N, Poovorawan Y. High prevalence of circulating DS-1-like human rotavirus A and genotype diversity in children with acute gastroenteritis in Thailand from 2016 to 2019. PeerJ 2021; 9:e10954. [PMID: 33680579 PMCID: PMC7919534 DOI: 10.7717/peerj.10954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human rotavirus A (RVA) infection is the primary cause of acute gastroenteritis (AGE) in infants and young children worldwide, especially in children under 5 years of age and is a major public health problem causing severe diarrhea in children in Thailand. This study aimed to investigate the prevalence, genotype diversity, and molecular characterization of rotavirus infection circulating in children under 15 years of age diagnosed with AGE in Thailand from January 2016 to December 2019. METHODS A total of 2,001 stool samples were collected from children with gastroenteritis (neonates to children <15 years of age) and tested for RVA by real-time polymerase chain reaction (RT-PCR). Amplified products were sequenced and submitted to an online genotyping tool for analysis. RESULTS Overall, 301 (15.0%) stool samples were positive for RVA. RVA occurred most frequently among children aged 0-24 months. The seasonal incidence of rotavirus infection occurred typically in Thailand during the winter months (December-March). The G3P[8] genotype was identified as the most prevalent genotype (33.2%, 100/301), followed by G8P[8] (10.6%, 32/301), G9P[8] (6.3%, 19/301), G2P[4] (6.0%, 18/301), and G1P[6] (5.3%, 16/301). Uncommon G and P combinations such as G9P[4], G2P[8], G3P[4] and G3P[9] were also detected at low frequencies. In terms of genetic backbone, the unusual DS-1-like G3P[8] was the most frequently detected (28.2%, 85/301), and the phylogenetic analysis demonstrated high nucleotide identity with unusual DS-1-like G3P[8] detected in Thailand and several countries. CONCLUSIONS A genetic association between RVA isolates from Thailand and other countries ought to be investigated given the local and global dissemination of rotavirus as it is crucial for controlling viral gastroenteritis, and implications for the national vaccination programs.
Collapse
Affiliation(s)
- Siripat Pasittungkul
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Fajar Budi Lestari
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Graduate School, Chulalongkorn University, Inter-Department of Biomedical Sciences, Bangkok, Bangkok, Thailand
| | - Jiratchaya Puenpa
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Watchaporn Chuchaona
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Nawarat Posuwan
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Jira Chansaenroj
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - John Mauleekoonphairoj
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Natthinee Sudhinaraset
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
- Faculty of Medicine, Chulalongkorn University, Division of Academic Affairs, Bangkok, Bangkok, Thailand
| | - Yong Poovorawan
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| |
Collapse
|
18
|
Guajardo-Leiva S, Chnaiderman J, Gaggero A, Díez B. Metagenomic Insights into the Sewage RNA Virosphere of a Large City. Viruses 2020; 12:v12091050. [PMID: 32967111 PMCID: PMC7551614 DOI: 10.3390/v12091050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Sewage-associated viruses can cause several human and animal diseases, such as gastroenteritis, hepatitis, and respiratory infections. Therefore, their detection in wastewater can reflect current infections within the source population. To date, no viral study has been performed using the sewage of any large South American city. In this study, we used viral metagenomics to obtain a single sample snapshot of the RNA virosphere in the wastewater from Santiago de Chile, the seventh largest city in the Americas. Despite the overrepresentation of dsRNA viruses, our results show that Santiago’s sewage RNA virosphere was composed mostly of unknown sequences (88%), while known viral sequences were dominated by viruses that infect bacteria (60%), invertebrates (37%) and humans (2.4%). Interestingly, we discovered three novel genogroups within the Picobirnaviridae family that can fill major gaps in this taxa’s evolutionary history. We also demonstrated the dominance of emerging Rotavirus genotypes, such as G8 and G6, that have displaced other classical genotypes, which is consistent with recent clinical reports. This study supports the usefulness of sewage viral metagenomics for public health surveillance. Moreover, it demonstrates the need to monitor the viral component during the wastewater treatment and recycling process, where this virome can constitute a reservoir of human pathogens.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Jonás Chnaiderman
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Aldo Gaggero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Correspondence: (A.G.); (B.D.)
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
- Correspondence: (A.G.); (B.D.)
