1
|
Li J, Peng YD, Zhou R, Peng J, She Q, Yang X, Wang J, Wang Z, Song Q. Long-term cadmium stress influenced the immune response of Pardosa pseudoannulata by modulating its gut microbiota and hemolymph metabolome. J Environ Sci (China) 2025; 155:466-474. [PMID: 40246481 DOI: 10.1016/j.jes.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 04/19/2025]
Abstract
Cadmium (Cd) is a common environmental heavy metal pollutant known for its toxic effects on various plants and animals. Cd contamination also poses a threat to Pardosa pseudoannulata, a predator in rice paddies. Results indicate that Cd pollution significantly reduced the levels of Metallothionein, phenoloxidase, and Ca2+. Furthermore, through metabolomics and 16S rDNA sequencing, alterations in the gut microbiota and immune-related metabolites of P. pseudoannulata were identified. The abundance of harmful bacteria such as Staphylococcus increased significantly, while levels of l-Tyrosine, glutathione disulfide, l-Dopa, among others, decreased markedly. Pearson correlation analysis revealed significant associations between various gut microbes and immune-related metabolites, suggesting that Cd may alter the immune system of P. pseudoannulata by modulating its gut microbiota.
Collapse
Affiliation(s)
- Jinjin Li
- College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Yuan-de Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Rong Zhou
- College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Jie Peng
- College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Qingling She
- College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Xinyi Yang
- College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha 410006, China.
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Zheng W, Fu J, Huang J, Wen Y, Fang S, Yang X, Xia Q. Coxiella R1 symbiont regulates the Asian long-horned tick on its reproduction and development. Vet Parasitol 2025; 336:110456. [PMID: 40121938 DOI: 10.1016/j.vetpar.2025.110456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
The Asian long-horned tick Haemaphysalis longicornis, is a hematophagous ectoparasite that causes important public and veterinary health concerns. Different species of ticks harbor a symbiont bacterium of the genus Coxiella. A Coxiella sp. bacterial endosymbiont was highly prevalent in laboratory-reared H. longicornis. The endosymbiont sequence was 100 % identical to those of H. longicornis Coxiella-like endosymbionts and thus named Coxiella R1 in the present study. Coxiella R1 was detected in all stages of tick and in greatest numbers in nymphs and unfed adult females. We manipulated the numbers of Coxiella R1 in ticks by injecting engorged females or capillary tube feeding of flat females with tetracycline. Both of the administration routes were efficient in reducing the symbiont densities. Microinjection of tetracycline solution reduced 25.53 % of Coxiella R1 in eggs harvested just before hatching, whereas, the reduction rate for capillary tube feeding climbed to 81.70 %. Ticks with Coxiella R1 suppression laid abnormal eggs which were wrinkled, flat, and black, and linked each other to form a line. Ticks that had been treated with tetracycline had lower hatching rates in comparison to controls. In addition, larvae with tetracycline treatment less infested hosts and thus had lower engorgement rates than ticks that received PBS alone. The findings indicate that Coxiella R1 is a primary and obligate endosymbiont, and capable of modulating the obligately hematophagous parasites in egg laying and hatching, and larva blood feeding. The results also suggest that tetracycline treatment could be added to an integrated pest management tool menu for control of the Asian long-horned ticks.
Collapse
Affiliation(s)
- Weiqing Zheng
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Longhua District, Haikou, Hainan 571199, China.
| | - Jintong Fu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Longhua District, Haikou, Hainan 571199, China
| | - Jingzhi Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Longhua District, Haikou, Hainan 571199, China
| | - Yongwei Wen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Longhua District, Haikou, Hainan 571199, China
| | - Siyu Fang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Longhua District, Haikou, Hainan 571199, China
| | - Xiaoyan Yang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Longhua District, Haikou, Hainan 571199, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Longhua District, Haikou, Hainan 571199, China.
| |
Collapse
|
3
|
Hendrycks W, Mullens N, Bakengesa J, Kabota S, Tairo J, Backeljau T, Majubwa R, Mwatawala M, De Meyer M, Virgilio M. Deterministic and stochastic effects drive the gut microbial diversity in cucurbit-feeding fruit flies (Diptera, Tephritidae). PLoS One 2025; 20:e0313447. [PMID: 39854335 PMCID: PMC11759365 DOI: 10.1371/journal.pone.0313447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 01/26/2025] Open
Abstract
Insect diversity is closely linked to the evolution of phytophagy, with most phytophagous insects showing a strong degree of specialisation for specific host plants. Recent studies suggest that the insect gut microbiome might be crucial in facilitating the dietary (host plant) range. This requires the formation of stable insect-microbiome associations, but it remains largely unclear which processes govern the assembly of insect microbiomes. In this study, we investigated the role of deterministic and stochastic processes in shaping the assembly of the larval microbiome of three tephritid fruit fly species (Dacus bivittatus, D. ciliatus, Zeugodacus cucurbitae). We found that deterministic and stochastic processes play a considerable role in shaping the larval gut microbiome. We also identified 65 microbial ASVs (Amplicon sequence variants) that were associated with these flies, most belonging to the families Enterobacterales, Sphingobacterales, Pseudomonadales and Betaproteobacterales, and speculate about their relationship with cucurbit specialisation. Our data suggest that the larval gut microbiome assembly fits the "microbiome on a leash" model.
Collapse
Affiliation(s)
- Wouter Hendrycks
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Nele Mullens
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Jackline Bakengesa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Biology, University of Dodoma, Dodoma, Tanzania
| | - Sija Kabota
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jenipher Tairo
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Thierry Backeljau
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| | - Ramadhani Majubwa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Maulid Mwatawala
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Marc De Meyer
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
| | | |
Collapse
|
4
|
Maldonado-Ruiz P. The Tick Microbiome: The "Other Bacterial Players" in Tick Biocontrol. Microorganisms 2024; 12:2451. [PMID: 39770654 PMCID: PMC11676601 DOI: 10.3390/microorganisms12122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community. Many bacterial taxa frequently reported in ticks include soil, plant, and animal-associated microbes, suggesting many are environmentally acquired, including members with known entomopathogenic potential, such as Bacillus thuringiensis, Bacillus spp., and Pseudomonas spp. It has been reported that microbial community composition can impact pathogen persistence, dissemination, and fitness in ticks. In the United States, Ixodes scapularis (northeast) and I. pacificus (west) are the predominant vectors of Borrelia burgdorferi, the causal agent of Lyme disease. Amblyomma americanum is another important tick vector in the U.S. and is becoming an increasing concern as it is the leading cause of alpha-gal syndrome (AGS, or red meat allergy). This condition is caused by tick bites containing the galactose alpha 1,3 galactose (alpha-gal) epitope in their saliva. In this paper, we present a summary of the tick microbiome, including the endosymbiotic bacteria and the environmentally acquired (here referred to as the non-endosymbiotic community). We will focus on the non-endosymbiotic bacteria from Ixodes spp. and Amblyomma americanum and discuss their potential for novel biocontrol strategies.
Collapse
Affiliation(s)
- Paulina Maldonado-Ruiz
- Department of Entomology, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
5
|
Bollati E, Hughes DJ, Suggett DJ, Raina JB, Kühl M. Microscale sampling of the coral gastrovascular cavity reveals a gut-like microbial community. Anim Microbiome 2024; 6:55. [PMID: 39380028 PMCID: PMC11460067 DOI: 10.1186/s42523-024-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Animal guts contain numerous microbes, which are critical for nutrient assimilation and pathogen defence. While corals and other Cnidaria lack a true differentiated gut, they possess semi-enclosed gastrovascular cavities (GVCs), where vital processes such as digestion, reproduction and symbiotic exchanges take place. The microbiome harboured in GVCs is therefore likely key to holobiont fitness, but remains severely understudied due to challenges of working in these small compartments. Here, we developed minimally invasive methodologies to sample the GVC of coral polyps and characterise the microbial communities harboured within. We used glass capillaries, low dead volume microneedles, or nylon microswabs to sample the gastrovascular microbiome of individual polyps from six species of corals, then applied low-input DNA extraction to characterise the microbial communities from these microliter volume samples. Microsensor measurements of GVCs revealed anoxic or hypoxic micro-niches, which persist even under prolonged illumination with saturating irradiance. These niches harboured microbial communities enriched in putatively microaerophilic or facultatively anaerobic taxa, such as Epsilonproteobacteria. Some core taxa found in the GVC of Lobophyllia hemprichii from the Great Barrier Reef were also detected in conspecific colonies held in aquaria, indicating that these associations are unlikely to be transient. Our findings suggest that the coral GVC is chemically and microbiologically similar to the gut of higher Metazoa. Given the importance of gut microbiomes in mediating animal health, harnessing the coral "gut microbiome" may foster novel active interventions aimed at increasing the resilience of coral reefs to the climate crisis.
Collapse
Affiliation(s)
- Elena Bollati
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark.
| | - David J Hughes
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - David J Suggett
- KAUST Coral Restoration Initiative (KCRI) and Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
| |
Collapse
|
6
|
Viquez C, Rojas-Gätjens D, Mesén-Porras E, Avendaño R, Sasa M, Lomonte B, Chavarría M. Venom-microbiomics of eight species of Neotropical spiders from the Theraphosidae family. J Appl Microbiol 2024; 135:lxae113. [PMID: 38692848 DOI: 10.1093/jambio/lxae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
AIM Tarantulas are one of the largest predatory arthropods in tropical regions. Tarantulas though not lethal to humans, their venomous bite kills small animals and insect upon which they prey. To understand the abiotic and biotic components involved in Neotropical tarantula bites, we conducted a venom-microbiomics study in eight species from Costa Rica. METHODS AND RESULTS We determined that the toxin profiles of tarantula venom are highly diverse using shotgun proteomics; the most frequently encountered toxins were ω-Ap2 toxin, neprilysin-1, and several teraphotoxins. Through culture-independent and culture-dependent methods, we determined the microbiota present in the venom and excreta to evaluate the presence of pathogens that could contribute to primary infections in animals, including humans. The presence of opportunistic pathogens with hemolytic activity was observed, with a prominence of Stenotrophomonas in the venoms. Other bacteria found in venoms and excreta with hemolytic activity included members of the genera Serratia, Bacillus, Acinetobacter, Microbacterium, and Morganella. CONCLUSIONS Our data shed light on the venom- and gut-microbiome associated with Neotropical tarantulas. This information may be useful for treating bites from these arthropods in both humans and farm animals, while also providing insight into the toxins and biodiversity of this little-explored microenvironment.
