1
|
Rovito R, Bono V, Coianiz N, Cazzetta V, Franzese S, Mikulak J, Di Vito C, Bai F, Beaudoin-Bussières G, Tauzin A, Augello M, Tincati C, Santoro A, Borghi E, Marozin S, Finzi A, Della Bella S, Mavilio D, Marchetti G. Multi-layered deep immune profiling, SARS-CoV-2 RNAemia and inflammation in unvaccinated COVID-19 individuals with persistent symptoms. COMMUNICATIONS MEDICINE 2025; 5:155. [PMID: 40325175 PMCID: PMC12052991 DOI: 10.1038/s43856-025-00832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Long-COVID immunopathogenesis involves diverse factors. We longitudinally characterize hospitalized COVID-19 patients, examining the role of SARS-CoV-2 RNAemia and inflammation in immune dysregulation. METHODS Hospitalized patients are evaluated during acute infection (T0), 3 months post-symptom onset (T1), and 3 years if symptoms persisted (T2). Immune profile includes characterization of SARS-CoV-2-specific/non-specific T/B cells (flow cytometry) and antibodies (ELISA, neutralization, ADCC). RNAemia and cytokines are quantified (RT-PCR, cytometric beads array) and correlated. STATISTICS non-parametric cross-sectional, longitudinal and correlation analyses. RESULTS Here we show 48 hospitalized individuals during acute COVID-19, 38 exhibit early persistent symptoms (EPS+) 3 months post-symptoms onset, 10 do not (EPS-). Groups are comparable for age, sex, co-morbidities. The EPS+ shows fatigue, dyspnoea, anosmia/dysgeusia, diarrhea, chronic pain, mnestic disorders. Over time, they show a reduction of neutralization ability and total SARS-CoV-2-specific CD4 T cells, with increased total CD4 TEMRA, and failure to increase RBD-specific B cells and IgA+ MBCs. EPS+ patients show higher levels of T0-IFN-γ + CD4 TEMRA, T1-IL-2 + CD4 TEM and T1-TNF-α + CD4 cTfh. In EPS+, baseline SARS-CoV-2 RNAemia positively correlates with CD4 TEMRA, follow-up SARS-CoV-2 RNAemia with ADCC. Among 38 EPS+ individuals at T1, 33 are evaluated 3 years after infection, 5 are lost at follow-up. 10/33 EPS+ show long-term symptoms (late persistent symptoms, EPS + LPS+), whereas 23/33 fully recover (EPS + LPS-). Antibodies, RNAemia, and cytokines show no differences between/within groups at any time point. CONCLUSIONS Early persistent symptoms are associated with multi-layered SARS-CoV-2-specific/non-SARS-CoV-2-specific immune dysregulation. The shift towards non-Ag-specific TEMRA and ADCC trigger in EPS+ may relate to SARS-CoV-2 RNAemia. Early immune dysregulation does not associate with long-term persistent symptoms. Further research on SARS-CoV-2 RNAemia and early immune dysregulation is needed.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Franzese
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Francesca Bai
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Santoro
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Elisa Borghi
- Clinical Microbiology, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Sabrina Marozin
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrés Finzi
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Samaan P, Korosec CS, Budylowski P, Chau SLL, Pasculescu A, Qi F, Delgado-Brand M, Tursun TR, Mailhot G, Dayam RM, Arnold CR, Langlois MA, Mendoza J, Morningstar T, Law R, Mihelic E, Sheikh-Mohamed S, Cao EY, Paul N, Patel A, de Launay KQ, Boyd JM, Takaoka A, Colwill K, Matveev V, Yue FY, McGeer A, Straus S, Gingras AC, Heffernen JM, Ostrowski M. mRNA vaccine-induced SARS-CoV-2 spike-specific IFN-γ and IL-2 T-cell responses are predictive of serological neutralization and are transiently enhanced by pre-existing cross-reactive immunity. J Virol 2025; 99:e0168524. [PMID: 39887249 PMCID: PMC11915849 DOI: 10.1128/jvi.01685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
The contributions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells to vaccine efficacy and durability are unclear. We investigated relationships between mRNA vaccine-induced spike-specific interferon- gamma (IFN-γ) and interleukin-2 (IL-2) T-cell responses and neutralizing antibody development in long-term care home staff doubly vaccinated with BNT162b2 or mRNA-1273. The impacts of pre-existing cross-reactive T-cell immunity on cellular and humoral responses to vaccination were additionally assessed. Mathematical modeling of the kinetics of spike-specific IFN-γ and IL-2 T-cell responses over 6 months post-second dose was bifurcated into recipients who exhibited gradual increases with doubling times of 155 and 167 days or decreases with half-lives of 165 and 132 days, respectively. Differences in kinetics did not correlate with clinical phenotypes. Serological anti-spike IgG, anti-receptor binding domain (RBD) IgG, anti-spike IgA, and anti-RBD IgA antibody levels otherwise decayed in all participants with half-lives of 63, 57, 79, and 46 days, respectively, alongside waning neutralizing capacity (t1/2 = 408 days). Spike-specific T-cell responses induced at 2-6 weeks positively correlated with live viral neutralization at 6 months post-second dose, especially in hybrid immune individuals. Participants with pre-existing cross-reactive T-cell immunity to SARS-CoV-2 exhibited greater spike-specific T-cell responses, reduced anti-RBD IgA antibody levels, and a trending increase in neutralization at 2-6 weeks post-second dose. Non-spike-specific T-cells predominantly targeted SARS-CoV-2 non-structural protein at 6 months post-second dose in cross-reactive participants. mRNA vaccination was lastly shown to induce off-target T-cell responses against unrelated antigens. In summary, vaccine-induced spike-specific T-cell immunity appeared to influence serological neutralizing capacity, with only a modest effect induced by pre-existing cross-reactivity. IMPORTANCE Our findings provide valuable insights into the potential contributions of mRNA vaccine-induced spike-specific T-cell responses to the durability of neutralizing antibody levels in both uninfected and hybrid immune recipients. Our study additionally sheds light on the precise impacts of pre-existing cross-reactive T-cell immunity to severe acute respiratory syndrome coronavirus 2 on the magnitude and kinetics of cellular and humoral responses to vaccination. Accordingly, our data will help optimize the development of next-generation T cell-based coronavirus vaccines and vaccine regimens to maximize efficacy and durability.