| |
Collapse
|
19
|
Molecular characterization of unusual G10P[33], G6P[14] genomic constellations of group A rotavirus and evidence of zooanthroponosis in bovines. INFECTION GENETICS AND EVOLUTION 2020; 84:104385. [PMID: 32522623 DOI: 10.1016/j.meegid.2020.104385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022]
Abstract
Group A rotaviruses (RVA) are a major cause of diarrhea in neonatal calves and children. The present study examined G/P combinations and genetic characteristics of RVAs in diarrheic bovine calves in Western India. RVAs were detected in 27 samples (17.64%) with a predominance of G10P[11] (51.85%), followed by previously unreported genomic constellations, G6P[14] (14.81%), and, G6P[4] (7.40%) and G10P[33] (3.70%). Sequencing and phylogenetic analysis revealed circulation of G10 (Lineage-5), G6 (Lineage-2), P[11] (Lineage-3), P[14] (proposed Lineage-8) and P[4] (Lineage-3) genotypes. The predominant G10P[11] strains were typical bovine strains and exhibited genotypic homogeneity. The rare, G10P[33] strain, had VP7 and VP4 genes of bovine origin but, a resemblance of the VP6 gene with simian strain indicated possible reassortment between bovine and simian (SA11-like) strains. The VP6 and VP7 genes of two rare strains, G6P[14] and G6P[4], were identical to those of bovine stains, but the VP4 was closely related to those of the human-bovine like and human strains, respectively. Additionally, in the VP4 gene phylogenetic tree, Indian P[14] strains constituted a closely related genetic cluster distinct from the other P[14] strains. Hence Lineage-8 was proposed for them. These findings indicated that bovines could serve as a source for anthropozoonotic transmission of G6P[14] strains while zooanthroponotic transmission followed by reassortment with human strain gave rise to G6P[4] strains. The observations of a present study reinforce the potential of rotaviruses to cross the host-species barrier and undergo reassortant to increase genetic diversity which, necessitates their continuous surveillance for development and optimization of prevention strategies against zoonotic RVAs.
Collapse
|
20
|
Hoa-Tran TN, Nakagomi T, Vu HM, Nguyen TTT, Takemura T, Hasebe F, Dao ATH, Anh PHQ, Nguyen AT, Dang AD, Nakagomi O. Detection of three independently-generated DS-1-like G9P[8] reassortant rotavirus A strains during the G9P[8] dominance in Vietnam, 2016–2018. INFECTION GENETICS AND EVOLUTION 2020; 80:104194. [DOI: 10.1016/j.meegid.2020.104194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
|
21
|
Fukuda S, Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Ide T, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Ruchusatsawast K, Rungnopakun P, Mekmallika J, Kawamura Y, Motomura K, Tatsumi M, Takeda N, Murata T, Yoshikawa T, Uppapong B, Taniguchi K, Komoto S. Full genome characterization of novel DS-1-like G9P[8] rotavirus strains that have emerged in Thailand. PLoS One 2020; 15:e0231099. [PMID: 32320419 PMCID: PMC7176146 DOI: 10.1371/journal.pone.0231099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotaviruses having G1/3/8 genotypes have been recently reported from major parts of the world (Africa, Asia, Australia, Europe, and the Americas). During rotavirus surveillance in Thailand, three novel intergenogroup reassortant strains possessing the G9P[8] genotype (DBM2017-016, DBM2017-203, and DBM2018-291) were identified in three stool specimens from diarrheic children. In the present study, we determined and analyzed the full genomes of these three strains. On full-genomic analysis, all three strains were found to share a unique genotype constellation comprising both genogroup 1 and 2 genes: G9-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis demonstrated that each of the 11 genes of the three strains was closely related to that of emerging DS-1-like intergenogroup reassortant, human, and/or locally circulating human strains. Thus, the three strains were suggested to be multiple reassortants that had acquired the G9-VP7 genes from co-circulating Wa-like G9P[8] rotaviruses in the genetic background of DS-1-like intergenogroup reassortant (likely equine-like G3P[8]) strains. To our knowledge, this is the first description of emerging DS-1-like intergenogroup reassortant strains having the G9P[8] genotype. Our observations will add to the growing insights into the dynamic evolution of emerging DS-1-like intergenogroup reassortant rotaviruses through reassortment.
Collapse
Affiliation(s)
- Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ratana Tacharoenmuang
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Research Promotion and Support, Joint Research Support Promotion Facility, Fujita Health University, Toyoake, Aichi, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Karun Sutthiwarakom
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Santip Kongjorn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Napa Onvimala
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | | | | | | | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
- Osaka Institute of Public Health, Osaka, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- * E-mail:
| |
Collapse
|
22
|