Collapse
Affiliation(s)
- Carlos Viquez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Oficina subregional de Alajuela, Sistema Nacional de Áreas de Conservación (SINAC), Ministerio Ambiente y Energía (MINAE), Alajuela 20101, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Esteve Mesén-Porras
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Museo de Zoología, Centro de Investigación de Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
7
|
Mousavi SA, Ramula S. The invasive legume Lupinus polyphyllus has minor site-specific impacts on the composition of soil bacterial communities. Ecol Evol 2024; 14:e11030. [PMID: 38357596 PMCID: PMC10864723 DOI: 10.1002/ece3.11030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Plant invasions can have major impacts on ecosystems, both above- and belowground. In particular, invasions by legumes, which often host nitrogen-fixing symbionts (rhizobia), are known to modify soil bacterial communities. Here, we examined the effect of the invasive herbaceous legume Lupinus polyphyllus on the alpha diversity and community composition of soil bacteria. We also explored the relationships between these bacterial communities and vegetation cover, the cover of other (non-invasive) legumes, or the number of vascular plants present. For this, we sampled rhizosphere soil and surveyed vegetation from ten paired sites (uninvaded versus invaded more than 10 years ago) in southwestern Finland, and identified bacterial DNA using 16S rRNA gene amplicon sequencing. The presence of the plant invader and the three vegetation variables considered had no effect on the alpha diversity of soil bacteria in terms of bacterial richness or Shannon and Inverse Simpson diversity indices. However, the composition of soil bacterial communities differed between invaded and uninvaded soils at four out of the ten sites. Interestingly, the relative abundances of the top bacterial families in invaded and uninvaded soils were inconsistent across sites, including for legume-associated rhizobia in the family Bradyrhizobiaceae. Other factors-such as vegetation cover, legume cover (excluding L. polyphyllus), number of plant species-also explained a small proportion of the variation in bacterial community composition. Our findings indicate that L. polyphyllus has the potential to modify the composition of local soil bacterial community, at least in sites where it has been present for more than a decade.
Collapse
Affiliation(s)
| | - Satu Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
8
|
Saati-Santamaría Z, Baroncelli R, Rivas R, García-Fraile P. Comparative Genomics of the Genus Pseudomonas Reveals Host- and Environment-Specific Evolution. Microbiol Spectr 2022; 10:e0237022. [PMID: 36354324 PMCID: PMC9769992 DOI: 10.1128/spectrum.02370-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Each Earth ecosystem has unique microbial communities. Pseudomonas bacteria have evolved to occupy a plethora of different ecological niches, including living hosts, such as animals and plants. Many genes necessary for the Pseudomonas-niche interaction and their encoded functions remain unknown. Here, we describe a comparative genomic study of 3,274 genomes with 19,056,667 protein-coding sequences from Pseudomonas strains isolated from diverse environments. We detected functional divergence of Pseudomonas that depends on the niche. Each group of strains from a certain environment harbored a distinctive set of metabolic pathways or functions. The horizontal transfer of genes, which mainly proceeded between closely related taxa, was dependent on the isolation source. Finally, we detected thousands of undescribed proteins and functions associated with each Pseudomonas lifestyle. This research represents an effort to reveal the mechanisms underlying the ecology, pathogenicity, and evolution of Pseudomonas, and it will enable clinical, ecological, and biotechnological advances. IMPORTANCE Microbes play important roles in the health of living beings and in the environment. The knowledge of these functions may be useful for the development of new clinical and biotechnological applications and the restoration and preservation of natural ecosystems. However, most mechanisms implicated in the interaction of microbes with the environment remain poorly understood; thus, this field of research is very important. Here, we try to understand the mechanisms that facilitate the differential adaptation of Pseudomonas-a large and ubiquitous bacterial genus-to the environment. We analyzed more than 3,000 Pseudomonas genomes and searched for genetic patterns that can be related with their coevolution with different hosts (animals, plants, or fungi) and environments. Our results revealed that thousands of genes and genetic features are associated with each niche. Our data may be useful to develop new technical and theoretical advances in the fields of ecology, health, and industry.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
9
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
10
|
De novo metatranscriptomic exploration of gene function in the millipede holobiont. Sci Rep 2022; 12:16173. [PMID: 36171216 PMCID: PMC9519908 DOI: 10.1038/s41598-022-19565-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Invertebrate-microbial associations are widespread in the biosphere and are often related to the function of novel genes, fitness advantages, and even speciation events. Despite ~ 13,000 species of millipedes identified across the world, millipedes and their gut microbiota are markedly understudied compared to other arthropods. Exploring the contribution of individual host-associated microbes is often challenging as many are uncultivable. In this study, we conducted metatranscriptomic profiling of different body segments of a millipede at the holobiont level. This is the first reported transcriptome assembly of a tropical millipede Telodeinopus aoutii (Demange, 1971), as well as the first study on any Myriapoda holobiont. High-throughput RNA sequencing revealed that Telodeinopus aoutii contained > 90% of the core Arthropoda genes. Proteobacteria, Bacteroidetes, Firmicutes, and Euryarchaeota represented dominant and functionally active phyla in the millipede gut, among which 97% of Bacteroidetes and 98% of Firmicutes were present exclusively in the hindgut. A total of 37,831 predicted protein-coding genes of millipede holobiont belonged to six enzyme classes. Around 35% of these proteins were produced by microbiota in the hindgut and 21% by the host in the midgut. Our results indicated that although major metabolic pathways operate at the holobiont level, the involvement of some host and microbial genes are mutually exclusive and microbes predominantly contribute to essential amino acid biosynthesis, short-chain fatty acid metabolism, and fermentation.
Collapse
|
11
|
Duncan KT, Elshahed MS, Sundstrom KD, Little SE, Youssef NH. Influence of tick sex and geographic region on the microbiome of Dermacentor variabilis collected from dogs and cats across the United States. Ticks Tick Borne Dis 2022; 13:102002. [PMID: 35810549 DOI: 10.1016/j.ttbdis.2022.102002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
Abstract
As tick-borne diseases continue to increase across North America, current research strives to understand how the tick microbiome may affect pathogen acquisition, maintenance, and transmission. Prior high throughput amplicon-based microbial diversity surveys of the widespread tick Dermacentor variabilis have suggested that life stage, sex, and geographic region may influence the composition of the tick microbiome. Here, adult D. variabilis ticks (n = 145) were collected from dogs and cats from 32 states with specimens originating from all four regions of the United States (West, Midwest, South, and Northeast), and the tick microbiome was examined via V4-16S rRNA gene amplification and Illumina sequencing. A total of 481,246 bacterial sequences were obtained (median 2924 per sample, range 399-11,990). Fifty genera represented the majority (>80%) of the sequences detected, with the genera Allofrancisella and Francisella being the most abundant. Further, 97%, 23%, and 5.5% of the ticks contained sequences belonging to Francisella spp., Rickettsia spp., and Coxiella spp., respectively. No Ehrlichia spp. or Anaplasma spp. were identified. Co-occurrence analysis, by way of correlation coefficients, between the top 50 most abundant genera demonstrated five strong positive and no strong negative correlation relationships. Geographic region had a consistent effect on species richness with ticks from the Northeast having a significantly greater level of richness. Alpha diversity patterns were dependent on tick sex, with males exhibiting higher levels of diversity, and geographical region, with higher level of diversity observed in ticks obtained from the Northeast, but not on tick host. Community structure, or beta diversity, of tick microbiome was impacted by tick sex and geographic location, with microbiomes of ticks from the western US exhibiting a distinct community structure when compared to those from the other three regions (Northeast, South, and Midwest). In total, LEfSe (Linear discriminant analysis Effect Size) identified 18 specific genera driving these observed patterns of diversity and community structure. Collectively, these findings highlight the differences in bacterial diversity of D. variabilis across the US and supports the interpretation that tick sex and geographic region affects microbiome composition across a broad sampling distribution.
Collapse
Affiliation(s)
- Kathryn T Duncan
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Kellee D Sundstrom
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Susan E Little
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
12
|
Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. Int Microbiol 2022; 25:679-689. [PMID: 35670867 PMCID: PMC9526686 DOI: 10.1007/s10123-022-00253-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 10/28/2022]
Abstract
The biocontrol rhizobacterium Pseudomonas chlororaphis is one of the bacterial species of the P. fluorescens group where insecticide fit genes have been found. Fit toxin, supported with other antimicrobial compounds, gives the bacterial the ability to repel and to fight against eukaryotic organisms, such as nematodes and insect larvae, thus protecting the plant host and itself. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium isolated from avocado roots and show efficient biocontrol against fungal soil-borne disease. The main antimicrobial compound produced by P. chlororaphis PCL606 is 2-hexyl-5-propyl resorcinol (HPR), which plays a crucial role in effective biocontrol against fungal pathogens. Further analysis of the P. chlororaphis PCL1606 genome showed the presence of hydrogen cyanide (HCN), pyrrolnitrin (PRN), and homologous fit genes. To test the insecticidal activity and to determine the bases for such activity, single and double mutants on the biosynthetic genes of these four compounds were tested in a Galleria mellonella larval model using inoculation by injection. The results revealed that Fit toxin and HPR in combination are involved in the insecticide phenotype of P. chlororaphis PCL1606, and additional compounds such as HCN and PRN could be considered supporting compounds.