Collapse
Affiliation(s)
- Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Center for Disease Modelling, Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Patrick Budylowski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Serena L. L. Chau
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | | | - Tulunay R. Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Geneviève Mailhot
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Corey R. Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Justin Mendoza
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Ryan Law
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erik Mihelic
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nimitha Paul
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Anjali Patel
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | | | - Jamie M. Boyd
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Alyson Takaoka
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Vitaliy Matveev
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yun Yue
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Sharon Straus
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jane M. Heffernen
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Center for Disease Modelling, Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
- Keenan Research Center for Biomedical Science, St Michael's Hospital Keenan, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Stetsenko V, Gail DP, Reba S, Suzart VG, Sandhu AK, Sette A, Dezfulian MH, Arlehamn CSL, Carpenter SM. Human memory CD4 + T-cells recognize Mycobacterium tuberculosis-infected macrophages amid broader pathogen-specific responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639515. [PMID: 40060660 PMCID: PMC11888249 DOI: 10.1101/2025.02.23.639515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Recognition of macrophages infected with Mycobacterium tuberculosis (Mtb) is essential for CD4+ T cells to prevent tuberculosis (TB). Yet not all antigen-specific T cells recognize infected macrophages in human and murine models. Using monocyte-derived macrophages (MDMs) and autologous memory CD4+ T cells from individuals with latent Mtb infection (LTBI), we quantify T cell activation in response to infected macrophages. T cell antigen receptor (TCR) sequencing revealed >70% of unique and >90% of total Mtb-specific TCR clonotypes in stable LTBI are linked to recognition of infected macrophages, while a subset required exogenous antigen exposure, suggesting incomplete recognition. Clonotypes specific for multiple Mtb antigens and other pathogens were identified, indicating Mtb-specific and non-specific activation. Single-cell transcriptomics demonstrates Mtb-specific T cells express signature effector functions dominated by IFNγ, TNF, IL-2, and GM-CSF or chemokine production and signaling. We propose TB vaccines that elicit T cells capable of recognizing infected macrophages and expressing these canonical effector functions will offer protection against TB.
Collapse
Affiliation(s)
- Volodymyr Stetsenko
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel P Gail
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott Reba
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vinicius G Suzart
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Biomedical Sciences Training Program, Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Avinaash K Sandhu
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Biomedical Sciences Training Program, Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alessandro Sette
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Mohammad Haj Dezfulian
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cecilia S Lindestam Arlehamn
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Stephen M Carpenter
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Biomedical Sciences Training Program, Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
4
|
Yu C, Wang W, Zhang Q, Jin Z. Autoimmune hepatitis under the COVID-19 veil: an analysis of the nature of potential associations. Front Immunol 2025; 16:1510770. [PMID: 39958350 PMCID: PMC11825795 DOI: 10.3389/fimmu.2025.1510770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
In recent years, the novel coronavirus infectious disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has led to over 670 million infections and nearly 7 million deaths worldwide. The global pandemic of COVID-19 has precipitated a significant public health crisis. The prevalence of liver function abnormalities associated with SARS-CoV-2 is as high as 53% among healthy individuals or patients with autoimmune hepatitis (AIH) and shows a positive correlation with disease severity; moreover, specific adaptive immune responses can influence the trajectory and outcomes of COVID-19. For instance, SARS-CoV-2 may impact autoimmunity through mechanisms such as excessive stimulation of immune responses and molecular mimicry, particularly in genetically predisposed individuals. Currently, the overall mutational trend of SARS-CoV-2 indicates heightened infectivity and immune evasion capabilities. Consequently, vaccination remains crucial for universal protection against this disease. Nevertheless, alongside the widespread implementation of vaccination programs globally, an increasing number of cases have been documented where COVID-19 vaccination appears to trigger new-onset autoimmune hepatitis; yet definitive evidence is still pending elucidation regarding causality. In this review, we analyse the clinical-immunological characteristics, risks associated with severe disease progression, and prognosis for AIH patients infected with SARS-CoV-2; discuss the detrimental effects exerted by SARS-CoV-2 on hepatic function; summarise the mechanisms and attributes leading to new-onset AIH; as well as provide insights into how vaccination may interfere with autoimmunity processes. We continue to underscore the significance of vaccination while aiming to enhance awareness concerning potential risks associated with it-this could facilitate better management strategies for autoimmune diseases along with appropriate adjustments in vaccination protocols. Although the precise triggering mechanism linking COVID-19-related events to AIH remains unclear, existing evidence suggests that this relationship is far from coincidental.
Collapse
Affiliation(s)
| | | | | | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Kalandadze V, Di Simone PE, Mohammed I, Murari D, Follenzi A, Borsotti C. Elevated memory T-cell conversion in a preclinical mouse model of hemophilia A. Eur J Immunol 2024; 54:e2350807. [PMID: 38873896 DOI: 10.1002/eji.202350807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
One of the major challenges in the choice of the best therapeutic approach for the treatment of patients affected by hemophilia A (HA) is the definition of criteria predicting the formation of factor VIII (FVIII) neutralizing antibodies, called inhibitors. Both genetic and environmental elements influencing the immune response toward FVIII have been identified but still not all the factors causing the pathological rejection of FVIII have been identified. Since there is a connection between coagulation and inflammation, here we assessed the role played by the FVIII deficiency in shaping the humoral and cellular response toward an antigen other than FVIII itself. To this aim, we challenged both HA and wild-type (WT) mice with either FVIII or ovalbumin (OVA) and followed antigen-specific antibody level, immune cell population frequency and phenotype up to 9 weeks after the last antigen booster. The activation threshold was evaluated in vitro by stimulating the murine T cells with a decreasing dose of α-CD3. The humoral response to FVIII was similar between the two groups while both the in vivo and in vitro experiments highlighted an antigen-independent sensitivity of HA compared with WT T cells causing an increase in memory T-cell conversion and proliferation capability.
Collapse
Affiliation(s)
- Vakhtang Kalandadze
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Paolo E Di Simone
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Daniele Murari
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
6
|
Khan I, Minto RE, Kelley-Patteson C, Singh K, Timsina L, Suh LJ, Rinne E, Van Natta BW, Neumann CR, Mohan G, Lester M, VonDerHaar RJ, German R, Marino N, Hassanein AH, Gordillo GM, Kaplan MH, Sen CK, Kadin ME, Sinha M. Biofilm-derived oxylipin 10-HOME-mediated immune response in women with breast implants. J Clin Invest 2023; 134:e165644. [PMID: 38032740 PMCID: PMC10849761 DOI: 10.1172/jci165644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
This study investigates a mechanistic link of bacterial biofilm-mediated host-pathogen interaction leading to immunological complications associated with breast implant illness (BII). Over 10 million women worldwide have breast implants. In recent years, women have described a constellation of immunological symptoms believed to be related to their breast implants. We report that periprosthetic breast tissue of participants with symptoms associated with BII had increased abundance of biofilm and biofilm-derived oxylipin 10-HOME compared with participants with implants who are without symptoms (non-BII) and participants without implants. S. epidermidis biofilm was observed to be higher in the BII group compared with the non-BII group and the normal tissue group. Oxylipin 10-HOME was found to be immunogenically capable of polarizing naive CD4+ T cells with a resulting Th1 subtype in vitro and in vivo. Consistently, an abundance of CD4+Th1 subtype was observed in the periprosthetic breast tissue and blood of people in the BII group. Mice injected with 10-HOME also had increased Th1 subtype in their blood, akin to patients with BII, and demonstrated fatigue-like symptoms. The identification of an oxylipin-mediated mechanism of immune activation induced by local bacterial biofilm provides insight into the possible pathogenesis of the implant-associated immune symptoms of BII.