Sadiq A, Bostan N, Bokhari H, Yinda KC, Matthijnssens J. Whole Genome Analysis of Selected Human Group A Rotavirus Strains Revealed Evolution of DS-1-Like Single- and Double-Gene Reassortant Rotavirus Strains in Pakistan During 2015-2016. Front Microbiol 2019; 10:2641. [PMID: 31798563 PMCID: PMC6868104 DOI: 10.3389/fmicb.2019.02641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Acute gastroenteritis due to group A rotaviruses (RVAs) is the leading cause of infant and childhood morbidity and mortality particularly in developing countries including Pakistan. In this study we have characterized the whole genomes of five RVA strains (PAK56, PAK419, PAK585, PAK622, and PAK663) using the Illumina HiSeq platform. The strains PAK56 and PAK622 exhibited a typical Wa-like genotype constellation (G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, respectively), whereas PAK419, PAK585, and PAK663 exhibited distinct DS-1-like genotype constellations (G3P[4]-I2-R2-C2-M2-A2-N2-T1-E2-H2, G1P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2, and G3P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2, respectively). Despite their DS-1-like genotype constellation, strain PAK585 possessed the typical Wa-like G1P[8] genotypes, whereas both PAK419 and PAK663 possessed the G3 genotype. In addition, PAK419 also possessed the Wa-like NSP3 genotype T1, suggesting that multiple reassortments have occurred. On Phylogenetic analysis, all of the gene segments of the five strains examined in this study were genetically related to globally circulating human G1, G2, G3, G6, G8, G9, and G12 strains. Interestingly, the NSP2 gene of strain PAK419 showed closest relationship with Indian bovine strain (India/HR/B91), suggesting the occurrence of reassortment between human and bovine RVA strains. Furthermore, strains PAK419, PAK585, and PAK663 were closely related to one another in most of their gene segments, indicating that these strains might have been derived from a common ancestor. To our knowledge this is the first whole genome-based molecular characterization of human rotavirus strains in Pakistan. The results of our study will enhance our existing knowledge on the diversity and evolutionary dynamics of novel RVA strains including DS-1-like intergenogroup reassortant strains spreading in Asian countries including Pakistan, in the pre-vaccine era. Therefore, continuous surveillance is recommended to monitor the evolution, spread and genetic stability of novel reassortant rotavirus strains derived from such events.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Kwe Claude Yinda
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Moutelíková R, Sauer P, Dvořáková Heroldová M, Holá V, Prodělalová J. Emergence of Rare Bovine-Human Reassortant DS-1-Like Rotavirus A Strains with G8P[8] Genotype in Human Patients in the Czech Republic. Viruses 2019; 11:v11111015. [PMID: 31683946 PMCID: PMC6893433 DOI: 10.3390/v11111015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Group A Rotaviruses (RVA) are the leading cause of acute gastroenteritis in children and a major cause of childhood mortality in low-income countries. RVAs are mostly host-specific, but interspecies transmission and reassortment between human and animal RVAs significantly contribute to their genetic diversity. We investigated the VP7 and VP4 genotypes of RVA isolated from 225 stool specimens collected from Czech patients with gastroenteritis during 2016–2019. The most abundant genotypes were G1P[8] (42.7%), G3P[8] (11.1%), G9P[8] (9.8%), G2P[4] (4.4%), G4P[8] (1.3%), G12P[8] (1.3%), and, surprisingly, G8P[8] (9.3%). Sequence analysis of G8P[8] strains revealed the highest nucleotide similarity of all Czech G8 sequences to the G8P[8] rotavirus strains that were isolated in Vietnam in 2014/2015. The whole-genome backbone of the Czech G8 strains was determined with the use of next-generation sequencing as DS-1-like. Phylogenetic analysis of all segments clustered the Czech isolates with RVA strains that were formerly described in Southeast Asia, which had emerged following genetic reassortment between bovine and human RVAs. This is the first time that bovine–human DS-1-like G8P[8] strains were detected at a high rate in human patients in Central Europe. Whether the emergence of this unusual genotype reflects the establishment of a new RVA strain in the population requires the continuous monitoring of rotavirus epidemiology.
Collapse
Affiliation(s)
| | - Pavel Sauer
- Institute of Microbiology, University Hospital Olomouc and Faculty of Medicine, Palacký University, 77900 Olomouc, Czech Republic.
| | - Monika Dvořáková Heroldová
- Microbiology Institute of Faculty of Medicine, Masaryk University Brno and University Hospital of St. Anne, 65691 Brno, Czech Republic.
| | - Veronika Holá
- Microbiology Institute of Faculty of Medicine, Masaryk University Brno and University Hospital of St. Anne, 65691 Brno, Czech Republic.
| | | |
Collapse
|
24
|
Maguire JE, Glasgow K, Glass K, Roczo-Farkas S, Bines JE, Sheppeard V, Macartney K, Quinn HE. Rotavirus Epidemiology and Monovalent Rotavirus Vaccine Effectiveness in Australia: 2010-2017. Pediatrics 2019; 144:peds.2019-1024. [PMID: 31530719 DOI: 10.1542/peds.2019-1024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Rotavirus vaccine has been funded for infants under the Australian National Immunisation Program since 2007, with Rotarix vaccine used in New South Wales, Australia, from that time. In 2017, New South Wales experienced a large outbreak of rotavirus gastroenteritis. We examined epidemiology, genotypic profiles, and vaccine effectiveness (VE) among cases. METHODS Laboratory-confirmed cases of rotavirus notified in New South Wales between January 1, 2010 and December 31, 2017 were analyzed. VE was estimated in children via a case-control analysis. Specimens from a sample of hospitalized case patients were genotyped and analyzed. RESULTS In 2017, 2319 rotavirus cases were reported, representing a 3.1-fold increase on the 2016 notification rate. The highest rate was among children aged <2 years. For notified cases in 2017, 2-dose VE estimates were 88.4%, 83.7%, and 78.7% in those aged 6 to 11 months, 1 to 3 years, and 4 to 9 years, respectively. VE was significantly reduced from 89.5% within 1 year of vaccination to 77.0% at 5 to 10 years postvaccination. Equinelike G3P[8] (48%) and G8P[8] (23%) were identified as the most common genotypes in case patients aged ≥6 months. CONCLUSIONS Rotarix is highly effective at preventing laboratory-confirmed rotavirus in Australia, especially in infants aged 6 to 11 months. Reduced VE in older age groups and over time suggests waning protection, possibly related to the absence of subclinical immune boosting from continuously circulating virus. G8 genotypes have not been common in Australia, and their emergence, along with equinelike G3P[8], may be related to vaccine-induced selective pressure; however, further strain-specific VE studies are needed.