Collapse
|
13
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Sridhar R, Dittmar K, Williams HM. USING SURFACE WASHING TO REMOVE THE ENVIRONMENTAL COMPONENT FROM FLEA MICROBIOME ANALYSIS. J Parasitol 2022; 108:245-253. [PMID: 35687318 DOI: 10.1645/21-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial metabarcoding is a common method to study the biology of blood-feeding arthropods and identify patterns of potential pathogen transmission. Before DNA extraction, specimens are often surface washed to remove environmental contaminants. While surface washing is common, its effects on microbial diversity remain unclear. We characterized the microbiome of the flea species Ceratophyllus idius, an avian ectoparasite, and a potential vector of pathogens, using high-throughput 16S rRNA sequencing. Half of the nests from which fleas were collected were subjected to an environmental manipulation in which nesting materials were periodically replaced. In a crossed study design we surface washed half of the flea samples from each environmental condition to produce 4 experimental conditions. Environmental manipulations resulted in significant differences in the diversity and structure of the flea microbiome, but these differences were unapparent when specimens were surface washed. Furthermore, differential abundance testing of the experimental groups revealed that surface washing predominantly affected the abundance of bacterial groups that are characterized as environmental contaminants. These findings suggest that environmental changes primarily affect the surface microbiome of arthropods and that surface washing is a useful tool to reduce the footprint of the external microbiome on analysis.
Collapse
Affiliation(s)
- Ramya Sridhar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260.,College of Medicine, Upstate Medical University, State University of New York, Syracuse, New York 13210
| | - Katharina Dittmar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Heather M Williams
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260.,Department of Environment and Sustainability, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
15
|
RNA-Seq Analysis on the Microbiota Associated with the White Shrimp (Litopenaeus vannamei) in Different Stages of Development. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
White leg shrimp (Litopenaeus vannamei) is a widely cultured species along the Pacific coast and is one of the most important crustaceans in world aquaculture. The microbiome composition of L. vannamei has been previously studied in different developmental stages, but there is limited information regarding the functional role of the microbiome during the development of L. vannamei. In this study the metatranscriptome in different developmental stages of L. vannamei (larvae, juvenile and adult) were generated using next generation sequencing techniques. The bacterial phyla found throughout all the stages of development belonged to the Proteobacteria, Firmicutes and Actinobacteria, these bacterial phyla are present in the digestive tract and are capable of producing several hydrolytic enzymes, which agrees with high representation of the primary metabolism and energy production, in both host and the microbiome. In this sense, functional changes were observed as the development progressed, in both host and the microbiome, in stages of larvae the most represented metabolic functions were associated with biomass production; while in juvenile and adult stages a higher proportion of metabolic functions associated to biotic and abiotic stress in L. vannamei and the microbiome were shown. This study provides evidence of the interaction of the microbiome with L. vannamei, and how the stage of development and the culture conditions of this species influences the gene expression and the microbiome composition, which suggests a complex metabolic network present throughout the life cycle of L. vannamei.
Collapse
|
16
|
Valenzuela-Miranda D, Gonçalves AT, Valenzuela-Muñoz V, Nuñez-Acuña G, Liachko I, Nelson B, Gallardo-Escarate C. Proximity ligation strategy for the genomic reconstruction of microbial communities associated with the ectoparasite Caligus rogercresseyi. Sci Rep 2022; 12:783. [PMID: 35039517 PMCID: PMC8764032 DOI: 10.1038/s41598-021-04485-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
The sea louse Caligus rogercresseyi has become one of the main constraints for the sustainable development of salmon aquaculture in Chile. Although this parasite's negative impacts are well recognized by the industry, some novel potential threats remain unnoticed. The recent sequencing of the C. rogercresseyi genome revealed a large bacterial community associated with the sea louse, however, it is unknown if these microorganisms should become a new focus of sanitary concern. Herein, chromosome proximity ligation (Hi-C) coupled with long-read sequencing were used for the genomic reconstruction of the C. rogercresseyi microbiota. Through deconvolution analysis, we were able to assemble and characterize 413 bacterial genome clusters, including six bacterial genomes with more than 80% of completeness. The most represented bacterial genome belonged to the fish pathogen Tenacibacullum ovolyticum (97.87% completeness), followed by Dokdonia sp. (96.71% completeness). This completeness allowed identifying 21 virulence factors (VF) within the T. ovolyticum genome and four antibiotic resistance genes (ARG). Notably, genomic pathway reconstruction analysis suggests putative metabolic complementation mechanisms between C. rogercresseyi and its associated microbiota. Taken together, our data highlight the relevance of Hi-C techniques to discover pathogenic bacteria, VF, and ARGs and also suggest novel host-microbiota mutualism in sea lice biology.
Collapse
Affiliation(s)
- Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile.
| | - Ana Teresa Gonçalves
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
- GreenCoLab-Associação Oceano Verde, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Gustavo Nuñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | | | | | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| |
Collapse
|
17
|
Oliveira JMM, Henriques I, Read DS, Gweon HS, Morgado RG, Peixoto S, Correia A, Soares AMVM, Loureiro S. Gut and faecal bacterial community of the terrestrial isopod Porcellionides pruinosus: potential use for monitoring exposure scenarios. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2096-2108. [PMID: 34553289 DOI: 10.1007/s10646-021-02477-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to characterize the gut and faeces bacterial communities (BC) of Porcellionides pruinosus using high-throughput sequencing. Isopods were collected from the field and kept in laboratory conditions similar to those normally applied in ecotoxicology tests. Faeces and purged guts of isopods (n = 3 × 30) were analysed by pyrosequencing the V3-V4 region of 16 S rRNA encoding gene. Results showed that gut and faecal BCs were dominated by Proteobacteria, particularly by an OTU (Operational Taxonomic Unit) affiliated to genus Coxiella. Diversity and richness values were statistically higher for faecal BC, mainly due to the occurrence of several low-abundance phylotypes. These results may reflect faecal carriage of bacterial groups that cannot settle in the gut. BCs of P. pruinosus comprised: (1) common members of the soil microbiota, (2) bacterial symbionts, (3) bacteria related to host metabolic/ecological features, and (4) bacterial etiological agents. Comparison of BC of this isopod species with the BC from other invertebrates revealed common bacterial groups across taxa. The baseline information provided by this work will assist the design and data interpretation of future ecotoxicological or biomonitoring assays where the analysis of P. pruinosus BC should be included as an additional indicator. CAPSULE: Terrestrial isopods bacterial communities might support ecotoxicological assays and biomonitoring processes as a valuable tool.
Collapse
Affiliation(s)
- Jacinta M M Oliveira
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- University of Coimbra, CESAM & Department of Life Sciences, Faculty of Sciences and Technology, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal.
| | - Daniel S Read
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Hyun S Gweon
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AH, UK
| | - Rui G Morgado
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sara Peixoto
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - António Correia
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
18
|
Abstract
Endosymbiotic Wolbachia bacteria are known to influence the host physiology, microbiota composition, and dissemination of pathogens. We surveyed a population of Tabanus nigrovittatus, commonly referred to as "greenheads," from Crane Beach (Ipswich, MA, USA) for the presence of the alphaproteobacterial symbiont Wolbachia. We studied the COI (mitochondrial cytochrome oxidase) marker gene to evaluate the phylogenetic diversity of the studied specimens. The DNA sequences show strong similarity (between 99.9 and 98%) among the collected specimens but lower similarity to closely related entries in the NCBI database (only between 96.3 and 94.7%), suggesting a more distant relatedness. Low levels of Wolbachia presence necessitated a nested PCR approach, and using 5 markers (ftsZ, fbpA, dnaA, coxA, and gatB), we determined that two recognized "supergroups" of Wolbachia species were represented in the studied specimens, members of clades A and B. Using next-generation sequencing, we also surveyed the insect gut microbiomes of a subset of flies, using Illumina and PacBio 16S rRNA gene sequencing with barcoded primers. The composition of Proteobacteria also varied from fly to fly, with components belonging to Gammaproteobacteria making up the largest percentage of organisms (30 to 70%) among the microbiome samples. Most of the samples showed the presence of Spiroplasma, a member of the phylum Mollicutes, although the frequency of its presence was variable, ranging from 2 to 57%. Another noteworthy bacterial phylum consistently identified was Firmicutes, though the read abundances were typically below 10%. Of interest is an association between Wolbachia presence and higher Alphaproteobacteria representation in the microbiomes, suggesting that the presence of Wolbachia affects the host microbiome. IMPORTANCE Tabanus nigrovittatus greenhead populations contain two supergroups of Wolbachia endosymbionts, members of supergroups A and B. Analysis of the greenhead microbiome using next-generation sequencing revealed that the majority of bacterial species detected belonged to Gammaproteobacteria, with most of the samples also showing the presence of Spiroplasma, a member of the Mollicutes phylum also known to infect insects. An association between Wolbachia presence and higher Alphaproteobacteria representation in the microbiomes suggests that Wolbachia presence affects the host microbiome composition.
Collapse
|
19
|
Didion EM, Sabree ZL, Kenyon L, Nine G, Hagan RW, Osman S, Benoit JB. Microbiome reduction prevents lipid accumulation during early diapause in the northern house mosquito, Culex pipiens pipiens. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104295. [PMID: 34411585 PMCID: PMC8530159 DOI: 10.1016/j.jinsphys.2021.104295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 05/05/2023]
Abstract
The mosquito microbiome is critical to multiple facets of their biology, including larval development and disease transmission. For mosquitoes that reside in temperate regions, periods of diapause are critical to overwintering survival, but how the microbiome impacts this state is unknown. In this study, we compared the midgut microbial communities of diapausing and non-diapausing Culex pipiens and assessed how a reduced midgut microbiome influences diapause preparation. High community variability was found within and between non-diapausing and diapausing individuals, but no specific diapause-based microbiome was noted. Emergence of adult, diapausing mosquitoes under sterile conditions generated low bacterial load (LBL) lines with nearly a 1000-fold reduction in bacteria levels. This reduction in bacterial content resulted in significantly lower survival of diapausing females after two weeks, indicating acquisition of the microbiome in adult females is critical for survival throughout diapause. LBL diapausing females had high carbohydrate levels, but did not accumulate lipid reserves, suggesting an inability to process ingested sugars necessary for diapause-associated lipid accumulation. Expression patterns of select genes associated with mosquito lipid metabolism during diapause showed no significant differences between LBL and control lines, suggesting transcriptional changes may not underlie impaired lipid accumulation. Overall, a diverse, adult-acquired microbiome is critical for diapause in C. pipiens to process sugar reserves and accumulate lipids that are necessary to survive prolonged overwintering.