Collapse
Affiliation(s)
- Imran Khan
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert E. Minto
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
| | | | - Kanhaiya Singh
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lava Timsina
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lily J. Suh
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ethan Rinne
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Colby R. Neumann
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ganesh Mohan
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mary Lester
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - R. Jason VonDerHaar
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rana German
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Department of Medicine, and
| | - Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Department of Medicine, and
- Division of Hematology & Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aladdin H. Hassanein
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gayle M. Gordillo
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- McGowan Institute for Regenerative Medicine, Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chandan K. Sen
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marshall E. Kadin
- Department of Dermatology, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Mithun Sinha
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Safary A, Akbarzadeh-Khiavi M, Barar J, Omidi Y. SARS-CoV-2 vaccine-triggered autoimmunity: Molecular mimicry and/or bystander activation of the immune system. BIOIMPACTS : BI 2023; 13:269-273. [PMID: 37645029 PMCID: PMC10460773 DOI: 10.34172/bi.2023.27494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/14/2022] [Accepted: 12/18/2022] [Indexed: 08/31/2023]
Abstract
Induced autoimmunity or autoinflammatory-like conditions as a rare vaccine-related adverse event have been reported following COVID-19 vaccination. Such inadvertent adverse reactions have raised somewhat concerns about the long-term safety of the developed vaccines. Such multifactorial phenomena may be related to the cross-reactivity between the viral-specific antigens with the host self-proteins through molecular mimicry mechanism and/or nonspecific bystander activation of the non-target antigen-independent immunity by the entities of the vaccine products. However, due to the low incidence of the reported/identified individuals and insufficient evidence, autoimmunity following the COVID-19 vaccination has not been approved. Thereby, it seems that further designated studies might warrant post-monitoring of the inevitable adverse immunologic reactions in the vaccinated individuals, especially among hypersensitive cases, to address possible immunological mechanisms induced by the viral vaccines, incorporated adjuvants, and even vaccine delivery systems.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Yang Y, Huang L. Neurological Disorders following COVID-19 Vaccination. Vaccines (Basel) 2023; 11:1114. [PMID: 37376503 PMCID: PMC10302665 DOI: 10.3390/vaccines11061114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, people all over the world have been receiving different types of coronavirus disease 2019 (COVID-19) vaccines. While their effectiveness has been well recognized, various post-vaccination disorders are not fully understood. In this review, we discuss neurological disorders related to vascular, immune, infectious, and functional factors following COVID-19 vaccination, and attempt to provide neuroscientists, psychiatrists, and vaccination staff with a reference for the diagnosis and treatment of these diseases. These disorders may present as a recurrence of previous neurological disorders or new-onset diseases. Their incidence rate, host and vaccine characteristics, clinical manifestations, treatment, and prognosis differ significantly. The pathogenesis of many of them remains unclear, and further studies are needed to provide more evidence. The incidence rate of severe neurological disorders is relatively low, most of which are reversible or treatable. Therefore, the benefits of vaccination outweigh the risk of COVID-19 infection, especially among fragile populations.
Collapse
Affiliation(s)
| | - Lisu Huang
- Department of Infectious Diseases, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
| |
Collapse
|
9
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
10
|
Fiorino S, Carusi A, Hong W, Cernuschi P, Gallo CG, Ferrara E, Maloberti T, Visani M, Lari F, de Biase D, Zippi M. SARS-CoV-2 vaccines: What we know, what we can do to improve them and what we could learn from other well-known viruses. AIMS Microbiol 2022; 8:422-453. [PMID: 36694588 PMCID: PMC9834075 DOI: 10.3934/microbiol.2022029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
In recent weeks, the rate of SARS-CoV-2 infections has been progressively increasing all over the globe, even in countries where vaccination programs have been strongly implemented. In these regions in 2021, a reduction in the number of hospitalizations and deaths compared to 2020 was observed. This decrease is certainly associated with the introduction of vaccination measures. The process of the development of effective vaccines represents an important challenge. Overall, the breakthrough infections occurring in vaccinated subjects are in most cases less severe than those observed in unvaccinated individuals. This review examines the factors affecting the immunogenicity of vaccines against SARS-CoV-2 and the possible role of nutrients in modulating the response of distinct immune cells to the vaccination.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Andrea Carusi
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Paolo Cernuschi
- Internal Medicine Unit, Quisana Private Hospital, Ferrara, Italy
| | | | | | - Thais Maloberti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna-Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michela Visani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna-Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| |
Collapse
|
11
|
Safary A, Esalatmanesh K, Eftekharsadat AT, Jafari Nakjavani MR, Khabbazi A. Autoimmune inflammatory rheumatic diseases post-COVID-19 vaccination. Int Immunopharmacol 2022; 110:109061. [PMID: 35978510 PMCID: PMC9283674 DOI: 10.1016/j.intimp.2022.109061] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
Vaccination against COVID-19 is one of the critical tools to provide herd immunity, reduce mortality, and control the pandemic worldwide. Despite the safety of vaccination against SARS-CoV-2 in the healthy population, a minority of people may develop rare post-vaccine adverse reactions such as autoimmune syndromes. The current study aimed to identify and present a series of patients with de-novo autoimmune rheumatic diseases (ARDs) associated with COVID-19 vaccines. Inclusion criteria were the onset of ARDs symptoms at ∼3-4 weeks post-vaccination, age ≥ 16, no previous history of ARDs, meeting the classification criteria for one of the ARDs, and staying in the follow-up. The most commonly used vaccines in patients were Sinopharm [7 cases (50%)] and AstraZeneca [6 cases (42.9%)]. ARDs were significantly more common in subjects who received the AstraZeneca vaccine than in those who received other vaccines. Based on the results, patients were diagnosed with rheumatoid arthritis or one of its subtypes (5 cases), vasculitis (4 cases), systemic lupus erythematosus (3 cases), and peripheral seronegative spondyloarthritis (2 cases). Except for one patient with self-limitation of ARD, others were treated with disease-modifying antirheumatic drugs, and one case developed irreversible neurological complications. Indeed, our data can warn physicians about the possibility of ARDs post-vaccination, lead to faster diagnosis, prevent loss of window of opportunity for treatment, and prevent irreversible organ damage. Based on the published literature, autoimmune phenomena post-COVID-19 vaccination may be related to the overstimulation of mediators and cytokines due to complicated antigen-specific/non-specific immunological responses and mechanisms.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kamal Esalatmanesh
- Internal Medicine Department, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Taher Eftekharsadat
- Department of Pathology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Domnich A, Orsi A, Trombetta CS, Guarona G, Panatto D, Icardi G. COVID-19 and Seasonal Influenza Vaccination: Cross-Protection, Co-Administration, Combination Vaccines, and Hesitancy. Pharmaceuticals (Basel) 2022; 15:322. [PMID: 35337120 PMCID: PMC8952219 DOI: 10.3390/ph15030322] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 and influenza are the main respiratory viruses for which effective vaccines are currently available. Strategies in which COVID-19 and influenza vaccines are administered simultaneously or combined into a single preparation are advantageous and may increase vaccination uptake. Here, we comprehensively review the available evidence on COVID-19/influenza vaccine co-administration and combination vaccine candidates from the standpoints of safety, immunogenicity, efficacy, policy and public acceptance. While several observational studies have shown that the trained immunity induced by influenza vaccines can protect against some COVID-19-related endpoints, it is not yet understood whether co-administration or combination vaccines can exert additive effects on relevant outcomes. In randomized controlled trials, co-administration has proved safe, with a reactogenicity profile similar to that of either vaccine administered alone. From the immunogenicity standpoint, the immune response towards four influenza strains and the SARS-CoV-2 spike protein in co-administration groups is generally non-inferior to that seen in groups receiving either vaccine alone. Several public health authorities have advocated co-administration. Different combination vaccine candidates are in (pre)-clinical development. The hesitancy towards vaccine co-administration or combination vaccines is a multifaceted phenomenon and may be higher than the acceptance of either vaccine administered separately. Public health implications are discussed.