Collapse
Affiliation(s)
- Julia E Maguire
- National Centre for Immunisation Research and Surveillance, Westmead, New South Wales, Australia; .,National Centre for Epidemiology and Public Health, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Keira Glasgow
- Communicable Diseases Branch, Health Protection New South Wales, Sydney, New South Wales, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Public Health, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Susie Roczo-Farkas
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia; and
| | - Vicky Sheppeard
- Communicable Diseases Branch, Health Protection New South Wales, Sydney, New South Wales, Australia
| | - Kristine Macartney
- National Centre for Immunisation Research and Surveillance, Westmead, New South Wales, Australia.,Discipline of Child and Adolescent Health, The University of Sydney Children's Hospital Westmead Clinical School, Westmead, New South Wales, Australia
| | - Helen E Quinn
- National Centre for Immunisation Research and Surveillance, Westmead, New South Wales, Australia.,Discipline of Child and Adolescent Health, The University of Sydney Children's Hospital Westmead Clinical School, Westmead, New South Wales, Australia
| |
Collapse
|
25
|
Tacharoenmuang R, Komoto S, Guntapong R, Upachai S, Singchai P, Ide T, Fukuda S, Ruchusatsawast K, Sriwantana B, Tatsumi M, Motomura K, Takeda N, Murata T, Sangkitporn S, Taniguchi K, Yoshikawa T. High prevalence of equine-like G3P[8] rotavirus in children and adults with acute gastroenteritis in Thailand. J Med Virol 2019; 92:174-186. [PMID: 31498444 DOI: 10.1002/jmv.25591] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022]
Abstract
Group A rotavirus (RVA) is a major cause of acute gastroenteritis in infants and young children worldwide. This study aims to clarify the distribution of G/P types and genetic characteristics of RVAs circulating in Thailand. Between January 2014 and September 2016, 1867 stool specimens were collected from children and adults with acute gastroenteritis in six provinces in Thailand. RVAs were detected in 514/1867 (27.5%) stool specimens. G1P[8] (44.7%) was the most predominant genotype, followed by G3P[8] (33.7%), G2P[4] (11.5%), G8P[8] (7.0%), and G9P[8] (1.3%). Unusual G3P[9] (0.8%), G3P[10] (0.4%), G4P[6] (0.4%), and G10P[14] (0.2%) were also detected at low frequencies. The predominant genotype, G1P[8] (64.4%), in 2014 decreased to 6.1% in 2016. In contrast, the frequency of G3P[8] markedly increased from 5.5% in 2014 to 65.3% in 2015 and 89.8% in 2016. On polyacrylamide gel electrophoresis, most (135/140; 96.4%) of the G3P[8] strains exhibited a short RNA profile. Successful determination of the nucleotide sequences of the VP7 genes of 98 G3P[8] strains with a short RNA profile showed that they are all equine-like G3P[8] strains. On phylogenetic analysis of genome segments of two representative Thai equine-like G3P[8] strains, it was noteworthy that they possessed distinct NSP4 genes, one bovine-like and the other human-like. Thus, we found that characteristic equine-like G3P[8] strains with a short RNA electropherotype are becoming highly prevalent in children and adults in Thailand.
Collapse
Affiliation(s)
- Ratana Tacharoenmuang
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.,Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.,Center for Research Promotion and Support, Joint Research Support Promotion Facility, Fujita Health University, Toyoake, Aichi, Japan
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | - Busarawan Sriwantana
- Department of Medical Sciences, Medical Sciences Technical Office, Nonthaburi, Thailand
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand.,Osaka Institute of Public Health, Osaka, Japan
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
26
|
Roczo-Farkas S, Cowley D, Bines JE. Australian Rotavirus Surveillance Program: Annual Report, 2017. Commun Dis Intell (2018) 2019. [DOI: 10.33321/cdi.2019.43.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This report, from the Australian Rotavirus Surveillance Program and collaborating laboratories Australia-wide, describes the rotavirus genotypes identified in children and adults with acute gastroenteritis during the period 1 January to 31 December 2017. During this period, 2,285 faecal specimens were referred for rotavirus G and P genotype analysis, including 1,103 samples that were confirmed as rotavirus positive. Of these, 1,014/1,103 were wildtype rotavirus strains and 89/1,103 were identified as rotavirus vaccine-like. Genotype analysis of the 1,014 wildtype rotavirus samples from both children and adults demonstrated that G2P[4] was the dominant genotype nationally, identified in 39% of samples, followed by equine-like G3P[8] and G8P[8] (25% and 16% respectively). Multiple outbreaks were recorded across Australia, including G2P[4] (Northern Territory, Western Australia, and South Australia), equine-like G3P[8] (New South Wales), and G8P[8] (New South Wales and Victoria). This year also marks the change in the Australian National Immunisation Program to the use of Rotarix exclusively, on 1 July 2017.