Collapse
Affiliation(s)
- Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States.
| | - Zakee L Sabree
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, United States
| | - Laura Kenyon
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, United States
| | - Gabriela Nine
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Richard W Hagan
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Sema Osman
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, United States
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
20
|
Mays Z, Hunter A, Campbell LG, Carlos-Shanley C. The effects of captivity on the microbiome of the endangered Comal Springs riffle beetle (Heterelmis comalensis). FEMS Microbiol Lett 2021; 368:6366232. [PMID: 34494105 DOI: 10.1093/femsle/fnab121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022] Open
Abstract
The gut microbiome is affected by host intrinsic factors, diet and environment, and strongly linked to host's health. Although fluctuations of microbiome composition are normal, some are due to changes in host environmental conditions. When species are moved into captive environments for conservation, education or rehabilitation, these new conditions can influence a change in gut microbiome composition. Here, we compared the microbiomes of wild and captive Comal Springs riffle beetles (Heterelmis comalensis) by using amplicon sequencing of the 16S rRNA gene. We found that the microbiome of captive beetles was more diverse than wild beetle microbiomes. We identified 24 amplicon sequence variants (ASVs) with relative abundances significantly different between the wild and captive beetles. Many of the ASVs overrepresented in captive beetle microbiomes belong to taxa linked to nitrogen-rich environments. This is one of the first studies comparing the effects of captivity on the microbiome of an endangered insect species. Our findings provide valuable information for future applications in the management of captive populations of H. comalensis.
Collapse
Affiliation(s)
- Zachary Mays
- Department of Biology, College of Science and Engineering, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Amelia Hunter
- San Marcos Aquatic Resources Center, United States Fish and Wildlife Service, 500 E McCarty Ln, San Marcos, TX 78666, USA.,Austin Ecological Services Field Office, United States Fish and Wildlife Service, 10711 Burnet Rd, #200, Austin, TX 78758, USA
| | - Lindsay Glass Campbell
- San Marcos Aquatic Resources Center, United States Fish and Wildlife Service, 500 E McCarty Ln, San Marcos, TX 78666, USA
| | - Camila Carlos-Shanley
- Department of Biology, College of Science and Engineering, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| |
Collapse
|
21
|
Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends Parasitol 2021; 37:722-733. [PMID: 33962878 PMCID: PMC8282638 DOI: 10.1016/j.pt.2021.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023]
Abstract
Ixodes scapularis and Ixodes pacificus are the predominant vectors of multiple human pathogens, including Borrelia burgdorferi, one of the causative agents of Lyme disease in North America. Differences in the habitats and host preferences of these closely related tick species present an opportunity to examine key aspects of the tick microbiome. While advances in sequencing technologies have accelerated a descriptive understanding of the tick microbiome, molecular and mechanistic insights into the tick microbiome are only beginning to emerge. Progress is stymied by technical difficulties in manipulating the microbiome and by biological variables related to the life cycle of Ixodid ticks. This review highlights these challenges and examines avenues to understand the significance of the tick microbiome in tick biology.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA.
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland School of Medicine, College Park, MD 20472, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 20472, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, USA
| |
Collapse
|
22
|
Tyagi K, Tyagi I, Kumar V. Interspecific variation and functional traits of the gut microbiome in spiders from the wild: The largest effort so far. PLoS One 2021; 16:e0251790. [PMID: 34288947 PMCID: PMC8294503 DOI: 10.1371/journal.pone.0251790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Spiders being one of the most diverse group in phylum arthropod are of great importance due to their role as predators, silk producer, and in medicinal applications. Spiders in prey-predator relationships play a crucial role in balancing the food-chain of any ecosystem; therefore it is essential to characterize the gut microbiota of spiders collected from natural environments. In the present work, the largest effort so far has been made to characterize the gut microbiota of 35 spider species belonging to four different families using 16S amplicon targeting sequencing. Further, we compared the gut microbiota composition including endosymbiont abundance in spider species collected from different geographical locations. The results obtained revealed the presence of genera like Acinetobacter (15%), V7clade (9%), Wolbachia (8%), Pseudomonas (5%), Bacillus (6%). Although comparative analysis revealed that the gut bacterial composition in all the spider families has a similar pattern, in terms of community richness and evenness. The bacterial diversity in the spider family, Lycosidae are more diverse than in Salticidae, Tetragnathidae and Araneidae. Furthermore, it was observed that the abundance of endosymbiont genera, i.e. Wolbachia and Rickettsia, leads to shift in the abundance of other bacterial taxa and may cause sexual alterations in spider species. Moreover, predicted functional analysis based on PICRUSt2 reveals that gut microbiota of spider species were involved in functions like metabolism of carbohydrates, cofactors and vitamins, amino acids; biosynthesis of organic compounds, fatty acids, lipids etc. Based on the results obtained, it can be said that different locations do not correlate with community composition of gut microbiota in spider species collected from natural environments.
Collapse
Affiliation(s)
- Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| |
Collapse
|
23
|
Martínez‐Romero E, Aguirre‐Noyola JL, Bustamante‐Brito R, González‐Román P, Hernández‐Oaxaca D, Higareda‐Alvear V, Montes‐Carreto LM, Martínez‐Romero JC, Rosenblueth M, Servín‐Garcidueñas LE. We and herbivores eat endophytes. Microb Biotechnol 2021; 14:1282-1299. [PMID: 33320440 PMCID: PMC8313258 DOI: 10.1111/1751-7915.13688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.
Collapse
Affiliation(s)
| | | | | | - Pilar González‐Román
- Programa de Ecología GenómicaCentro de Ciencias GenómicasUNAMCuernavacaMorelosMexico
| | | | | | | | | | - Mónica Rosenblueth
- Programa de Ecología GenómicaCentro de Ciencias GenómicasUNAMCuernavacaMorelosMexico
| | | |
Collapse
|
24
|
Mejía-Alvarado FS, Ghneim-Herrera T, Góngora CE, Benavides P, Navarro-Escalante L. Structure and Dynamics of the Gut Bacterial Community Across the Developmental Stages of the Coffee Berry Borer, Hypothenemus hampei. Front Microbiol 2021; 12:639868. [PMID: 34335487 PMCID: PMC8323054 DOI: 10.3389/fmicb.2021.639868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
The coffee berry borer (CBB); Hypothenemus hampei (Coleoptera: Curculionidae), is widely recognized as the major insect pest of coffee crops. Like many other arthropods, CBB harbors numerous bacteria species that may have important physiological roles in host nutrition, detoxification, immunity and protection. To date, the structure and dynamics of the gut-associated bacterial community across the CBB life cycle is not yet well understood. A better understanding of the complex relationship between CBB and its bacterial companions may provide new opportunities for insect control. In the current investigation, we analyzed the diversity and abundance of gut microbiota across the CBB developmental stages under field conditions by using high-throughput Illumina sequencing of the 16S ribosomal RNA gene. Overall, 15 bacterial phyla, 38 classes, 61 orders, 101 families and 177 genera were identified across all life stages, including egg, larva 1, larva 2, pupa, and adults (female and male). Proteobacteria and Firmicutes phyla dominated the microbiota along the entire insect life cycle. Among the 177 genera, the 10 most abundant were members of Ochrobactrum (15.1%), Pantoea (6.6%), Erwinia (5.7%), Lactobacillus (4.3%), Acinetobacter (3.4%), Stenotrophomonas (3.1%), Akkermansia (3.0%), Agrobacterium (2.9%), Curtobacterium (2.7%), and Clostridium (2.7%). We found that the overall bacterial composition is diverse, variable within each life stage and appears to vary across development. About 20% of the identified OTUs were shared across all life stages, from which 28 OTUs were consistently found in all life stage replicates. Among these OTUs there are members of genera Pantoea, Erwinia, Agrobacterium, Ochrobactrum, Pseudomonas, Acinetobacter, Brachybacterium, Sphingomonas and Methylobacterium, which can be considered as the gut-associated core microbiota of H. hampei. Our findings bring additional data to enrich the understanding of gut microbiota in CBB and its possible use for development of insect control strategies.
Collapse
Affiliation(s)
- Fernan Santiago Mejía-Alvarado
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia.,Departamento de Ciencias Biológicas, Universidad Icesi, Cali, Colombia
| | | | - Carmenza E Góngora
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia
| | - Pablo Benavides
- Department of Entomology, National Coffee Research Center (Cenicafe), Manizales, Colombia
| | | |
Collapse
|
25
|
Vesga P, Augustiny E, Keel C, Maurhofer M, Vacheron J. Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insect-killing abilities and genetic variations in insecticidal factors. Environ Microbiol 2021; 23:5378-5394. [PMID: 34190383 PMCID: PMC8519069 DOI: 10.1111/1462-2920.15623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two‐partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Eva Augustiny
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Wolf JF, Kriss KD, MacAulay KM, Munro K, Patterson BR, Shafer ABA. Gut microbiome composition predicts summer core range size in two divergent ungulates. FEMS Microbiol Ecol 2021; 97:6174673. [PMID: 33729507 DOI: 10.1093/femsec/fiab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome of animals vary by age, diet, and habitat, and directly influences an individual's health. Similarly, variation in home ranges is linked to feeding strategies and fitness. Ungulates (hooved mammals) exhibit species-specific microbiomes and habitat use patterns. We combined gut microbiome and movement data to assess relationships between space use and the gut microbiome in a specialist and a generalist ungulate. We GPS radiocollared 24 mountain goats (Oreamnos americanus) and 34 white-tailed deer (Odocoileus virginianus), collected fecal samples, and conducted high-throughput sequencing of the 16S rRNA gene. We generated gut diversity metrics and key bacterial ratios. Our research question centred around the idea that larger Firmicutes to Bacteroidetes ratios confer body size or fat advantages that allow for larger home ranges, and relationships of disproportionate habitat use are stronger in the habitat specialist mountain goat. Firmicutes to Bacteroidetes ratios were positively correlated with core range area in both species. Mountain goats exhibited a negative relationship between gut diversity and proportional use of treed areas and escape terrain, and no relationships were detected in the habitat generalist white-tailed deer. This is the first study to relate range size to the gut microbiome in wild ungulates and is an important proof of concept that advances the information that can be gleaned from non-invasive sampling.