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (G.I.)
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (G.I.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (C.-S.T.); (D.P.)
| | - Carlo-Simone Trombetta
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (C.-S.T.); (D.P.)
| | - Giulia Guarona
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (G.I.)
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (C.-S.T.); (D.P.)
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (G.I.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (C.-S.T.); (D.P.)
| |
Collapse
|
13
|
Abstract
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Shim CH, Cho S, Shin YM, Choi JM. Emerging role of bystander T cell activation in autoimmune diseases. BMB Rep 2022; 55:57-64. [PMID: 35000675 PMCID: PMC8891623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 02/21/2025] Open
Abstract
Autoimmune disease is known to be caused by unregulated selfantigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigenstimulated T cells provides a novel insight to control autoimmune disease pathogenesis. [BMB Reports 2022; 55(2): 57-64].
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
15
|
Hupert N, Marín-Hernández D, Gao B, Águas R, Nixon DF. Heterologous vaccination interventions to reduce pandemic morbidity and mortality: Modeling the US winter 2020 COVID-19 wave. Proc Natl Acad Sci U S A 2022; 119:e2025448119. [PMID: 35012976 PMCID: PMC8784160 DOI: 10.1073/pnas.2025448119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 remains a stark health threat worldwide, in part because of minimal levels of targeted vaccination outside high-income countries and highly transmissible variants causing infection in vaccinated individuals. Decades of theoretical and experimental data suggest that nonspecific effects of non-COVID-19 vaccines may help bolster population immunological resilience to new pathogens. These routine vaccinations can stimulate heterologous cross-protective effects, which modulate nontargeted infections. For example, immunization with Bacillus Calmette-Guérin, inactivated influenza vaccine, oral polio vaccine, and other vaccines have been associated with some protection from SARS-CoV-2 infection and amelioration of COVID-19 disease. If heterologous vaccine interventions (HVIs) are to be seriously considered by policy makers as bridging or boosting interventions in pandemic settings to augment nonpharmaceutical interventions and specific vaccination efforts, evidence is needed to determine their optimal implementation. Using the COVID-19 International Modeling Consortium mathematical model, we show that logistically realistic HVIs with low (5 to 15%) effectiveness could have reduced COVID-19 cases, hospitalization, and mortality in the United States fall/winter 2020 wave. Similar to other mass drug administration campaigns (e.g., for malaria), HVI impact is highly dependent on both age targeting and intervention timing in relation to incidence, with maximal benefit accruing from implementation across the widest age cohort when the pandemic reproduction number is >1.0. Optimal HVI logistics therefore differ from optimal rollout parameters for specific COVID-19 immunizations. These results may be generalizable beyond COVID-19 and the US to indicate how even minimally effective heterologous immunization campaigns could reduce the burden of future viral pandemics.
Collapse
Affiliation(s)
- Nathaniel Hupert
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065;
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
- Cornell Institute for Disease and Disaster Preparedness, Cornell University, New York, NY 10065
| | - Daniela Marín-Hernández
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Bo Gao
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Ricardo Águas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
16
|
Rea IM, Alexander HD. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Res Rev 2022; 73:101494. [PMID: 34688926 PMCID: PMC8530779 DOI: 10.1016/j.arr.2021.101494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Covid-19 endangers lives, has disrupted normal life, changed the way medicine is practised and is likely to alter our world for the foreseeable future. Almost two years on since the presumptive first diagnosis of COVID-19 in China, more than two hundred and fifty million cases have been confirmed and more than five million people have died globally, with the figures rising daily. One of the most striking aspects of COVID-19 illness is the marked difference in individuals' experiences of the disease. Some, most often younger groups, are asymptomatic, whereas others become severely ill with acute respiratory distress syndrome (ARDS), pneumonia or proceed to fatal organ disease. The highest death rates are in the older and oldest age groups and in people with co-morbidities such as diabetes, heart disease and obesity. Three major questions seem important to consider. What do we understand about changes in the immune system that might contribute to the older person's risk of developing severe COVID-19? What factors contribute to the higher morbidity and mortality in older people with COVID-19? How could immunocompetence in the older and the frailest individuals and populations be supported and enhanced to give protection from serious COVID-19 illness?