Collapse
Affiliation(s)
- Susie Roczo-Farkas
- Enteric Diseases Group, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria, 3052
| | - Daniel Cowley
- Enteric Diseases Group, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria, 3052
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria, 3052; Department of Paediatrics, University of Melbourne, Flemington Road, Parkville, Victoria, 3052; Department of Gastroenterology and Clinical Nutrition, Flemington Road, Parkville, Victoria, 3052
| | | |
Collapse
|
27
|
Katz EM, Esona MD, Betrapally NS, De La Cruz De Leon LA, Neira YR, Rey GJ, Bowen MD. Whole-gene analysis of inter-genogroup reassortant rotaviruses from the Dominican Republic: Emergence of equine-like G3 strains and evidence of their reassortment with locally-circulating strains. Virology 2019; 534:114-131. [PMID: 31228725 DOI: 10.1016/j.virol.2019.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
Inter-genogroup reassortant group A rotavirus (RVA) strains possessing a G3 VP7 gene of putative equine origin (EQL-G3) have been detected in humans since 2013. Here we report detection of EQL-G3P[8] RVA strains from the Dominican Republic collected in 2014-16. Whole-gene analysis of RVA in stool specimens revealed 16 EQL-G3P[8] strains, 3 of which appear to have acquired an N1 NSP1 gene from locally-circulating G9P[8] strains and a novel G2P[8] reassortant possessing 7 EQL-G3-associated genes and 3 genes from a locally-circulating G2P[4] strain. Phylogenetic/genetic analyses of VP7 gene sequences revealed nine G3 lineages (I-IX) with newly-assigned lineage IX encompassing all reported human EQL-G3 strains along with the ancestral equine strain. VP1 and NSP2 gene phylogenies suggest that EQL-G3P[8] strains were introduced into the Dominican Republic from Thailand. The emergence of EQL-G3P[8] strains in the Dominican Republic and their reassortment with locally-circulating RVA could have implications for current vaccination strategies.
Collapse
Affiliation(s)
- Eric M Katz
- Cherokee Nation Assurance, Contracting Agency to the Division of Viral Diseases, Centers for Disease Control and Prevention, Arlington, VA, USA; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mathew D Esona
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naga S Betrapally
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Yenny R Neira
- Pan American Health Organization/World Health Organization, Santo Domingo, Dominican Republic
| | - Gloria J Rey
- Pan American Health Organization, Washington, D.C, USA
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
28
|
Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 Rotavirus A strains. PLoS One 2019; 14:e0217422. [PMID: 31150425 PMCID: PMC6544246 DOI: 10.1371/journal.pone.0217422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Recent increase in the detection of unusual G1P[8], G3P[8], G8P[8], and G9P[4] Rotavirus A (RVA) strains bearing the DS-1-like constellation of the non-G, non-P genes (hereafter referred to as the genotype 2 backbone) requires better understanding of their evolutionary relationship. However, within a genotype, there is lack of a consensus lineage designation framework and a set of common sequences that can serve as references. Phylogenetic analyses were carried out on over 8,500 RVA genotype 2 genes systematically retrieved from the rotavirus database within the NCBI Virus Variation Resource. In line with previous designations, using pairwise comparison of cogent nucleotide sequences and stringent bootstrap support, reference lineages were defined. This study proposes a lineage framework and provides a dataset ranging from 34 to 145 sequences for each genotype 2 gene for orderly lineage designation of global genotype 2 genes of RVAs detected in human and animals. The framework identified five to 31 lineages depending on the gene. The least number of lineages (five to seven) were observed in genotypes A2 (NSP1), T2 (NSP3) and H2 (NSP5) which are limited to human RVA whereas the most number of lineages (31) was observed in genotype E2 (NSP4). Sharing of the same lineage constellations of the genotype 2 backbone genes between recently-emerging, unusual G1P[8], G3P[8], G8P[8] and G9P[4] reassortants and many contemporary G2P[4] strains provided strong support to the hypothesis that unusual genotype 2 strains originated primarily from reassortment events in the recent past involving contemporary G2P[4] strains as one parent and ordinary genotype 1 strains or animal RVA strains as the other. The lineage framework with selected reference sequences will help researchers to identify the lineage to which a given genotype 2 strain belongs, and trace the evolutionary history of common and unusual genotype 2 strains in circulation.