Collapse
Affiliation(s)
- Jesse F Wolf
- Department of Environmental and Life Sciences, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Krystal D Kriss
- Ministry of Forests, Lands and Natural Resource Operations, and Rural Development, 3726 Alfred Avenue, Smithers, British Columbia V0J 2N0, Canada
| | - Kara M MacAulay
- Ministry of Forests, Lands and Natural Resource Operations, and Rural Development, 3726 Alfred Avenue, Smithers, British Columbia V0J 2N0, Canada
| | - Keith Munro
- Department of Environmental and Life Sciences, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada.,Ontario Federation of Anglers and Hunters, 4601 Guthrie Drive, Peterborough, Ontario K9J 8L5, Canada
| | - Brent R Patterson
- Department of Environmental and Life Sciences, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada.,Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Aaron B A Shafer
- Department of Environmental and Life Sciences, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada.,Forensic Science Program, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
27
|
Gorokhova E, El-Shehawy R, Lehtiniemi M, Garbaras A. How Copepods Can Eat Toxins Without Getting Sick: Gut Bacteria Help Zooplankton to Feed in Cyanobacteria Blooms. Front Microbiol 2021; 11:589816. [PMID: 33510717 PMCID: PMC7835405 DOI: 10.3389/fmicb.2020.589816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Toxin-producing cyanobacteria can be harmful to aquatic biota, although some grazers utilize them with often beneficial effects on their growth and reproduction. It is commonly assumed that gut microbiota facilitates host adaptation to the diet; however, the evidence for adaptation mechanisms is scarce. Here, we investigated the abundance of mlrA genes in the gut of the Baltic copepods Acartia bifilosa and Eurytemora affinis during cyanobacteria bloom season (August) and outside it (February). The mlrA genes are unique to microcystin and nodularin degraders, thus indicating the capacity to break down these toxins by the microbiota. The mlrA genes were expressed in the copepod gut year-round, being >10-fold higher in the summer than in the winter populations. Moreover, they were significantly more abundant in Eurytemora than Acartia. To understand the ecological implications of this variability, we conducted feeding experiments using summer- and winter-collected copepods to examine if/how the mlrA abundance in the microbiota affect: (1) uptake of toxic Nodularia spumigena, (2) uptake of a non-toxic algal food offered in mixtures with N. spumigena, and (3) concomitant growth potential in the copepods. The findings provide empirical evidence that the occurrence of mlrA genes in the copepod microbiome facilitates nutrient uptake and growth when feeding on phytoplankton mixtures containing nodularin-producing cyanobacteria; thus, providing an adaptation mechanism to the cyanobacteria blooms.
Collapse
Affiliation(s)
- Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Rehab El-Shehawy
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Maiju Lehtiniemi
- Marine Research Centre, Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Andrius Garbaras
- Mass Spectrometry Laboratory, Center for Physical Science and Technology, Vilnius, Lithuania
| |
Collapse
|
28
|
Bonnet SI, Pollet T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunol 2020; 43:e12813. [PMID: 33314216 DOI: 10.1111/pim.12813] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
The recent development of high-throughput NGS technologies, (ie, next-generation sequencing) has highlighted the complexity of tick microbial communities-which include pathogens, symbionts, and commensals-and also their dynamic variability. Symbionts and commensals can confer crucial and diverse benefits to their hosts, playing nutritional roles or affecting fitness, development, nutrition, reproduction, defence against environmental stress and immunity. Nonpathogenic tick bacteria may also play a role in modifying tick-borne pathogen colonization and transmission, as relationships between microorganisms existing together in one environment can be competitive, exclusive, facilitating or absent, with many potential implications for both human and animal health. Consequently, ticks represent a compelling yet challenging system in which to investigate the composition and both the functional and ecological implications of tick bacterial communities, and thus merits greater attention. Ultimately, deciphering the relationships between microorganisms carried by ticks as well as symbiont-tick interactions will garner invaluable information, which may aid in some future arthropod-pest and vector-borne pathogen transmission control strategies. This review outlines recent research on tick microbiome composition and dynamics, highlights elements favouring the reciprocal influence of the tick microbiome and tick-borne agents and finally discusses how ticks and tick-borne diseases might potentially be controlled through tick microbiome manipulation in the future.
Collapse
Affiliation(s)
- Sarah Irène Bonnet
- UMR BIPAR 0956, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | | |
Collapse
|
29
|
Mateos-Hernández L, Obregón D, Maye J, Borneres J, Versille N, de la Fuente J, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance during Feeding. Vaccines (Basel) 2020; 8:E702. [PMID: 33233316 PMCID: PMC7711837 DOI: 10.3390/vaccines8040702] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
The tick microbiota is a highly complex ensemble of interacting microorganisms. Keystone taxa, with a central role in the microbial networks, support the stability and fitness of the microbial communities. The keystoneness of taxa in the tick microbiota can be inferred from microbial co-occurrence networks. Microbes with high centrality indexes are highly connected with other taxa of the microbiota and are expected to provide important resources to the microbial community and/or the tick. We reasoned that disturbance of vector microbiota by removal of ubiquitous and abundant keystone bacteria may disrupt the tick-microbiota homeostasis causing harm to the tick host. These observations and reasoning prompted us to test the hypothesis that antibodies targeting keystone bacteria may harm the ticks during feeding on immunized hosts. To this aim, in silico analyses were conducted to identify keystone bacteria in the microbiota of Ixodes nymphs. The family Enterobacteriaceae was among the top keystone taxa identified in Ixodes microbiota. Immunization of α-1,3-galactosyltransferase-deficient-C57BL/6 (α1,3GT KO) mice with a live vaccine containing the Enterobacteriaceae bacterium Escherichia coli strain BL21 revealed that the production of anti-E. coli and anti-α-Gal IgM and IgG was associated with high mortality of I. ricinus nymphs during feeding. However, this effect was absent in two different strains of wild type mice, BALB/c and C57BL/6. This result concurred with a wide distribution of α-1,3-galactosyltransferase genes, and possibly α-Gal, in Enterobacteriaceae and other bacteria of tick microbiota. Interestingly, the weight of I. ricinus nymphs that fed on E. coli-immunized C57BL/6 was significantly higher than the weight of ticks that fed on C57BL/6 immunized with a mock vaccine. Our results suggest that anti-tick microbiota vaccines are a promising tool for the experimental manipulation of vector microbiota, and potentially the control of ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13400-970, Brazil
| | - Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - Jeremie Borneres
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - Nicolas Versille
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria;
| | - Ladislav Šimo
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| |
Collapse
|
30
|
Kumar V, Tyagi I, Tyagi K, Chandra K. Diversity and Structure of Bacterial Communities in the Gut of Spider: Thomisidae and Oxyopidae. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.588102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Dunaj SJ, Bettencourt BR, Garb JE, Brucker RM. Spider phylosymbiosis: divergence of widow spider species and their tissues' microbiomes. BMC Evol Biol 2020; 20:104. [PMID: 32811423 PMCID: PMC7433143 DOI: 10.1186/s12862-020-01664-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Microbiomes can have profound impacts on host biology and evolution, but to date, remain vastly understudied in spiders despite their unique and diverse predatory adaptations. This study evaluates closely related species of spiders and their host-microbe relationships in the context of phylosymbiosis, an eco-evolutionary pattern where the microbial community profile parallels the phylogeny of closely related host species. Using 16S rRNA gene amplicon sequencing, we characterized the microbiomes of five species with known phylogenetic relationships from the family Theridiidae, including multiple closely related widow spiders (L. hesperus, L. mactans, L. geometricus, S. grossa, and P. tepidariorum). RESULTS We compared whole animal and tissue-specific microbiomes (cephalothorax, fat bodies, venom glands, silk glands, and ovary) in the five species to better understand the relationship between spiders and their microbial symbionts. This showed a strong congruence of the microbiome beta-diversity of the whole spiders, cephalothorax, venom glands, and silk glands when compared to their host phylogeny. Our results support phylosymbiosis in these species and across their specialized tissues. The ovary tissue microbial dendrograms also parallel the widow phylogeny, suggesting vertical transfer of species-specific bacterial symbionts. By cross-validating with RNA sequencing data obtained from the venom glands, silk glands and ovaries of L. hesperus, L. geometricus, S. grossa, and P. tepidariorum we confirmed that several microbial symbionts of interest are viably active in the host. CONCLUSION Together these results provide evidence that supports the importance of host-microbe interactions and the significant role microbial communities may play in the evolution and adaptation of their hosts.