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom; Meadowlands Ambulatory Care Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| |
Collapse
|
17
|
Vaccines are not always perfect: adverse effects and their clinical impact. A NEW HISTORY OF VACCINES FOR INFECTIOUS DISEASES 2022. [PMCID: PMC8989430 DOI: 10.1016/b978-0-12-812754-4.00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Liu Y, Sun B, Pan J, Feng Y, Ye W, Xu J, Lan M, Sun H, Zhang X, Sun Y, Yang S, Shi J, Zhang F, Cheng L, Jiang D, Yang K. Construction and evaluation of DNA vaccine encoding Ebola virus glycoprotein fused with lysosome-associated membrane protein. Antiviral Res 2021; 193:105141. [PMID: 34274417 DOI: 10.1016/j.antiviral.2021.105141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/20/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Ebola virus (EBOV) of the genus Ebolavirus belongs to the family Filoviridae, which cause disease in both humans and non-human primates. Zaire Ebola virus accounts for the highest fatality rate, reaching 90%. Considering that EBOV has a high infection and fatality rate, the development of a highly effective vaccine has become a top public health priority. Glycoprotein (GP) plays a critical role during infection and protective immune responses. Herein, we developed an EBOV GP recombinant DNA vaccine that targets the major histocompatibility complex (MHC) class II compartment by fusing with lysosomal-associated membrane protein 1 (LAMP1). Through lysosome trafficking and antigen presentation transferring, the LAMP1 targeting strategy successfully improved both humoral and cellular EBOV-GP-specific immune responses. After three consecutive immunizations, the serum antibody titers, especially the neutralizing activity of mice immunized with the pVAX-LAMP/GPEBO vaccine were significantly higher than those of the other groups. Antigen-specific T cells showed positive activity against three dominant peptides, EAAVSHLTTLATIST, IGEWAFWETKKNLTR, and ELRTFSILNRKAIDF, with high affinity for MHC class II molecules predicted by IEDB-recommended. Preliminary safety observation denied histological alterations. DNA vaccine candidate pVAX-LAMP/GPEBO shows promise against Ebola epidemic and further evaluation is guaranteed.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- BALB 3T3 Cells
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/adverse effects
- Ebola Vaccines/genetics
- Ebola Vaccines/immunology
- Ebolavirus/genetics
- Ebolavirus/immunology
- Female
- Glycoproteins/genetics
- Glycoproteins/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Mice
- Neutralization Tests
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Jingyu Pan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Yuancai Feng
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Wei Ye
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Jiahao Xu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Mingfu Lan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Hao Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Jingqi Shi
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Fanglin Zhang
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Linfeng Cheng
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China.
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China.
| |
Collapse
|
19
|
Marín-Hernández D, Nixon DF, Hupert N. Heterologous vaccine interventions: boosting immunity against future pandemics. Mol Med 2021; 27:54. [PMID: 34058986 PMCID: PMC8165337 DOI: 10.1186/s10020-021-00317-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
While vaccines traditionally have been designed and used for protection against infection or disease caused by one specific pathogen, there are known off-target effects from vaccines that can impact infection from unrelated pathogens. The best-known non-specific effects from an unrelated or heterologous vaccine are from the use of the Bacillus Calmette-Guérin (BCG) vaccine, mediated partly through trained immunity. Other vaccines have similar heterologous effects. This review covers molecular mechanisms behind the heterologous effects, and the potential use of heterologous vaccination in the current COVID-19 pandemic. We then discuss novel pandemic response strategies based on rapidly deployed, widespread heterologous vaccination to boost population-level immunity for initial, partial protection against infection and/or clinical disease, while specific vaccines are developed.
Collapse
Affiliation(s)
- Daniela Marín-Hernández
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Belfer Research Building, Room 530, 413 E. 69th street, New York, NY 10065 USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Belfer Research Building, Room 530, 413 E. 69th street, New York, NY 10065 USA
| | - Nathaniel Hupert
- Department of Population Health Sciences, Weill Cornell Medicine, 402 E. 67th Street, New York, NY 10065 USA
- Cornell Institute for Disease and Disaster Preparedness, Weill Cornell Medicine, 402 E. 67th Street, New York, NY 10065 USA
| |
Collapse
|
20
|
Townsend L, Dyer AH, Naughton A, Kiersey R, Holden D, Gardiner M, Dowds J, O’Brien K, Bannan C, Nadarajan P, Dunne J, Martin-Loeches I, Fallon PG, Bergin C, O’Farrelly C, Cheallaigh CN, Bourke NM, Conlon N. Longitudinal Analysis of COVID-19 Patients Shows Age-Associated T Cell Changes Independent of Ongoing Ill-Health. Front Immunol 2021; 12:676932. [PMID: 34025675 PMCID: PMC8138306 DOI: 10.3389/fimmu.2021.676932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives The immunological and inflammatory changes following acute COVID-19 are hugely variable. Persistent clinical symptoms following resolution of initial infection, termed long COVID, are also hugely variable, but association with immunological changes has not been described. We investigate changing immunological parameters in convalescent COVID-19 and interrogate their potential relationships with persistent symptoms. Methods We performed paired immunophenotyping at initial SARS-CoV-2 infection and convalescence (n=40, median 68 days) and validated findings in 71 further patients at median 101 days convalescence. Results were compared to 40 pre-pandemic controls. Fatigue and exercise tolerance were assessed as cardinal features of long COVID using the Chalder Fatigue Scale and 6-minute-walk test. The relationships between these clinical outcomes and convalescent immunological results were investigated. Results We identify persistent expansion of intermediate monocytes, effector CD8+, activated CD4+ and CD8+ T cells, and reduced naïve CD4+ and CD8+ T cells at 68 days, with activated CD8+ T cells remaining increased at 101 days. Patients >60 years also demonstrate reduced naïve CD4+ and CD8+ T cells and expanded activated CD4+ T cells at 101 days. Ill-health, fatigue, and reduced exercise tolerance were common in this cohort. These symptoms were not associated with immune cell populations or circulating inflammatory cytokines. Conclusion We demonstrate myeloid recovery but persistent T cell abnormalities in convalescent COVID-19 patients more than three months after initial infection. These changes are more marked with age and are independent of ongoing subjective ill-health, fatigue and reduced exercise tolerance.
Collapse
Affiliation(s)
- Liam Townsend
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adam H. Dyer
- Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Aifric Naughton
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | - Rachel Kiersey
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | - Dean Holden
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | - Mary Gardiner
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | - Joanne Dowds
- Department of Physiotherapy, St James’s Hospital, Dublin, Ireland
| | - Kate O’Brien
- Department of Physiotherapy, St James’s Hospital, Dublin, Ireland
| | - Ciaran Bannan
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
| | | | - Jean Dunne
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Colm Bergin
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Cliona Ni Cheallaigh
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James’s Hospital, Dublin, Ireland
- Department of Immunology, School of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
21
|
Blöchl C, Regl C, Huber CG, Winter P, Weiss R, Wohlschlager T. Towards middle-up analysis of polyclonal antibodies: subclass-specific N-glycosylation profiling of murine immunoglobulin G (IgG) by means of HPLC-MS. Sci Rep 2020; 10:18080. [PMID: 33093535 PMCID: PMC7581757 DOI: 10.1038/s41598-020-75045-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
In recent years, advanced HPLC-MS strategies based on intact protein (“top-down”) or protein subunit (“middle-up/middle-down”) analysis have been implemented for the characterization of therapeutic monoclonal antibodies. Here, we assess feasibility of middle-up/middle-down analysis for polyclonal IgGs exhibiting extensive sequence variability. Specifically, we addressed IgGs from mouse, representing an important model system in immunological investigations. To obtain Fc/2 portions as conserved subunits of IgGs, we made use of the bacterial protease SpeB. For this purpose, we initially determined SpeB cleavage sites in murine IgGs. The resulting Fc/2 portions characteristic of different subclasses were subsequently analysed by ion-pair reversed-phase HPLC hyphenated to high-resolution mass spectrometry. This enabled simultaneous relative quantification of IgG subclasses and their N-glycosylation variants, both of which influence IgG effector functions. To assess method capabilities in an immunological context, we applied the analytical workflow to polyclonal antibodies obtained from BALB/c mice immunized with the grass pollen allergen Phl p 6. The study revealed a shift in IgG subclasses and Fc-glycosylation patterns in total and antigen-specific IgGs from different mouse cohorts, respectively. Eventually, Fc/2 characterization may reveal other protein modifications including oxidation, amino acid exchanges, and C-terminal lysine, and may thus be implemented for quality control of functional antibodies.