Collapse
|
29
|
Hoa-Tran TN, Nakagomi T, Vu HM, Kataoka C, Nguyen TTT, Dao ATH, Nguyen AT, Takemura T, Hasebe F, Dang AD, Nakagomi O. Whole genome characterization of feline-like G3P[8] reassortant rotavirus A strains bearing the DS-1-like backbone genes detected in Vietnam, 2016. INFECTION GENETICS AND EVOLUTION 2019; 73:1-6. [PMID: 30978460 DOI: 10.1016/j.meegid.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022]
Abstract
While conducting rotavirus gastroenteritis surveillance in Vietnam, two G3P[8] rotavirus A specimens possessing an identical short RNA electropherotype were detected. They were RVA/Human-wt/VNM/0232/2016/G3P[8] and RVA/Human-wt/VNM/0248/2016/G3P[8], and recovered from 9 and 23 months old boys, respectively. The patients developed diarrhoea within one-week interval in March 2016 but in places >100 km apart in northern Vietnam. Whole genome sequencing of the two G3P[8] rotavirus A strains revealed that their genomic RNA sequences were identical across the 11 genome segments, suggesting that they derived from a single clone. The backbone gene constellation was I2-R2-C2-M2-A2-N2-T2-E2-H2. The backbone genes and the VP4 gene had a virtually identical nucleotide sequences with identities ranging from 99.2 to 100% to the corresponding genes of RVA/Human-wt/VNM/1149/2014/G8P[8]; the prototype of recently-emerging bovine-like G8P[8] reassortant strains in Vietnam. On the other hand, the VP7 gene was 98.8% identical with that of RVA/Human-wt/CHN/E2451/2011/G3P[9], and they were clustered together in the lineage represented by RVA/Cat-tc/JPN/FRV-1/1986/G3P[9]. The observations led us to hypothesise that one of the bovine-like G8P[8] strains bearing the DS-1-like backbone genes reassorted with a locally circulating FRV-1-like strain to gain the G3 VP7 gene and to emerge as a thus-far undescribed feline-like G3P[8] reassortant strain. The identification of feline-like G3P[8] strains bearing the DS-1-like backbone genes exemplifies the strength and necessity of the whole genome sequencing approach in monitoring, describing and understanding the evolutionary changes that are occurring in emerging strains and their interactions with co-circulating strains.
Collapse
Affiliation(s)
- Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam.
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hung Manh Vu
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Chikako Kataoka
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Trang Thi Thu Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Anh Thi Hai Dao
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Anh The Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Taichiro Takemura
- Vietnam Research Station, National Institute of Hygiene and Epideimmiology-Nagasaki University, Hanoi, Viet Nam
| | - Futoshi Hasebe
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Anh Duc Dang
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
30
|
Kamiya H, Tacharoenmuang R, Ide T, Negoro M, Tanaka T, Asada K, Nakamura H, Sugiura K, Umemoto M, Kuroki H, Ito H, Tanaka S, Ito M, Fukuda S, Hatazawa R, Hara Y, Guntapong R, Murata T, Taniguchi K, Suga S, Nakano T, Taniguchi K, Komoto S. Characterization of an Unusual DS-1-Like G8P[8] Rotavirus Strain from Japan in 2017: Evolution of Emerging DS-1-Like G8P[8] Strains through Reassortment. Jpn J Infect Dis 2019; 72:256-260. [PMID: 30814461 DOI: 10.7883/yoken.jjid.2018.484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The emergence of unusual DS-1-like intergenogroup reassortant rotaviruses with a bovine-like G8 genotype (DS-1-like G8P[8] strains) has been reported in several Asian countries. During the rotavirus surveillance program in Japan in 2017, a DS-1-like G8P[8] strain (RVA/Human-wt/JPN/SO1162/2017/G8P[8]) was identified in 43 rotavirus-positive stool samples. Strain SO1162 was shown to have a unique genotype constellation, including genes from both genogroup 1 and 2: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP1 gene of strain SO1162 appeared to have originated from DS-1-like G1P[8] strains from Thailand and Vietnam, while the remaining 10 genes were closely related to those of previously reported DS-1-like G8P[8] strains. Thus, SO1162 was suggested to be a reassortant strain that acquired the VP1 gene from Southeast Asian DS-1-like G1P[8] strains on the genetic background of co-circulating DS-1-like G8P[8] strains. Our findings provide important insights into the evolutionary dynamics of emerging DS-1-like G8P[8] strains.
Collapse
Affiliation(s)
- Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases
| | - Ratana Tacharoenmuang
- Department of Virology and Parasitology, Fujita Health University School of Medicine.,National Institute of Health, Department of Medical Sciences
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital
| | | | | | | | | | | | | | - Hiroaki Ito
- Department of Pediatrics, Kameda Medical Center
| | | | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | - Yuya Hara
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | | | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | | | | | | | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| |
Collapse
|
31
|
An unusual outbreak of rotavirus G8P[8] gastroenteritis in adults in an urban community, Singapore, 2016. J Clin Virol 2018; 105:57-63. [PMID: 29902679 DOI: 10.1016/j.jcv.2018.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND An outbreak of gastroenteritis (GE) occurred in community-dwelling adults in the Central Region of urban Singapore, in May 2016. OBJECTIVES To investigate the cause of the outbreak. STUDY DESIGN We conducted a case-cohort study on GE patients linked to the outbreak who presented to the emergency department of a tertiary-care hospital near the outbreak area, from 18 May to 11 June 2016. Stools were tested for gastrointestinal pathogens including rotavirus antigen and positive rotavirus samples were subject to genotyping. RESULTS A total of 57 adult GE patients, with a median age of 40 (range 18 to 84) years, were included. Predominant symptoms were diarrhoea (98.2%), vomiting (64.9%), and abdominal discomfort (38.6%). Age 65 years and above (Adjusted OR 21.78, 95% CI 1.49-318.84; P = 0.02) was the only predictor of admission, after adjusting for comorbidities and clinical severity. Molecular microbiological investigations confirmed that the outbreak was caused by a novel human-bovine reassortant strain of rotavirus G8P[8] with DS-1-like backbone. Exposure to the market in the outbreak area was strongly associated with rotavirus infection (OR 46.14; 95% CI 43.04-49.25, P < 0.01). No particular food item could be identified as the outbreak cause. CONCLUSIONS This is the first report of an outbreak of rotavirus G8P[8] in adults in an urban community that is not waterborne. Transmission was likely through fomites in the market and its surrounding areas, via consumption or contact with contaminated food items purchased from the market, and from person-to-person. The potential for novel G8P[8] strains to cause outbreaks cannot be overemphasized.