Collapse
Affiliation(s)
- Sara J Dunaj
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Robert M Brucker
- The Rowland Institute of Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
Friel AD, Neiswenter SA, Seymour CO, Bali LR, McNamara G, Leija F, Jewell J, Hedlund BP. Microbiome Shifts Associated With the Introduction of Wild Atlantic Horseshoe Crabs ( Limulus polyphemus) Into a Touch-Tank Exhibit. Front Microbiol 2020; 11:1398. [PMID: 32765431 PMCID: PMC7381184 DOI: 10.3389/fmicb.2020.01398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
The Atlantic horseshoe crab (Limulus polyphemus) is a common marine aquarium species and model organism for research. There is potential monetary and conservation value in developing a stable captive population of horseshoe crabs, however, one major impediment to achieving captivity is a lack of knowledge regarding captive diseases. We utilized 16S rRNA gene amplicon sequencing to track changes in the microbiomes of four body locations in three wild-caught (tracked over 14 months in captivity) and three tank-acclimated (>2 years in captivity) adult L. polyphemus in a touch tank at Shark Reef Aquarium at Mandalay Bay in Las Vegas, NV. The wild population hosted diverse and distinct microbiomes on the carapace (260 ± 96 amplicon sequence variants or ASVs), cloaca (345 ± 77 ASVs), gills (309 ± 36 ASVs), and oral cavity (359 ± 37 ASVs), which were dominated by classes Gammaproteobacteria, Bacteroidia, and Alphaproteobacteria. A rapid decline in richness across all body locations was observed within 1 month of captivity, with tank-acclimated (>2 years) animals having <5% of the initial microbiome richness and a nearly completely restructured microbial community. Tank-acclimated horseshoe crabs possessed distinct microbiomes that were highly uneven and low in species richness on the carapace (31 ± 7 ASVs), cloaca (53 ± 19 ASVs), gills (17 ± 2 ASVs), and oral cavity (31 ± 13 ASVs). The carapace, oral cavity, and gills of the tank-acclimated animals hosted abundant populations of Aeromonas (>60%) and Pseudomonas (>20%), both of which are known opportunistic pathogens of aquatic animals and can express chitinases, providing a plausible mechanism for the development of the carapace lesion pathology observed in this and other studies. The cloaca of the tank-acclimated animals was slightly more diverse than the other body locations with Aeromonas, Enterococcus, Shewanella, and Vagococcus dominating the community. These results provide an important baseline on the microbiomes of both wild and tank-acclimated horseshoe crabs and underscore the need to continue to investigate how native microbial populations may protect animals from pathogens.
Collapse
Affiliation(s)
- Ariel D Friel
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Sean A Neiswenter
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Lauren Rose Bali
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Ginger McNamara
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Fabian Leija
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Jack Jewell
- Shark Reef Aquarium at Mandalay Bay, Las Vegas, NV, United States
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
33
|
Laboratory colonization by Dirofilaria immitis alters the microbiome of female Aedes aegypti mosquitoes. Parasit Vectors 2020; 13:349. [PMID: 32660640 PMCID: PMC7359625 DOI: 10.1186/s13071-020-04218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background The ability of blood-feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito-transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti. Methods In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female Ae. aegypti. Metagenomic analysis of the V3–V4 variable region of the microbial 16S RNA gene was used for identification of the microbial differences down to species level. Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis-infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larvae. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacterial genera and phyla between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacterial species when commonly identified bacteria were compared. Conclusions To the best of our knowledge, this is the first study to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of Ae. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.![]()
Collapse
|
34
|
Ntagia E, Chatzigiannidou I, Williamson AJ, Arends JBA, Rabaey K. Homoacetogenesis and microbial community composition are shaped by pH and total sulfide concentration. Microb Biotechnol 2020; 13:1026-1038. [PMID: 32126162 PMCID: PMC7264883 DOI: 10.1111/1751-7915.13546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022] Open
Abstract
Biological CO2 sequestration through acetogenesis with H2 as electron donor is a promising technology to reduce greenhouse gas emissions. Today, a major issue is the presence of impurities such as hydrogen sulfide (H2 S) in CO2 containing gases, as they are known to inhibit acetogenesis in CO2 -based fermentations. However, exact values of toxicity and inhibition are not well-defined. To tackle this uncertainty, a series of toxicity experiments were conducted, with a mixed homoacetogenic culture, total dissolved sulfide concentrations ([TDS]) varied between 0 and 5 mM and pH between 5 and 7. The extent of inhibition was evaluated based on acetate production rates and microbial growth. Maximum acetate production rates of 0.12, 0.09 and 0.04 mM h-1 were achieved in the controls without sulfide at pH 7, pH 6 and pH 5. The half-maximal inhibitory concentration (IC50 qAc ) was 0.86, 1.16 and 1.36 mM [TDS] for pH 7, pH 6 and pH 5. At [TDS] above 3.33 mM, acetate production and microbial growth were completely inhibited at all pHs. 16S rRNA gene amplicon sequencing revealed major community composition transitions that could be attributed to both pH and [TDS]. Based on the observed toxicity levels, treatment approaches for incoming industrial CO2 streams can be determined.
Collapse
Affiliation(s)
- Eleftheria Ntagia
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653Ghent9000Belgium
| | - Ioanna Chatzigiannidou
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653Ghent9000Belgium
| | - Adam J. Williamson
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653Ghent9000Belgium
| | - Jan B. A. Arends
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653Ghent9000Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653Ghent9000Belgium
| |
Collapse
|
35
|
Lejal E, Estrada-Peña A, Marsot M, Cosson JF, Rué O, Mariadassou M, Midoux C, Vayssier-Taussat M, Pollet T. Taxon Appearance From Extraction and Amplification Steps Demonstrates the Value of Multiple Controls in Tick Microbiota Analysis. Front Microbiol 2020; 11:1093. [PMID: 32655509 PMCID: PMC7325928 DOI: 10.3389/fmicb.2020.01093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background The development of high-throughput sequencing technologies has substantially improved analysis of bacterial community diversity, composition, and functions. Over the last decade, high-throughput sequencing has been used extensively to identify the diversity and composition of tick microbial communities. However, a growing number of studies are warning about the impact of contamination brought along the different steps of the analytical process, from DNA extraction to amplification. In low biomass samples, e.g., individual tick samples, these contaminants may represent a large part of the obtained sequences, and thus generate considerable errors in downstream analyses and in the interpretation of results. Most studies of tick microbiota either do not mention the inclusion of controls during the DNA extraction or amplification steps, or consider the lack of an electrophoresis signal as an absence of contamination. In this context, we aimed to assess the proportion of contaminant sequences resulting from these steps. We analyzed the microbiota of individual Ixodes ricinus ticks by including several categories of controls throughout the analytical process: homogenization, DNA extraction, and DNA amplification. Results Controls yielded a significant number of sequences (1,126-13,198 mean sequences, depending on the control category). Some operational taxonomic units (OTUs) detected in these controls belong to genera reported in previous tick microbiota studies. In this study, these OTUs accounted for 50.9% of the total number of sequences in our samples, and were considered contaminants. Contamination levels (i.e., the percentage of sequences belonging to OTUs identified as contaminants) varied with tick instar and sex: 76.3% of nymphs and 75% of males demonstrated contamination over 50%, while most females (65.7%) had rates lower than 20%. Contamination mainly corresponded to OTUs detected in homogenization and extraction reagent controls, highlighting the importance of carefully controlling these steps. Conclusion Here, we showed that contaminant OTUs from sample laboratory processing steps can represent more than half the total sequence yield in sequencing runs, and lead to unreliable results when characterizing tick microbial communities. We thus strongly advise the routine use of negative controls in tick microbiota studies, and more generally in studies involving low biomass samples.
Collapse
Affiliation(s)
- Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Maud Marsot
- Laboratory for Animal Health, Epidemiology Unit, ANSES, University Paris-Est, Maisons-Alfort, France
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Olivier Rué
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France.,INRAE, Bioinfomics, MIGALE Bbioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mahendra Mariadassou
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France.,INRAE, Bioinfomics, MIGALE Bbioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cédric Midoux
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France.,INRAE, Bioinfomics, MIGALE Bbioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France.,INRAE, PROSE, Université Paris-Saclay, Antony, France
| | | | - Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.,UMR ASTRE, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
36
|
Microbiomes in the insectivorous bat species Mops condylurus rapidly converge in captivity. PLoS One 2020; 15:e0223629. [PMID: 32196505 PMCID: PMC7083271 DOI: 10.1371/journal.pone.0223629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Bats are well known reservoir hosts for RNA and DNA viruses. The use of captive bats in research has intensified over the past decade as researchers aim to examine the virus-reservoir host interface. In this study, we investigated the effects of captivity on the fecal bacterial microbiome of an insectivorous microbat, Mops condylurus, a species that roosts in close proximity to humans and has likely transmitted viral infections to humans. Using amplicon 16S rRNA gene sequencing, we characterized changes in fecal bacterial community composition for individual bats directly at the time of capture and again after six weeks in captivity. We found that microbial community richness by measure of the number of observed operational taxonomic units (OTUs) in bat feces increases in captivity. Importantly, we found the similarity of microbial community structures of fecal microbiomes between different bats to converge during captivity. We propose a six week-acclimatization period prior to carrying out infection studies or other research influenced by the microbiome composition, which may be advantageous to reduce variation in microbiome composition and minimize biological variation inherent to in vivo experimental studies.
Collapse
|
37
|
Jing TZ, Qi FH, Wang ZY. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? MICROBIOME 2020; 8:38. [PMID: 32178739 PMCID: PMC7077154 DOI: 10.1186/s40168-020-00823-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/05/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. RESULTS The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. CONCLUSION The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.