Collapse
Affiliation(s)
- Constantin Blöchl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Petra Winter
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria. .,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| |
Collapse
|
22
|
Jagarapu A, Piovoso MJ, Zurakowski R. Optimal control modulation of HIV reservoir formation rate by antigen infusion. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2020; 2019:5662-5667. [PMID: 32874015 DOI: 10.1109/cdc40024.2019.9028891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Human Immunodeficiency Virus (HIV) infects helper-T cells, and takes advantage of the naturally occurring quiescent phenotype of T cells to persist even under effective treatment conditions. If an infected cell does not produce virus and enters this quiescent state, it forms a natural reservoir that is not targeted by either the existing antiretroviral drugs or the immune system. These quiescent cells intermittently switch to an activated phenotype and begin to produce virus, and are the primary source of viral rebound following treatment cessation. Recent experimental results have shown that, despite this reservoir having a years-long half-life under treatment, most of the cells in the reservoir were infected in a few weeks prior to the start of treatment. This can only be explained by assuming that this reservoir has a short half-life off treatment and a very long half-life on treatment. In this paper, we introduce a novel model of reservoir formation and turnover explaining this difference as a result of antigen-dependent activation. We introduce a second control input through infusion of HIV antigen, mimicking the non-infection pseudovirus (PV) produced by protease inhibitor therapy. This model is coupled to an existing model of immune response to HIV. We fit the parameters of this model to the existing clinical observations of latency. We show that the use of antigen infusion therapy can result in order-of-magnitude decrease in the size of the quiescent reservoir, and that this may provide a way to rapidly stabilize a post-treatment control state in treated HIV infected individuals.
Collapse
Affiliation(s)
- Aditya Jagarapu
- Aditya Jagarapu is with the Department of Biomedical Engineering, University of Delaware, Newark, DE
| | - Michael J Piovoso
- Michael J. Piovoso is with the Department of Electrical and Computer Engineering, University of Delaware, Newark, DE
| | - Ryan Zurakowski
- Ryan Zurakowski is with the Department of Biomedical Engineering, University of Delaware, Newark, DE
| |
Collapse
|
23
|
Tsoras AN, Wong KM, Paravastu AK, Champion JA. Rational Design of Antigen Incorporation Into Subunit Vaccine Biomaterials Can Enhance Antigen-Specific Immune Responses. Front Immunol 2020; 11:1547. [PMID: 32849524 PMCID: PMC7396695 DOI: 10.3389/fimmu.2020.01547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
Peptide subunit vaccines increase safety by reducing the risk of off-target responses and improving the specificity of the induced adaptive immune response. The immunogenicity of most soluble peptides, however, is often insufficient to produce robust and lasting immunity. Many biomaterials and delivery vehicles have been developed for peptide antigens to improve immune response while maintaining specificity. Peptide nanoclusters (PNC) are a subunit peptide vaccine material that has shown potential to increase immunogenicity of peptide antigens. PNC are comprised only of crosslinked peptide antigen and have been synthesized from several peptide antigens as small as 8 amino acids in length. However, as with many peptide vaccine biomaterials, synthesis requires adding residues to the peptide and/or engaging amino acids within the antigen epitope covalently to form a stable material. The impact of antigen modifications made to enable biomaterial incorporation or formation is rarely investigated, since the goal of most studies is to compare the soluble antigen with biomaterial form of antigen. This study investigates PNC as a platform vaccine biomaterial to evaluate how peptide modification and biomaterial formation with different crosslinking chemistries affect epitope-specific immune cell presentation and activation. Several types of PNC were synthesized by desolvation from the model peptide epitope SIINFEKL, which is derived from the immunogenic protein ovalbumin. SIINFEKL was altered to include extra residues on each end, strategically chosen to enable multiple conjugation chemistry options for incorporation into PNC. Several crosslinking methods were used to control which functional groups were used to stabilize the PNC, as well as the reducibility of the crosslinking. These variations were evaluated for immune responses and biodistribution following in vivo immunization. All modified antigen formulations still induced comparable immune responses when incorporated into PNC compared to unmodified soluble antigen alone. However, some crosslinking methods led to a significant increase in desirable immune responses while others did not, suggesting that not all PNC were processed the same. These results help guide future peptide vaccine biomaterial design, including PNC and a wide variety of conjugated and self-assembled peptide antigen materials, to maximize and tune the desired immune response.