Collapse
|
32
|
Increasing predominance of G8P[8] species A rotaviruses in children admitted to hospital with acute gastroenteritis in Thailand, 2010-2013. Arch Virol 2018; 163:2165-2178. [DOI: 10.1007/s00705-018-3848-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
|
33
|
Angkeabos N, Rin E, Vichit O, Chea C, Tech N, Payne DC, Fox K, Heffelfinger JD, Grabovac V, Nyambat B, Diorditsa S, Samnang C, Hossain MS. Pediatric hospitalizations attributable to rotavirus gastroenteritis among Cambodian children: Seven years of active surveillance, 2010-2016. Vaccine 2018; 36:7856-7861. [PMID: 29588120 DOI: 10.1016/j.vaccine.2018.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/06/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Each year, approximately 1,066 Cambodian children under five years old die of diarrhea, and 51% of these deaths are due to rotavirus gastroenteritis. Quantifying childhood hospitalizations caused by severe rotavirus infections is also important in demonstrating disease burden caused by this virus. The objective of this study is to update and confirm the current burden of pediatric hospitalizations attributable to rotavirus gastroenteritis among Cambodian children using seven years of continuous active, prospective surveillance from 2010 to 2016. We also characterize the circulating rotavirus genotypic strains during this period. METHODS Active surveillance for rotavirus gastroenteritis was conducted from January 2010 through December 2016 at a national hospital in Phnom Penh, Cambodia. Children <60 months of age who were hospitalized for acute gastroenteritis (AGE) were consented and enrolled. Information on gender, age, clinical characteristics, and month of onset were collected. Stool specimens were collected and tested by enzyme immunoassay for the presence of rotavirus antigen, and genotyping was performed on rotavirus test-positive specimens to characterize predominant rotavirus strains during the surveillance period. RESULTS Of 7007 children enrolled with AGE and having specimens collected, 3473 (50%) were attributed to rotavirus gastroenteritis. The majority of rotavirus hospitalizations occurred in children younger than two years old (92%). Year-round rotavirus transmission was observed, with seasonal peaks during the cooler, dry months between November and May. Genotypic trends in rotavirus were observed over the surveillance period; the predominant rotavirus strains changed from G1P[8] (2010-2012), to G2P[4] (2013-2014), the emergence of genotype G8P[8] in 2015, and G3P[8] in 2016. CONCLUSIONS Rotavirus is the leading cause of severe acute gastroenteritis hospitalizations in Cambodian children under five years old, with 50% of such hospitalizations attributable to rotavirus. Over 90% of rotavirus hospitalizations occurred in children under 2 years of age. Changes in the predominant rotavirus strains occurred over time among these unvaccinated children. This information is important to understand and prioritize the current potential impacts upon child health that could be achieved through the introduction of rotavirus vaccines in Cambodia.
Collapse
Affiliation(s)
- Nhep Angkeabos
- National Pediatric Hospital, Ministry of Health, Phnom Penh, Cambodia
| | - En Rin
- National Pediatric Hospital, Ministry of Health, Phnom Penh, Cambodia
| | - Ork Vichit
- National Immunization Program, Ministry of Health, Phnom Penh, Cambodia
| | - Choeung Chea
- National Pediatric Hospital, Ministry of Health, Phnom Penh, Cambodia
| | - Ngorn Tech
- National Pediatric Hospital, Ministry of Health, Phnom Penh, Cambodia
| | - Daniel C Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Kimberley Fox
- Global Immunization Division, Centers for Disease Control & Prevention, Atlanta, USA
| | - James D Heffelfinger
- Expanded Programme on Immunization, Western Pacific Regional Office, Manila, Philippines
| | - Varja Grabovac
- Expanded Programme on Immunization, Western Pacific Regional Office, Manila, Philippines
| | - Batmunkh Nyambat
- Expanded Programme on Immunization, Western Pacific Regional Office, Manila, Philippines
| | - Sergey Diorditsa
- Expanded Programme on Immunization, Western Pacific Regional Office, Manila, Philippines
| | - Chham Samnang
- Expanded Programme on Immunization, World Health Organization, Phnom Penh, Cambodia
| | - Md Shafiqul Hossain
- Expanded Programme on Immunization, World Health Organization, Phnom Penh, Cambodia.