Collapse
Affiliation(s)
- Tian-Zhong Jing
- School of Forestry, Northeast Forestry University, Harbin, 150040 China
| | - Feng-Hui Qi
- School of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Zhi-Ying Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
38
|
He Z, Pan L, Zhang M, Zhang M, Huang F, Gao S. Metagenomic comparison of structure and function of microbial community between water, effluent and shrimp intestine of higher place
Litopenaeus vannamei
ponds. J Appl Microbiol 2020; 129:243-255. [DOI: 10.1111/jam.14610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Z. He
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - L. Pan
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - M. Zhang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - M. Zhang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - F. Huang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - S. Gao
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| |
Collapse
|
39
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. First Insight into Microbiome Profiles of Myrmecophilous Beetles and Their Host, Red Wood Ant Formica polyctena (Hymenoptera: Formicidae)-A Case Study. INSECTS 2020; 11:E134. [PMID: 32092972 PMCID: PMC7073670 DOI: 10.3390/insects11020134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/23/2023]
Abstract
Formica polyctena belongs to the red wood ant species group. Its nests provide a stable, food rich, and temperature and humidity controlled environment, utilized by a wide range of species, called myrmecophiles. Here, we used the high-throughput sequencing of the 16S rRNA gene on the Illumina platform for identification of the microbiome profiles of six selected myrmecophilous beetles (Dendrophilus pygmaeus, Leptacinus formicetorum, Monotoma angusticollis, Myrmechixenus subterraneus, Ptenidium formicetorum and Thiasophila angulata) and their host F. polyctena. Analyzed bacterial communities consisted of a total of 23 phyla, among which Proteobacteria, Actinobacteria, and Firmicutes were the most abundant. Two known endosymbionts-Wolbachia and Rickettsia-were found in the analyzed microbiome profiles and Wolbachia was dominant in bacterial communities associated with F. polyctena, M. subterraneus, L. formicetorum and P. formicetorum (>90% of reads). In turn, M. angusticollis was co-infected with both Wolbachia and Rickettsia, while in the microbiome of T. angulata, the dominance of Rickettsia has been observed. The relationships among the microbiome profiles were complex, and no relative abundance pattern common to all myrmecophilous beetles tested was observed. However, some subtle, species-specific patterns have been observed for bacterial communities associated with D. pygmaeus, M. angusticollis, and T. angulata.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| | - Grzegorz K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| | - Ewa Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| | - Bernard Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| |
Collapse
|
40
|
Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, McCoy SJ, Zhang Y, Anderson MZ, Alvarez-Ponce D, Smirnova E, Karstens L, Dorrestein PC, Li H, Sen Gupta A, Cheung K, Powers JG, Zhao Z, Rosen GL. Emerging Priorities for Microbiome Research. Front Microbiol 2020; 11:136. [PMID: 32140140 PMCID: PMC7042322 DOI: 10.3389/fmicb.2020.00136] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiome research has increased dramatically in recent years, driven by advances in technology and significant reductions in the cost of analysis. Such research has unlocked a wealth of data, which has yielded tremendous insight into the nature of the microbial communities, including their interactions and effects, both within a host and in an external environment as part of an ecological community. Understanding the role of microbiota, including their dynamic interactions with their hosts and other microbes, can enable the engineering of new diagnostic techniques and interventional strategies that can be used in a diverse spectrum of fields, spanning from ecology and agriculture to medicine and from forensics to exobiology. From June 19-23 in 2017, the NIH and NSF jointly held an Innovation Lab on Quantitative Approaches to Biomedical Data Science Challenges in our Understanding of the Microbiome. This review is inspired by some of the topics that arose as priority areas from this unique, interactive workshop. The goal of this review is to summarize the Innovation Lab's findings by introducing the reader to emerging challenges, exciting potential, and current directions in microbiome research. The review is broken into five key topic areas: (1) interactions between microbes and the human body, (2) evolution and ecology of microbes, including the role played by the environment and microbe-microbe interactions, (3) analytical and mathematical methods currently used in microbiome research, (4) leveraging knowledge of microbial composition and interactions to develop engineering solutions, and (5) interventional approaches and engineered microbiota that may be enabled by selectively altering microbial composition. As such, this review seeks to arm the reader with a broad understanding of the priorities and challenges in microbiome research today and provide inspiration for future investigation and multi-disciplinary collaboration.
Collapse
Affiliation(s)
- Chad M. Cullen
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | | | - Sinem Beyhan
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Clara E. Cho
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States
| | - Stephen Woloszynek
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
- College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Matteo Convertino
- Nexus Group, Faculty of Information Science and Technology, Gi-CoRE Station for Big Data & Cybersecurity, Hokkaido University, Sapporo, Japan
| | - Sophie J. McCoy
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | | | - Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ananya Sen Gupta
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, United States
| | - Kevin Cheung
- Department of Dermatology, The University of Iowa, Iowa City, IA, United States
| | | | - Zhengqiao Zhao
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
| | - Gail L. Rosen
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
41
|
Martins C, Moreau CS. Influence of host phylogeny, geographical location and seed harvesting diet on the bacterial community of globally distributed Pheidole ants. PeerJ 2020; 8:e8492. [PMID: 32117618 PMCID: PMC7006521 DOI: 10.7717/peerj.8492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/30/2019] [Indexed: 11/20/2022] Open
Abstract
The presence of symbiotic relationships between organisms is a common phenomenon found across the tree of life. In particular, the association of bacterial symbionts with ants is an active area of study. This close relationship between ants and microbes can significantly impact host biology and is also considered one of the driving forces in ant evolution and diversification. Diet flexibility of ants may explain the evolutionary success of the group, which may be achieved by the presence of endosymbionts that aid in nutrition acquisition from a variety of food sources. With more than 1,140 species, ants from the genus Pheidole have a worldwide distribution and an important role in harvesting seeds; this behavior is believed to be a possible key innovation leading to the diversification of this group. This is the first study to investigate the bacterial community associated with Pheidole using next generation sequencing (NGS) to explore the influences of host phylogeny, geographic location and food preference in shaping the microbial community. In addition, we explore if there are any microbiota signatures related to granivory. We identified Proteobacteria and Firmicutes as the major phyla associated with these ants. The core microbiome in Pheidole (those found in >50% of all samples) was composed of 14 ASVs and the most prevalent are family Burkholderiaceae and the genera Acinetobacter, Streptococcus, Staphylococcus, Cloacibacterium and Ralstonia. We found that geographical location and food resource may influence the bacterial community of Pheidole ants. These results demonstrate that Pheidole has a relatively stable microbiota across species, which suggests the bacterial community may serve a generalized function in this group.
Collapse
Affiliation(s)
- Cíntia Martins
- Department of Biological Science, Campus Ministro Reis Velloso, Universidade Federal do Piauí, Parnaíba, Piauí, Brazil.,Department of Science and Education, Field Museum of Natural History, Chicago, IL, United States of America
| | - Corrie S Moreau
- Department of Science and Education, Field Museum of Natural History, Chicago, IL, United States of America.,Departments of Entomology and Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
42
|
Abstract
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod-microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.
Collapse
|
43
|
Keiser CN, Hammer TJ, Pruitt JN. Social spider webs harbour largely consistent bacterial communities across broad spatial scales. Biol Lett 2019; 15:20190436. [PMID: 31551063 DOI: 10.1098/rsbl.2019.0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Social animals that live in domiciles constructed from biomaterials may facilitate microbial growth. Spider webs are one of the most conspicuous biomaterials in nature, yet almost nothing is known about the potential for webs to harbour microbes, even in social spiders that live in dense, long-term aggregations. Here, we tested whether the dominant bacteria present in social spider webs vary across sampling localities and whether the more permanent retreat web harbours compositionally distinct microbes from the more ephemeral capture webs in the desert social spider, Stegodyphus dumicola. We also sampled spider cuticles and prey items in a subset of colonies. We found that spider colonies across large spatial scales harboured similar web-associated bacterial communities. We also found substantial overlap in bacterial community composition between spider cuticle, prey and web samples. These data suggest that social spider webs can harbour characteristic microbial communities and potentially facilitate microbial transmission among individuals, and this study serves as the first step towards understanding the microbial ecology of these peculiar animal societies.
Collapse
Affiliation(s)
- Carl N Keiser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience, and Behavior, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
44
|
Bennett KL, Almanza A, McMillan WO, Saltonstall K, Vdovenko EL, Vinda JS, Mejia L, Driesse K, De León LF, Loaiza JR. Habitat disturbance and the organization of bacterial communities in Neotropical hematophagous arthropods. PLoS One 2019; 14:e0222145. [PMID: 31491005 PMCID: PMC6730880 DOI: 10.1371/journal.pone.0222145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022] Open
Abstract
The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU’s. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance.
Collapse
Affiliation(s)
- Kelly L. Bennett
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- * E-mail: (KLB); (JRL)
| | - Alejandro Almanza
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | | | | | - Jorge S. Vinda
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | - Luis Mejia
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panamá, República de Panamá
| | - Kaitlin Driesse
- University at Albany, State University of New York, NY, United States of America
| | - Luis F. De León
- Department of Biology, University of Massachusetts Boston, Boston, MA, United States of America
| | - Jose R. Loaiza
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panamá, República de Panamá
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panamá, República de Panamá
- * E-mail: (KLB); (JRL)
| |
Collapse
|
45
|
Obregón D, Bard E, Abrial D, Estrada-Peña A, Cabezas-Cruz A. Sex-Specific Linkages Between Taxonomic and Functional Profiles of Tick Gut Microbiomes. Front Cell Infect Microbiol 2019; 9:298. [PMID: 31475121 PMCID: PMC6702836 DOI: 10.3389/fcimb.2019.00298] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Ticks transmit the most diverse array of disease agents and harbor one of the most diverse microbial communities. Major progress has been made in the characterization of the taxonomic profiles of tick microbiota. However, the functional profiles of tick microbiome have been comparatively less studied. In this proof of concept we used state-of-the-art functional metagenomics analytical tools to explore previously reported datasets of bacteria found in male and female Ixodes ovatus, Ixodes persulcatus, and Amblyomma variegatum. Results showed that both taxonomic and functional profiles have differences between sexes of the same species. KEGG pathway analysis revealed that male and female of the same species had major differences in the abundance of genes involved in different metabolic pathways including vitamin B, amino acids, carbohydrates, nucleotides, and antibiotics among others. Partial reconstruction of metabolic pathways using KEGG enzymes suggests that tick microbiome form a complex metabolic network that may increase microbial community resilience and adaptability. Linkage analysis between taxonomic and functional profiles showed that among the KEGG enzymes with differential abundance in male and female ticks only 12% were present in single bacterial genera. The rest of these enzymes were found in more than two bacterial genera, and 27% of them were found in five up to ten bacterial genera. Comparison of bacterial genera contributing to the differences in the taxonomic and functional profiles of males and females revealed that while a small group of bacteria has a dual-role, most of the bacteria contribute only to functional or taxonomic differentiation between sexes. Results suggest that the different life styles of male and female ticks exert sex-specific evolutionary pressures that act independently on the phenomes (set of phenotypes) and genomes of bacteria in tick gut microbiota. We conclude that functional redundancy is a fundamental property of male and female tick microbiota and propose that functional metagenomics should be combined with taxonomic profiling of microbiota because both analyses are complementary.