Collapse
Affiliation(s)
| | | | | | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
24
|
Mohammadzadeh A. Co-inhibitory receptors, transcription factors and tolerance. Int Immunopharmacol 2020; 84:106572. [DOI: 10.1016/j.intimp.2020.106572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
|
25
|
Bhuniya A, Guha I, Ganguly N, Saha A, Dasgupta S, Nandi P, Das A, Ghosh S, Ghosh T, Haque E, Banerjee S, Bose A, Baral R. NLGP Attenuates Murine Melanoma and Carcinoma Metastasis by Modulating Cytotoxic CD8 + T Cells. Front Oncol 2020; 10:201. [PMID: 32211313 PMCID: PMC7076076 DOI: 10.3389/fonc.2020.00201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neem leaf glycoprotein (NLGP), a natural immunomodulator, attenuates murine carcinoma and melanoma metastasis, independent of primary tumor growth and alterations in basic cellular properties (cell proliferation, cytokine secretion, etc.). Colonization event of invasion–metastasis cascade was primarily inhibited by NLGP, with no effect on metastasis-related invasion, migration, and extravasation. High infiltration of interferon γ (IFN-γ)–secreting cytotoxic CD8+ T cells [CD44+, CD69+, GranB+, IFN-γ+, and interleukin 2+] was documented in the metastatic site of NLGP-treated mice. Systemic CD8+ T cell depletion abolished NLGP-mediated metastasis inhibition and reappeared upon adoptive transfer of NLGP-activated CD8+ T cells. Interferon γ-secreting from CD8+ T cells inhibit the expression of angiogenesis regulatory vascular endothelial growth factor and transforming growth factor β and have an impact on the prevention of colonization. Neem leaf glycoprotein modulates dendritic cells (DCs) for proper antigen presentation by its DC surface binding and upregulation of MHC-I/II, CD86, and CCR7. Neem leaf glycoprotein–treated DCs specifically imprint CXCR3 and CCR4 homing receptors on activated CD8+ T cells, which helps to infiltrate into metastatic sites to restrain colonization. Such NLGP's effect on DCs is translation dependent and transcription independent. Studies using ovalbumin, OVA257−264, and crude B16F10 antigen indicate MHC-I upregulation depends on the quantity of proteasome degradable peptide and only stimulates CD8+ T cells in the presence of antigen. Overall data suggest NLGP inhibits metastasis, in conjunction with tumor growth restriction, and thus might appear as a promising next-generation cancer immunotherapeutic.
Collapse
Affiliation(s)
- Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Arnab Das
- RNA Biology and Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Enamul Haque
- Department of Zoology, Barasat Government College, Barasat, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
26
|
Characterization of potential biomarkers of reactogenicity of licensed antiviral vaccines: randomized controlled clinical trials conducted by the BIOVACSAFE consortium. Sci Rep 2019; 9:20362. [PMID: 31889148 PMCID: PMC6937244 DOI: 10.1038/s41598-019-56994-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
Biomarkers predictive of inflammatory events post-vaccination could accelerate vaccine development. Within the BIOVACSAFE framework, we conducted three identically designed, placebo-controlled inpatient/outpatient clinical studies (NCT01765413/NCT01771354/NCT01771367). Six antiviral vaccination strategies were evaluated to generate training data-sets of pre-/post-vaccination vital signs, blood changes and whole-blood gene transcripts, and to identify putative biomarkers of early inflammation/reactogenicity that could guide the design of subsequent focused confirmatory studies. Healthy adults (N = 123; 20-21/group) received one immunization at Day (D)0. Alum-adjuvanted hepatitis B vaccine elicited vital signs and inflammatory (CRP/innate cells) responses that were similar between primed/naive vaccinees, and low-level gene responses. MF59-adjuvanted trivalent influenza vaccine (ATIV) induced distinct physiological (temperature/heart rate/reactogenicity) response-patterns not seen with non-adjuvanted TIV or with the other vaccines. ATIV also elicited robust early (D1) activation of IFN-related genes (associated with serum IP-10 levels) and innate-cell-related genes, and changes in monocyte/neutrophil/lymphocyte counts, while TIV elicited similar but lower responses. Due to viral replication kinetics, innate gene activation by live yellow-fever or varicella-zoster virus (YFV/VZV) vaccines was more suspended, with early IFN-associated responses in naïve YFV-vaccine recipients but not in primed VZV-vaccine recipients. Inflammatory responses (physiological/serum markers, innate-signaling transcripts) are therefore a function of the vaccine type/composition and presence/absence of immune memory. The data reported here have guided the design of confirmatory Phase IV trials using ATIV to provide tools to identify inflammatory or reactogenicity biomarkers.
Collapse
|
27
|
The activation of bystander CD8 + T cells and their roles in viral infection. Exp Mol Med 2019; 51:1-9. [PMID: 31827070 PMCID: PMC6906361 DOI: 10.1038/s12276-019-0316-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/09/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
During viral infections, significant numbers of T cells are activated in a T cell receptor-independent and cytokine-dependent manner, a phenomenon referred to as "bystander activation." Cytokines, including type I interferons, interleukin-18, and interleukin-15, are the most important factors that induce bystander activation of T cells, each of which plays a somewhat different role. Bystander T cells lack specificity for the pathogen, but can nevertheless impact the course of the immune response to the infection. For example, bystander-activated CD8+ T cells can participate in protective immunity by secreting cytokines, such as interferon-γ. They also mediate host injury by exerting cytotoxicity that is facilitated by natural killer cell-activating receptors, such as NKG2D, and cytolytic molecules, such as granzyme B. Interestingly, it has been recently reported that there is a strong association between the cytolytic function of bystander-activated CD8+ T cells and host tissue injury in patients with acute hepatitis A virus infection. The current review addresses the induction of bystander CD8+ T cells, their effector functions, and their potential roles in immunity to infection, immunopathology, and autoimmunity.
Collapse
|
28
|
Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun 2019; 103:102301. [PMID: 31326230 DOI: 10.1016/j.jaut.2019.06.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
Abstract
The interaction over time of genetic, epigenetic and environmental factors (i.e., autoimmune ecology) increases or decreases the liability an individual would have to develop an autoimmune disease (AD) depending on the misbalance between risk and protective effects. Pathogens have been the most common antecedent events studied, but multiple other environmental factors including xenobiotic chemicals, drugs, vaccines, and nutritional factors have been implicated into the development of ADs. Three main mechanisms have been offered to explain the development of autoimmunity: molecular mimicry, epitope spreading, and bystander activation. The latter is characterized by auto-reactive B and T cells that undergo activation in an antigen-independent manner, influencing the development and course of autoimmunity. Activation occurs due to a combination of an inflammatory milieu, co-signaling ligands, and interactions with neighboring cells. In this review, we will discuss the studies performed seeking to define the role of bystander activation in systemic and organ-specific ADs. In all cases, we are cognizant of individual differences between hosts and the variable latency time for clinical expression of disease, all of which have made our understanding of the etiology of loss of immune tolerance difficult and enigmatic.
Collapse
Affiliation(s)
- Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA; Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia.
| |
Collapse
|
29
|
Meckiff BJ, Ladell K, McLaren JE, Ryan GB, Leese AM, James EA, Price DA, Long HM. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:1276-1287. [PMID: 31308093 PMCID: PMC6697742 DOI: 10.4049/jimmunol.1900377] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
Primary EBV infection drives highly cytotoxic virus-specific CD4+ T cell responses. EBV-specific memory CD4+ T cells are polyfunctional but lack cytotoxic activity. Acute EBV-specific CD4-CTLs differ transcriptionally from classical memory CD4-CTLs.