| |
Collapse
|
34
|
Kondo K, Tsugawa T, Ono M, Ohara T, Fujibayashi S, Tahara Y, Kubo N, Nakata S, Higashidate Y, Fujii Y, Katayama K, Yoto Y, Tsutsumi H. Clinical and Molecular Characteristics of Human Rotavirus G8P[8] Outbreak Strain, Japan, 2014. Emerg Infect Dis 2018; 23:968-972. [PMID: 28518031 PMCID: PMC5443423 DOI: 10.3201/eid2306.160038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During March–July 2014, rotavirus G8P[8] emerged as the predominant cause of rotavirus gastroenteritis among children in Hokkaido Prefecture, Japan. Clinical characteristics were similar for infections caused by G8 and non-G8 strains. Sequence and phylogenetic analyses suggest the strains were generated by multiple reassortment events between DS-1–like P[8] strains and bovine strains from Asia.
Collapse
|
35
|
Komoto S, Ide T, Negoro M, Tanaka T, Asada K, Umemoto M, Kuroki H, Ito H, Tanaka S, Ito M, Fukuda S, Suga S, Kamiya H, Nakano T, Taniguchi K. Characterization of unusual DS-1-like G3P[8] rotavirus strains in children with diarrhea in Japan. J Med Virol 2018; 90:890-898. [PMID: 29315643 DOI: 10.1002/jmv.25016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
The emergence and rapid spread of novel DS-1-like intergenogroup reassortant rotaviruses having the equine-like G3 genotype (DS-1-like G3P[8] strains) have been recently reported from several countries. During rotavirus surveillance in Japan in 2015-2016, three DS-1-like G3P[8] strains were identified from children with severe diarrhea. In the present study, we sequenced and characterized the full genomes of these three strains. On full-genomic analysis, all three strains showed a unique genotype constellation including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that each of the 11 genes of the three strains was closely related to that of Japanese DS-1-like G1P[8] and/or Japanese equine-like G3P[4] human strains. Thus, the three study strains were suggested to be reassortants that acquired the G3-VP7 gene from equine G3 rotaviruses on the genetic background of DS-1-like G1P[8] strains. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G3P[8] strains.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital, Tsu, Mie, Japan
| | - Takaaki Tanaka
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama, Japan
| | - Kazutoyo Asada
- Department of Pediatrics, National Mie Hospital, Tsu, Mie, Japan
| | | | | | - Hiroaki Ito
- Sotobo Children's Clinic, Isumi, Chiba, Japan
| | - Shigeki Tanaka
- Department of Pediatrics, Mie Chuo Medical Center, Tsu, Mie, Japan
| | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital, Ise, Mie, Japan
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Shigeru Suga
- Department of Pediatrics, National Mie Hospital, Tsu, Mie, Japan
| | - Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
36
|
Role of rotavirus vaccination on an emerging G8P[8] rotavirus strain causing an outbreak in central Japan. Vaccine 2017; 36:43-49. [PMID: 29183732 DOI: 10.1016/j.vaccine.2017.11.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND In this study, we examined the effectiveness of RV1 and RV5 vaccines during an outbreak of G8P[8] rotavirus group A strain (G8P[8]-RVA). These vaccines were originally designed to provide protection against severe diseases caused by common circulating strains, whereas G8P[8]-RVA remains emerging strain and partially heterotypic to the vaccines. It is imperative to investigate vaccine effectiveness (VE) against G8P[8]-RVA because this strain appears to be predominant in recent years, particularly, in post-vaccine era. METHODS RVA infection and genotypes were confirmed by polymerase chain reaction (PCR) followed by sequence-based genotyping. VE was determined during an outbreak of G8P[8]-RVA in Shizuoka Prefecture, Japan, in February-July 2017, retrospectively, by comparing vaccination status of children suffering from acute gastroenteritis (AGE) between 'PCR-positive' and 'PCR-negative' cases using conditional logistic regression adjusted for age. RESULTS Among 80 AGE children, RVA was detected in 58 (73%), of which 53 (66%) was G8P[8]-RVA. The clinical characteristics of G8P[8]-RVA and other RVA strains were identically severe. Notably, the attack rates of G8P[8]-RVA in vaccinated (61.1%) and unvaccinated (65.5%) children were almost similar. Indeed, no substantial effectiveness were found against G8P[8]-RVA (VE, 14% [95% CI: -140% to 70%]) or other RVA strains (VE, 58% [95% CI: -20% to 90%]) for mild infections. However, these vaccines remained strongly effective against moderate (VE, 75% [95% CI: 1% to 40%]) and severe (VE, 92% [95% CI: 60% to 98%]) RVA infections. The disease severity including Vesikari score, duration and frequency of diarrhea, and body temperature were significantly lower in vaccinated children. CONCLUSIONS This study demonstrates the effectiveness of current RV vaccines against moderate and severe, but not against the mild infections during an outbreak caused by unusual G8P[8]-RVA, which was virtually not targeted in the vaccines.
Collapse
|