Collapse
Affiliation(s)
- Dasiel Obregón
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil.,School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Emilie Bard
- EPIA, INRA, VetAgro Sup, Saint Genès Champanelle, France
| | - David Abrial
- EPIA, INRA, VetAgro Sup, Saint Genès Champanelle, France
| | | | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
46
|
Lima-Barbero JF, Díaz-Sanchez S, Sparagano O, Finn RD, de la Fuente J, Villar M. Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778). Avian Pathol 2019; 48:S52-S59. [PMID: 31267762 DOI: 10.1080/03079457.2019.1635679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The poultry red mite (PRM), Dermanyssus gallinae (De Geer, 1778), is a worldwide distributed ectoparasite and considered a major pest affecting the laying hen industry in Europe. Based on available information in other ectoparasites, the mite microbiome might participate in several biological processes and the acquisition, maintenance and transmission of pathogens. However, little is known about the role of PRM as a mechanical carrier or a biological vector in the transmission of pathogenic bacteria. Herein, we used a metaproteomics approach to characterize the alphaproteobacteria in the microbiota of PRM, and variations in its profile with ectoparasite development (nymphs vs. adults) and feeding (unfed vs. fed). The results showed that the bacterial community associated with D. gallinae was mainly composed of environmental and commensal bacteria. Putative symbiotic bacteria of the genera Wolbachia, C. Tokpelaia and Sphingomonas were identified, together with potential pathogenic bacteria of the genera Inquilinus, Neorickettsia and Roseomonas. Significant differences in the composition of alphaproteobacterial microbiota were associated with mite development and feeding, suggesting that bacteria have functional implications in metabolic pathways associated with blood feeding. These results support the use of metaproteomics for the characterization of alphaproteobacteria associated with the D. gallinae microbiota that could provide relevant information for the understanding of mite-host interactions and the development of potential control interventions. Research highlights Metaproteomics is a valid approach for microbiome characterization in ectoparasites. Alphaproteobacteria putative bacterial symbionts were identified in D. gallinae. Mite development and feeding were related to variations in bacterial community. Potentially pathogenic bacteria were identified in mite microbiota.
Collapse
Affiliation(s)
- José Francisco Lima-Barbero
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ronda de Toledo 12, 13071 Ciudad Real , Spain.,Sabiotec, S.A. Ed. Polivalente UCLM Ciudad Real , Spain
| | - Sandra Díaz-Sanchez
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ronda de Toledo 12, 13071 Ciudad Real , Spain
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, City University of Hong Kong , Kowloon , Hong Kong, SAR
| | - Robert D Finn
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University , Newcastle Upon Tyne , UK
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ronda de Toledo 12, 13071 Ciudad Real , Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , USA
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ronda de Toledo 12, 13071 Ciudad Real , Spain
| |
Collapse
|
47
|
Uncovering bacterial and functional diversity in macroinvertebrate mitochondrial-metagenomic datasets by differential centrifugation. Sci Rep 2019; 9:10257. [PMID: 31312027 PMCID: PMC6635389 DOI: 10.1038/s41598-019-46717-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
PCR-free techniques such as meta-mitogenomics (MMG) can recover taxonomic composition of macroinvertebrate communities, but suffer from low efficiency, as >90% of sequencing data is mostly uninformative due to the great abundance of nuclear DNA that cannot be identified with current reference databases. Current MMG studies do not routinely check data for information on macroinvertebrate-associated bacteria and gene functions. However, this could greatly increase the efficiency of MMG studies by revealing yet overlooked diversity within ecosystems and making currently unused data available for ecological studies. By analysing six ‘mock’ communities, each containing three macroinvertebrate taxa, we tested whether this additional data on bacterial taxa and functional potential of communities can be extracted from MMG datasets. Further, we tested whether differential centrifugation, which is known to greatly increase efficiency of macroinvertebrate MMG studies by enriching for mitochondria, impacts on the inferred bacterial community composition. Our results show that macroinvertebrate MMG datasets contain a high number of mostly endosymbiont bacterial taxa and associated gene functions. Centrifugation reduced both the absolute and relative abundance of highly abundant Gammaproteobacteria, thereby facilitating detection of rare taxa and functions. When analysing both taxa and gene functions, the number of features obtained from the MMG dataset increased 31-fold (‘enriched’) respectively 234-fold (‘not enriched’). We conclude that analysing MMG datasets for bacteria and gene functions greatly increases the amount of information available and facilitates the use of shotgun metagenomic techniques for future studies on biodiversity.
Collapse
|
48
|
Degli Esposti M, Lozano L, Martínez-Romero E. Current phylogeny of Rhodospirillaceae: A multi-approach study. Mol Phylogenet Evol 2019; 139:106546. [PMID: 31279965 DOI: 10.1016/j.ympev.2019.106546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Rhodospirillaceae represents a major family of the class alphaproteobacteria that includes an increasing number of functionally diverse taxa. The aim of this work is to evaluate the present phylogenetic diversity of the Rhodospirillaceae, which includes several metagenome-assembled genomes of uncultivated bacteria, as well as cultivated bacteria that were previously classified in different families. Various methodological approaches have been followed to discern the phylogenetic diversity of the taxa associated with the Rhodospirillaceae, which are grouped in three major sub-divisions and several other taxonomic entities that are currently confined to the genus rank. These genera include Tistrella, Elstera, Dongia and Ferrovibrio among cultivated organisms and alphaproteobacteria bacterium 41-28 among uncultivated bacteria. Overall, this study adds at least 11 genera and over 40 species to the current set of taxa belonging to the Rhodospirillaceae, a taxonomic term that clearly requires amendment. We propose to re-classify all taxa associated with the Rhodospirillaceae family under the new order, Diaforabacterales ord. nov. (from the Greek word for diversity, διάφορα). This study also uncovers the likely root of Rhodospirillaceae among recently reported metagenome-assembled genomes of uncultivated marine and groundwater bacteria.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, UNAM Campus de Cuernavaca, Cuernavaca 62130, Morelos, Mexico.
| | - Luis Lozano
- Center for Genomic Sciences, UNAM Campus de Cuernavaca, Cuernavaca 62130, Morelos, Mexico
| | | |
Collapse
|
49
|
Garber PA, Mallott EK, Porter LM, Gomez A. The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small-bodied primate. Am J Primatol 2019; 81:e23003. [PMID: 31190348 DOI: 10.1002/ajp.23003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022]
Abstract
Body mass is a strong predictor of diet and nutritional requirements across a wide range of mammalian taxa. In the case of small-bodied primates, because of their limited gut volume, rapid food passage rate, and high metabolic rate, they are hypothesized to maintain high digestive efficiency by exploiting foods rich in protein, fats, and readily available energy. However, our understanding of the dietary requirements of wild primates is limited because little is known concerning the contributions of their gut microbiome to the breakdown and assimilation of macronutrients and energy. To study how the gut microbiome contributes to the feeding ecology of a small-bodied primate, we analyzed the fecal microbiome composition and metabolome of 22 wild saddleback tamarins (adult body mass 360-390 g) in Northern Bolivia. Samples were analyzed using high-throughput Illumina sequencing of the 16 S rRNA gene V3-V5 regions, coupled with GC-MS metabolomic profiling. Our analysis revealed that the distal microbiome of Leontocebus weddelli is largely dominated by two main bacterial genera: Xylanibacter and Hallella (34.7 ± 14.7 and 22.6 ± 12.4%, respectively). A predictive analysis of functions likely carried out by bacteria in the tamarin gut demonstrated the dominance of membrane transport systems and carbohydrate metabolism as the predominant metabolic pathways. Moreover, given a fecal metabolome composed mainly of glucose, fructose, and lactic acid (21.7 ± 15.9%, 16.5 ± 10.7%, and 6.8 ± 5.5%, respectively), the processing of highly fermentable carbohydrates appears to play a central role in the nutritional ecology of these small-bodied primates. Finally, the results also show a potential influence of environmentally-derived bacteria in colonizing the tamarin gut. These results indicate high energetic turnover in the distal gut of Weddell's saddleback tamarin, likely influenced by dominant bacterial taxa that facilitate dietary dependence on highly digestible carbohydrates present in nectar, plant exudates, and ripe fruits.
Collapse
Affiliation(s)
- Paul A Garber
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Leila M Porter
- Department of Anthropology, Northern Illinois University, DeKalb, Illinois
| | - Andres Gomez
- Department of Animal Science, Integrated Animal Systems Biology Team, University of Minnesota, Minnesota
| |
Collapse
|
50
|
Ormeño-Orrillo E, Martínez-Romero E. A Genomotaxonomy View of the Bradyrhizobium Genus. Front Microbiol 2019; 10:1334. [PMID: 31263459 PMCID: PMC6585233 DOI: 10.3389/fmicb.2019.01334] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity (ANI) and phylogenomics showed the genus to be essentially monophyletic with seven robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria as well as free living strains. Despite the wide genetic diversity of these bacteria no indication was found to suggest that the Bradyrhizobium genus have to split in different taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids in the sequenced strains were revealed from rep gene analysis and a relatively low proportion of the genome is devoted to mobile genetic elements. Sequence diversity of recA and glnII gene metadata was used to theoretically estimate the number of existing species and to predict how many would exist. There may be many more species than those presently described with predictions of around 800 species in nature. Different arguments are presented suggesting that nodulation might have arose in the ancestral genus Bradyrhizobium.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | |
Collapse
|