CD4+ T cells are essential for immune protection against viruses, yet their multiple roles remain ill-defined at the single-cell level in humans. Using HLA class II tetramers, we studied the functional properties and clonotypic architecture of EBV-specific CD4+ T cells in patients with infectious mononucleosis, a symptomatic manifestation of primary EBV infection, and in long-term healthy carriers of EBV. We found that primary infection elicited oligoclonal expansions of TH1-like EBV-specific CD4+ T cells armed with cytotoxic proteins that responded immediately ex vivo to challenge with EBV-infected B cells. Importantly, these acutely generated cytotoxic CD4+ T cells were highly activated and transcriptionally distinct from classically described cytotoxic CD4+ memory T cells that accumulate during other persistent viral infections, including CMV and HIV. In contrast, EBV-specific memory CD4+ T cells displayed increased cytokine polyfunctionality but lacked cytotoxic activity. These findings suggested an important effector role for acutely generated cytotoxic CD4+ T cells that could potentially be harnessed to improve the efficacy of vaccines against EBV.
Collapse
Affiliation(s)
- Benjamin J Meckiff
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - Gordon B Ryan
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alison M Leese
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eddie A James
- Tetramer Core Laboratory, Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
30
|
Messina NL, Zimmermann P, Curtis N. The impact of vaccines on heterologous adaptive immunity. Clin Microbiol Infect 2019; 25:1484-1493. [PMID: 30797062 DOI: 10.1016/j.cmi.2019.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vaccines induce antigen-specific memory in adaptive immune cells that enables long-lived protection against the target pathogen. In addition to this, several vaccines have beneficial effects greater than protection against their target pathogen. These non-specific effects are proposed to be the result of vaccine-induced immunomodulation. In the case of bacille Calmette-Guérin (BCG) vaccine, this involves induction of innate immune memory, termed 'trained immunity', in monocytes and natural killer cells. OBJECTIVES This review discusses current evidence for vaccine-induced immunomodulation of adaptive immune cells and heterologous adaptive immune responses. CONTENT The three vaccines that have been associated with changes in all-cause infant mortality: BCG, diphtheria-tetanus-pertussis (DTP) and measles-containing vaccines (MCV) alter T-cell and B-cell immunity. The majority of studies that investigated non-specific effects of these vaccines on the adaptive immune system report changes in numbers or proportions of adaptive immune cell populations. However, there is also evidence for effects of these vaccines on adaptive immune cell function and responses to heterologous stimuli. There is some evidence that, in addition to BCG, DTP and MCV, other vaccines (that have not been associated with changes in all-cause mortality) may alter adaptive immune responses to unrelated stimuli. IMPLICATIONS This review concludes that vaccines alter adaptive immune cell populations and heterologous immune responses. The non-specific effects differ between various vaccines and their effects on heterologous adaptive immune responses may also involve bystander activation, cross-reactivity and other as yet undefined mechanisms. This has major implications for future vaccine design and vaccination scheduling.
Collapse
Affiliation(s)
- N L Messina
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - P Zimmermann
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia; Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
| | - N Curtis
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
Yanagisawa N, Ueshiba H, Abe Y, Kato H, Higuchi T, Yagi J. Outer Membrane Protein of Gut Commensal Microorganism Induces Autoantibody Production and Extra-Intestinal Gland Inflammation in Mice. Int J Mol Sci 2018; 19:ijms19103241. [PMID: 30347705 PMCID: PMC6214128 DOI: 10.3390/ijms19103241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Gut commensal microorganisms have been linked with chronic inflammation at the extra-intestinal niche of the body. The object of the study was to investigate on the chronic effects of a gut commensal Escherichia coli on extra-intestinal glands. The presence of autoimmune response was diagnosed by autoantibody levels and histological methods. Repeated injection of E. coli induced mononuclear cell inflammation in the Harderian and submandibular salivary glands of female C57BL/6 mice. Inflammation was reproduced by adoptive transfer of splenocytes to immune-deficient Rag2 knockout mice and CD4+ T cells to mature T cell-deficient TCRβ-TCRδ knockout mice. MALDI TOF mass spectrometry of the protein to which sera of E. coli-treated mice reacted was determined as the outer membrane protein A (OmpA) of E. coli. Multiple genera of the Enterobacteriaceae possessed OmpA with high amino-acid sequence similarities. Repeated injection of recombinant OmpA reproduced mononuclear cell inflammation of the Harderian and salivary glands in mice and elevation of autoantibodies against Sjögren’s-syndrome-related antigens SSA/Ro and SSB/La. The results indicated the possibility of chronic stimuli from commensal bacteria-originated components as a pathogenic factor to elicit extra-intestinal autoimmunity.
Collapse
Affiliation(s)
- Naoko Yanagisawa
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Hidehiro Ueshiba
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Yoshihiro Abe
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Hidehito Kato
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Tomoaki Higuchi
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Junji Yagi
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
32
|
van Aalst S, Jansen MAA, Ludwig IS, van der Zee R, van Eden W, Broere F. Routing dependent immune responses after experimental R848-adjuvated vaccination. Vaccine 2018; 36:1405-1413. [PMID: 29409680 DOI: 10.1016/j.vaccine.2018.01.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
Most traditional vaccines are administered via the intramuscular route. Other routes of administration however, can induce equal or improved protective memory responses and might provide practical advantages such as needle-free immunization, dose sparing and induction of tissue-specific (mucosal) immunity. Here we explored the differences in immunological outcome after immunization with model antigens via two promising immunization routes (intradermal and intranasal) with or without the experimental adjuvant and TLR7/8-agonist R848. Because the adaptive immune response is largely determined by the local innate cells at the site of immunization, the effect of R848-adjuvation on local cellular recruitment, antigenic uptake by antigen-presenting cells and the initiation of the adaptive response were analyzed for the two routes of administration. We show a general immune-stimulating effect of R848 irrespective of the route of administration. This includes influx of neutrophils, macrophages and dendritic cells to the respective draining lymph nodes and an increase in antigen-positive antigen-presenting cells which leads for both intradermal and intranasal immunization to a mainly TH1 response. Furthermore, both intranasal and intradermal R848-adjuvated immunization induces a local shift in DC subsets; frequencies of CD11b+DC increase whereas CD103+DC decrease in relative abundance in the draining lymph node. In spite of these similarities, the outcome of immune responses differs for the respective immunization routes in both magnitude and cytokine profile. Via the intradermal route, the induced T-cell response is higher compared to that after intranasal immunization, which corresponds with the local higher uptake of antigen by antigen-presenting cells after intradermal immunization. Furthermore, R848-adjuvation enhances ex vivo IL-10 and IL-17 production after intranasal, but not intradermal, T-cell activation. Quite the opposite, intradermal immunization leads to a decrease in IL-10 production by the vaccine induced T-cells. This knowledge may lead to a more rational development of novel adjuvanted vaccines administered via non-traditional routes.
Collapse
Affiliation(s)
- Susan van Aalst
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| | - Manon A A Jansen
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| | - Irene S Ludwig
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|